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The idea that when we use a tool we incorporate it into the neural representation of our body (embodiment) has been a
major inspiration for philosophy, science, and engineering. While theoretically appealing, there is little direct evidence for
tool embodiment at the neural level. Using functional magnetic resonance imaging (fMRI) in male and female human sub-
jects, we investigated whether expert tool users (London litter pickers: n= 7) represent their expert tool more like a hand
(neural embodiment) or less like a hand (neural differentiation), as compared with a group of tool novices (n= 12). During
fMRI scans, participants viewed first-person videos depicting grasps performed by either a hand, litter picker, or a non-expert
grasping tool. Using representational similarity analysis (RSA), differences in the representational structure of hands and
tools were measured within occipitotemporal cortex (OTC). Contrary to the neural embodiment theory, we find that the
experts group represent their own tool less like a hand (not more) relative to novices. Using a case-study approach, we fur-
ther replicated this effect, independently, in five of the seven individual expert litter pickers, as compared with the novices.
An exploratory analysis in left parietal cortex, a region implicated in visuomotor representations of hands and tools, also
indicated that experts do not visually represent their tool more similar to hands, compared with novices. Together, our find-
ings suggest that extensive tool use leads to an increased neural differentiation between visual representations of hands and
tools. This evidence provides an important alternative framework to the prominent tool embodiment theory.

Key words: embodiment; experts; fMRI; neuroimaging; plasticity; tools

Significance Statement

It is commonly thought that tool use leads to the assimilation of the tool into the neural representation of the body, a process
referred to as embodiment. Here, we demonstrate that expert tool users (London litter pickers) neurally represent their own tool
less like a hand (not more), compared with novices. Our findings advance our current understanding for how experience shapes
functional organization in high-order visual cortex. Further, this evidence provides an alternative framework to the prominent tool
embodiment theory, suggesting instead that experience with tools leads to more distinct, separable hand and tool representations.

Introduction
Experience using tools is commonly thought to lead to an inte-
gration between the neural representations of the body and the
tool, a process known as embodiment (Maravita and Iriki, 2004).
While theoretically appealing, there is little direct evidence for
tool embodiment at the neural level. Previous research assessing
tool embodiment, such as the influential work of Iriki and col-
leagues (Iriki et al., 1996), measured whether tool use affects the
visual representation of hand-centered space (e.g., multisensory
peripersonal space; Maravita and Iriki, 2004). However, this is an
indirect measure of hand representation and is therefore open to
alternative interpretations (Holmes, 2012). Additionally, a more
recent tool embodiment approach using electroencephalography
(EEG) examined how tactile information carried by a hand-held
tool is processed by the somatosensory system as compared with
the hand itself (Miller et al., 2019). But considering that the tool
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is held by the hand, it is not clear whether this low-level repre-
sentation is actually attributable to the tool, or more likely, to the
mechanoreceptors in the hand that mediate this information. As
such, there is still not a strong proof of concept in the literature
that tool use leads to sensory embodiment.

Here, we used functional magnetic resonance imaging (fMRI)
brain decoding to directly quantify similarities between visual
representations of hands and tools in expert tool users and novi-
ces. We studied individuals with extensive experience using a lit-
ter picking tool (expert tool users) as well as a group of novice
litter picker users. We specifically chose to study expert tool
users, based on the assumption that the extensive tool use of the
experts would make them most likely to embody their tools.
During fMRI scans, participants viewed first-person videos
depicting grasps performed by either a hand, litter picker, or a
non-expert grasping tool (tongs). Using representational similar-
ity analysis (RSA), differences in the representational structure
across hands and tools were measured within occipitotemporal
cortex (OTC). We specifically focused on OTC because it con-
tains spatially overlapping, but distinct, representations for hands
and tools (Bracci et al., 2012). OTC has also been closely linked
in visuomotor (Orlov et al., 2010) and multisensory hand repre-
sentations (Gentile et al., 2013) and has also been associated with
hand embodiment under the rubber hand illusion (Limanowski
et al., 2014). As such, it provides a perfect test bed for investigat-
ing tool embodiment. Additionally, to test whether a different
result would potentially be observed within neural structures
directly implicated in motor planning and execution for hand

use and tool use (Gallivan et al., 2013), an exploratory analysis
was performed in left parietal cortex. We focused on the left
hemisphere because motor planning/tool use has been shown to
be left-lateralized in parietal cortex (Brandi et al., 2014; Gallivan
and Culham, 2015).

Under the theoretical framework that defines neural embodi-
ment as the successful integration of brain resources typically
devoted to control the body to represent and operate external
objects (e.g., tools, prosthetic limbs; de Vignemont, 2011; Makin
et al., 2017), we proposed three predictions for what we might
observe: (1) experts could represent the expert tool more like a
hand compared with novices, i.e., neural embodiment, (2)
experts could represent the expert tool less like a hand compared
with novices, i.e., neural differentiation or (3) experts could show
no differences compared with novices (Fig. 1A). Interestingly, we
found that, contrary to the neural embodiment theory, expert
tool users represent the expert tool less like a hand, i.e., greater
neural dissimilarity between the visual representations of the
expert tool and hands within OTC, compared with the novices.
Using Crawford and Howell’s (1998) method, a modified t test,
we independently replicated this effect in five of seven individual
expert litter pickers, as compared with the novices. Further, we
found that this result could not be explained by the low-level rep-
resentational structure captured in primary visual cortex (V1).
An exploratory analysis in left parietal cortex revealed a similar
pattern as OTC. These findings provide a novel framework for
how tool use shapes the representational structure of hands and
tools, such that extensive tool use leads to a more distinct tool

Figure 1. Neuroimaging hypotheses and experimental paradigm. A, An illustration of the predictions generated by the proposed hypotheses for the neuroimaging experiment. Under the
first, embodiment prediction, extensive tool use could lead to representations of hands and tools to become neurally integrated, such that tools are represented more similarly to hands, sug-
gesting that tools are embodied. A second prediction is that experts will show greater categorization of representations of hands and tools, such that the neural representations for hands and
tools would become differentiated and more dissimilar to each other. This would suggest that perhaps that visual experience with tools leads to an increased sharpening of the representation.
B, Examples of the video stimuli shown during the fMRI scan depicting grasping actions performed by each effector category: hands, litter pickers, or tongs [the videos can be downloaded on
the Open Science Framework (OSF) at https://osf.io/p4q3y/]. To control for any potential laterality effects, the stimuli included both left and right-handed versions. C, ROI probability map for
all participants (n= 19) showing hand and tool selective OTC, defined using independent functional data. For each participant and hemisphere, the top 100 most activated voxels of OTC were
selected based on a hands 1 tools . objects 1 low-level visual stimulus contrast. ROIs from all participants were superimposed. Warmer colors represent voxels that were included in a
greater number of individual ROIs. Group-specific probability maps of OTC can be downloaded on the Open Science Framework at https://osf.io/p4q3y/.
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representation, as compared with the hand, throughout the
visuomotor network. Collectively, this evidence provides an im-
portant alternative framework to the tool embodiment theory.

Materials and Methods
Participants
To identify “expert” litter pickers, recruitment adverts were distributed
with multiple relevant individuals/groups: sanitation supervisors sta-
tioned in London Underground stations (e.g., King’s Cross St. Pancras,
Westminster, Camden, Russell Square etc.), Heads of Parks and
Sanitation at several UK city councils (e.g., Islington, Camden, Brighton,
and Hove), and with several volunteer litter picking organizations: Keep
Britain Tidy, Litter Action, CleanupUK, Helping Hand Environmental,
and the Dorset Devils. From these advertisements, 52 respondents were
screened via a telephone interview or online survey. From this group,
13% of respondents [n=7; mean age (SD)= 47 (8.11), four females, all
right-handed, mean years of education (SD) = 15.9 (1.57)] were invited
to participate in the study, based on their litter picking usage being above
a minimum threshold (composite score of their previous litter picking
use and their current litter picking usage) and compatibility with MRI
safety regulations. We also recruited a group of novices matched in age
[n= 15; mean age (SD) = 43 (7.39), three females, 1 left-handed, mean
years of education (SD) = 14.8 (1.86)]. All participant demographics are
reported in Table 1. Recruitment was conducted in accordance with
University College London’s research ethics committee (Ref: 9937/001).
Informed consent and consent to publish was obtained in accordance
with ethical standards of the Declaration of Helsinki (1964). Three novi-
ces were excluded from fMRI data analysis because they did not com-
plete all of the functional runs, because of feelings of anxiety and
claustrophobia.

Litter picking usage measurements
Participants were asked to estimate their frequency of using a litter pick-
ing on a weekly and daily basis, as well as to estimate how long they have
been using a litter picker. Litter picking usage habits are summarized
below in Table 1. Participants were not asked to report their previous ex-
perience with the non-expert tool (tongs).

Experimental design
fMRI task stimuli
For the main functional task, participants viewed first-person videos of
grasping actions being performed using three different effector catego-
ries: hands, litter pickers (expert tool) and tongs (non-expert tool). The
stimuli included 48 unique videos. Of the 48 videos, there were 16 videos
for each effector category. Half of the videos (eight per effector) were
presented as left-handed and the other half as right-handed. For the 8
videos for each effector category, videos varied in multiple features:
scene context [common scenes typical for hand or tool actions: street
(tool), grass (tool), kitchenette (hand), desk (hand)], as well as the size of
the object being grasped (small vs large; for example, a small object used
was a train ticket and a large object used was a tennis ball; to access all of
the videos see https://osf.io/p4q3y/). A fourth effector, prosthetic hands,
was also included in the design. However, this condition was included as
part of a separate study involving amputee participants.

Separately, for the functional localizer scan, participants viewed vid-
eos of tools, hands, and two types of control categories: objects and low-
level visual control stimuli (to access the full functional localizer video
see https://osf.io/p4q3y/).

fMRI task design
For the main functional task, the presentation of the stimuli was coun-
ter-balanced across the four functional runs, to best control for pairwise
order effects. Each functional run was 7min 26 s in length. Within each
run, each video was presented once. Each video was displayed for 3.0 s,
followed by 2.5 s of a red fixation point against a gray background.
Additionally, catch trials were introduced to keep subjects engaged
throughout the scan, where an image of a leprechaun face would ran-
domly appear on the center of the screen. Participants were instructed

(before starting the task) to wiggle their toes whenever a leprechaun face
appeared. These trials were modeled separately and excluded from fur-
ther analyses. The videos were constructed using MoviePy, a python
package for video editing (https://zulko.github.io/moviepy/). Stimuli
were presented on a screen located at the rear end of the MRI scanner
and were viewed through a mirror mounted on the head coil. The videos
were presented via VLC player (https://www.videolan.org/vlc/) on a Dell
Latitude laptop.

For the functional localizer scan, participants were instructed to
maintain fixation on a cross in the center of the screen that was visible
throughout the experiment. The localizer run began and ended with a
20-s fixation baseline, followed by five experimental blocks of five 21-s
blocks (four experimental blocks and one baseline block), ending with
another 20-s fixation baseline (for a total run duration of 9min, 20 s).
The order of blocks was semi-counterbalanced across the five sets. Each
block of the video conditions was comprised of three videos of 7 s each,
with each video depicting a different exemplar of the condition.

MRI data acquisition
The MRI measurements were obtained using a 3-Tesla Quattro scanner
(Siemens) with a 32-channel head coil. Anatomical data were acquired
using a T1-weighted magnetization prepared rapid acquisition gradient
echo sequence (MPRAGE) with the parameters: TR=2.54 s, TE=3.34ms,
FOV=256 mm, flip angle = 7°, and voxel size = 1-mm isotropic resolution.
Functional data based on the blood oxygenation level-dependent signal
were acquired using a multiband gradient echo-planar T2p-weighted
pulse sequence (Uğurbil et al., 2013) with the parameters: TR=1.5 s,
TE=35ms, flip-angle= 70°, multiband acceleration factor= 4, FOV=212
mm, matrix size of 106� 106, and voxel size = 2-mm isotropic resolution.
Seventy-two slices, with a slice thickness of 2 mm and no slice gap, were
oriented in the anterior commissure–posterior commissure, covering the
whole cortex, with partial coverage of the cerebellum. Each of the four
functional runs comprising the main task consisted of 298 volumes
(7min, 26 s). For the functional localizer, there was one functional run
consisting of 374 volumes. For all functional scans, the first dummy vol-
ume of every run was saved and later used as a reference for co-
registration.

fMRI analysis
Functional MRI data processing was conducted using FMRIB’s expert
analysis tool (FEAT; version 6.0), part of FMRIB’s software library (FSL;
www.fmrib.ox.ac.uk/fsl) and Connectome Workbench (humanconnec-
tome.org) software, in combination with MATLAB scripts (R2019b,
v9.7; The MathWorks Inc), both developed in-house (including an FSL-
compatible RSA toolbox; Nili et al., 2014) and as part of the RSA
Toolbox (Wesselink and Maimon-Mor, 2018).

fMRI preprocessing
Registration of the functional data to the high-resolution structural
image was conducted using the boundary-based registration algorithm
(Greve and Fischl, 2009). Registration of the high resolution structural
to standard space images was conducted using FMRIB’s linear image
registration tool (FLIRT; Jenkinson and Smith, 2001; Jenkinson et al.,
2002) and was then further refined using FNIRT nonlinear registration
(Andersson et al., 2007a,b). The following prestatistical processing was
applied: motion correction using MCFLIRT (Jenkinson et al., 2002),

Table 1. Participant demographics

Subject Gender Age Years of education Litter picker usage Years litter picking

EXP01 F 53 19 2.5 d/week (1.5 h/d) 1.5
EXP02 M 53 15 4.5 d/week (1.5 h/d) 10
EXP03 M 46 15 4 d/week (1.5 h/d) 0.5
EXP04 F 47 15 1.5 d/week (2 h/d) 6
EXP05 M 56 15 1 d/week (1 h/d) 3
EXP06 F 36 17 7 d/week (2.5 h/d) 2
EXP07 F 36 15 3.5 d/week (1 h/d) 4

Expert litter pickers (EXP).
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non-brain removal using BET (Smith, 2002), spatial smoothing using a
Gaussian kernel of FWHM 3 mm for the functional task data and 5 mm
for the functional hand-tool localizer, grand-mean intensity normaliza-
tion of the entire 4D dataset by a single multiplicative factor, and high-
pass temporal filtering (Gaussian-weighted least-squares straight line fit-
ting, with s =50 s). Further, to minimize potential biases from individ-
ual runs, the functional data across the individual runs was aligned to a
functional mid-space using FLIRT (Jenkinson and Smith, 2001;
Jenkinson et al., 2002). This functional mid-space was later used to align
the parameter estimates and residuals, from each run, to the same func-
tional space for the RSA.

Low-level task-based analysis
We applied a general linear model (GLM) as implemented in FEAT, to
each functional run. For the main analysis, left and right-handed ver-
sions of the same videos were modeled together against rest (fixation).
Time-series statistical analysis was conducted using FILM with local
autocorrelation correction (Woolrich et al., 2001). The time series model
included trial onsets convolved with a double g HRF function; six
motion parameters were added as confound regressors. Trials for each
video condition were modeled separately, except left-handed and right-
handed videos were modeled together. Indicator functions were added
to model out single volumes identified to have excessive motion (.1
mm). A separate regressor was used for each high motion volume, no
more than eight volumes were found for an individual run (2.1% of the
entire run). Additionally, in the supplementary analysis exploring the
effects of video laterality, videos were modeled separately for each effec-
tor category and whether they were left-handed or right-handed against
rest (fixation) and averaged across the other features (context and object
size). We further used this analysis to confirm our main analysis for
group differences in effector category distances.

For the functional localizer scan, a single contrast for the conditions
of interest were defined as hands 1 tools . objects 1 low-level visual
stimulus. The activity patterns associated with this contrast were then
used to define functional regions of interest (ROIs).

For each participant, parameter estimates of the different effector cat-
egories and GLM residuals of all voxels within the ROI were extracted
from each run’s first-level analysis. For each participant, the parameter
estimates and GLM residuals from each run were then aligned to the
functional mid-space using FLIRT (Jenkinson and Smith, 2001;
Jenkinson et al., 2002). The subsequent RSA analysis was conducted
within this functional mid-space.

Defining ROIs
OTC
Using functional MRI data collected from a separate, independent group
of controls (n=20) that viewed the same functional hand-tool localizer
(described above), a whole brain group activation map for the contrast
hands and tools over moving objects and low-level visual stimulus was
constructed. This group map revealed a large cluster covering OTC (z-
threshold of 3.1). This cluster was isolated, binarized and registered to
the functional space of the functional localizer scan using FLIRT. Since
the focus of the study was on identifying hand and tool selective voxels
within OTC, the analysis was restricted to individually defined ROIs
within this large OTC map defined by the independent group of con-
trols. Using the functional localizer data, for each participant in the pres-
ent study, a hand and tool selective ROI within the large OTC map was
defined by selecting the top 100 voxels in each hemisphere showing the
strongest greatest preference to videos of hands and tools over moving
objects and low-level visual stimulus for each participant. In total, the
OTC ROI included 200 voxels: 100 in the left hemisphere and 100 in the
right hemisphere. These individually defined ROIs were then trans-
formed from the functional space of the functional localizer scan to the
functional mid-space of the functional task scans (described above).

V1
The V1 ROI was derived from the Juelich Histologic Atlas (GM Visual
Cortex V1 BA17 L and R) maximum probabilistic map (unthresholded).
Each V1 hemisphere ROI was binarized and transformed from MNI

space to the functional space of the functional localizer scan using
FLIRT. To identify visually active voxels within each ROI, using the in-
dependent hand-tool functional data, the top 100 most activated voxels,
in each hemisphere, were selected based on the contrast of all video con-
ditions . baseline. In total, the V1 ROI included 200 voxels: 100 in the
left hemisphere and 100 in the right hemisphere. These individually
defined ROIs were then transformed from the functional space of the
functional localizer scan to the functional mid-space of the functional
task scans. ROIs from all participants were superimposed.

Left parietal cortex
As an exploratory analysis, the analysis performed in OTC was con-
ducted in left parietal cortex. Using the functional MRI data collected
from the separate, independent group of controls (n= 20) that viewed
the same functional hand-tool localizer (described above for OTC), a
whole brain group activation map for the contrast hands and tools over
moving objects and low-level visual stimulus was constructed. This
group map revealed a large cluster covering parietal cortex (z-threshold
of 3.1). The left parietal cortex cluster was isolated, binarized and regis-
tered to the functional space of the functional localizer scan using
FLIRT. Since the focus of the study was on identifying hand and tool
selective relevant voxels, the analysis was restricted to individually
defined ROIs within the large left parietal map. To identify hand and
tool selective voxels within this map, the top 200 most activated voxels
within the left parietal hand-tool conjunction map were selected, for
each participant, based on a hands 1 tools . objects 1 low-level visual
stimulus contrast. These individually defined ROIs were then trans-
formed from the functional space of the functional localizer scan to the
functional mid-space of the functional task scans. ROIs from all partici-
pants were superimposed.

RSA
To assess the hand-tool representation structure within the ROI, we
used a mutlitvariate approach, RSA, where pairwise representational
dissimilarity distances between individual videos were calculated
(Diedrichsen and Kriegeskorte, 2017). For each participant, parame-
ter estimates of the individual videos and GLM residuals of all vox-
els within the ROI were extracted from each run’s first-level
analysis. To increase the reliability of the distance estimates, param-
eter estimates underwent multidimensional normalization based on
the voxels’ covariance matrix calculated from the GLM residuals.
This was done to ensure that parameter estimates from noisier vox-
els will be down-weighted (Walther et al., 2016). Cross-validated
(leave-one-run-out) Mahalanobis distances [also known as linear
discriminant contrast (LDC); Nili et al., 2014; Walther et al., 2016]
were then calculated between each pair of videos. Analysis was run
on adapted version of the RSA toolbox in MATLAB (Nili et al.,
2014), customized for FSL (Wesselink and Maimon-Mor, 2018).

For OTC, this analysis was performed separately for each participant
and ROI (left OTC, right OTC), resulting in pairwise dissimilarity dis-
tance values comparing each video condition (note that left-handed and
right-handed videos were modeled together in this analysis). These dis-
tance values for each ROI were inputted into a mixed level ANOVA
(described later in statistical analyses). Because of no significant interac-
tion with ROI (left OTC, right OTC), the resulting values for left and
right OTC were averaged for each participant, for visualization purposes.
These distance values were then depicted as a representational dissimi-
larity matrix (RDM), where each element in the RDM corresponds to a
single pairwise dissimilarity distance value. The group RDMs (Fig. 2A)
were constructed through averaging each pairwise distance element
in the matrix of each participant for each group (novices, experts).
Additionally, multidimensional scaling plots (to access see https://osf.io/
p4q3y/) were derived from these group RDMs. MDS projects the higher-
dimensional RDM into a lower (2D) dimensional space. Note that MDS
is presented for intuitive visualization purposes only and was not used
for statistical analysis. For V1, the same analysis parameters were used,
except the RSA was performed across both hemispheres. For parietal
cortex, the same analysis parameters for OTC were used, except we only
analyzed the left hemisphere.
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For the laterality RSA analysis, the analysis was performed twice: sep-
arately for the average parameter estimates for left-handed and right-
handed stimuli. Cross-validated (leave-run-out) Mahalanobis distances
were calculated between the parameter estimates for each pair of condi-
tions (e.g., for left-handed stimuli: left-handed hands, left-handed litter
pickers, left-handed tongs). Specifically, for the laterality analysis per-
formed in OTC, this was done separately in each OTC hemisphere for
each participant, resulting in 4 RDMs: left-handed stimuli in left OTC,
right-handed stimuli in left OTC, left-handed stimuli in right OTC,
right-handed stimuli in right OTC. The group RDMs for each of these
brain regions were constructed through averaging each pairwise distance
element in the 3� 3 matrix of each participant for each group (novices,
experts). Again, for parietal cortex, the same analysis parameters for
OTC were used, except we only analyzed the left hemisphere (i.e., no
within subject-factor of ROI in the mixed-model ANOVA).

Statistical analyses
All statistical testing was performed using IBM SPSS Statistics for
Macintosh (version 24), with the exception of the Bayesian analysis
which was run on JASP (version 0.11.1; Jasp Team, 2020) Tests for nor-
mality were conducted using a Shapiro–Wilk test. For statistical analyses

of RSA measures in OTC, a mixed level ANOVA (after testing for nor-
mality using the Shapiro–Wilks test, p. 0.05) was performed with the
within-subject factors: effector category distances (hands $ litter pick-
ers, hand $ tongs, litter pickers $ tongs) and ROI (left OTC, right
OTC) and a between subject factor group (novices, experts). For the sec-
ondary OTC analysis that controlled for low-level representational struc-
ture captured in V1, the same parameters for the OTC mixed level
ANOVA described above were used; however, the average effector cate-
gory distance outputted from V1 for each participant was used as a cova-
riate. For V1, a mixed level ANOVA (after testing for normality using
the Shapiro–Wilks test, p. 0.05) was performed with the within-subject
factors: effector category distances (hands $ litter pickers, hand $
tongs, litter pickers $ tongs) and a between subject factor group (novi-
ces, experts). For the OTC laterality analysis, each participant’s cross-
effector category distances from each of the two RDMs for each ROI
(left OTC, right OTC) were inputted into a mixed level ANOVA (after
testing for normality using the Shapiro–Wilks test, p. 0.05) was per-
formed with the within-subject factors included: effector category distan-
ces (hands $ litter pickers, hand $ tongs, litter pickers $ tongs),
laterality (left-handed or right-handed) and ROI (left OTC, right OTC)
and a between subject factor group (novices, experts).

Figure 2. Expert tool users represent tools less like hands. A, Group RDMs showing the pairwise distances (cross-validated Mahalanobis distance) between each video condition. Each element
in the matrix was averaged across left and right OTC. Warmer colors indicate the conditions that evoked more dissimilar patterns of activity. Group multidimensional scaling plots derived from
these group RDMs can be accessed at https://osf.io/p4q3y/. B, Bar plot of individual participants for each cross-effector category distance pair: hands$ litter pickers, hands$ tongs, and lit-
ter pickers $ tongs. These values are generated by averaging the 8� 8 pairwise comparison values, for each effector category pair, for each subject individually. Dark gray values reflect
expert tool users (n= 7). Light gray values reflect novices (n= 12). Circles depict individual subject means. Values indicate group means6 standard error. Asterisks denote significance as fol-
lows; *p, 0.05, ***p, 0.005.
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For the left parietal cortex RSA analyses, the same ANOVA parame-
ters were used as OTC, except there was no within-subject factor of ROI.
Within all of the above analyses, to explore the group differences in pair-
wise effector category distance pairs, two-tailed independent samples t
tests and two-tailed Bayesian independent samples t tests were per-
formed. The Cauchy prior width was set at 0.707 (default; Keysers et al.,
2020). We interpreted the test based on the well accepted criterion of
Bayes factor smaller than 1/3 (Dienes, 2014) as supporting the null hy-
pothesis. The strength of evidence was interpreted based on the classifi-
cation provided in (Jeffreys, 1961), where a Bayes factor above 10 (or
below 0.1) is considered as strong evidence. Additionally, as an explora-
tory analysis to characterize the supporting evidence for tool embodi-
ment in left parietal cortex, one-tailed Bayesian independent samples t
tests were performed. The alternative hypothesis was defined as “experts
have smaller dissimilarity distances between hands and the expert tool
(litter pickers) than novices,” i.e., novices. experts.

To test whether an individual expert litter picker’s hands $ litter
pickers distance was significantly different from the novices, we used
Crawford and Howell’s (1998) method which provides a point estimate
of the abnormality of the individual case’s distance from a control sam-
ple, as well as a confidence interval of the uncertainty associated with the
point estimate (Crawford and Howell, 1998). To account for interindi-
vidual differences not directly related to hand-tool representation, we
first subtracted each participant’s hands$ litter pickers distance by their
litter pickers $ tongs distance. The analysis was performed using the
Singlims.exe program (Crawford and Garthwaite, 2002).

Results
First, to investigate whether experience with a hand-held tool
leads to tools being embodied, we recruited individuals with
extensive experience using a litter picking tool (n= 7, identified
from 52 screened litter pickers; see participant demographics in
Table 1). To quantify whether the expert litter pickers neurally
embody the litter picker, we used fMRI in combination with
RSA to measure differences in the representational structure of
hands and tools. During fMRI scans, participants viewed first-
person videos of grasping actions being performed by three effec-
tor categories: hands, litter pickers (expert tool) and tongs (non-
expert tool). Videos were visually matched across the effector
categories. Videos also varied in multiple features: scene context
[common scenes typical for hand or tool actions: street (tool),
grass (tool), kitchenette (hand), desk (hand)], object sizes (small,
large), and the laterality of stimuli (left-handed or right-handed;
for screenshots of the videos, see Fig. 1B). Next, individualized
hand and tool selective ROIs within OTC were independently
localized for each participant by choosing the 100 OTC voxels in
each hemisphere showing the strongest preference to videos of
hands and tools over moving objects and low-level visual stimu-
lus (Fig. 1C).

Expert tool users show increased differentiation between
hands and tools in OTC
To calculate group differences between activation patterns for
hands and tools in OTC, we first computed the representational
dissimilarity distances comparing each of the video conditions to
every other video condition (for the RDMs for each group, see
Fig. 2A). While participants viewed multiple video conditions for
each of the three effector categories, we focused on the represen-
tational distances between effector representations, across the
multiple conditions. To do this, we averaged the cross-effector
category representational dissimilarity distances for each partici-
pant. This resulted in three distances per participant, one for
each cross-effector category pair (hands $ litter pickers, hands
$ tongs, litter pickers$ tongs). We entered these distances into
a mixed level ANOVA: within-subject factors included the three

cross-effector category distances and ROI (left OTC, right OTC),
with a between-subject factor of group (experts, novices).
This analysis revealed a significant two-way interaction between
the effector category distances and group (F(2,16) = 17.495,
p, 0.001; BFincl = 72.313; the three-way interaction between
ROI, effector category distances and group was not significant:
F(2,16) = 1.267, p=0.309; BFincl = 1.088; Fig. 2B). This suggests
that there are group differences in the representational structure
(full statistical report can be accessed at https://osf.io/p4q3y/).
Specifically, expert tool users represented the expert tool less
like hands, i.e., experts showed increased dissimilarity distances
between the expert tool (litter picker) and hands, compared with
the novices (t(17) = �3.385, p= 0.004, two-tailed; BF10 = 11).
Thus, the extensive tool use of the experts leads to the visual rep-
resentation of the tool to become more dissimilar to hands (not
more similar). Moreover, this shift was also observed for the
non-expert tool (tongs) with experts representing the tongs less
like hands, i.e., experts showed increased dissimilarity distances
between tongs and hands, compared with novices (t(17) =
�2.574, p=0.020, two-tailed; BF10 = 3.1). Additionally, the two
grasping tools (litter pickers $ tongs) were represented equally
similar to each other, i.e., no significant group differences in dis-
similarity distances between the litter picker and tongs (t(17) =
1.202, p=0.246, two-tailed; BF10 = 0.6).

Considering the small sample size of the expert litter pickers
group, we next sought to test whether the observed effect in the
experts could be replicated in each individual expert litter picker,
as compared with the novice group. As such, one could consider
each expert litter picker to be a case study and an independent
replication of the effect. To test this, we used Crawford and
Howell’s (1998) method (a modified t test) to test whether each
expert litter pickers’ hands $ litter pickers distance was signifi-
cantly different from the novices (Crawford and Howell, 1998).
This analysis revealed that five of seven expert litter pickers
showed significantly greater hands $ litter pickers distances
(normalized by the litter pickers$ tongs distance), as compared
with the novices (two-tailed; range of p values for the five experts
with significant tests: 0.002, p, 0.022; p values for the two
experts with non-significant tests: 0.144 and 0.245). This analysis
further confirms that expert litter pickers show increased neural
differentiation between visual representations of hands and tools
within OTC.

To understand whether the group differences in effector cate-
gory distances observed in OTC are driven by differences in the
low-level representational structure (e.g., potential differences in
eye movements between experts and novices), we repeated the
group analysis within a second ROI, V1, as a control (Fig. 3A)
This analysis revealed no significant group differences in effector
category distances within V1 (F(2,17) = 0.013, p= 0.987; BFincl =
0.330; Fig. 3B). However, qualitatively, we observed a trend for a
main effect of group (F(1,17) = 2.662, p=0.121; BFincl = 0.592)
with greater distances in the experts (full statistical report can be
accessed at https://osf.io/p4q3y/). Despite not being significant,
to highlight that the group differences within OTC are not
driven by greater distances in the experts’ low-level represen-
tational structure captured within V1, we included the aver-
age effector category distance in V1 for each participant as a
covariate in the OTC analysis. Even when controlling for this
low-level representational structure, we still find significant
group differences in effector category distances in OTC (sig-
nificant interaction between effector category distances �
group: F(2,17) = 11.982, p = 0.001; BFincl = 61.216; full statisti-
cal report can be accessed at https://osf.io/p4q3y/).
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Finally, we considered whether a neural embodiment result
(i.e., tools becoming more similar to hands with extensive use)
might be observed depending on the laterality of the presented
stimuli (left-handed or right-handed), especially considering the
experts reported only using the litter picker with their right
hand. To test this, the previous RSA approach was repeated in
OTC, except this time the video conditions were grouped by
their laterality: left-handed or right-handed, i.e., averaged across
other video conditions (group laterality RDMs available at
https://osf.io/p4q3y/). Nonetheless, we did not observe a signifi-
cant three-way interaction with the laterality of the stimuli,
group and effector category distances (F(2,16) = 0.043, p=0.958;
BFincl = 0.039), suggesting that the greater distances between
hands and tools in the experts is not specific to the way in which
the tool is visually experienced in the real world.

Investigating tool embodiment beyond OTC
While our experiment was specifically designed to leverage the
known hand-tool representational relationship of OTC, our
video stimuli also activated other regions relating to motor con-
trol and planning, providing us the opportunity to perform fur-
ther exploratory analyses beyond OTC. To test whether a tool
embodiment result would potentially be observed within neural
structures involved more directly in motor planning for tool use,
an exploratory analysis was performed in left parietal cortex

(Fig. 3B). This analysis revealed significant group differences in
effector category distances (interaction between group � effector
category distances: F(2,16) = 5.058, p=0.020; BFincl = 1.139; Fig. 3D),
similar to the interaction reported for OTC. However, the group
comparisons between each individual effector category distance pair
did not reach significance (hand $ litter picker: t(18) = –0.602,
p=0.555, two-tailed; BF10 = 0.4; hand $ tongs: t(18) =0.440,
p=0.116, two-tailed; BF10 = 1; litter picker $ tongs: t(18) = –0.824,
p=0.421, two-tailed; BF10 = 0.5). Although, on average, experts
showed greater distances between hands and litter pickers and hand
and tongs compared with novices, similar to what we see within
OTC. To verify there is no evidence supporting a neural embodi-
ment result within parietal cortex that contradicts the result within
OTC, a one-tailed Bayesian t test provided substantial evidence in
support of the null hypothesis (BF10 = 0.2), i.e., that on average
experts do not visually represent an expert tool more similar to
hands compared with the novices. Together, while the findings in
parietal cortex are weaker than OTC, they are suggestive of a similar
pattern and do not provide any evidence supporting tool
embodiment.

Discussion
Here, a fMRI brain decoding technique was used to investigate
how similar the representation of a hand is compared with an
extensively used tool. This approach allowed us to directly

Figure 3. Analyses in visual cortex and left parietal cortex. A, A V1 ROI probability map was constructed for all participants (n= 19). Warmer colors represent voxels that were included in a
greater number of individual ROIs. B, Group RDMs for V1 showing the pairwise distances (cross-validated Mahalanobis distance) between each video condition. Warmer colors indicate the con-
ditions that evoked more dissimilar patterns of activity. C, A left parietal cortex ROI probability map for all participants (n= 19) showing hand and tool selective voxels was defined using inde-
pendent functional data. ROIs from all participants were superimposed. Warmer colors represent voxels that were included in a greater number of individual ROIs. D, Group RDMs for left
parietal cortex showing the pairwise distances (cross-validated Mahalanobis distance) between each video condition. Warmer colors indicate the conditions that evoked more dissimilar patterns
of activity.
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compare hand and tool representations (independent of each
other). Contrary to the tool embodiment theory, our findings
show that expert tool users do not represent their own tool
more similarly to a hand. Instead, experts showed greater
dissimilarity distances between visual representations of
hands and tools in OTC. Further, using Crawford and
Howell’s (1998) method, we independently replicated this
effect in five of seven individual expert litter pickers, as
compared with the novices. Additionally, these group dif-
ferences were not driven by potential differences in the low-
level representation structure, as captured within V1.
Despite the experts reporting only using the litter picker
with their right hand, we did not find that the group differ-
ence in dissimilarity distances between hands and the
expert tool was specific to whether the expert tool was
viewed as left-handed or right-handed. Additionally,
experts showed greater dissimilarity between hands and the
non-expert tool (tongs), suggesting that experts have a
more distinct representation of general grasping tools.
While we did not have clear hypothesis relating to other
sensorimotor areas more directly involved in motor plan-
ning and control, the exploratory analysis conducted in left
parietal cortex provided no evidence supporting a neural
embodiment result. Together, our findings in expert tool
users provide contradicting evidence to the tool embodi-
ment theory.

There are several potential explanations for the current find-
ings, specifically for how experience with tools leads to a differ-
entiation between hand and tool representations. A primary
explanation for the present result is the extensive visual tool ex-
perience of the experts. Both short-term (Gauthier et al., 1999;
Kourtzi et al., 2005; Op de Beeck et al., 2006; Brants et al., 2016)
and long-term (Baker et al., 2007; Chan et al., 2010; McGugin et
al., 2012; Dehaene-Lambertz et al., 2018; Gomez et al., 2019) vis-
ual experience have been shown to shape representations in vis-
ual cortex (for review, see Op de Beeck and Baker, 2010; Harel,
2016). For example, visual training with a category of novel vis-
ual objects leads to a differentiation of that category from similar
untrained categories (Op de Beeck et al., 2006). Similarly, exten-
sive experience with specific orthographies leads to a distinct
representation of those orthographies compared with other
orthographies (Baker et al., 2007). This is consistent with our
recent work demonstrating that prosthesis usage in amputees
leads to greater dissociation of prostheses relative to hands (and
tools; Maimon-Mor and Makin, 2020).

Also, while we presume it is the tool representation that has
changed in the experts, perhaps it is the representation of the
tool action that has changed. Recent work has highlighted the
role of OTC in processing observed actions (Tucciarelli et al.,
2019). This would explain why experts show greater dissimilarity
between hands and both their expert tool (litter picker) and a
similar grasping tool on which they did not have prior expertise
(tongs). Alternatively, the observed effect for the non-expert tool
relative to hands could potentially be driven simply by the shared
visual features between the expert and non-expert tools. Indeed,
previous research has demonstrated evidence for both of these
predictions that OTC encodes information related to stimuli
shape (Chen et al., 2018; Wang et al., 2018), as well as the func-
tional/semantic properties of the stimuli (Bracci et al., 2015;
Chen et al., 2018).

A second interpretation of the present findings stems from
the motor literature which suggests that perhaps the visual hand
representation has changed in the experts. Multiple studies have

shown that the organizational structure of the sensorimotor
hand representation is shaped by the natural statistics of hand
usage (Ejaz et al., 2015). Considering the intrinsic functional con-
nectivity between the visual hand area and the sensorimotor
hand representation (Tal et al., 2016) and that the expert tool
users extensively use their hands to interact with tools, perhaps,
the representational shift shown in the experts is driven exclu-
sively by changes in the visual hand representation. This would
also explain why the distances relative to both tools changes.

A third interpretation is that the mechanism supporting the
increased differentiation of tools from hands observed in experts
could be not strictly visual or motor, but rather driven by a larger
cognitive mechanism. For instance, in the memory domain, the
strengthening of representations is associated with pattern sepa-
ration, thereby making a new representation less confusable with
other memories (Schlichting et al., 2015). Thus, in the present
study, for experts to optimally control a hand or tool, the net-
work differentiates these representations, to reduce potential in-
terference and most successfully store and access information.

It is important to note that our experimental design may have
several potential limitations. First, while viewing first-person vid-
eos during fMRI scans engages visuomotor regions, it did not
activate sensorimotor regions (e.g., M1/S1). Considering sensori-
motor cortex is more directly involved in the sensory and motor
bodily experience, the computations within these neural struc-
tures could potentially be different from the pattern observed in
OTC and parietal cortex. Unfortunately, the fMRI environment
poses unique challenges for active experimental designs involv-
ing tool use, and as highlighted above, the actual sensorimotor
engagement with the tool provides further confounds that we
were eager to avoid. Thus, we cannot rule out the possibility that
if subjects were actively involved in tool use during fMRI scans, a
different representational structure could have been observed
within these regions. Also, it is possible that while watching the
videos, experts are mentally simulating actions differently to the
novices. In this instance, novice behavior could be more varied
in mentally simulating the actions. Previous research is inconclu-
sive on the engagement of OTC during visual and motor imagery
(Orlov et al., 2010; Kikuchi et al., 2017). It is also challenging,
and perhaps counter-productive, to disentangle cognitive contribu-
tion to expert motor learning (Broadbent et al., 2015). Nonetheless,
future work is needed to determine whether the motor system pro-
duces different representational solutions to those observed here, to
support expert tool use, both within and beyond the framework of
embodiment.

Finally, it is important to acknowledge the potential limita-
tions of the small sample size used in the present study. Despite
our greatest efforts to recruit more litter-picker experts (we origi-
nally interviewed 52 candidates for the study), we were only able
to secure seven participants. Small sample sizes are known to
lead to an overestimation of the actual effect size (Button et al.,
2013), and a greater uncertainty around the estimate of the true
effect size. Designs with a small sample size are also more suscep-
tible to type II errors. Another problem, related to small sample
sizes, is that the distribution of the sample is more likely to devi-
ate from normality, and the limited sample size makes it often
impossible to rigorously test the assumption of normality
(Ghasemi and Zahediasl, 2012). While we have attempted to
account for some of these issues (e.g., by reporting the Bayes fac-
tors of the key findings), it is important to place our findings in
this limiting context. Where sample size is inherently limited, the
advice is to result to replications of the findings (Makin and
Orban de Xivry, 2019). As such, here, we used case-study
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statistics to provide independent replications of our key effect,
i.e., greater distances between hands and litter pickers in the
experts relative to the novices. Nevertheless, other evidence pre-
sented here, and in particular the exploratory analysis in parietal
cortex, awaits further confirmation.

In conclusion, while the exact nature for how experience
modifies the representational structure is not yet fully under-
stood, the current study offers a striking proof-of-concept for the
adult human brain’s ability for adaptive plasticity, advancing our
current understanding of how categorical selectivity emerges
within high level visual cortex. Our findings provide strong evi-
dence that extensive tool use leads to an increased neural differ-
entiation between visual representations of hands and tools. This
evidence provides an important alternative framework to the em-
bodiment theory.
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