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Animals engage in routine behavior to efficiently navigate their environments. This routine behavior may be influenced by
the state of the environment, such as the location and size of rewards. The neural circuits tracking environmental informa-
tion and how that information impacts decisions to deviate from routines remain unexplored. To investigate the representa-
tion of environmental information during routine foraging, we recorded the activity of single neurons in posterior cingulate
cortex (PCC) in 2 male monkeys searching through an array of targets in which the location of rewards was unknown.
Outside the laboratory, people and animals solve such traveling salesman problems by following routine traplines that con-
nect nearest-neighbor locations. In our task, monkeys also deployed traplining routines; but as the environment became bet-
ter known, they deviate from them despite the reduction in foraging efficiency. While foraging, PCC neurons tracked
environmental information but not reward and predicted variability in the pattern of choices. Together, these findings sug-
gest that PCC may mediate the influence of information on variability in choice behavior.
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Significance Statement

Many animals seek information to better guide their decisions and update behavioral routines. In our study, subjects visually
searched through a set of targets on every trial to gather two rewards. Greater amounts of information about the distribution
of rewards predicted less variability in choice patterns, whereas smaller amounts predicted greater variability. We recorded
from the posterior cingulate cortex, an area implicated in the coding of reward and uncertainty, and discovered that these
neurons signaled the expected information about the distribution of rewards instead of signaling expected rewards. The activ-
ity in these cells also predicted the amount of variability in choice behavior. These findings suggest that the posterior cingulate
helps direct the search for information to augment routines.

Introduction
Imagine you are at a horse race, and there are 6 horses, with
Local Field Potential (LFP) the underdog, facing 100:1 odds
against. When LFP wins, a $1 bet will pay out $100. But in addi-
tion to the reward received from this bet, learning that, of the 6
horses, LFP is the winner reduces your uncertainty about the

outcome. Hence, LFP crossing the finish line first yields both
reward and information.

Similar problems are often faced by organisms in their envi-
ronment. Animals are adept at learning not only the sizes of
rewards but also their locations, timing, or other properties. For
example, hummingbirds will adapt their nectar foraging in
response to unexpected changes in reward timing (Garrison and
Gass, 1999). Similarly, monkeys will adapt their foraging routines
on receiving information that a highly valued resource has become
available (C. R. Menzel, 1991). In general, animals can make better
decisions by tracking such reward information. Perhaps once a
reward has been received, it no longer pays to wait for more
because the resource is exhausted or the time between rewards is
too great (McNamara, 1982), as occurs for some foraging animals.
Or, perhaps receiving a reward also resolves any remaining uncer-
tainty about an environment (Stephens and Krebs, 1986). Keeping
track of reward information independent of reward size thus
serves as an important input into animals’ decision processes.
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We designed an experiment to probe this oft-neglected
informational aspect of reward-based decision-making. Our
experiment is based on the behavior of animals that exploit
renewable resources by following an efficient foraging path, a
strategy known as traplining (Freeman, 1968; Berger-Tal and
Bar-David, 2015). Trapline foraging has a number of benefits,
including reducing the variance of a harvest and thereby
attenuating risk (Possingham, 1989), efficiently capitalizing on
periodically renewing resources (Possingham, 1989; Bell, 1990;
Ohashi et al., 2008), and helping adapt to changes in competi-
tion (Ohashi et al., 2013). Many animals trapline, including
bats (Racey and Swift, 1985), bees (Manning, 1956; Janzen,
1971), butterflies (Boggs et al., 1981), hummingbirds (Gill,
1988), and an array of primates, including rhesus macaques (E.
W. Menzel, 1973), baboons (Noser and Byrne, 2010), vervet
monkeys (Cramer and Gallistel, 1997), and humans (Hui et al.,
2009). Wild primates foraging for fruit (E. W. Menzel, 1973;
Noser and Byrne, 2010), captive primates searching for hidden
foods (Gallistel and Cramer, 1996; Desrochers et al., 2010), and
humans moving through simulated (MacGregor and Chu,
2011) and real (Hui et al., 2009) environments all use traplining
to minimize total distance traveled and thereby maximize
resource intake rates.

Although many primates trapline, information about the state of
the environment, such as weather (Janmaat et al., 2006), the avail-
ability of new foods (C. R. Menzel, 1991), or possible feeding loca-
tions (Hemmi andMenzel, 1995; C. R. Menzel, 1996), can influence
choices made while foraging. Such detours result in longer search
distances and more variable choices (Hui et al., 2009; Noser and
Byrne, 2010) but allow animals to identify new resources (C. R.
Menzel, 1991) and engage in novel behaviors (Noser and Byrne,
2010). These benefits are consistent with computer simulations that
show traplining with variation in routes yields better long-term
returns than traplining without variation by uncovering new resour-
ces or more efficient routes (Ohashi and Thomson, 2005). In this
way, environmental information may improve foraging efficiency
during routine foraging over the longer term.

The neural mechanisms that track, update, and regulate the
impact of environmental information on decision-making
remain unknown. Neuroimaging studies have revealed that the
posterior cingulate cortex (PCC) is activated by a wide range of
cognitive phenomena that involve rewards, including prospec-
tion (Benoit et al., 2011), value representation (Kable and
Glimcher, 2007; Clithero and Rangel, 2014), strategy setting
(Wan et al., 2015), and cognitive control (Leech et al., 2011).
Intracranial recordings in monkeys have found that PCC neu-
rons signal reinforcement learning strategies (Pearson et al.,
2009), respond to novel stimuli during conditional visuomotor
learning (Heilbronner and Platt, 2013), represent value (McCoy
et al., 2003), risk (McCoy and Platt, 2005), and task switches
(Hayden and Platt, 2010), and stimulation there can induce shifts
away from a default option (Hayden et al., 2008). Together, these
observations suggest that the PCC mediates the effect of environ-
mental information on variability in routine behavior. However,
no studies to date have attempted to disentangle hedonic value
from the informational value of rewards in PCC.

Previously, we reported that, in our traplining task, neurons
in PCC increased their firing rates during choices before deci-
sions to diverge from the typical trapline, the most common cir-
cular pattern of choices (Barack et al., 2017). We reported
decisions to diverge from typical traplines were driven by the
salience of the pattern of total rewards during foraging. PCC
neuron firing rates predicted decisions to diverge from typical

traplines and signaled the interaction between foraging decision
salience, reward, and time. Finally, these cells displayed a large
transient increase in activity before decisions to diverge that was
especially marked in low reward rate environments.

Here, we explore how information influenced decisions to
deviate from traplines (circular patterns of choices) and test the
hypothesis that PCC tracks reward information. We recorded
the activity of PCC neurons in monkeys foraging through an
array of targets in which environmental information, operation-
alized as the pattern of rewards, was partially decorrelated from
reward size. Monkeys developed traplines in which they moved
directly between nearest neighbor targets in a circle. When they
expected more information about the state of the environment,
their trapline foraging behavior was less variable. While foraging,
PCC neurons tracked environmental information but not reward
and forecast variability in choice patterns. These findings support
our hypothesis that PCC mediates the use of information about
the state of the environment to regulate adherence to routines in
behavior and cognition.

Materials and Methods
Task analysis
Our experiment required monkeys to select each target in a set of six tar-
gets to harvest the rewards. In every trial in our experiment, two fixed
rewards (large and small) were assigned to one of six locations in the
environment in a pseudorandom fashion (see Fig. 1B). Trials began with
monkeys fixating a central cross for a variable amount of time, ranging
from 0.5 to 1 s. After fixation offset, six targets arranged in a circle
appeared. The same locations were used from trial to trial, and monkeys
were free to select the targets in any order. To make a choice, monkeys
had to fixate their gaze on a target for 250ms. In order to advance to the
next trial, monkeys had to choose each option, even after they had al-
ready harvested the reward available on that trial. Assuming the cost of
making a saccade is a monotonic, positive-definite function of distance
between targets, the most efficient solution to our task is to minimize
saccade times between targets by searching in a circular pattern. This is
referred to as a trapline, and sequences of choices that are noncircular
are deviations from traplines.

Uncertainty about the current trial’s pattern of received rewards is
reduced over the course of the trial as the monkey proceeds through all
of the targets. This reduction in uncertainty is quantifiable by examining
how many possible patterns of rewards are excluded given the rewards
revealed by previous choices. For a subset of patterns, the very same in-
formation outcome can be delivered by distinct rewards, serving to par-
tially decorrelate and hence de-confound reward and information
outcomes. Furthermore, expected reward and expected information,
defined as the average amount of information contained in the next out-
come given the pattern of rewards received so far, are also partially
decorrelated (Table 1).

Given a set of six rewards (four zero, one small, and one large),
there are 6! distinct permutations. We made the simplifying
assumption that monkeys did not distinguish between the different
zero rewards. This assumption reduces the number of distinct pat-
terns from 720 to 30.

Different patterns correspond to different series of received reward.
The environmental entropy HE contained in receiving some reward
(zero, small, or large) depends on the choice number (CN) i in the
sequence and the total number of possible sequences as follows:

HE ¼ �log2
ðjfPigjÞ
ðjPjÞ

where |·| denotes cardinality, P is the set of possible permutations, and {Pi}
is the set of remaining permutations after the ith choice. The amount of in-
formation contained in some reward outcome is computed as the difference
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in the entropy, what has been learned about the current trial’s pattern of
received reward by receiving the most recent outcome as follows:

DHE ¼ Hi � Hi�1

for the amount of environmental entropy HE on the ith outcome.
Expected information can then be computed as the mean amount of in-
formation to be gained by making the next choice, the weighted average
over all possible next information outcomes given the pattern of rewards
received as follows:

E DHE½ �i ¼

X
Premaining

DHE½ �i
Premaining j
�� ��

for expected information E[DHE] for the ith choice, possible out-
comes [DHE]i for the remaining permutations Premaining, and where
|·| again denotes cardinality. As the animal proceeds through the
trial, the amount of expected information varies as a function of
how many possible patterns of returns have been eliminated so far.
Expected reward ER is computed simply as the amount of remaining
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Figure 1. Monkeys spontaneously trapline, efficiently choosing targets in a circle, when foraging in a circular array but deviate from these routines as the environment becomes better known. A,
Recording location in the PCC. Left, Monkey L. Right, Monkey R. B, Traplining task, sample trial sequence. Trials began with monkeys fixating a central cross for a variable amount of time. After fixation
offset, six targets appeared in the same locations across trials. Monkeys then chose targets in any order. To register a choice, monkeys fixated targets for 250ms. Only two rewards, one small and one
large, were available on every trial, and the identity of the rewarded targets changed in a pseudorandom fashion from trial to trial. In order to advance to the next trial, monkeys had to select every tar-
get. Open circle represents simulated eye position. Dashed arrow indicates direction of impending saccade. Dashed circle represents impending saccade endpoint. Small juice drop represents small reward.
Large juice drop represents large reward. Central semi-circle represents step size, the clockwise or counterclockwise distance between subsequently chosen targets. S, Start;�2, two targets counterclock-
wise;�1, one target counterclockwise;11, one target clockwise. C, Left, Mean6 SEM BE for high expected environmental information (DHE) choices (E[DHE]. mean(E[DHE])) compared with low
expected information choices (E[DHE] � mean(E[DHE])) across all sessions and choices. Right, Boxplot by CN2-CN5 across sessions before receipt of last informative outcome (E[DHE]. 0; red points)
and after (E[DHE] = 0; green points). Top and bottom of box are interquartile (25%-75%) range of session means. Notch indicates 95% CI for median session. Nonoverlapping notches indicate significantly
different medians at a = 0.05. Each point is a session mean. CN2 always possesses some expected information; hence, no green box or points. n=145,524 choices, 24,254 trials.

Table 1. Equations for expected reward, entropy, information, and expected information for the reward sequence

Pattern
no.

Permutation
p

Expected reward

ERi ¼ 1
n

Xn

i

Ri
Entropy
Hi ¼ �log2

ðjfPigjÞ
ðjPjÞ

Information
Ii ¼ Hi � Hi�1

Expected information

EIi ¼
P

Premaining
Ii

Premainingj
�� ��

1 0 0 0 0 1 2 0.5 0.6 0.75 1.0 1.5 2.0 0.5850 1.3219 3.3219 3.9069 4.9069 4.9069 0.5850 0.7370 1 1.5850 1 0 1.2516 0.7370 1 1.5850 1 0
2 0 0 0 0 2 1 0.5 0.6 0.75 1.0 1.5 1.0 0.5850 1.3219 3.3219 3.9069 4.9069 4.9069 0.5850 0.7370 1 1.5850 1 0 1.2516 0.7370 1 1.5850 1 0
3 0 0 0 1 0 2 0.5 0.6 0.75 1.0 1.0 2.0 0.5850 1.3219 3.3219 3.9069 4.9069 4.9069 0.5850 0.7370 1 1.5850 1 0 1.2516 0.7370 1 1.5850 1 0
..
. ..

. ..
. ..

. ..
. ..

.

30 2 1 0 0 0 0 0.5 0.2 0 0 0 0 2.5850 4.9069 4.9069 4.9069 4.9069 4.9069 2.5850 2.3219 0 0 0 0 1.2516 2.3219 0 0 0 0

Each column in the table (except for the leftmost) contains six columns, each corresponding to a CN during the trial. Total number of choices on every trial = 6. |·| represents cardinality of ·; n = CN; i = CN in trial. R, Reward.
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reward to be harvested on trial i divided by the number of remaining
targets n as follows:

ERi ¼ 1
n

Xn

i

Ri

If the animal harvests all of the reward near the beginning of a trial,
the expected reward will be zero. However, if the animal does not harvest
the rewards until the end of a trial, the expected reward will increase
across the duration of the trial.

The linear correlation coefficients between the different task variables
(information, expected information, reward, expected reward, etc.) can
be computed empirically from the total experienced reward outcomes
and information outcomes, and from the total experienced reward
expectations and information expectations, derived from the trials the
monkeys actually experienced. For the anticipation epoch, this includes
expected information and expected reward (R2 = 0.1324), expected in-
formation and previous choice information outcome (R2 = 0.0292),
expected information and previous choice reward outcome (R2 =
0.1348), expected reward and previous choice information outcome
(R2 = 2.6458� 10�06), expected reward and previous choice reward out-
comes (R2 = 0.1082), and previous choice information outcome and pre-
vious choice reward outcome (R2 = 0.5971). For the outcome epoch, this
includes current choice information outcome and current choice reward
outcome (R2 = 0.3935).

Experimental design and statistical analysis
Behavior. In our experiments, 2 male rhesus macaques per-

formed the task described above on custom software using
Psychtoolbox (Brainard) and MATLAB (The MathWorks). All sta-
tistical comparisons were performed using custom software in
MATLAB. Significance was Bonferroni-corrected for multiple
comparisons, and significance assessed at p, 0.05.

For our behavioral entropy (BE) measures, we again used the stand-
ard definition of entropy. Step size was defined as the number of posi-
tions clockwise or counterclockwise of the target that the monkey chose
in relation to the previous choice’s target. For BE, the probability of a
particular step size was computed for each step size by counting the
number of trials with that step size and dividing by the total number of
trials. Action step sizes (from �2 to 3) and action step size probabilities
(probability of taking an action of a given size) were calculated for
choices 1-2, 2-3, 3-4, and 4-5 (5-6 had a constant update of 1). Step sizes
were calculated on each choice by determining howmany targets around
clockwise (positive) or counterclockwise (negative) the next choice was
from the previous choice; already selected targets were not included in
this calculation. Step size probabilities were calculated by holding fixed
all of the covariates for a particular choice (information outcome from
previous choice, information expectation for next choice, reward out-
come from previous choice, reward expectation for next choice, and
CN) and counting the frequencies for each step size and dividing by the
total number of trials with that set of covariates. For each unique combi-
nation of covariates (CN, information outcome, information expecta-
tion, reward outcome, and reward expectation), we computed the
choicewise BE (HB) for that combination as follows:

HB ¼ �
X

s

ps log2 ps

for probability of each step size ps. Finally, a multilinear regression corre-
lated these BE scores with the covariates.

To analyze neural coding of expectations, we had to remove diverge
choices, defined as choices that diverged from the daily dominant pat-
tern. Determining the daily dominant pattern relied on assessing the
similarity between pairs of trials, for every possible pair on a given day,
by computing the pair’s Hamming score (Hamming, 1950). To compute
the similarity between two trials, each trial’s pattern of choices by target
number is first coded as a digit string (e.g., 1-2-4-5-6-3). The Hamming

distance Di,i9 between two strings i, i9 of equal length is equal to the sum
of the number of differences d between each entry in the string, as
follows:

Di;i9 ¼
X

n

dðxn; ynÞ

for strings x, y of length n. We computed Di,i’ for every pair of trials, and
then, for each unique pattern of choices, computed the average
Hamming distance �Di;i9 . The daily dominant pattern corresponded to
the pattern with the minimum�Di;i9 and corresponded to a circular pat-
tern for both monkeys (see Barack et al., 2017). Since the daily dominant
pattern was circular, we refer to these as the monkeys’ typical traplines.

BE was regressed against a number of variables and their interactions
using multilinear regression. Covariates included CN in trial, expected
information, expected reward, reward outcome from the previous
choice, information outcome from the previous choice, and all two-way
interactions.

Neural. All neural data were analyzed on custom software in
MATLAB. For all tests, significance was Bonferroni-corrected for multi-
ple comparisons and assessed at p, 0.05.

Both monkeys were trained to orient to visual targets for liquid
rewards before undergoing surgical procedures to implant a head-
restraint post (Crist Instruments) and receive a craniotomy and record-
ing chamber (Crist Instruments) permitting access to PCC. All sur-
geries were done in accordance with Duke University Institutional
Animal Care and Use Committee approved protocols. The animals
were on isoflurane during surgery, received analgesics and prophylac-
tic antibiotics after the surgery, and were permitted a month to heal
before any recordings were performed. After recovery, both animals
were trained on the trapliner task, followed by recordings from BA
23/31 in PCC. MR images were used to locate the relevant anatomic
areas and place electrodes. Acute recordings were performed over
many sessions. Approximately one-fifth of the recordings were done
using FHC single-contact electrodes and four-fifths performed using
Plexon 8-contact axial array U probes in Monkey L. No statistically
significant differences in the proportion of task-relevant cells were
detected between the populations recorded with the two types of elec-
trodes (x 2, p. 0.5). All recordings in Monkey R were done using the
U probes. Recordings were performed using Plexon neural recording
systems. All single-contact units were sorted online and then re-
sorted offline with Plexon offline sorter. All axial units were sorted
offline with Plexon offline sorter.

Neural responses often show nonlinearities (Dayan and Abbott,
2001), which can be captured using a GLM (Aljadeff et al., 2016). We
used a GLM with a log-linear link function and Poisson-distributed
noise estimated from the data to analyze our neuronal recordings, effec-
tively modeling neuronal responses as an exponential function of a linear
combination of the input variables. We analyzed the neural data in two
epochs: a 500ms anticipation epoch, encompassing a 250ms presaccade
period and the 250ms hold fixation period to register a choice, as well as
the 250ms presaccade epoch itself. Covariates included CN in the trial,
expected information, expected reward, information outcome from the
last choice, reward outcome from the last choice, and all two-way
interactions.

In addition to this GLM, we confirmed our model fits in two ways
for each neuron: (1) we plotted the residuals against the covariates, to
check for higher-order structure; and (2) we used elastic net regression,
to check that our significant covariates were selected by the best-fit elas-
tic net model (Zou and Hastie, 2005). Plotting residuals revealed no sig-
nificant higher-order structure. Furthermore, elastic net regression
confirmed our original GLM results. None of the significant covariates
identified by the original GLM received a coefficient of 0 from the elastic
net regression, and the sizes of the significant coefficients identified by
the original GLM were very close to the sizes of the coefficients com-
puted by the elastic net regression.

Perievent time histograms (PETHs) were created by binning spikes
time-locked to the event of interest. For the anticipation epoch, PETHs
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were centered on the end of the choice saccade and spikes binned in
10ms bins. PETHs were smoothed with a Gaussian kernel with 0 mean
and 5s width where s = 20ms (i.e., two samples).

To analyze encoding of the information or reward boundary, a log-
linear GLM regression was run on vectors of binned spike counts time-
locked to the start of the trial, with time in window, time of last informa-
tive feedback (a binary covariate encoding whether or not the current
time bin was before or after the last informative feedback), and their
interaction as covariates. Neuronal spikes were sorted into 50ms bins
starting with trial onset and ending with the time of the last outcome in
a trial across the duration of the trial. This activity was regressed against
time in trial (coded by the bin number, starting with 1 and ending with
the number of 50ms bins for the trial), whether or not the last informa-
tive outcome had been received (coded as a 0, for before, or a 1, for after
receiving the last outcome), and their two-way interaction. For plots
depicting the boundary, PETHs were time-locked to the time of last in-
formative feedback, spikes from 2 s before to 2 s after sorted into 50ms
time bins, and smoothed with a Gaussian kernel with 0 mean 5s width
where s = 50ms (i.e., one sample).

The failure to find representations of expected reward reported in
Results was confirmed by holding fixed expected information and CN
and directly comparing observed firing rates for those combinations for
which there was more than one reward level. For CN2, this resulted in
one pair of expected rewards; for CN3, one pair; for CN4, one pair; for
CN5, one triple; and for CN6, one triple. The observed firing rates for
the pairs were compared using Student’s t test and for the triples using
ANOVA. A neuron that showed a significant difference in those com-
parisons was included in the count for that CN and so could appear as
significant for more than one choice (see Fig. 2C).

Step sizes, step size probabilities, and choicewise behavioral entropies
were linearly regressed against the firing rates during the anticipation
epoch, when actions were made. To assess whether neurons showed dif-
ferences in tonic firing rates for high compared with low behavioral
entropies, we fit Gaussians with constant offsets to the mean PETH fir-
ing rate and examined the confidence interval for the constant offsets for
each. The constant offset for high and low BE were considered signifi-
cantly different if the 95% CIs derived from those fits did not overlap.
To assess choicewise entropy encoding before and after receipt of the
last bit of information, we used a GLM with log-linear link function and
Poisson-distributed noise to calculate the number of neurons that signif-
icantly encoded choicewise BE before the receipt of this information to
compare with the number after. Covariates included BE, CN in trial, a
binary variable with 0 =before boundary and 1= after boundary, and all
two-way interactions. For the population response, we first separated tri-
als by mean choicewise BE across all choices. Next, the normalized aver-
age population response for high average choicewise entropy trials was
compared with low average entropy during the 2 s before the receipt of
the last information using Student’s t test. Then we ran the same analysis
on the normalized average response during the 2 s following receipt of
this information. We report the results of these two analyses below.

Results
Trapline foraging in a simulated environment
To explore the effects of information on deviation from routines,
2 monkeys (Macaca mulatta) solved a simple traveling salesman
problem. In this trapliner task, monkeys visually foraged through
a set of six targets arranged in a circle, only moving on to the
next trial after sampling every target (Fig. 1B). On each trial, two
of the targets were baited, one with a large reward and one with a
small reward, with the identity of the baited targets varying from
trial to trial. While foraging, monkeys gathered both rewards,
herein defined by the amount of juice obtained, and information,
herein defined as the reduction in uncertainty about the location
of remaining rewards.

By varying which target was rewarded from trial to trial,
reward and information were partially decorrelated. Reward was
manipulated by varying the size of received rewards, with one

small, one large, and four zero rewards available on every trial.
Information was manipulated by varying the spatiotemporal pat-
tern of rewarding targets. Different patterns correspond to differ-
ent series of received rewards. Based on the series of rewards
received up to a particular choice in the trial, some subset of the
set of possible sequences remained, and the size of this subset
determines the remaining uncertainty for the current trial (see
Materials and Methods). Over the course of a trial, the set of pos-
sible patterns shrinks, reducing uncertainty about the current tri-
al’s pattern and determining the information gathered about the
environment. These differences in reward and information out-
comes in turn determine reward and information expectations.
The expected reward for each target is the total remaining reward
to harvest divided by the number of remaining targets. In con-
trast, the expected information is the mean amount of informa-
tion to be gained by making the next choice. As the animal
proceeds through the trial, the amount of expected information
varies as a function of how many possible patterns of rewards
have been eliminated so far. Distinct possible reward outcomes
may offer the same information, and so our task partially decor-
relates information and reward (linear regression on expected
reward and expected information, R2 = 0.13).

Information may influence the pattern of choices that mon-
keys made, resulting in trial-to-trial changes in this pattern (be-
havioral data are the same as first reported in Barack et al., 2017).
On a majority of trials, monkeys chose targets in the same order
(the daily dominant pattern [DDP]; Monkey R: same DDP
across all 14 sessions; Monkey L: same DDP across 24 of 30 ses-
sions; across all sessions, 0.46656 0.0317 proportion of trials
diverged from the DDP; see Materials and Methods). More gen-
erally, monkeys usually chose the targets in a circle (proportion
of trials in average session with circular patterns of choices:
Monkey L: 0.61346 0.0418; Monkey R: 0.71136 0.0208).
However, they occasionally deviated from their circular routine.
This variability can be measured by finding the BE over the dis-
tribution of choice probabilities for targets. First, each choice
during a trial was egocentrically coded by its step size, the num-
ber of targets clockwise or counterclockwise from the current tri-
al’s previously chosen target (Fig. 1B). The probability of a
particular step size was computed by counting the number of tri-
als with that step size and dividing by the total number of trials
(see Materials and Methods). BE, the entropy computed over
that distribution, significantly predicts adherence to both typical
traplines (DDP: logistic regression; significant [p, 0.05] b for
22 of 44 sessions) and circular traplines (logistic regression; sig-
nificant b [p, 0.05] for 33 of 44 sessions). We found that the
informativeness of outcomes influenced the variability in the
monkeys’ patterns of choices as measured by BE. Anticipation of
more informative choice outcomes significantly reduced the en-
tropy of the monkeys’ choices on average (Student’s t test across
all choices and sessions comparing BE for less than average
expected information to greater than average; both monkeys:
t(96,718) = �19.25, p, 1� 10�81; Monkey L: t(69,274) = �3.24,
p, 0.005; Monkey R: t(27,442) = �23.99, p, 1� 10�125). To bet-
ter assess the influence of expected information on behavioral
variability, we plotted by session and CN the mean BE for zero
expected information and compared it with the mean BE for
non-zero expected information. Median BE across sessions was
greater for CN4 and CN5 than CN3 for no expected information
(p, 0.05; Fig. 1C, green boxes and points) and was greater for
no expected information compared with some expected informa-
tion for CN5 (p, 0.05; Fig. 1C, CN5, red boxes and points com-
pared with green).
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Figure 2. PCC neurons preferentially encode environmental information over reward. A, Firing rate of sample neuron encoding expected information but not expected reward across all CN1-
CN6, plotted separately by expected information (E[DHE]). Legends indicate expected reward(s) for each plot. Blue line indicates end of saccade. B, Tuning curves for expected information
(top) and expected reward (bottom), collapsed across CNs for better visibility, for the cell plotted in A. This example cell showed elevated firing rates for higher amounts of information. The ele-
vated firing rates for certain amounts of expected reward correspond to choices with high expected information with only a single level of expected reward. C, Number of cells encoding
expected reward by choice (red) for constant expected information, and number of cells encoding expected information by choice (green). Neurons were included in the expected reward counts
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The presence of information or reward left to collect on a trial
also drove choice variability. While still harvesting information
and reward about the current trial, monkeys’ choices were less vari-
able, but afterward they became more variable in their choices
(Student’s t test on CN4 or CN5; both monkeys: t(48,358) =�125.98,
p ; 0; Monkey L: t(34,636) = �96.32, p ; 0; Monkey R: t(13,720) =
�71.79, p ; 0; results also significant for each CN separately; Fig.
1C, right). Hence, monkeys deviated less while choices were still in-
formative or rewarding and more thereafter.

Environmental information signaling by posterior cingulate
neurons
We next probed PCC activity during the trapliner task to exam-
ine information and reward signaling from 124 cells in 2 mon-
keys (Fig. 1A; Monkey L= 84 neurons; Monkey R= 40 neurons;
neural data are the same as first reported in Barack et al., 2017).
In order to control for previously uncovered neural effects, all
choices where monkeys diverged from typical traplines were
excluded from the analyses in this section (those neural findings
are reported in Barack et al., 2017).

During the anticipation epoch (500ms encompassing a
250ms prechoice period and a 250ms hold fixation period), neu-
rons in PCC preferentially signaled information expectations
over reward expectations. An example cell (Fig. 2A) showed a
phasic increase in firing rate during the anticipation epoch when
expected information was higher for the same CN in the trial
(for example, CN2: Student’s t test, p, 0.0001, t(283) = �4.3056;
firing rate for 0.72 bits = 22.516 1.46 spikes/s, firing rate for
1.37 bits = 29.846 0.95 spikes/s). However, after controlling for
CN in the trial and expected information, the same neuron did
not differentiate between different amounts of expected reward
(Student’s t test, p. 0.9; firing rate for 0.2 expected reward=
22.236 2.35 spikes/s, firing rate for 0.4 expected reward=22.766
1.83 spikes/s; Fig. 2A, second row from bottom, left). The tuning
curves for this same cell collapsed across all CNs for both expected
information and expected reward illustrate the strong sensitivity to
larger amounts of information (Fig. 2B).

In our population of 124 neurons, significantly more cells
were tuned to information than reward when controlling for CN
in trial. A GLM regression revealed that, during the anticipation
epoch, 35 (28%) of 124 neurons (Monkey L: 25 [30%] of 84 neu-
rons; Monkey R: 10 [25%] of 40 neurons) signaled the interac-
tion of CN and expected information, but only 1 (;1%) of 124
neurons (Monkey L: 1 [;1%] of 84 neurons; Monkey R: 0 [0%]
of 40 neurons) signaled the interaction of CN and expected
reward (all results, p, 0.05, Bonferroni-corrected; for full list of
covariates in the GLM, see Materials and Methods). A further
test for signaling of expected reward compares the average firing
rates for different amounts of expected reward for the same CN
and expected information. This test revealed that only ;10% of
neurons signaled expected reward, except on the last choice
when all information had been received (Fig. 2C). In contrast,
;20% of neurons signaled expected information (Fig. 2C).
These proportions were not significantly different when all circu-
lar traplines were included (expected information � CN, x 2 .
0.24; expected reward� CN, x 2 . 0.17).

PCC neurons index response variability
We have previously established that PCC neurons signal deci-
sions to diverge from typical traplines during our task (Barack et
al., 2017). However, the extent to which these cells track variabil-
ity of responses during the task remains to be explored. We
examined whether PCC neurons index the degree of behavioral

variability, operationalized as BE (see Materials and Methods; all
trials, including divergences from typical traplines, are included
in the following analyses). During the presaccade epoch, BE var-
ied significantly with firing rate for 48 (39%) of 124 neurons (lin-
ear regression of BE against firing rate, p, 0.05; Monkey L: 37
[44%] of 84 neurons, Monkey R: 11 [28%] of 40 neurons). An
example cell was more active for high entropy choices compared
with low (linear regression, b BE = 0.02296 0.0026 bitsBE/spike,
p, 5� 10�18; Fig. 3A). Across the population, higher firing rates
predicted greater BE (124 neurons; Student’s t test on mean nor-
malized firing rates during presaccade epoch, t(123) = 2.7363,
p, 0.01; b BE . 0 in 80 cells, b BE � 0 in 44 cells; mean b BE =
0.00256 0.0011 bitsBE/spike, Student’s t test against h0: mean
b BE = 0, t(123) = 2.3268, p, 0.05; Fig. 3B). In addition, in our
population of 124 cells, 46 (37%) exhibited significantly different
(p, 0.05) tonic firing rates for high BE compared with low BE
choices during the anticipation epoch (Monkey L: 35 of 84
[42%]; Monkey R: 11 of 40 [28%]).

We next investigated whether PCC neurons signaled the
boundary defined by the receipt of the last information or
reward, when the pattern of rewards on a given trial becomes
fully resolved. This can occur before the last reward is delivered
if the last reward is received on the last choice in a trial. A regres-
sion of each trial’s binned spike counts against the time in the
trial and the time of last informative outcome revealed that 84
(68%) of 124 neurons differentiated these two states (GLM, effect
of interaction, p, 0.05; see Materials and Methods; Monkey L:
61 of 84 neurons, 73%; Monkey R: 23 of 40 neurons, 58%).
During a 4 s epoch centered on the time of the last informative
choice outcome, an example cell fired less before that outcome
than after (Student’s t test, p, 1� 10�56; Fig. 3C). The popula-
tion of cells also fire more after this boundary (Student’s t test,
p, 0.005; Fig. 3D).

Finally, BE signals and boundary signals were combined in
the PCC population. While the time of last information can be
partly disambiguated from time of last reward, this occurs only
on the last choice when a single target remains. Since BE is a
measure of response variability, it requires more than one target,
which is not available on the last choice. As a result, combined
signals of BE and the boundary could reflect the end of either in-
formation gathering or reward harvesting. Significantly fewer
cells (x 2, p, 1� 10�10) predicted BE after receiving all informa-
tion or reward (24 [19%] of 124 neurons) than before (74 [60%]
neurons). PCC population responses on choices with high BE
compared with low entropy revealed significant differences
before receipt of the last informative or rewarding outcome
(Student’s t test, p, 1� 10�4) but not after (Student’s t test,
p. 0.5), with greater modulation for high entropy compared
with low.

Discussion
In this study, we show that environmental information influen-
ces responses during routine behavior and that firing rates of
PCC neurons carry this information and predict behavioral vari-
ability. Despite the fact that, in our task, monkeys could not use
environmental information to increase their chance of reward,
the receipt of environmental information and the exhaustion of
uncertainty impacted behavioral routines. Monkeys’ responses
were less variable when there was more information to be gath-
ered, but became more variable once the environment became
fully known. This pattern of variable responses after resolving all
environmental uncertainty departs from the reward rate
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maximizing strategy of selecting targets in a circle to minimize
saccade lengths. While monkeys traplined, neurons in PCC
robustly signaled information expectations, but not reward
expectations, and predicted the variability in the patterns of
choices. Finally, PCC neurons differentiate the degree of behav-
ioral variability before all information or reward was received
about the pattern of rewards compared with after, with an
increase in activity following receipt of the last informative out-
come and concomitant decreases in forecasting behavioral vari-
ability. In sum, our experimental findings suggest that PCC
tracks the state of the environment to influence routine behavior.

Monkeys often chose targets in the same pattern, consistent
with previous findings of repetitive stereotyped foraging in wild
primate groups (Noser and Byrne, 2007). They also generally
moved in a circle, visiting the next nearest neighbor after the cur-
rent target, likewise consistent with previous findings in groups
of wild foraging primates (E. W. Menzel, 1973; Garber, 1988;
Janson, 1998). These foraging choices almost always result in
straight line routes (Janson, 1998; Pochron, 2001; Cunningham
and Janson, 2007; Valero and Byrne, 2007) or a series of straight
lines (Di Fiore and Suarez, 2007; Noser and Byrne, 2007).
Experiments on captive primates have also observed nearest
neighbor or near optimal path finding (E. W. Menzel, 1973;
MacDonald and Wilkie, 1990; Gallistel and Cramer, 1996;
Cramer and Gallistel, 1997). Our monkeys’ choices are also con-
sistent with human behavior on traveling salesman problems,

wherein next nearest neighbor paths are usually chosen for low
numbers of points (Hirtle and Gärling, 1992; MacGregor and
Ormerod, 1996; MacGregor and Chu, 2011).

The PCC, a posterior midline cortical region with extensive
corticocortical connectivity (Heilbronner and Haber, 2014) and
elevated resting state and off-task metabolic activity (Buckner et
al., 2008), is at the heart of the default mode network (Buckner et
al., 2008). The default mode network is a cortex-spanning net-
work implicated in exploratory cognition, including imagination
(Schacter et al., 2012), creativity (Kühn et al., 2014), and narra-
tion (Wise and Braga, 2014). Although implicated in a range of
cognitive functions, activity in PCC may be unified by a set of
computations related to harvesting information from the envi-
ronment to regulate behavior. Signals in PCC that carry informa-
tion about environmental decision variables, such as value
(McCoy et al., 2003), risk (McCoy and Platt, 2005), and decision
salience (Heilbronner et al., 2011), may indeed reflect the track-
ing of information returns from the immediate environment.
For example, in a two-alternative forced-choice task, neurons in
PCC preferentially signaled the resolution of a risky choice with
a variable reward over the value of choosing a safe choice with a
guaranteed reward (McCoy and Platt, 2005). Such signals may
reflect the information associated with the resolution of uncer-
tainty regarding the risky option. PCC neurons also signal
reward-based exploration (Pearson et al., 2009), and microstimu-
lation in PCC can shift monkeys from a preferred option to one
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they rarely choose (Hayden et al., 2008). Both of these functions
may reflect signaling of environmental information as well; for
example, the signaling of exploratory choices may reflect the in-
formation from an increase in the number of recent sources of
reward (Pearson et al., 2009). Evidence from neuroimaging stud-
ies in humans similarly reveals PCC activation in a wide range of
cognitive processes related to adaptive cognition, including
imagination (Benoit et al., 2011), decision-making (Kable and
Glimcher, 2007), and creativity (Beaty et al., 2015).

Uncovering the neural circuits that underlie variability in for-
aging behavior may provide insight into more complex cognitive
functions. A fundamental feature of what we call prospective
cognition, thoughts about times, places, and objects beyond the
here and now, involves consideration of different ways the world
might turn out. Various types of prospective cognition, including
imagination, exploration, and creativity, impose a trade-off
between engaging well-rehearsed routines and deviating in
search of new, potentially better solutions (Gottlieb et al., 2013;
Andrews-Hanna et al., 2014; Beaty et al., 2015). For example, cre-
ativity involves diverging from usual patterns of thought, such as
occurs in generating ideas (Benedek et al., 2014) or crafting novel
concepts (Barron, 1955; Guilford, 1959). During creative episodes,
the PCC shows increased activity during idea generation (Benedek
et al., 2014) and higher connectivity with control networks during
idea evaluation (Beaty et al., 2015), perhaps reflecting imagined,
anticipated, or predicted variation in the environment. Exploration
similarly involves diverging from the familiar, such as to locate
novel resources (Ohashi and Thomson, 2005) or discover shorter
paths (Sutton and Barto, 1998) between known locations. Such pro-
spective cognition requires diverging from routine thought, and the
identification of the neural circuits that mediate deviations from
motor routines may provide initial insight into the computations
and mechanisms of prospective cognition. The discovery that the
PCC preferentially signals the state of the environment and predicts
behavioral variability relative to that state is a first step toward
understanding these circuits.

The reinforcement learning literature is replete with mod-
els where exploration is driven by the search for information
(Schmidhuber, 1991; Johnson et al., 2012). These models
hypothesize that agents should take actions that maximize
the information gleaned from the environment, by reducing
uncertainty about the size of offered rewards (Schmidhuber,
1991), the location of rewards in the environment (Johnson
et al., 2012), or otherwise maximizing information for subse-
quent decisions. Furthermore, evidence from initial studies
studying information-based exploration shows that humans
are avid information-seekers (Miller, 1983; Fu and Pirolli,
2007) and regulate attentional and valuational computations
on the basis of information (Manohar and Husain, 2013;
Blanchard et al., 2015). In our task, the PCC represented
environmental information and tracked when learning about
the environment was complete, two variables central to in-
formation-based exploration. In particular, the dramatic
change in firing rates associated with the end of information
gathering suggests that PCC represents the information state
of the environment and possibly also the rate of information
intake, a central variable in information foraging models
(Pirolli and Card, 1999; Fu and Pirolli, 2007; Pirolli, 2007).
PCC appears poised to regulate exploration for information.

In conclusion, harvested information and response variability
were both signaled by PCC neurons, suggesting a central role for
PCC in how information drives exploration and possibly pro-
spective cognition. Monkeys were sensitive to the amount of

uncertainty remaining in the environment, with more reliable
patterns of choices while information remained and more vari-
able patterns after environmental uncertainty had been resolved
and all rewards collected. PCC neurons preferentially tracked
this information and predicted the variability in monkeys’ behav-
ior. Our findings implicate the PCC in the regulation of foraging
behavior, and specifically the information-driven deviation from
routines. When at the races, PCC will both track who won and
set the stage for changing up your bets.
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