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Humans are less likely to learn from individuals belonging to a different group (outgroup) than from individuals of their
own group (ingroup), yet the source of this societally relevant deficit has remained unclear. Here we used neuroimaging and
computational modeling to investigate how people learn from observing the actions and outcomes of ingroup and outgroup
demonstrators. Politically left-wing male and female participants performed worse when observing computer-simulated
actions they believed were from a right-wing outgroup member compared with those from a left-wing ingroup member. A
control experiment in which participants observed choices from a nonhuman agent confirmed that this performance differ-
ence reflected an outgroup deficit, rather than an ingroup gain. Accounting for the outgroup deficit, a computational model
showed that participants relied less on information from outgroup actions compared with ingroup actions, while learning
from outgroup outcomes was not impaired. At the neural level, the differences in observational ingroup versus outgroup
learning were reflected in lateral prefrontal activity. The stronger the activity in this region, the more strongly participants
weighed ingroup compared with outgroup learning signals (action prediction errors), which formally captured deficits in out-
group learning. Together, our work provides a computational and neural account of why people learn less from observing
outgroups.
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Introduction
For many different species, including humans, learning from
perceiving the actions and outcomes of others (i.e., observational
learning) is an efficient way to acquire knowledge and skills.
There is evidence that observational learning is modulated by

important social factors such as group membership (Buttelmann
et al., 2013; Golkar et al., 2015; Howard et al., 2015). For exam-
ple, learning appears to be facilitated if participants observe a
person from their own social group (ingroup) compared with a
person from a different social group (outgroup; Golkar et al.,
2015; Golkar and Olsson, 2017). This ingroup bias in observatio-
nal learning was even found in infants and children, being more
likely to imitate the novel actions of a demonstrator who speaks
their language compared with a person speaking a different lan-
guage (Buttelmann et al., 2013; Howard et al., 2015).

Previous neuroscience studies have investigated observational
learning regardless of group membership (Burke et al., 2010;
Suzuki et al., 2012; Charpentier et al., 2020; Kumaran et al.,
2015) and reported learning from observed outcomes and
observed actions. Learning from others’ outcomes and the result-
ing outcome prediction errors is associated with activation in
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Significance Statement

Learning from observing others is an efficient way to acquire knowledge. In our globalized world, “the others” often are peo-
ple from a different social group (outgroup). There is evidence that people learn less from observing outgroup individuals
compared with individuals from their own group (ingroup). However, the source of this outgroup deficit in observational
learning remained unknown, which limits our chances to improve intergroup learning. Our results showed that participants
rely less on observed outgroup actions compared with ingroup actions, while learning from outgroup outcomes is not
impaired. On the neural level, this outgroup deficit was reflected in the activation of the inferior frontal gyrus. These findings
imply that intergroup learning should rely on observing outcomes, rather than actions.
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medial prefrontal cortex (MPFC; Burke et al., 2010; Suzuki et al.,
2012; Kumaran et al., 2015). Learning from others’ actions and
the resulting action prediction errors is related to activation in
dorsolateral PFC (DLPFC)/inferior frontal gyrus (IFG; Burke et
al., 2010; Suzuki et al., 2012; Charpentier et al., 2020).

The effect of group membership has mainly been investigated
with regard to action observation or imitation (Losin et al., 2012,
2015), revealing ingroup versus outgroup differences in brain
regions associated with mentalizing (Losin et al., 2015), and parts
of the “mirror neuron system” such as the inferior frontal, motor,
and parietal cortex (Losin et al., 2012). However, it remained
unclear how important social factors, such as groupmembership,
shape observational learning mechanisms and the underlying
neural networks.

In our study, we investigated how group membership affects
the neural circuitries of observational learning. To do so, we
combined a well established observational learning paradigm
(Burke et al., 2010) with social group manipulation, computa-
tional modeling, and fMRI. In more detail, participants inside
the fMRI scanner observed only choices (i.e., actions) or choices
and outcomes of an ingroup demonstrator and an outgroup
demonstrator, and could use these different pieces of informa-
tion to optimize their own choice.

Based on previous behavioral evidence of outgroup deficits in
social learning (Buttelmann et al., 2013; Golkar and Olsson,
2017), we hypothesized that participants choose the “correct”
(i.e., more rewarding) option less frequently after observing out-
group choices compared with ingroup choices, reflecting an out-
group deficit in observational learning. Given that individuals
learn from observing A) the outcomes and B) the actions of
others (Burke et al., 2010; Suzuki et al., 2012), we derived three
different hypotheses regarding the mechanisms that might
underlie the potential deficit in outgroup learning. According to
a first hypothesis, the outgroup deficit in observational learning
may arise because participants rely more on observed ingroup
outcomes compared with outgroup outcomes. In computational
modeling, this should be reflected by a stronger weight for
ingroup compared with outgroup outcome prediction errors,
associated with neural activation of the MPFC (Burke et al.,
2010; Suzuki et al., 2012; Kumaran et al., 2015). Alternatively, the
outgroup deficit in observational learning may occur because
participants rely more on observed ingroup compared with out-
group actions. In this case, our computational modeling results
should reveal a stronger weight for ingroup compared with out-
group action prediction errors, related to increased activation in
DLPFC/IFG (Burke et al., 2010; Suzuki et al., 2012; Charpentier
et al., 2020). Finally, it is possible that the outgroup deficit in
observational learning arises because participants rely more on
observing ingroup outcomes and actions, reflected by a stronger
weight for ingroup compared with outgroup outcome and action
prediction errors, paralleled by increased activation in MPFC
and DLPFC/IFG.

Materials and Methods
Participants
fMRI study. Thirty-two participants (19 females; mean age, 22.51 6
0.54 years) were recruited from the University of Zurich and a local com-
munity in Zurich. Participants were all right handed, had normal/cor-
rected-to-normal vision, and did not have a history of psychological or
neurologic disorders. Because our group manipulation was based on po-
litical attitude (see below), we invited Swiss participants who perceived
themselves as politically active (i.e., interested in current political debates
in Switzerland) with primarily left-wing attitudes. Three participants

had to be excluded because they showed right-wing attitudes during the
group manipulation check (see below). Thus, we analyzed data from 29
participants in the imaging experiment.

Behavioral control study. For a behavioral control experiment outside
the fMRI scanner, we recruited another sample of 33 participants (18
females; mean age, 23.256 3.34 years). The participants were recruited
from the same participant pool, and they matched the participants of the
fMRI study in terms of age, education level, political attitude, and
nationality (all p values. 0.171). All participants received a fixed mone-
tary compensation for their participation and additional incentives
according to their performance. The study was approved by the ethics
committee of the Canton of Zurich.

Experimental design and statistical analysis
fMRI study. Prescanning procedure for group induction. Before the main
fMRI experiment, participants provided their political views by rating
current political issues in Switzerland and observed the ostensible ratings
of two other individuals. One of these individuals displayed similar rat-
ings as the participant, indicating a left-wing attitude. The ratings of the
other individuals indicated attitudes opposite to those of the participants
(i.e., right-wing attitudes).

The prescanning procedure consisted of six trials. In each of these
trials, the participants were presented with a political initiative dividing
the left- and right-wing parties (e.g., an initiative to raise inheritance
tax). They were asked to indicate their opinion by moving an abstract
symbol on a visual analog scale (ranging from “strongly disagree” to
“strongly agree”; Fig. 1A). Next, participants were presented with two
abstract symbols on the same rating scale that ostensibly indicated the
ratings of two different individuals (Fig. 1A). One of these symbols (des-
ignated to become the symbol of the ingroup demonstrator) appeared in
the part of the rating scales that indicated agreement with left-wing ini-
tiatives and disagreement with right-wing initiatives, corresponding to a
political attitude similar to that of the participants. The other symbol
(designated to become the symbol of the outgroup demonstrator)
appeared in the part of the rating scales that indicated agreement with
right-wing initiatives and disagreement with left-wing initiatives, oppos-
ing the political attitude of the participant. The presentation order of the
symbols was randomized across trials. The symbols representing the
ingroup and the outgroup demonstrator were counterbalanced across
participants, but remained constant within each participant. At the end
of the group induction, the ratings of participants and the two other
individuals (i.e., all three symbols) were again shown for each political
issue to remind the participants of the political attitudes of the other two
individuals relative to their own attitude (Fig. 1A).

Next, participants were asked to rate how close they feel to major po-
litical parties in Switzerland ranging from left wing to right wing, and to
provide the same closeness ratings for each of the two other individuals
whose ratings regarding political initiatives they had observed before. To
do so, participants moved the respective symbols on a rating scale (rang-
ing from “very close” to “not close at all”). These ratings served as a
manipulation check of our group manipulation because they quantified
how differently the participants perceived the persons associated with
the ingroup or the outgroup symbol, and verified that the perceived dif-
ferences resulted in social categorization (here supporters of left-wing
and right-wing political parties).

Observational learning task. We used a modified version of an obser-
vational learning task established in a previous study (Burke et al., 2010).
The participants were instructed to learn about the reward probability of
two fractal images through observation of only choices (action_only
condition) or choices and outcomes (action_outcome condition) of the
two demonstrators whose political attitudes they had rated outside the
scanner (Fig. 1A). To do so, they would observe prerecorded choices
that the two individuals (demonstrators) made to optimize their own
outcomes in a previous experiment. Unknown to the participant, all
demonstrator choices were generated by a standard reinforcement learn-
ing algorithm with a learning rate of 0.3 and a b of 0.4 in each condi-
tion. We used this manipulation to ensure that participants observed
identical choices from the ingroup and the outgroup demonstrator
(action outcome condition: F(1,172) = 0.101, p=0.751, h

2 = 0.001; action-
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only condition: F(1,172) = 0.201, p= 0.655, h
2 = 0.001). Moreover, esti-

mating the actually realized b values of ingroup and outgroup demon-
strators revealed no difference between conditions (t(28) = 0.91, p=0.36).
Thus, participants observed comparable choices (and a comparable
learning rate) in the ingroup and the outgroup conditions, and potential
differences between the conditions should result from the group manip-
ulation (i.e., the differences in the demonstrators’ group membership).

Each trial of the observational learning task consisted of an observa-
tion phase (i.e., observing the demonstrator’s decision) and a decision
phase (i.e., making a decision for themselves; Fig. 1C). To prevent confu-
sion between the two phases, the screen was vertically split in two halves
with one-half showing the observation phase and the other half showing
the decision phase. The display side of the observation and decision
phases was constant within each participant and counterbalanced across
participants.

At the beginning of the observation phase, the demonstrator for the
present trial was indicated by one of the two previously learned abstract
symbols, presented for a jittered duration of 1–10 s. Then, participants
had 1.5 s to predict which option the demonstrator would choose. After
response registration (0.5 s) and a short interval (0.5 s), the action of the
demonstrator was shown for 1 s. Depending on the condition, partici-
pants then observed the outcome of the demonstrator (action_outcome
condition) or a pixel-matched scrambled image (action_only condition)
for 1.5 s. The scrambled image was made from the outcome presentation
part (0 or 10), and all pixels of the respective outcome were randomly
redistributed. After a jittered interval of 1–10 s, the demonstrator’s sym-
bol was replaced by the participant’s symbol, followed by the two fractals
(;1.5 s). Within this period, the participants selected one of the two
fractals. The choice was displayed for 0.5 s, followed by a scrambled

outcome image (1.5 s), which prevented individual learning during the
task. Learning was incentivized by paying out participant decisions at
the end of the experiment. At the end of the experiment, participants
were debriefed and filled in a questionnaire asking open questions
regarding the purpose of the study and how they felt during the study in
the fMRI scanner. None of the participants reported suspicions about
the experimental setting or inferred the purpose of the study (effect of
group membership on observational learning) correctly.

The fractals were associated with different reward contingencies
(70% reward vs 30% reward). We used the two conditions (action out-
come vs action only) to disentangle action-related learning and out-
come-related learning. In the action outcome condition, participants
could learn from both actions and outcomes of the demonstrators, while
in the action-only condition they could learn only from observing the
actions of the demonstrators. The observational learning task consisted
of three ingroup condition and three outgroup condition sessions, with
each session comprising one action_outcome block and one action_only
block. The sequence of ingroup and outgroup sessions was interleaved,
and the order of sessions was counterbalanced across participants.

Individual learning task. In addition to the observational learning
task, participants performed an individual learning task. The structure of
this task was identical to the observational learning task. However, now
the symbol representing the demonstrator was replaced by a scrambled
image, and participants were asked to press a random key instead of pre-
dicting the choice of the demonstrator. At the time when the demonstra-
tor’s choice was revealed in the observational learning part, both options
were highlighted by a frame to keep action observation uninformative.
Participants received the feedback of their own choice during the deci-
sion phase. They performed the individual learning task in a separate

Figure 1. Group induction, manipulation check, and observational learning task. A, Before scanning, participants rated current political issues in Switzerland and viewed ratings of two differ-
ent persons (future demonstrators) regarding the same issues. B, Participants’ ratings of the ingroup and outgroup demonstrator’s closeness toward a left-wing and right-wing party, based on
how the demonstrators rated political initiatives (as in the example shown in A). The participants rated the ingroup demonstrator as similar to themselves (i.e., close to a left-wing party) and
the outgroup demonstrator as dissimilar to themselves (i.e., close to a right-wing party). Blue, perceived closeness of the ingroup demonstrator toward a left-wing (left) or right-wing (right)
party; red, perceived closeness of the outgroup demonstrator toward a left-wing party (left) or right-wing party (right). Error bars indicate SEM. C, In the main part of the study, participants
observed the ingroup or outgroup demonstrator choosing between two fractal images. First, the demonstrator was indicated by one of two abstract symbols (counterbalanced across partici-
pants). Then, participants had 1.5 s to predict which option the demonstrator would choose. After response registration (0.5 s) and a short interval (0.5 s), the action of the demonstrator was
shown for 1 s. Depending on the condition, participants observed the outcome of the demonstrator (action_outcome condition) or a pixel-matched scrambled image (action_only condition)
for 1.5 s. Next, the demonstrator’s symbol was replaced by the participant’s symbol, and the participants chose between the same options.
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block at the end of the observational learning sessions. For both tasks,
we used 10 trials per block, which resulted in 150 trials in total.

Behavioral control study. In the behavioral control study, we investi-
gated observational learning from a nonsocial agent (i.e., from com-
puter-generated choices). The observational learning task was identical
(i.e., instruction, number of sessions, number of trials) to the observatio-
nal learning task of the fMRI study described above, except that partici-
pants were told that they observed decisions generated by a computer.
The comparison with a computer demonstrator enabled us to qualify the
social observation effect from the fMRI study as outgroup deficit or
ingroup enhancement. In addition to observational learning from the
computer, participants in the control study also performed the individ-
ual learning task, for comparison with the fMRI study. Moreover, we
determined participants’ political attitude based on their ratings of the
same political initiatives as in the fMRI study. Three participants who
showed a right-wing attitude in these ratings were excluded from the
analyses. To keep procedures as similar as possible to the observational
learning task, we did not measure beliefs about the strategy, program-
ming, or reality of the computer-generated agent.

Statistical analyses of behavioral data
All the behavioral analyses were performed using SPSS version 23.0
(IBM, 2015). For most of the analyses, we used a repeated-measures
ANOVA or a paired t test because of the within-subjects design of the
study except for the k analysis. When analyzing the k value of ingroup
and outgroup, Wilcoxon sign-ranked tests were used because of the non-
parametric nature of the data.

Computational modeling
We fitted reinforcement learning models to capture observational learning
from actions and outcomes. Computational modeling was conducted
using R (R Core Team, 2013) and the bbmle package. For outcome learn-
ing, we assumed that participants track the demonstrator’s internal learn-
ing process by simulated outcome prediction errors (sOPEs; Eq. 1)
experienced by the demonstrator (Suzuki et al., 2012). These prediction
errors correspond to the difference of what the demonstrator received and
the simulated value of the choice made by the demonstrator, as follows:

sOPE ¼ Rother
tother outcome � Qaothert�1other outcome : (1)

For action learning, we modeled observed action prediction errors
(APEs; Eq. 2) which relate the actually observed choice (1, 0) to the learned
probability of observing that choice (Burke et al., 2010), as follows:

APE ¼ Aother
t � PaSubject

t�1other action : (2)

To model how strongly participants rely on both of these prediction
errors to influence their own choices, we used weights that update the
value Q of the chosen option, similar to an individual learning rate.
Specifically, ˆ denotes the degree to which particpants incorporate
sOPEs to update Q. The larger theˆvalue, the more heavily participants
weighted the sOPEs. Conversely, the action learning weight k denotes
the degree to which participants integrate the APEs into their own
choice. We used Equations 3 and 4 for outcome and action learning and
applied a softmax function with a perseverance parameter (range, 0–3;
Wunderlich et al., 2012) to convert value into action. Bothˆ and k val-
ues had a range of�1 to 1, allowing for the possibility of reverse learning
from the outgroup, as follows:

Qasubject
tother outcome ¼ Qasubject

t�1other outcome1ˆ p Rother
tother outcome � Qaothert�1other outcome

� �
; (3)

PaSubject
tother action ¼ PaSubject

t�1other action1k p Aother
t � PaSubject

t�1other action

� �
; (4)

We assessed observational learning from the ingroup and outgroup
by testing models with separate or common ˆ and k values for the
ingroup and outgroup conditions, resulting in four models in total. All

the models were fitted at the individual level. For model comparison, we
calculated the summed maximum likelihood for all conditions and trials
for each participant, and used the Akaike information criterion (AIC) to
determine the best model.

In addition to the decision for themselves, we modeled the predic-
tions participants made regarding the choices of the demonstrators,
using the most recent sOPEs and APEs (Eqs. 5, 6). Again, we compared
four models with separate or common ˆ and k values for the ingroup
and outgroup conditions to test whether group membership differen-
tially affects prediction learning. However, we then entered the output of
these models into the softmax function to generate predictions of the
decisions of the demonstrator rather than decisions for themselves.

As an alternative model family, we considered the possibility that
action prediction errors contribute to the learning process in the action
outcome condition as both action and outcome information are observ-
able in this condition. To test whether adding k-weighted action predic-
tion errors to the action_outcome condition improves model fit, we
examined the model family described in Equation 7. The weight parame-
ter captures the relative use of sOPEs and APEs for updating Q. We
again estimated four models varying whether ingroup and outgroup pa-
rameters were common or separate. The average model fit was worse
than for the models without k in the action_outcome condition (mean
AIC, 17.58 vs 18.56). Moreover, the best-fitting model of the alternative
family explained the data less well than the best-fitting model without k
in the action_outcome condition. We therefore used the models without
k in the action_outcome condition for further analysis.

fMRI data acquisition and analyses
MRI data were acquired with a Philips Achieva 3 T whole-body scanner
(Philips Medical Systems) equipped with an eight-channel head coil. For
each participant, we collected a T1-weighted whole-brain structure
image (number of slices, 181; voxel size, 1 � 1 � 1 mm; field of view,
256 � 256 mm). To measure neural activity, we collected T2p-weighted
whole-brain echoplanar images (number of slices, 40; repetition time,
2.36 s; voxel size, 3� 3� 3 mm; field of view; 256� 256 mm; echo time,
30ms; flip angle, 90°).

All functional images were distortion corrected, segmented accord-
ing to the individual T1 structural image, normalized, and smoothed
with an 8 mm isometric Gaussian kernel (full-width at half-maximum).
Preprocessing and analyses were performed using SPM12 (Wellcome
Trust Center for Neuroimaging). To analyze functional activity, we
applied a general linear model with the following regressors: (1) onset of
the screen displaying the choice options for the demonstrator; (2) onset
of the screen displaying the participant’s prediction of demonstrator
choice; (3) onset of the screen displaying the choice of the demonstrator,
parametrically modulated by (4) the APE (see computational model);
(5) the onset of the screen displaying the outcome of the demonstrator,
parametrically modulated by (6) the sOPE in the action outcome condi-
tion (see computational model); (7) the onset of the screen displaying
the choice options for the participant; (8) the onset of the screen display-
ing the participant’s choice; and (9) onset of the screen displaying the
outcome/masked outcome for the participant. The duration of all events
was set to 0. The six head motion regressors and a constant were
included as regressors of no interest.

We assessed prediction error-related activity in a random-effects
model with one-sample t tests for the contrast images created by the
parametric modulators. To analyze APE-related activation independ-
ently of demonstrator group, we weighted both ingroup and outgroup
action prediction error regressors with a 1 on the first level and used the
resulting contrast images to perform a one-sample t test against zero on
the second level. The same analysis was performed to assess sOPE-
related activation regardless of group, using the respective first-level
images from the ingroup and outgroup conditions. We also tested for
ingroup versus outgroup differences in APE- and sOPE-related activity
at the first level. Finally, using second-level correlation, we related the
differences in behavioral weights (k ) given to ingroup versus outgroup
action prediction errors to differential neural activity induced from
observing ingroup versus outgroup demonstrator choices. We performed
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whole-brain analyses (p, 0.05, familywise cluster-level whole-brain cor-
rected with a cluster-inducing voxel-level threshold of p, 0.001).

Data availability
The behavioral data are available online (https://osf.io/savw4/). Also, the
neuroimaging results in this study can be found at https://neurovault.
org/collections/VUOYOUFT/. The code to implement the computa-
tional models is available from the corresponding author on reasonable
request.

Results
Group induction
Before scanning, participants rated their own closeness and the
closeness of the future demonstrators in the observational learn-
ing task to left-wing and right-wing parties. A two-way ANOVA
of demonstrator (ingroup/outgroup) by party (left-wing/right-
wing) revealed neither a main effect of party (F(1,28) = 1.93.59,
p=0.17, h 2 = 0.064) nor demonstrator (F(1,28) = 1.70, p=0.20,
h 2 = 0.057) but a significant interaction of demonstrator by
party (F(1,28) = 259.59, p, 0.001, h 2 = 0.903). Participants rated
themselves (t(28) = 12.64, p, 0.001) and the future ingroup dem-
onstrator (t(28) = 15.31, p, 0.001) as close to a left-wing party.
The future outgroup demonstrator was rated as close to a right-
wing party (t(28) = 13.70, p, 0.001; Fig. 1B). The differences in
closeness ratings to the left-wing party between the participants
and the fellow left-wing supporter (ingroup demonstrator) were
significantly smaller than the differences in closeness ratings
between the participants and the person they perceived as right-
wing supporter (outgroup demonstrator; t(28) = 13.701, p, 0.001).
These results show that the participants perceived one of the dem-
onstrators as a member of their own group (ingroup; defined by
left-wing political attitude) and the other demonstrator as a mem-
ber of a different social group (outgroup; defined by right-wing
political attitude).

fMRI study: behavioral results
In the decision phase of the observational learning task, partici-
pants made more correct choices (i.e., selected the option associ-
ated with higher reward probability) after observing the ingroup
compared with the outgroup demonstrator (Fig. 2A) [group
(ingroup, outgroup): F(1,28) = 7.839, p=0.009, h 2 = 0.219]. This
difference emerged over time [group � trial (1–10) interaction:
F(9,252) = 1.938, p=0.047, h

2 = 0.065]. There was no significant
difference between the action-only and the action outcome condi-
tion [condition (action_only, action_outcome): F(1,28) = 0.988,
p=0.329; group � condition interaction: F(1,28) =0.820, p=0.373;
group � condition � trial interaction: F(9,252) =0.925, p=0.504].

However, separate analyses for each condition revealed that the
effect was mainly driven by the action-only condition, showing a
significant main effect of group (ingroup, outgroup; F(1,28) =7.421,
p=0.011, h 2 = 0.210) and a significant group � trial interaction
(F(9,252) =2.327, p=0.016, h

2 = 0.077). In the action outcome condi-
tion, we observed a marginally significant main effect of group
(F(1,28) =3.323, p=0.079, h

2 = 0.106) and no significant group �
trial interaction (p=0.813). Compared with individual learning,
participants learned less from the outgroup demonstrator (F(1,28) =
8.168, p=0.008, h 2 = 0.226), but similarly well from the ingroup
demonstrator (F(1,28) =0.174, p=0.714; Fig. 2A). Together, the
results show that participants learned less from observing the out-
group compared with the ingroup demonstrator, indicating an out-
group deficit in observational learning, primarily when observing
only the actions of others.

Next, we asked whether the group difference we observed in
choice was mirrored by a similar group difference at the predic-
tion stage (i.e., when participants predicted the upcoming choice
of the ingroup and outgroup demonstrator). To test this possi-
bility, we conducted an ANOVA with individual choice pre-
dictions and individual choices as dependent variable, and
group (ingroup/outgroup) and response type (choice predic-
tion/choice) as independent variables. The results showed a
significant main effect of group (F(1,28) = 7.472, p = 0.011, h 2 =
0.211), a significant main effect of response type (F(1,28) = 5.492,
p = 0.026, h 2 = 0.164), and a significant group � response type
interaction (F(1,28) = 5.35, p = 0.028, h 2 = 0.160; Fig. 2B).
Clarifying this interaction effect, post hoc pairwise comparisons
showed that participants predicted the choices of the ingroup
and the outgroup demonstrators equally well (t(28) = 1.408,
meandifference = 0.027, SE=0.019, p=0.171), but showed signifi-
cantly fewer correct choices in the outgroup compared with the
ingroup condition (t(28) = 2.800, meandifference = 0.112, SE=0.040,
p=0.009). Thus, participants learned to predict ingroup and out-
group choices similarly well but used the learned information to a
lesser degree when observing the outgroup compared with the
ingroup demonstrator.

Behavioral control study
We conducted a behavioral control experiment to clarify whether
the observed ingroup versus outgroup difference in observational
learning reflects increased learning from the ingroup or reduced
learning from the outgroup. The control experiment was identi-
cal to the main experiment, except that participants observed
choices from a computer (i.e., a nonhuman agent). In case of
increased learning from the ingroup demonstrator, the number

Figure 2. Behavioral results. A, Trial-wise percentage of correct choices in the three experimental conditions (ingroup, outgroup, and individual learning) of the fMRI study. B, Average per-
centage of correct choices and predictions. Group membership of the demonstrator affected correct choice but not prediction. C, Trial-wise percentage of correct choices in the two conditions
(computer and individual learning) of the control experiment. Given that there were no significant differences between the action_only and the action_outcome conditions, the results are
pooled over these two conditions in A and C. Error bars indicate SEM. pp, 0.05, ppp, 0.01.
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of correct choices should be significantly higher in the ingroup
demonstrator condition compared with the computer condition.
Conversely, in the case of decreased learning from the outgroup
demonstrator condition, the number of correct choices should be
significantly lower in the outgroup demonstrator condition com-
pared with the computer condition. To test this issue, we performed
two repeated-measures ANOVAs with trial and condition (action_
only/action_outcome) as within-subject variables and demonstrator
(ingroup/outgroup, computer) as a between-subject variable. The
results showed significantly fewer correct choices after observing
the outgroup demonstrator, compared with the computer demon-
strator (F(1,57) = 14.343, p = 0.0003, h 2 = 0.201; mean difference

between the outgroup and the computer
conditions: mean_combined = 0.142, SE =
0.029; mean_action_outcome = 0.135;
SE = 0.035; mean_action_only = 0.205,
SE = 0.038; Fig. 2C). There were no
other significant effects [condition
(action_only/action_outcome): F(1,57) =
0.464, p=0.499, h 2 = 0.008; demonstrator
� condition interaction: F(1,57) =1.66, p =
0.203, h 2 = 0.008]. In contrast to the dif-
ference between outgroup and computer
demonstrator, there were no significant
differences in the number of correct
choices between the ingroup and the com-
puter condition [demonstrator (ingroup/
computer): F(1,57) = 1.639, p=0.208, h 2 =
0.028; condition (action_only/actio-
n_outcome): F(1,57) = 0.090, p=0.765,
h 2 = 0.002; demonstrator � condition
interaction: F(1,57) = 0.174, p=0.678,
h 2 = 0.003; mean difference between

ingroup and computer conditions: mean_combined = 0.057, SE =
0.029; mean_action_outcome = 0.048, SE=0.031; mean_action_only =
0.067, SE=0.036; Fig. 2C). Individual learning in the fMRI study
and control study were not different (F(1,58) = 1.031, p=0.314,
h 2 = 0.016). These results indicate that the observed group differ-
ence in observational learning reflects an outgroup deficit, rather
than enhanced learning from the ingroup.

Computational modeling
We hypothesized that an outgroup deficit in observational learn-
ing might be driven by differences in outcome-related learning,
differences in action-related learning, or differences in both learn-
ing mechanisms. To test these hypotheses, we fitted reinforcement
learning models to choice behavior when participants observed
outcomes and actions from ingroup or outgroup demonstrators.
Model comparisons showed that behavior was best characterized
by a model that used a common learning weight ˆð Þ for ingroup
and outgroup OPEs, but separate learning weights (k ) for ingroup
and outgroup APEs (Fig. 3A). The k -ingroup weight was larger
than the k -outgroup weight (Wilcoxon rank-sum test: z=3.13,
p = 0.002; Fig. 3B). Thus, model comparison results support the
notion that the differential observational learning effect is mainly
because of reduced action-based learning from the outgroup.

Using a similar approach and models, we performed model
comparisons also for participants’ predictions of the demonstra-
tors’ choices. The best model for prediction behavior was the

Figure 3. Computational modeling results. A, Model comparison based on the AIC favored the model with a common outcome learning weight,ˆ , and separate action learning weights, k , for
ingroup and outgroup demonstrators when participants made decision for themselves. B, Ingroup versus outgroup difference in action k values. The weight given to ingroup action prediction errors
(k ) was larger than the one given to outgroup action prediction errors in behavior. Error bars indicate SEM. C, Model comparison for predictions of demonstrators’ choices. AIC favored the model
with a common outcomeˆ values and common action k values for ingroup and outgroup demonstrators when participants predicted the decisions of the demonstrators. ppp, 0.01.

Table 1. Summary of brain regions correlating with sOPE as a parametric mod-
ulator in both ingroup and outgroup conditions, whole brain cluster-level FWE-
corrected p , 0.05

Coordinates

Brain region x y z t value z value Voxels in cluster

DMPFC �2 8 54 5.06 4.23 985
Caudate (L) �16 10 6 4.30 3.73 283
Insula (L) �42 16 4 4.73 4.02 176
Insula (R) 38 6 �8 4.62 3.95 263
Midbrain �10 �36 �34 4.61 3.94 262
Precuneus �26 �54 46 4.61 3.94 247

L, Left; R, right.

Figure 4. Outcome prediction error coding regardless of group. A, Activation in DMPFC correlating with inverse sOPEs in
both ingroup and outgroup conditions (red). This region overlapped (yellow) with the DMPFC region that correlated with
inverse simulated outcome prediction errors in an independent previous study (green; unpublished data from Burke et al.,
2010). For illustration purposes, results are displayed at p uncorrected, 0.001 (Table 1, details and whole-brain results). B,
Bar plot of the DMPFC region shown in red (A), illustrating activity correlating with inverse simulated outcome prediction error
for both ingroup and outgroup demonstrators. Error bars indicate SEM.
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model with common outcome and
action learning weights (Fig. 3C).
Thus, our participants learned to
predict the choices of ingroup and
outgroup demonstrators similarly
well (but used the acquired informa-
tion differentially for their own
choices).

fMRI
Replication of previous results: obser-
vational learning regardless of group
membership
First, we investigated whether our
neural results replicate the findings
of previous studies that investigated
observational learning regardless of
group membership, showing activa-
tion in MPFC associated with out-
come prediction errors and activation
in DLPFC related to action prediction errors (Burke et al., 2010;
Suzuki et al., 2012). To do so, we conducted two separate paramet-
ric regression analyses that regressed the participants’ trial-by-trial
model estimates of ingroup and outgroup outcome prediction
errors and action prediction errors against their neural activity
during the observation of outcomes or actions, respectively.

Group independent outcome-related learning activated a net-
work of brain regions, including the dorsomedial prefrontal cor-
tex (DMPFC), bilateral insula, caudate, and midbrain (Fig. 4A,B,
Table 1). The neural response in these regions increased with
decreasing outcome prediction errors, indicating that observed
outcomes eliciting smaller outcome prediction errors re-
sulted in stronger activity. At the applied threshold, there
was no region where neural response increased with increas-
ing outcome prediction errors. Notably, the DMPFC findings
colocalize with previously unreported findings of inverse
outcome prediction error coding in the study by Burke et al.
(2010; Fig. 4A).

Conversely, learning from observing ingroup and outgroup
actions activated the anterior IFG and parietal regions. (Fig. 5A,
B, Table 2). The IFG findings colocalize with those of our previ-
ous report on action prediction error coding in that area (Burke
et al., 2010; Fig. 5A).

Group differences in observational learning mechanisms
Second, we investigated the brain regions that are differentially
involved in learning from ingroup and outgroup outcomes and
actions. To do so, we contrasted the neural responses related to
participants’ trial-by-trial model estimates of ingroup outcome
prediction errors and action prediction errors with the neural
responses related to their trial-by-trial model estimates of out-
group outcome prediction errors and action prediction errors.
The results revealed no significant differences at the applied thresh-
old, suggesting that participants activated similar neural circuitries
while learning from the observation of ingroup and outgroup out-
comes and actions.

Group differences in the weight assigned to observational
learning
Third, we tested our assumption that the stronger weight
assigned to action prediction errors in the ingroup compared
with the outgroup condition (Fig. 3B) is related to neural activa-
tion of the DLPFC/IFG. Using a second-level regression analysis,
we regressed the behavioral contrast between ingroup and

outgroup action learning weights k against the neural contrast
between the observation of ingroup and outgroup choices (i.e.,
the time when observational action prediction error can be
computed). The results revealed only one significant whole
brain-corrected result, in the left IFG (MNIxyz: �34, 0, 28;
Zstats = 4.07; pFWE whole-brain corrected = 0.041; Fig. 6A,B). Thus,
left IFG activity reflected the impact of action prediction errors
on behavior, which was reduced when participants observed
outgroup actions compared with when they observed ingroup
actions. This activity was localized in the posterior part of the
IFG region that was identified as the key region of the action
prediction error learning network.

Discussion
In this study, we investigated whether observational learning is
shaped by the important social factor group membership. We
report novel evidence that participants learn similarly well from
observing ingroup and outgroup outcomes but learn less well
from observing outgroup actions. The observed deficit in learning
from outgroup actions provides a plausible source of individuals’
difficulties in learning from outgroup members, a phenomenon
that has been described in previous studies (Buttelmann et al.,
2013; Golkar et al., 2015; Golkar and Olsson, 2017) but so far has
not been explained. Our neural results not only converge with the
findings of previous observational learning studies in lateral pre-
frontal cortex (Burke et al., 2010), but also showed that IFG differ-
entially encodes learning from observing ingroup versus outgroup
actions.

In more detail, our behavioral findings revealed that partici-
pants made fewer correct choices after observing an outgroup

Figure 5. Action prediction error coding regardless of group. A, Prefrontal regions in left and right IFG correlated with APE as a
parametric modulator regardless of group (red). The region in right IFG overlapped with the DLPFC regions that correlated with
action prediction errors in a previous independent study (Burke et al., 2010; yellow/green). For illustration purposes, results are dis-
played at p uncorrected, 0.001 (Table 2, details and whole-brain results). B, Bar plots illustrating the relationship between the ac-
tivity in left and right IFG regions shown in A and the ingroup and outgroup action prediction errors. Error bars indicate SEM.

Table 2. Summary of brain regions correlating with APE as a parametric modu-
lator in both ingroup and outgroup conditions (whole-brain, cluster-level, FWE-
corrected p , 0.05)

Coordinates

Brain region x y z t Value z Value Voxels in cluster

Inferior frontal gyrus (L) �46 8 34 5.12 4.27 951
Inferior frontal gyrus (R) 42 6 34 4.94 4.16 799
Precuneus/inferior parietal lobe (R) 34 �68 40 4.88 4.11 467
Inferior parietal lobe (L) �38 �48 44 4.79 4.06 654
Cerebellum/occipital lobe (R) 30 �62 0 5.70 4.61 1794
Cerebellum/occipital lobe (L) �34 �74 �20 5.47 4.47 1463

L, Left; R, right.
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demonstrator, compared with an ingroup demonstrator (Fig.
2A) or with a computer demonstrator (Fig. 2C). These outgroup
deficits in observational learning occurred although participants
observed comparable choice behavior in the ingroup and the
outgroup condition and were able to predict ingroup and out-
group choices equally well. The finding of reduced learning from
observing an outgroup compared with an ingroup individual is in
line with previous behavioral evidence (Buttelmann et al., 2013;
Golkar et al., 2015).

Extending these previous studies, we used computational
learning models to specify the source of the outgroup deficit in
observational learning. Given that observational learning is based
on learning from observed outcomes (Burke et al., 2010; Suzuki
et al., 2012; Kumaran et al., 2015) and observed actions (Burke et
al., 2010; Suzuki et al., 2012), we hypothesized that outgroup def-
icits in observational learning might occur because individuals
rely more on observed ingroup compared with outgroup out-
comes, reflected by a stronger weight for ingroup compared with
outgroup outcome prediction errors. Alternatively, we assumed
that outgroup deficits in observational learning might arise
because participants rely more on observed ingroup compared
with outgroup actions, reflected by a stronger weight for ingroup
compared with outgroup action prediction errors. Our computa-
tional modeling results showed that the behavioral outgroup def-
icit in observational learning were best explained by a model in
which participants put less weight on action prediction errors eli-
cited by an outgroup individual than on action prediction errors
elicited by an ingroup individual (Fig. 3) and put similar weight
on outcome prediction errors from the two groups.

The computational modeling results converge with the be-
havioral findings that showed a clear ingroup versus outgroup
difference in the condition in which participants could only learn
from actions (i.e., the action_only condition) and a marginal
main effect of group (F(1,28) = 3.32, p=0.079) in the condition in
which participants could also learn from outcomes (i.e., the
action_outcome condition). Presumably, the group effect in the
action_outcome condition did not reach significance because
the behavioral results reflect a mix of outcome-related (i.e.,
unbiased) and action-related (i.e., biased) learning. As computa-
tional models establish a relation between components of the phe-
nomenon being modeled and the components of the model
(Stafford, 2009), they can be more sensitive to the latent processes

that might drive modulations in behav-
ior than statistical analyses comparing
behavioral outcomes alone (Stafford et
al., 2020). In line with this notion, using
computational modeling allowed us to
disentangle the mixture of outcome-
and action-based learning, and to spec-
ify the effect of group membership on
the different subcomponents of obser-
vational learning.

Our neural results revealed that
action and outcome prediction errors
elicited by observing the ingroup and
the outgroup demonstrators are proc-
essed by similar neural circuitries and
that these neural circuitries replicate
previous findings. In more detail,
learning from outcome prediction
errors was associated with activation in
the DMPFC, the insula, the caudate,
and the midbrain (i.e., regions that
have been implicated in outcome-

related learning in previous neuroscience studies; Liu et al., 2011;
Sescousse et al., 2013). Conversely, learning from action predic-
tion errors was linked to neural responses in the anterior portion
of the IFG and the parietal cortex, again in line with previous evi-
dence (Burke et al., 2010; Suzuki et al., 2012). Key regions of the
outcome-learning and action-learning networks that we obtained
in the current studies showed considerable overlap with the re-
spective neural circuitries observed in an independent previous
study (Burke et al., 2010) that investigated observational learning
independent of group membership (Fig. 4).

Interestingly, although learning from ingroup and outgroup
prediction errors activated similar neural networks, participants
put stronger weight on the use of ingroup rather than outgroup
action prediction error when they made decisions for themselves,
which was reflected by stronger activation in the IFG (Fig. 6).
The IFG is involved in action observation and imitation proc-
esses (Caspers et al., 2010) and forms part of the mirror neuron
system (Molenberghs et al., 2012). Moreover, there is evidence
that the activity of this area is modulated by group membership.
For example, greater IFG activity was found when participants
evaluated an ingroup member based on detailed personal infor-
mation compared with an outgroup member (Freeman et al.,
2010). Another recent neuroimaging study revealed stronger
activation in a mirror neuron network, including left IFG, when
participants observed facial emotions of ingroup individuals
compared with outgroup individuals (Krautheim et al., 2019). In
line with this previous evidence, our results show that the proc-
essing of perceived actions in the IFG is modulated by group
membership of the demonstrator during observational learning.
Extending these previous findings, our results indicate that the
IFG selects action-related information based on social informa-
tion (here, group membership) and thus forms a plausible neural
basis for social biases in observational learning. However, the pu-
tative link with the mirror system will need to be tested formally.

It is worth noting the limitations of our study. First, we used
exclusively political attitude to manipulate group membership.
Given that previous research described outgroup learning deficits
with group membership based on language or race (Buttelmann
et al., 2013; Golkar et al., 2015), it is unlikely that outgroup learn-
ing deficits are limited to the political domain. Moreover, it is
well established that differences in political attitude foster social

Figure 6. Group differences in neural activity correlating with behavioral effects. A, The ingroup versus outgroup difference in
k correlated with ingroup versus outgroup differences in IFG [familywise cluster-level whole-brain correction, p= 0.041, with an
uncorrected voxel-level (i.e., cluster inducing) threshold of p, 0.001]. For illustration purposes, results are displayed at
p uncorrected, 0.001. B, Correlation between individual IFG activity (extracted from the cluster) and k .
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categorization (i.e., the formation of social ingroups and out-
groups; Caruso et al., 2009; Rand et al., 2009; Young et al., 2014).
There is even evidence that differences in political attitude can
override social categorization based on race (Losin et al., 2015).
In line with this previous evidence, the group induction based on
political attitude in our study resulted in a salient group mem-
bership manipulation (Fig. 1B), a conclusion further supported
by our findings of significant behavioral and neural differences
between the ingroup and the outgroup conditions. That said,
future research may want to investigate observational learning
with a different group manipulation. Second, we studied left-
wing participants only. Although targeting only one group (e.g.,
white participants in a study on race) to investigate ingroup–out-
group behavior is common in the literature (Golkar et al., 2015;
Hein et al., 2016), future research may also want to study right-
wing individuals or other political groups to generalize our find-
ings. Third, we used a relatively small sample size and recent
studies (Bossier et al., 2020; Marek et al., 2020) recommend
larger sample sizes to ensure the replication of fMRI findings
than current practice (Yeung, 2018). It is therefore noteworthy
that we replicate previous findings (Burke et al., 2010) on group-
independent observational learning. Still, particularly our corre-
lation findings should be reassessed with a larger sample in the
future. Fourth, we did not specify the outgroup attributes that
drive or shape the group differences in observational learning
mechanisms revealed in our study. Future research may want to
investigate whether the observed difference in observational
learning arose because participants are less likely to trust out-
group actions without disambiguating feedback about the cor-
rectness of the outgroup demonstrator’s choice (i.e., the
outgroup outcome). Another factor that might play a role is the
extent to which participants dislike the outgroup. In line with the
findings of other studies (Golkar et al., 2015; Hein et al., 2016), it
is conceivable that the individual impressions and/or emotions
toward the respective outgroup might modulate the outgroup-
related observational learning deficits observed in our study, an
assumption that should be investigated in future studies.

In conclusion, the current results reveal that outgroup deficits
in observational learning mainly reflect decreased learning from
observed outgroup actions. Our findings suggest that the IFG
differentially weighs ingroup and outgroup action prediction
errors and provide a neurocomputational mechanism for out-
group deficits in observational action learning.
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