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Sleep has been shown to be critical for memory consolidation, with some research suggesting that certain memories are pri-
oritized for consolidation. Initial strength of a memory appears to be an important boundary condition in determining which
memories are consolidated during sleep. However, the role of consolidation-mediating oscillations, such as sleep spindles and
slow oscillations, in this preferential consolidation has not been explored. Here, 54 human participants (76% female) studied
pairs of words to three distinct encoding strengths, with recall being tested immediately following learning and again 6 h
later. Thirty-six had a 2 h nap opportunity following learning, while the remaining 18 remained awake throughout. Results
showed that, across 6 h awake, weakly encoded memories deteriorated the fastest. In the nap group, however, this effect was
attenuated, with forgetting rates equivalent across encoding strengths. Within the nap group, consolidation of weakly encoded
items was associated with fast sleep spindle density during non-rapid eye movement sleep. Moreover, sleep spindles that were
coupled to slow oscillations predicted the consolidation of weak memories independently of uncoupled sleep spindles. These
relationships were unique to weakly encoded items, with spindles not correlating with memory for intermediate or strong
items. This suggests that sleep spindles facilitate memory consolidation, guided in part by memory strength.
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Significance Statement

Given the countless pieces of information we encode each day, how does the brain select which memories to commit to long-
term storage? Sleep is known to aid in memory consolidation, and it appears that certain memories are prioritized to receive
this benefit. Here, we found that, compared with staying awake, sleep was associated with better memory for weakly encoded
information. This suggests that sleep helps attenuate the forgetting of weak memory traces. Fast sleep spindles, a hallmark os-
cillation of non-rapid eye movement sleep, mediate consolidation processes. We extend this to show that fast spindles were
uniquely associated with the consolidation of weakly encoded memories. This provides new evidence for preferential sleep-
based consolidation and elucidates a physiological correlate of this benefit.

Introduction
Sleep aids in the consolidation of memories (Stickgold, 2005;
Payne et al., 2008a; Klinzing et al., 2019). Some evidence suggests
that this process is selective, with certain memories being

prioritized for retention over others (Payne et al., 2008b;
Diekelmann et al., 2009; Stickgold and Walker, 2013; Payne and
Kensinger, 2018). It appears that certain salience cues, such as
emotional valence or personal relevance, present during the peri-
encoding period can act as behavioral “tags” that indicate which
memories should be consolidated during sleep (Payne et al.,
2008b, 2012, 2015; Fischer and Born, 2009; Wilhelm et al., 2011).
Tagging of memories during encoding may be realized through
changes in arousal-related neuromodulators, such as norepi-
nephrine and cortisol, and functional brain connectivity (Kim
and Payne, 2020). The initial strength of a memory appears to
act as a boundary condition of sleep-based consolidation, but the
direction of the effect is unclear (Tucker and Fishbein, 2008;
Schapiro et al., 2017; Schoch et al., 2017; Denis et al., 2020)
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Several studies have manipulated encoding strength by vary-
ing the number of item presentations given during encoding.
Using this method, many of these studies have found that weaker
memories are prioritized for consolidation (Drosopoulos et al.,
2007; Schapiro et al., 2017; Denis et al., 2020). Increasing neural
pattern similarity has been seen across successive item presenta-
tions and is associated with better memory (Xue et al., 2010; Lu
et al., 2015); and a large number of repetitions leads to stronger
cortical memory representations (Brodt et al., 2018). It is thus
possible that, after multiple presentations, memory traces have
already been rendered strong enough that sleep does not or can-
not strengthen them further, resulting in the sleep benefit being
strongest for initially weak memories. It appears that a minimum
threshold does need to be met however, such as a certain degree
of hippocampal recruitment during encoding (Rauchs et al.,
2011); the utilization of deep encoding strategies, such as suc-
cessful visualization (Denis et al., 2020); or successful recall dur-
ing a pre-sleep memory test (Denis et al., 2020; Muehlroth et al.,
2020). When weak memories are formed because of acute sleep
restriction, sleep has been shown to rescue these memories,
strengthening the neural representation across a night of recov-
ery sleep (Baena et al., 2020).

On the other hand, others have reported that strong memo-
ries are prioritized. Some work has concluded this on the basis of
only the top half of initial learners benefitting from sleep (Tucker
and Fishbein, 2008; Wislowska et al., 2017). However, this may
conflate weak versus strong encoding with good versus poor
learners, which may not tap into the same process (Creery et al.,
2015). The act of memory retrieval can also strengthen memories
(Roediger and Butler, 2011). It has been suggested that a post-
encoding pre-sleep retrieval test is necessary for sleep-based con-
solidation to be detected (Schoch et al., 2017). Other work using
a series of behavioral studies reported no benefit of sleep follow-
ing post-encoding, pre-sleep memory retrieval without feedback
(Bäuml et al., 2014; Abel et al., 2019). This finding was inter-
preted in relation to a bifurcation model, whereby successful
retrieval strengthens items to such an extent that sleep does
not need to consolidate them, whereas failed retrievals are
too weak to benefit (Bäuml et al., 2014). This is conceptually
similar to the proposal that memories are consolidated dur-
ing sleep based on an inverted U-shape distribution, with
memories closer to the middle of the strength scale receiving
the largest benefit (Stickgold, 2009).

There is little work on the sleep correlates of this consolida-
tion benefit based on initial encoding strength. One study
reported that the benefit of a nap for weakly encoded items was
associated with both non-rapid eye movement (NREM) and
rapid eye movement (REM) sleep, with NREM followed by a
larger amounts of REM sleep being optimal for preferential
memory consolidation (Schapiro et al., 2017). The active systems
consolidation theory of memory consolidation posits that, dur-
ing NREM sleep, memories supported by the hippocampus are
repeatedly reactivated through the triple phase-locking of hippo-
campal sharp-wave ripples, thalamocortical sleep spindles, and
neocortical slow oscillations (Rasch and Born, 2013; Staresina et
al., 2015). Specifically, depolarizing slow oscillation upstates are
thought to facilitate the emergence of sleep spindles, which in
turn mediate transfer of information reactivated during sharp
wave ripples in the hippocampus, leading to long-term storage
more dependent on neocortical sites (Klinzing et al., 2019).
There is evidence for these oscillations, and especially their cou-
pling, being involved in general memory consolidation processes
(Niknazar et al., 2015; Latchoumane et al., 2017; Mikutta et al.,
2019; Muehlroth et al., 2019; Cross et al., 2020).

It appears that two distinct types of spindle exist, fast and
slow frequency types (Cox et al., 2017; Fernandez and Luthi,
2020); and it has been observed that their coupling to the
slow oscillations differ (Mölle et al., 2011; Cox et al., 2014,
2018; Klinzing et al., 2016). In young healthy adults, fast
spindles appear to couple just before or at the positive peak
of the slow oscillation (Cox et al., 2018; Helfrich et al., 2018).
Slow spindles, on the other hand, preferentially couple in the
transition from the positive peak to the trough (Cox et al.,
2018). These differences in coupling behavior may translate
to different functional roles for fast and slow spindle types
(Schabus et al., 2006; Lustenberger et al., 2015; Cowan et al.,
2020; Fernandez and Luthi, 2020).

Recent work has demonstrated that coupling can rescue
poorly formed memories formed following sleep restriction
(Baena et al., 2020), but it is currently unknown whether these
oscillations act preferentially based on the encoding strength of a
memory when memory strength is manipulated within partici-
pants under more typical encoding conditions, and whether fast
or slow spindles are preferentially involved.

In a typical overnight design, the wake control group will
learn information in the morning and be tested in the evening,
whereas the sleep group learns in the evening and is tested the
following morning. A nap design, in addition to being simpler to
implement, allows learning and test phases to occur at the same
time of day for all participants, eliminating possible circadian
confounds and making the role of sleep clearer (Mednick et al.,
2003; Payne et al., 2009, 2015; Lo et al., 2014; compare van
Schalkwijk et al., 2019). It also restricts the amount of time spent
awake that might expose participants to interfering information.

In this study, we used a daytime nap to investigate unresolved
questions regarding the role of encoding strength in sleep-based
memory consolidation. Participants spent the day in the sleep
laboratory. In the morning, they learned word pairs to differing
levels of encoding strength. Some participants then had a 2 h nap
opportunity and were tested on their memory 4 h later. Other
participants remained awake in the laboratory throughout. We
sought to understand (1) whether a nap prioritizes the consolida-
tion of memories based on their encoding strength in a similar
manner to a full night of sleep; and (2) whether sleep oscillations
(i.e., sleep spindles and their coupling with slow oscillations)
facilitate preferential consolidation.

Materials and Methods
Participants. In total, 54 human participants completed the full study

protocol. The mean age of participants was 22 (SD=3) years, and 76%
were female. Participants reported no history of any sleep, neurologic, or
psychiatric disorders, normal bedtimes no later than 2:00 A.M., and
sleeping on average for at least 6 h each night. For the 3 d before the
study, participants were instructed to keep to a regular sleep schedule
and abstain from caffeine on the morning of the study. Recruitment was
through advertisements for a study of learning and memory placed on
local college job boards. Participants received financial compensation for
their time. The study received Institutional Review Board approval from
Beth Israel Deaconess Medical Center.

Design. The study design is depicted in Figure 1. All participants fol-
lowed the same experimental procedure, except for whether they were
allowed to take a nap (Fig. 1A). After providing informed consent, par-
ticipants filled out questionnaires about their subjective sleep habits over
the past 3 d, their general sleep quality over the past month (assessed
with the Pittsburgh Sleep Quality Index) (Buysse et al., 1989), and their
current subjective sleepiness and alertness levels (Stanford Sleepiness
Scale) (Hoddes et al., 1972). No actigraphy was collected. Following this,
participants were wired for EEG (see below). Then, they took part in the
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first experimental session. The session started with a 5 min eyes-closed
quiet rest session (all subsequent rest sessions were also 5min eyes closed
and have been reported elsewhere (Poskanzer et al., 2021). They then
studied pairs of words and were asked to try and visualize a scene con-
taining the two objects described by the word pair (Fig. 1B). After encod-
ing, participants had a second quiet rest session, and then a cued recall
test (immediate recall; Fig. 1C), and finally a third rest period. After this,
36 participants were told they now have a 2 h opportunity to nap, which
was then followed by 4 h spent awake in the laboratory watching TV.
The remaining 18 participants were not given the opportunity to nap, so
remained awake in the laboratory for 6 h. These group sizes were similar
to our previous publication that successfully demonstrated preferential
consolidation of weakly encoded material (Denis et al., 2020). The nap
group was oversampled because of our interest in sleep-physiological ac-
tivity within this group. The second experimental session occurred after
the 6 h delay period. During this session, participants had a fourth quiet
rest period, followed by a second cued recall test (delayed recall; Fig. 1C),
and a fifth and final quiet rest session. Finally, at the very end of the pro-
tocol, participants filled out two additional questionnaires assessing trait
abilities in forming internal visualizations, measured using the Vividness
of Visual Imagery Questionnaire (Marks, 1973) and the visual portion of
the Plymouth Sensory Imagery Questionnaire (Andrade et al., 2014).

Encoding.During the encoding task, participants studied 180 pairs of
words. Participants were instructed, for each trial, to try to visualize a

scene containing the two objects in the word pair (e.g., “blanket – wheel”).
Word pairs were assigned to a weak (n=60), intermediate (n=60), or
strong (n=60) encoding condition, with assignments randomized across
participants. Word pairs in the weak condition were presented once
(n=60 trials), pairs in the intermediate condition twice (n=120 trials),
and those in the strong condition 4 times (n=240 trials), for a total of 420
trials. In a prior study, we demonstrated that this procedure produces dis-
tinct levels of encoding strength (Denis et al., 2020). The order of presen-
tation was pseudorandomized for each participant, with at least two trials
separating multiple presentations of any one item.

On each trial (Fig. 1B), a fixation cross appeared in the center of the
screen for 2000-3000 ms, followed by the word pair for 2000 ms. This
was followed by a blank screen for 500-1000 ms. Participants were then
asked whether they had visualized a scene containing both objects,
responding (either yes or no) by a keypress. After responding, a blank
screen appeared for 1000 ms, and then the next trial began. After every
70 trials, there was a break lasting a minimum of 1 min and terminated
by the participant. The variation in presentation times for the fixation
cross and blank screen was to facilitate future event-related EEG analyses
on the encoding data, with the jitter allowing for the best assessment of
memory encoding activity, rather than preparatory responses to the
stimuli.

Recall. Both the immediate and delayed recall tests followed the same
procedure (Fig. 1C). Each trial began with a fixation cross on the screen
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Figure 1. Experimental design. A, Timeline of the protocol. All participants arrived at the sleep laboratory at;9:00 A.M. and were wired for EEG. During Session 1, participants completed a
5 min rest period followed by the encoding task (B) and a second 5 min rest session. They then performed a cued recall test (immediate recall; C), followed by a final quiet rest session.
Following that, 36 participants had a 2 h nap opportunity, followed by a 4 h wake delay spent in the sleep laboratory. The remaining 18 did not have a nap opportunity and stayed awake in
the laboratory for 6 h. Session 2 started at;6:00 P.M. and began with a fourth quiet rest, followed by a second cued recall test (delayed recall; C), and a fifth quiet rest. B, Encoding. Each
encoding trial began with a fixation cross that appeared on the screen for 2000-3000 ms, followed by the word pair for 2000ms. After the presentation of each word pair, participants were
asked if they had been able to successfully visualize a scene containing the two word-pair objects. A total of 180 word pairs were displayed, with 60 being viewed 1 time, 60 being viewed 2
times, and 60 being viewed 4 times, for a total of 420 trials. C, Recall. Both the immediate and delayed test followed the same procedure. First, a fixation cross appeared for 2000-3000 ms.
Then, the first word of the pair appeared alone for 2000-2500 ms. During this window, participants were instructed to think as hard as possible about what the correct second word was. Then,
a box appeared underneath the first word, indicating that they could start typing in their answer. There was a total of 180 recall trials. D, Purple and orange lines indicate fast and slow spindle
components as derived using generalized eigen decomposition from a single participant. Overlaid in gray is the frequency response of the wavelet used for spindle detection, separately tuned
for fast and slow spindles based on the participant’s peaks. Note the low degree of overlap in the fast and slow wavelet frequency response.
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for 2000-3000 ms. Then, the first word of the pair appeared for 2000 ms.
During this period, participants were instructed to recall the second
word of the pair, but not to type it. After 2000-2500 ms, a box appeared
under the first word, indicating participants could enter their answer.
This approach allowed for time-locked analysis of memory recall in
future analyses. A separate study (n=52) confirmed that variable presen-
tation times in this window did not impact immediate memory perform-
ance (not reported). Participants were instructed to respond as quickly
and as accurately as possible, and that there was no penalty for guessing.
If no response was entered after 7 s, a prompt appeared telling partici-
pants to respond; and if the participant had not begun typing a response
after a further 3 s, the program advanced to the next trial. Each word
pair was tested once, for a total of 180 trials. Order of presentation of the
word pairs was randomized for each session and for each participant. At
the end of the immediate recall session, participants were told that their
memory for the word pairs would be tested again at the end of the day.
All tasks were administered using custom scripts written in the
Psychtoolbox package for MATLAB (Kleiner et al., 2007).

EEG acquisition and preprocessing. EEG was collected from all par-
ticipants throughout the protocol. During the delay period, participants
remained connected to the EEG equipment, but no data were acquired.
Only EEG data recorded during the nap are reported here. Data were
acquired from 57 EEG channels, with electrodes positioned in accord-
ance with the 10-20 system. Additionally, electrodes were placed on the
left and right mastoids, above the right eye and below the left eye (for
EOG measurements), two placed on the chin (for EMG measurements),
one on the forehead (recording reference), and one on the collarbone
(ground). An Aura-LTM64 amplifier and TWin software were used for
data acquisition (Grass Technologies). All impedances were kept to,25
kOhm. The sampling rate was 400Hz.

Sleep scoring was performed according to standard criteria (Iber et
al., 2007). Sleep scoring and subsequent sleep statistic generation were
performed in MATLAB (The MathWorks). EEG analyses were per-
formed on the full high-density EEG array using custom MATLAB
scripts. First, all EEG channels were rereferenced to the average of the
two mastoids, bandpass filtered between 0.3 and 35Hz, and notch fil-
tered at 60Hz. Data were then artifact rejected based on visual inspec-
tion of each 30 s epoch. Bad epochs were marked and removed from
subsequent analyses, and bad channels were marked and interpolated
using a spherical splines algorithm implemented in EEGLAB (Delorme
and Makeig, 2004). All artifact-free data were then subjected to further
analysis.

Sleep spindle detection. Spindles were automatically detected at every
electrode during NREM sleep (Stage 21 slow wave sleep [SWS]) using
a modification of a previously validated detector to account for interindi-
vidual differences in the peak frequency of slow and fast spindles
(Wamsley et al., 2012; Mylonas et al., 2020a). As a first step, slow and
fast spindle peaks were identified through inspection of the NREM sleep
power spectrum. Because it can be difficult to detect a slow spindle peak
in many individuals by looking at the channel-level spectrum, we instead
used generalized eigendecomposition to maximally separate slow and
fast spindle activity (Cohen, 2017; Cox et al., 2017). In brief, generalized
eigendecomposition operates on two separate covariance matrices to
find eigenvectors that maximally differentiate the case. We constructed
one covariance matrix from the NREM time series filtered in a broad
slow spindle range (9-12.5Hz), and the second covariance matrix from
the NREM time series filtered in the fast spindle range (12.5-16 Hz).
High-order (13,200) filters were applied to ensure minimal overlap
between slow and fast spindle ranges. This yielded a fast and a slow co-
variance matrix (57� 57 channels) from which we generated a 57� 57
matrix of eigenvectors. The eigenvector with the highest eigenvalue max-
imizes slow relative to fast spindle power; and conversely, the eigenvec-
tor with the lowest eigenvalue maximizes fast relative to slow spindle
power (Cox et al., 2017).

Next, we multiplied the full, raw EEG time series with the full eigen-
vector matrix, resulting in a time series of 57 components (Cox et al.,
2017). This component time series was then transformed to the fre-
quency domain by estimating the power spectral density of the derivative
of the time series using Welch’s method with 5 s windows and 50%

overlap. Power spectral density was estimated on the derivative of the
time series, as opposed to the time series itself, to minimize 1/f scaling
and make spectral peaks in the data easier to identify (Sleigh et al., 2001;
Demanuele et al., 2007). The resulting component spectra were then
visualized (the first four [for slow spindles] and last four [for fast spin-
dles] were plotted), and each participant’s slow and fast spindle peak were
manually identified. This approach yielded an average slow spindle peak
frequency of 11.04Hz (SD 0.92Hz, range=9.18-12.50Hz) and an average
fast spindle peak frequency of 13.81Hz (SD=0.57Hz, range=12.70-
14.84Hz).

After detecting individuals’ slow and fast spindle peak frequencies,
sleep spindles were automatically detected using a wavelet-based detec-
tor. The raw EEG signal was subjected to a time-frequency transforma-
tion using complex Morlet wavelets. The wavelet parameters were tuned
for each individual based on their slow and fast spindle peaks.
Specifically, the peak frequency of the wavelet was set at that individual’s
slow or fast spindle peak, with the bandwidth of the wavelet (FWHM)
being a 1.3Hz range centered on the peak frequency (e.g., if a partici-
pant’s fast spindle peak was 13Hz, the wavelet peak frequency would be
set at 13Hz, with a bandwidth of 12.35-13.65Hz). This narrow band-
width was motivated to minimize overlap between the fast and slow
spindle ranges (Fig. 1D), and is consistent with prior research (Cox et al.,
2017). Spindles were detected on each channel by applying a threshold-
ing algorithm to the extracted wavelet scale. A spindle was detected
whenever the wavelet signal exceeded a threshold of 6 times the median
signal amplitude of all artifact-free epochs for a minimum of 400ms.
The threshold of 6 times the median was determined empirically for
both slow and fast spindles, using Otsu’s method to maximize between-
class (“spindle,” “nonspindle”) variance in the wavelet coefficient (Otsu,
1979; Djonlagic et al., 2021). Our main metric of focus was spindle den-
sity (spindles per minute) in NREM sleep.

Slow oscillation detection. Slow oscillations were detected at every
electrode during NREM sleep using a second automated algorithm that
bandpass filtered the EEG between 0.5 and 4Hz and identified all posi-
tive-to-negative zero crossings (Staresina et al., 2015; Helfrich et al.,
2018). Candidate slow oscillations were marked if two such consecutive
zero crossings fell 0.5-2.0 s apart. Peak-to-peak amplitudes for all candi-
date slow oscillations were determined, and oscillations in the top quar-
tile (i.e., with the highest amplitudes) at each electrode were retained as
slow oscillations. The use of this cutoff has been used in previous
research (Staresina et al., 2015; Helfrich et al., 2018).

Slow oscillation-spindle coupling. Slow oscillation-spindle coupling
was identified at every electrode during NREM sleep, separately for slow
and fast spindles. First, EEG data were bandpass filtered in the d (0.5-
4Hz) band, and each participant’s slow and fast spindle band (again
using a 1.3Hz bandpass centered around peak slow or fast spindle fre-
quency). Then, the Hilbert transform was applied to extract the instanta-
neous phase of the d -filtered signal and instantaneous amplitude of the
spindle-filtered signal. For each detected spindle, the peak amplitude of
that spindle was determined. It was then determined whether the spindle
peak occurred within the time course (i.e., between the two positive-to-
negative crossings) of any detected slow oscillation. If the spindle peak
was found to occur during a slow oscillation, the phase angle of the slow
oscillation at the peak of the spindle was determined. Finally, for each
electrode on each participant, we extracted the percentage of all spindles
that were coupled with slow oscillations, the coupled and uncoupled
spindle densities, and the average coupling phase angle for all coupled
spindles. Coupling strength was assessed as the mean vector length.

Additional visualization methods were used to better display the
temporal dynamics of slow oscillation-spindle coupling events to
increase our confidence that fast and slow spindle types had been reliably
separated. First, peri-event histograms were calculated to illustrate the
timing of fast and slow spindle couplings to the slow oscillation. These
histograms express the distribution of coupling events (% of spindles
coupled, averaged across participants) in a �1000 to 1000ms window
centered on the trough of the slow oscillation (t0), in 100ms bins.
Separate histograms were constructed for fast and slow spindle coupling.
Second, time-frequency representations of coupling dynamics were cal-
culated. For this, we first located all the slow oscillations coupled to
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either a fast or a slow spindle. Data were then epoched, separately for
fast and slow coupling events, into �3000 to 3000ms trials centered on
the trough of the coupled slow oscillations (t0). Time frequency analysis
was applied using complex Morlet wavelets ranging from 2 to 30Hz (40
frequencies, wavelet cycles increasing linearly from 4 to 12 cycles).
Power was decibel normalized (10 � log10(power/baseline), where the
baseline was average power in a =1500-1500 ms period centered on the
slow oscillation trough (Kurz et al., 2020).

To better assess whether coupling results reflect a “true” co-occur-
rence of the two oscillations, we needed to ensure that the number of
coupling events exceeded what would be expected by chance, given the
number of detected slow oscillations, sleep spindles, and time spent in
NREM sleep. To this end, the observed signal was compared with a
randomized signal where the spindle signal was circularly shifted, and
coupling was recalculated. Circular shifting is a widely used method to
create surrogate data for nonparametric tests (Gilson et al., 2017). The
new start of the signal is set to a random position, and early entries are
sequentially moved to after the end of the original signal. By shifting the
time series in this fashion (in this case the spindle signal), the temporal
relationship between spindles and slow oscillations is disrupted, whereas
the signal properties under consideration (i.e., the distribution of spin-
dles and slow oscillations) are retained. This was performed over 1000
iterations to generate a null distribution of slow oscillation-spindle cou-
pling. The null distribution was then compared with the observed values.
Across each participant/electrode, we calculated the percentage of partic-
ipants and electrodes where the degree of coupling was significantly
higher (p, 0.05) than what would be expected by chance.

Statistical analysis. Behavioral data were assessed using linear mixed
effect models, implemented in the lme4 package for R (Bates et al., 2015;
R Core Team, 2018). As fixed effects, we entered the interaction between
item presentation condition and group. Participant was entered as a ran-
dom intercept as follows:

dv; encoding condition� group1 (1 | participant)

where the dv was: percentage of items visualized, percentage of items
recalled at immediate test, percentage of items recalled at delayed test, or
the relative change in percentage recall between tests [(% delayed recall –
% immediate recall)/% immediate recall].

Statistical significance was obtained by likelihood ratio tests (LRT)
with the full model (encoding condition � group interaction) compared
with reduced models containing main effects only. A statistically signifi-
cant LRT indicates that the full model is a better fit than the submodel in
question, whereas a nonsignificant LRT suggests the submodel to be
more appropriate. In cases where multiple models were significant/non-
significant, the most parsimonious model was selected. After obtaining
the most optimal model, pairwise contrasts were performed where
appropriate with the emmeans package for R (Lenth, 2018). These con-
trasts produced the estimate and 95% CIs for each pairwise contrast. The
false discovery rate (FDR) was used to adjust p values for multiple pair-
wise comparisons.

We correlated change in memory against sleep oscillatory EEG meas-
ures at each electrode. To control for multiple comparisons across electro-
des, and to take into account the spatial correlation of the high-density EEG
data, we used a cluster-based permutation approach in the FieldTrip tool-
box for MATLAB, using the ft_statfun_correlationT function (Oostenveld
et al., 2011). All analyses used the following parameters: 10,000 iterations; a
clusteralpha of 0.05 with the default maxsum method to determine cluster
significance; and a significant threshold of 0.05. For comparisons between
fast and slow spindle density the same procedure was followed, except the
ft_statfun_depsamplesT function was used.

To better visualize significant correlations, scatterplots were also cre-
ated. For these, activity at each electrode that was significant in the over-
all cluster was averaged together for the purposes of visualization in the
scatterplot. In order to minimize the influence of outliers, these associa-
tions were assessed using robust regression procedures (MATLAB func-
tion lmfit with RobustOptions turned on). Correlation coefficients were
used to obtain a standard estimate of association strength, which are not
provided by the robust regression procedures. Robust regressions were
performed on these averaged data rather than scalp-wide cluster-based

test because robust regression procedures are not implemented in the
FieldTrip environment.

Comparisons between fast and slow spindle coupling phase were per-
formed using the Hotelling paired-sample test for circular means (van
den Brink et al., 2014; van den Brink, 2020). Correlations between cou-
pling phase angle and memory were performed using circular-linear cor-
relations, implemented in the CircStat toolbox for MATLAB (Berens,
2009). As circular analyses are not implemented in the FieldTrip envi-
ronment, the FDR was used to control for multiple comparisons.
Comparisons of correlation coefficient magnitudes were performed
using Meng’s Z test for within-group comparisons (Meng et al., 1992;
Spaak, 2020). Robust multiple linear regression was used to assess the in-
dependent contribution of coupled and uncoupled spindles to changes
in memory across the delay interval. The independent contributions of each
predictor, while controlling for the other predictor, were then visualized
using partial regression plots to aid interpretation of the multiple regression
(Velleman and Welsch, 1981). These scatterplots depict the relationship
between the dependent variable (y) and one of the predictors (x0) in a multi-
ple regression model, after controlling for the presence of the other predic-
tor (x1) (Velleman and Welsch, 1981). To create the plot, first y is regressed
on x1, omitting xo. Second, xo is regressed on x1. By plotting the residuals of
the first regression against the residuals of the second regression, it is possi-
ble to visually display the relationship between x0 and y after controlling for
variable x1 (Velleman andWelsch, 1981).

Results
Behavior
Participants were highly successful at visualizing the word pairs,
with 78% (SD=21%) of the word pairs that were seen just once
being reported as successfully visualized in a scene containing
the two objects. We were therefore unable to look at differences
in recall and consolidation between successfully and unsuccess-
fully visualized items because of a lack of not-visualized trials. As
such, all subsequent analyses report on all trials together.

We next looked at immediate recall accuracy to confirm that
the presentation number manipulation successfully induced dif-
ferent levels of encoding strength (Fig. 2A). Mean behavioral val-
ues can be found in Table 1. There was a significant main effect
of presentation number on immediate recall performance
(x 2

(4) = 149.50, p, 0.001), with significant increases in the per-
centage of word pairs recalled as the number of presentations dur-
ing encoding increased (1PRES vs 2PRES=27% increase, 1PRES vs
4RPES=46% increase, 2PRES vs 4PRES=19% increase; all p,
0.001). There was no difference between the groups (x 2

(3) =0.81,
p=0.85), and there was no interaction between presentation num-
ber and group (x 2

(2)=0.80, p=0.67). These results show that the
items were encoded at three distinct strengths, and that learning was
equivalent between the nap and wake groups. When delayed recall
accuracy was assessed (Fig. 2B), the same pattern of results emerged
(main effect of presentation number: x 2

(4)=141.55, p, 0.001; main
effect of group: x 2

(3)=1.43, p=0.70; interaction: x
2
(2)=1.27, p=0.53).

We then looked at the effects of a nap on memory at rerest 6
h later. We calculated, for each participant, the relative change in
recall at delayed test compared with each participant’s immediate
test score (Fig. 2C). There was a significant main effect of group
(x 2

(3) = 12.50, p=0.006), with the nap group showing overall less
forgetting (mean = �3.20%, SD= 7.04%) than the wake group
(mean = �9.12%, SD= 14.57%). This suggests that, across all
items, sleep benefitted memory. There was no main effect of pre-
sentation number (x 2

(4) = 8.10, p= 0.088). There was, however,
an interaction between presentation number and group
(x 2

(2) = 6.37, p= 0.041), suggesting that the benefit of sleep on
memory differed depending on encoding strength. Follow-up
tests comparing relative change in recall between the nap and the
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wake group at each presentation number condition revealed a
significant difference for 1PRES items (B [95% CI] = 11.96 [3.48,
20.400], p= 0.002). There was significantly more forgetting of
1PRES items in the wake group (mean = �13.48%, SD= 13.84%)
compared with the nap group (mean = �1.53%, SD= 13.02%).
The between-group difference was not significant for either
2PRES (B [95% CI] = 3.71 [�4.77, 12.19], p=0.44) or 4PRES (B
[95%CI] = �0.06 [�8.54, 8.42], p=0.99) items. Within the wake
group, there was significantly more forgetting of 1PRES items
than of 4PRES (mean (SD) = �3.38% (8.23%)) items (B [95%
CI] = �10.10 [�19.80, �0.41], p= 0.038). No other comparisons
were significant (all p=0.25). In the group that napped, however,
this increased forgetting of 1PRES items was eliminated, with no
difference in the amount of forgetting between presentation
number conditions (all p= 0.54).

Finally, we investigated whether the magnitude of the pref-
erential memory consolidation effect differed between a nap
and a full night of sleep, by comparing the present results to
one of our previous datasets using a similar task where three
encoding strengths were induced via the same item repeti-
tion procedure (Denis et al., 2020) (Fig. 3). Although the par-
ticipants were different between studies, they were derived
from the same population. Across wake only delays, forgetting
of 1PRES items was significantly higher across a 12 h waking
delay (mean = �31.62%, SD= 30.81%) compared with a 6 h
waking delay (mean = �13.48%, SD=13.84%), t(21.9) = 2.22,
p=0.037, d=0.76. Across sleep however, forgetting was equivalent
across a 12 h delay containing nocturnal sleep (mean=0.19%,
SD= 12.97%), and a 6 h delay containing a 2 h daytime nap op-
portunity (mean =�1.53%, SD=13.02%) (t(34.2) =�0.46, p=0.65,
d=0.13). This translated into a larger sleep-wake group difference
across 12 h (d=1.35), than across 6 h (d=0.89). After a 24 h delay
(overnight sleep plus a day of wake), forgetting of 1PRES items
was reduced compared with 12 h of wake only (mean = �13.62%,
SD= 14.36%), becoming comparable to the 6 h wake delay (t(35) =
0.03, p=0.98, d=0.01).

The behavioral results show that a 2 h nap opportunity signif-
icantly reduced forgetting over a 6 h retention interval compared
with staying awake. Over a wake only delay, items that were
weakly encoded were forgotten at a higher rate than items that
were more strongly encoded. After a nap1 wake delay, however,
weakly encoded information showed similar retention to more
strongly encoded information.

Sleep architecture and sleep stage correlations
Sleep statistics are presented in Table 2. There were no signifi-
cant correlations between change in memory (for either all items
or any of the three encoding strengths) and time or percentage of
the nap spent in any sleep stage (all p values. 0.10).
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Table 1. Behavioral response dataa

Immediate recall Delayed recall Delayed - immediate

1PRES 2PRES 4PRES 1PRES 2PRES 4PRES 1PRES 2PRES 4PRES

Nap 32.41 (22.82) 58.24 (21.83) 76.58 (21.29) 31.87 (23.27) 55.77 (22.15) 74.16 (22.87) �0.54 (3.05) �2.47 (7.05) �2.42 (7.52)
Wake 29.57 (23.04) 58.26 (21.77) 78.61 (21.34) 26.50 (23.50) 54.35 (22.05) 74.98 (22.90) �3.07 (2.87) �3.91 (7.04) �3.63 (7.49)
aData are mean (SD).

Denis et al. · Preferential Memory Consolidation J. Neurosci., May 5, 2021 • 41(18):4088–4099 • 4093



Sleep spindles
Topography of NREM detected fast and slow spindles (Fig.
4A, B). Fast spindle density exhibited a maxima at central elec-
trode sites (mean (SD)= 7.90 (1.62), range= 3.70-11.36, as meas-
ured at electrode Cz), whereas slow spindle density showed
maximum activity in frontal regions (mean (SD)= 5.19 (1.81),
range= 2.13-9.14, as measured at electrode Fz). Fast spindle den-
sity was significantly higher at all electrodes compared with slow
spindle density (cluster t= 443, p, 0.001). We calculated scalp-
wide correlation coefficients between spindle density and change
in recall for each of the encoding strengths. For fast spindle den-
sity, significant positive correlations were observed with change
in memory for 1PRES items (cluster t=110.64, p=0.015; Fig.
4A), with an average within-cluster correlation coefficient of
r= 0.50 (Fig. 5). This association was unique to the 1PRES items,
with no significant correlations found between fast spindle den-
sity and change in memory for 2PRES or 4PRES items (Fig. 4A).
The magnitude of the fast spindle–1PRES correlation, averaged
across the significant electrode cluster, was significantly larger
than the 2PRES (r = –0.10, p= 0.96) and 4PRES (r = –0.11,
p=0.29) conditions (1PRES vs 2PRES, z=2.40, p=0.008; 1PRES
vs 4PRES, z=2.38, p=0.009).

For slow spindle density, we did not observe any significant
correlations with change in recall for any item condition,
although there was a nonsignificant negative association between
slow spindle density and memory for 2PRES and 4PRES items
(Fig. 4). Although only fast spindle density was significantly asso-
ciated with memory for the 1PRES items, when we directly com-
pared the magnitude of the association fast and slow spindles
had with 1PRES memory (again averaging together all electrodes
in the significant cluster), they did not differ significantly at the
0.05 level (z=1.41, p=0.078). There were no significant correla-
tions (cluster-corrected) between either fast or sleep spindles and
immediate recall performance (all p values. 0.08). This suggests
that the effects of spindle density are related primarily to the con-
solidation that occurred during sleep. In summary, these analyses
show that sleep spindles are preferentially correlated with change
in recall for 1PRES items, and this association appears to be
strongest for fast spindles.

Slow oscillation-spindle coupling
A key tenet of the active systems consolidation theory is that
memories are reactivated and thus consolidated through the pre-
cise coupling of hippocampal sharp-wave ripples, thalamocorti-
cal sleep spindles, and cortical slow oscillations (Klinzing et al.,
2019). Prior studies have indicated that slow oscillation-spindle

coupling at the scalp EEG level is correlated with memory con-
solidation (Demanuele et al., 2017; Mikutta et al., 2019;
Muehlroth et al., 2019). It has also previously been shown that
fast and slow spindles couple at different phases of the slow oscil-
lation, which may in part reflect a functional difference between
these two spindle types (Mölle et al., 2011; Klinzing et al., 2016;
Cox et al., 2018).

Slow oscillation-spindle coupling for fast and slow spindles is
shown in Figure 6. Across the whole scalp, 20% (SD=4%) of fast
spindles and 21% (SD=4%) of slow spindles were coupled to a
slow oscillation. All participants exhibited coupling of both fast
and slow spindles at all electrode sites. Coupled spindle density
for both fast and slow spindles is displayed in Figure 6A.
Observed coupling rates significantly exceeded what would be
expected by chance in the majority of participants (70%,
SD=8%, averaging across all electrode sites; Fig. 6A). Average
coupling phases of slow and fast spindles are displayed in Figure
6B. For fast spindles, Rayleigh tests of nonuniformity were signif-
icant at all electrodes sites (all padj , 0.001), suggesting that the
coupling of fast spindles to slow oscillations was nonuniform. In
line with previous work, fast spindles were preferentially coupled
to the rising slope of the slow oscillation. There was topographi-
cal variance such that, when moving from anterior to posterior,
the preferred coupling phase shifted to occurring earlier in poste-
rior channels compared with frontal channels. Slow spindles
showed a different pattern of coupling to the slow oscillation,
and preferentially coupled on the downward slope from the peak
to the trough. For slow spindle coupling, nonuniformity tests
were only significant in the frontal half of the electrodes (Fig.
6B). When averaging across electrodes showing significant
nonuniformity, the difference in coupling phase between fast
(mean = �41.72°, SD=34.19) and slow spindles (mean = 110.92°,
SD=56.81°) was highly significant (F=75.74, p, 0.001). Visuali-
zation of the temporal dynamics underlying fast and slow spindle
coupling is shown in Figure 6C.

We then sought to investigate how slow oscillation-spindle
coupling was associated with change in recall across the delay pe-
riod. Given our findings above (Figs. 4, 5), we focused our atten-
tion primarily on fast spindles, and on the association between
coupling and 1PRES change in recall. Both coupled (cluster
t= 132.10, p=0.003) and uncoupled (cluster t= 83.37, p=0.030)
fast spindle density showed positive correlations with 1PRES
change in recall (Fig. 7A; average within-cluster correlation:
coupled fast spindles [r= 0.52, p= 0.002], uncoupled fast spindles
[r= 0.45, p= 0.008]).

To determine whether coupled spindles are associated with
memory independently of uncoupled spindles, we ran a robust
multiple linear regression predicting 1PRES change in recall
from coupled and uncoupled spindle densities. Coupled spindle
density estimates were derived by averaging spindle density
across all electrodes in the significant clusters for coupled and
uncoupled spindles, respectively (Fig. 7). The overall model was
significant (F(1,31) = 8.88, p, 0.001, adjusted R2 = 0.25), but only
coupled spindle density significantly predicted 1PRES memory
(b [95% CI] = 4.22 [0.72, 7.72], p=0.020; Fig. 7). Uncoupled
spindle density did not predict 1PRES memory independently of
coupled spindle density (b [95% CI] = 2.16 [�1.33, 5.66],
p= 0.22; Fig. 7). These results suggest that the density of coupled
spindles was uniquely related to the consolidation of 1PRES
items independently of uncoupled spindles. There were no sig-
nificant circular-linear correlations between fast spindle coupling
phase and the change in recall for 1PRES items at an FDR
adjusted p, 0.05 level (all r, 0.44).

Table 2. Sleep statistics

Mean SD

Total sleep time (min) 94.5 23.7
Sleep onset latency (min) 10 6.9
Wake after sleep onset (min) 12.2 18.1
Sleep efficiency (%) 79.5 17.1
Stage 1 time (min) 4.7 2.9
Stage 2 time (min) 48.5 17.1
SWS time (min) 21.6 14.4
REM time (min) 19.8 12.9
Movement time (min) 1.7 1.8
Stage 1 (%) 5.1 4.0
Stage 2 (%) 52.2 14.3
SWS (%) 22.4 13.5
REM (%) 20.2 12.1
Movement (%) 1.9 2.1
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Supplementary post hoc tests found no significant clusters for
coupled or uncoupled fast spindles when correlated with change
in recall for either 2PRES or 4PRES items, nor were any signifi-
cant clusters found for any correlations between coupled or
uncoupled slow spindles and change in recall for any encoding
strength condition.

Subjective sleep measures
Subjective sleep variables are shown in Table 3. At the start of
the second session, the sleep group reported feeling significantly
more refreshed than the wake group (t(52) = 2.12, p=0.039,
d=0.61). However, the change in recall between the second and
first session (the key dependent variable of this study) was not
associated with the subjective feeling of being refreshed at the
second session in either group (sleep: r= 0.13, p=0.45; wake:
r= 0.05, p= 0.84). There were no other differences between the
groups on any other of the subjective measures.

Discussion
Here, we set out to investigate how encoding strength influences
the consolidation of memories over a 6 h delay with or without a
daytime nap, and what the sleep EEG oscillatory correlates of
sleep-based consolidation were. With regards to the first aim, we
found that, over a wake-only delay, there was significantly more
forgetting of weakly encoded memories compared with strong
ones. It is likely that, after just a single presentation during
encoding, the neural representations of these memories are
weaker and less stable compared with memories for items that
were presented multiple times (Xue et al., 2010; Lu et al., 2015).
Here, it appeared that those weak memory traces fade from
memory faster than stronger, more durable traces.

When participants were able to nap shortly after learning,
however, we did not see this pattern. Instead, the rate of forget-
ting was the same across all three encoding strengths. When for-
getting rates were compared between the nap and the wake
group, the only significant difference was more forgetting of
weak items in the group that did not nap. As such, it appears that
sleep and wake differentially affect the consolidation of memo-
ries of different strengths. Over a period of sleep, weakly encoded
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memories received a consolidation benefit, whereas those same
memories deteriorated the fastest over a wake delay. It is impor-
tant to note that these nap-related benefits were seen after 4 h
elapsed between the end of the nap and the delayed test, suggest-
ing that the nap facilitated a stabilizing effect on the weak memo-
ries such that they were resilient to forgetting across the post-nap
delay. Future studies should investigate whether these benefits of
a daytime nap would be seen over longer delay intervals.

The results of this nap study are broadly comparable to our
previous work, where we used the same method to induce differ-
ent encoding strengths, but focused on nocturnal sleep and a 12
or 24 h delay interval (Denis et al., 2020). In that study, we found
that, across a 12 h wake delay, forgetting of weak memories was
significantly greater than strong memories. Interestingly, the
;30% forgetting of weak memories across a 12 h delay seen in
that study was approximately half that seen in the current study
over a 6 h delay (;13%), suggesting a linear increase in forgetting
of weak memories with time spent awake. On the other hand,
across a 12 h delay filled with nocturnal sleep, forgetting of weak
memories was attenuated and appeared to be stabilized over a sub-
sequent 12 h of wakefulness, to a degree similar to that seen after
the 6 h wake delay in the present study (Denis et al., 2020).

In our previous study, we found that weakly encoded items
(manipulated by the number of exposures) were only consoli-
dated when the items had been successfully visualized during
encoding. We were unable to investigate the role of visualization
directly in the present study, as participants reported being able
to visualize a far larger percentage (78%) of items than in that
study (54%). The present study used a 2000 ms presentation
time, compared with 1500 ms previously, which may have made
it more likely that a word pair would be visualized (Denis et al.,
2020).

Our second question pertained to the electrophysiological or
sleep correlates of memory consolidation across the nap. We did
not find the amount of time spent in any particular sleep stage
was associated with memory consolidation, despite earlier stud-
ies finding a link between word-pair memory and SWS (Plihal
and Born, 1997). We did, however, find that sleep spindles were
associated with memory consolidation for the weakly encoded
information. However, this was dependent on spindle type. For
fast spindles, higher density (spindles/min) was associated with
less forgetting of weakly encoded memories, whereas slow spin-
dles were not associated with consolidation of any item category
(and indeed showed a nonsignificant negative association with
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more strongly encoded items). This dissociation adds to the
growing body of work suggesting differential functional roles for
fast and slow spindles with relation to memory consolidation
(Fernandez and Luthi, 2020).

The active systems consolidation hypothesis emphasizes the im-
portance of coupling between key cortical and subcortical oscilla-
tions, and indeed a number of prior studies have shown the degree
of coupling to be associated with sleep-based consolidation (Mölle
et al., 2009; Niknazar et al., 2015; Demanuele et al., 2017; Muehlroth
et al., 2019). When considering fast spindles, we found that coupled
spindle density predicted the consolidation of weakly encoded
memories, even after controlling for the effect of uncoupled spindle
density. As such, our data add further support to the idea that slow
oscillation-spindle coupling events are critically involved in memory
consolidation processes occurring during sleep. Although we only
found coupled spindles to independently predict memory, we do
note that univariate correlations did show a significant positive cor-
relation between uncoupled spindles and memory. This indicates

that uncoupled spindles do play some role
in memory consolidation processes, albeit
potentially not as strong a role as coupled
spindles. This finding warrants future work
to better delineate the origins and functions
of sleep spindles at either are or are not
coupled to the slow oscillation.

Sleep spindles have been shown to
relate to cognitive ability more generally
(Schabus et al., 2008; Ujma, 2018), and
some have shown that increased spindle
activity is related to higher memory recall
both before and after sleep (Gais et al.,
2002). We did not find sleep spindles to
be associated with memory at the imme-
diate test, but rather only to the change in
recall across the delay period. That
suggests, in this dataset at least, that fast
spindle density is more related to consoli-
dation processes. In a recent meta-analy-
sis, it was concluded that spindle
amplitude and duration, rather than den-
sity, were positively correlated with gen-
eral cognitive ability (Ujma, 2018). As
such, different spindle properties may
relate differently to memory consolida-
tion mechanisms and more general cogni-
tive aptitude.

We found that fast spindle density was only associated with con-
solidation of weakly encoded items and was not related to the con-
solidation of the more strongly encoded information. This mirrors
our behavioral finding, where the only significant difference
between the nap and the wake group was for the weakly encoded
items. It is believed that slow oscillation-spindle (and hippocampal-
ripple) coupling facilitates the reactivation of memory traces in the
hippocampus, which promotes the strengthening of memory traces
in hippocampal-neocortical circuits (Takashima et al., 2006; Payne
and Kensinger, 2011; Latchoumane et al., 2017; Zhang et al., 2018;
Schreiner et al., 2020). In this study, it is possible that only the
weakly encoded items needed to undergo this strengthening during
sleep, as the more strongly encoded items were already well consoli-
dated before the retention interval occurred. Other research has
shown that extremely well-formed memories do not benefit from
subsequent sleep (Himmer et al., 2017), and repeated learning cycles
can induce a “fast” consolidation process (Brodt et al., 2018).

It is important to note that our findings are correlational in
nature. Other work has shown that it is possible to enhance spin-
dle activity pharmacologically to alter memory function,
(Kaestner et al., 2013; Niknazar et al., 2015), although potentially
at the cost of disrupting slow oscillation-spindle coupling proc-
esses (Mylonas et al., 2020b). Furthermore, commonly used
pharmacological agents, such as zolpidem and eszopiclone, have
been shown to induce widespread alterations in the sleep EEG,
and as such do not solely target changes in sleep spindles
(Aeschbach et al., 1994; Monti et al., 2000; Struyk et al., 2016).
Acoustic stimulation has also been used to increase the number
of sleep spindles (Antony and Paller, 2017). Future work should
further embrace the use of these methods in determining the
memory function of sleep spindles.

Sleep benefits the consolidation of memories, a process that is
facilitated by the coupling of slow oscillations and sleep spindles
during NREM sleep (Demanuele et al., 2017; Helfrich et al.,
2018; Klinzing et al., 2019; Mikutta et al., 2019). This benefit is
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Figure 7. Fast spindle coupling and memory consolidation of 1PRES items. Top row, Univariate correlations between fast
coupled spindle density (left plot) and fast uncoupled spindle density (right plot) with 1PRES change in recall. Cluster statis-
tics presented above topographies. Pink dots represent significant electrodes in cluster. Bottom row, Partial robust regression
plots. Left plot visualizes the relationship between coupled fast spindle density and 1PRES change in recall, after accounting
for uncoupled spindles. Right plot visualizes the relationship between uncoupled fast spindle density and 1PRES change in
recall, after accounting for coupled spindles.

Table 3. Subjective sleep variablesa

Sleep [mean (SD)] Wake [mean (SD)] pb d

PSQI global score 4.6 (2.6) 4.3 (2.7) 0.64 0.14
3 night log sleep onset (min) 16.8 (9.7) 18.7 (18.2) 0.63 0.14
3 night log hours asleep 7.4 (0.8) 7.7 (0.7) 0.13 0.44
3 night log sleep quality 1.86 (0.54) 1.96 (0.48) 0.50 0.20
Session 1: Concentration 73.4 (17.2) 67.7 (21.4) 0.30 0.30
Session 1: Refreshed 63.1 (24.5) 52.4 (23.8) 0.13 0.44
Session 1: Sleepiness 2.53 (0.74) 2.50 (0.99) 0.91 0.03
Session 2: Concentration 79.9 (14.4) 73.4 (19.7) 0.18 0.40
Session 2: Refreshed 75.4 (20.4) 61.7 (25.8) 0.039 0.61
Session 2: Sleepiness 2.0 (0.83) 2.3 (1.03) 0.21 0.37
aData are mean (SD). PSQI, Pittsburgh Sleep Quality Index (theoretical range = 0-21; a higher score = worse
sleep quality). 3 night sleep log quality (theoretical range = 1-4; a higher score = worse sleep quality).
Concentration and refreshed items (theoretical range = 0-100; a higher score = better concentration/more
refreshed). Sleepiness item (theoretical range = 1-8; a higher score = greater subjective sleepiness).
bBetween-groups t test.
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not uniform, with some memories being preferentially consoli-
dated over others (Payne, 2011; Stickgold and Walker, 2013).
Here, we show that sleep spindles preferentially consolidate
memories that are weakly encoded initially. This may be because
of these memories being in the most need of being consolidated,
compared with stronger memories that are already adequately
strengthened before sleep. As such, these results demonstrate initial
encoding strength to be an important boundary condition in deter-
mining when sleep-based memory consolidation is likely to occur.
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