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Cellular/Molecular

Increased Excitatory Synaptic Transmission Associated with
Adult Seizure Vulnerability Induced by Early-Life
Inflammation in Mice

Carlos D. Gomez,' Shaona Acharjee,' Megan L. Lewis,! ““Justin Read,! and “’Quentin J. Pittman'~
"Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada, and *Snyder Institute for
Chronic Disease, Alberta Children’s Hospital Research Institute, Department of Physiology and Pharmacology, Cumming School of Medicine,
University of Calgary, Calgary, Alberta T2N 4N1, Canada

Early-life inflammatory stress increases seizure susceptibility later in life. However, possible sex- and age-specific differences
and the associated mechanisms are largely unknown. C57BL/6 mice were bred in house, and female and male pups were
injected with lipopolysaccharide (LPS; 100 ug/kg, i.p.) or vehicle control (saline solution) at postnatal day 14 (P14). Seizure
threshold was assessed in response to pentylenetetrazol (1% solution, i.v.) in adolescence (~P40) and adulthood (~P60). We
found that adult, but not adolescent, mice treated with LPS displayed ~34% lower seizure threshold compared with controls.
Females and males showed similar increased seizure susceptibility, suggesting that altered brain excitability was age depend-
ent, but not sex dependent. Whole-cell recordings revealed no differences in excitatory synaptic activity onto CA1 pyramidal
neurons from control or neonatally inflamed adolescent mice of either sex. However, adult mice of both sexes previously
exposed to LPS displayed spontaneous EPSC frequency approximately twice that of controls, but amplitude was unchanged.
Although these changes were not associated with alterations in dendritic spines or in the NMDA/AMPA receptor ratio, they
were linked to an increased glutamate release probability from Schaffer collateral, but not temporoammonic pathway. This
glutamate increase was associated with reduced activity of presynaptic GABAg receptors and was independent of the endocan-
nabinoid-mediated suppression of excitation. Our new findings demonstrate that early-life inflammation leads to long-term
increased hippocampal excitability in adult female and male mice associated with changes in glutamatergic synaptic transmis-
sion. These alterations may contribute to enhanced vulnerability of the brain to subsequent pathologic challenges such as epi-
leptic seizures.

Key words: age differences; glutamatergic transmission; hippocampus; lipopolysaccharide; presynaptic GABAg receptors;
Schaffer collaterals
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Adult physiology has been shown to be affected by early-life inflammation. Our data reveal that early-life inflammation
increases excitatory synaptic transmission onto hippocampal CA1 pyramidal neurons in an age-dependent manner through
disrupted presynaptic GABAy receptor activity on Schaffer collaterals. This hyperexcitability was seen only in adult, and not
in adolescent, animals of either sex. The data suggest a maturation process, independent of sex, in the priming action of
early-life inflammation and highlight the importance of studying mature brains to reveal cellular changes associated with
early-life interventions.
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Introduction
Preclinical and clinical studies have indicated that exposure to
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stressful/inflammatory events during the early postnatal period
can have an impact on brain physiology and behavior later in life
(Hagberg et al., 2012; Danese and Lewis, 2017; Pittman et al,,
2019). Along these lines, alterations in neuroimmune functions,
behavioral responses, and endocrine changes have been previ-
ously described in adult life resulting from a single inflammatory
event during a critical period of development caused by the en-
dotoxin lipopolysaccharide (LPS; Rana et al., 2012; Pittman et al.,
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2019). Furthermore, early-life exposure to inflammatory stres-
sors, such as LPS, has been shown to prime the brain to subse-
quent pathologic challenges during adulthood, including
responses to physiological and behavioral stressors, and seizure
susceptibility (Bilbo et al., 2005; Heida et al., 2005; Galic et al,,
2008; Walker et al., 2009; Auvin et al, 2010; Reid et al., 2012;
Lewis et al., 2018; Aboubakr et al., 2019; Semple et al., 2020).
There is, however, a limited understanding of the mechanisms
underlying such vulnerability. Previous studies have given LPS at
various times after birth; popular paradigms are the administra-
tion of two doses within the first 5 d of life (most likely equivalent
to a third-trimester human) and a single injection at postnatal
day 14 (P14), thought to reflect brain development in a human
infant ~6 months of age (Romijn et al., 1991). Because of the
rapid developmental changes seen in the rodent brain within the
first 3 weeks of life (Dutta and Sengupta, 2016), we have focused
our discussion on findings arising from a single low dose
(100 pg/kg) of LPS at P14, a time near the end of the stress hypo-
responsive period (Schmidt et al., 2003) and when neuronal chlo-
ride homeostasis is approximating that of the adult (Ben-Ari et
al., 2012).

Early studies have shown that systemic inflammation induced
by P14 LPS in rats, although not associated with CNS damage
(Lee et al., 2000; Heida et al., 2004, 2005), results in transient acti-
vation of microglia and the generation of cytokines, similar to
what is seen in adult animals (Galic et al., 2008; Dinel et al.,
2014). Most studies of outcomes of early-life exposure to inflam-
mation have been limited to males, although experiments in
which both sexes were compared have found some responses to
be sex dependent, whereas others are not. For example, there are
interesting sex-dependent differences in some, but not all, CNS
neurochemical and morphologic responses (Spencer et al., 2006;
Kentner et al.,, 2010; Berkiks et al., 2019b). Depending on the
study, there are reported sex-dependent differences in depressive
and anxiety-like behaviors (Doenni et al., 2017; Berkiks et al.,
2019a), but not in adult social behavior after early-life LPS
administration in rats (Doenni et al., 2016). At the molecular
level, we previously observed that early-life inflammation
induced aberrant intrinsic properties in CA1 pyramidal neurons
in only adult male mice (Gomez et al., 2019). Several reports
indicate that early-life inflammation increases brain excitability,
reflected in part by reduced chemically or electrically induced
seizure thresholds in male rats (Heida et al., 2005; Galic et al.,
2008; Auvin et al., 2010; Dupuis et al., 2016) or by increased epi-
leptiform-like activity after combined prenatal and postnatal
inflammatory stimuli in male mice (Missig et al., 2018). One
study in the genetically altered BTBR mouse suggested that
early-life inflammation decreased seizure thresholds in both
males and females (Lewis et al., 2018). However, sex dependency
has not been explored in the C57BL/6 mouse, which is an impor-
tant omission as we had previously observed specific changes in
membrane properties only in adult males of this strain. These
differences prompted us to ask whether early LPS administration
would alter seizure susceptibility in an age- or sex-dependent
manner in C57BL/6 mice, and whether any differences would be
correlated with alterations in hippocampal synaptic transmission
to find the underlying mechanisms.

Materials and Methods

Early-life inflammation. All protocols received the approval of the
University of Calgary Animal Care Committee, and experiments were
conducted in accordance with the Canadian Council on Animal Care
regulations. C57BL/6 mice (Charles River Laboratories) were maintained
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under standard specific pathogen-free conditions at 20-21°C, on a 12 h
light/dark cycle (light onset at 7:00 A.M.) with food and water available
ad libitum. The early-life inflammation paradigm was performed as we
previously described (Gomez et al., 2019). Briefly, females were bred,
then separated and monitored for the day of birth of the offspring. On
P14, male and female offspring in each litter were randomly chosen to
receive either pyrogen-free saline (vehicle; 1 ml/kg) or LPS (Escherichia
coli, serotype 026:B6; 100 ng/kg, i.p.), a molecule derived from Gram-
negative bacteria that we have earlier shown to induce a transient fever
and a mild peripheral and central inflammatory response in the host
(Heida et al., 2004; Ellis et al., 2005; Galic et al., 2009). For all subsequent
experiments, both female and male offspring were included to reveal any
sex-specific interaction, and pups were taken from multiple litters to
mitigate possible differences in individual maternal care, and litter and
cohort effects. After the early-life treatment, offspring were marked on
their ears for later identification, then were returned to their dams,
weaned at P21, and housed three to five per cage, assigned by sex and,
randomly, by treatment.

Pentylenetetrazol seizure susceptibility assessment. We explored the
effect of early-life inflammation on seizure susceptibility in adolescent
(~P40) and adult (~P60) mice neonatally exposed to either LPS or vehi-
cle on P14. With this purpose, the seizure threshold was determined as
previously described (Riazi et al., 2004; Lewis et al., 2018). Intravenous
infusion of the proconvulsive agent pentylenetetrazol (PTZ; 1% solution;
Sigma- Aldrich) was given to the unrestrained mice through the tail vein
at a rate of 1 ml/min using an infusion pump. The infusion was termi-
nated when a generalized tonic-clonic seizure was observed. The PTZ
amount (in milligrams per kilogram) necessary to induce a generalized
seizure was then calculated, and was used as a measure of seizure
susceptibility.

In vitro hippocampal electrophysiology. To assess whether synaptic
properties are altered in later life, adolescent (P35 to P45) and adult (P60
to P70) mice of both sexes, treated with either LPS or vehicle (Veh) on
P14 (hereafter labeled as LPS or Veh), were anesthetized with isoflurane
and perfused via the heart with cold slicing solution containing the fol-
lowing (in mm): 87 NaCl, 2.5 KCl, 25 NaHCOj3, 0.5 CaCl,, 7 MgCl,, 1.25
NaH,PO,, 25 p-glucose, and 75 sucrose. Both slicing and artificial CSF
(aCSF) solutions (described below) were continuously bubbled with a
gas mixture of 95% O, and 5% CO, to maintain a pH at 7.4. Brains were
extracted, and transverse slices (300 um) of the dorsal hippocampus
were taken at a 45° angle from the coronal plane using a vibratome
(model VT1200S, Leica), as we described previously (Gomez et al,
2019). We focused on the dorsal hippocampus in this study because of
known differences in pyramidal cell properties and function of the hip-
pocampus along its dorsal and ventral extent (Strange et al., 2014). Slices
were immediately transferred to a submerged chamber containing warm
(32°C) aCSF composed of the following (in mwm): 126 NaCl, 2.5 KCI, 26
NaHCO;, 2.5 CaCl,, 1.5 MgCl,, 1.25 NaH,PO,, and 10 p-glucose, kept
for 60 min, and then maintained at room temperature for 30 min before
recording.

To enable recordings, hippocampal slices were perfused with aCSF
(32°C) at a flow rate of 1-2 ml/min, and CA1 pyramidal neurons were
identified under differential contrast/infrared illumination by their location
in the cell body layer and by their pyramidal shape. Whole-cell patch-clamp
recordings were obtained from CA1 neurons using borosilicate glass micro-
pipettes (3-5 M()) filled with a recording solution containing the following
(in mm): 108 p-gluconic acid, 108 cesium hydroxide, 5 tetraecthylammo-
nium-Cl, 2.8 NaCl, 20 HEPES, 0.4 EGTA, 4 MgATP, 0.3 NaGTP, 10 phos-
phocreatine Na,, and 1 QX-314, with pH adjusted to 7.2 with 1 CsOH
solution and osmolarity adjusted to ~305 mOsmol. Liquid junction poten-
tials were nullified, and cell capacitance and access resistance (initial value,
<20 M) were monitored, with recordings accepted only if either variable
did not change by >20%.

For synaptic experiments, CAl neurons were voltage clamped at
—70mV and were allowed to stabilize for at least 5min. Spontaneous
EPSCs (SEPSCs) were isolated by blocking GABA, channel-mediated
synaptic transmission with picrotoxin (100 pwm). Evoked synaptic cur-
rents were elicited by paired stimulation every 10 s with an interstimulus
interval of 50 ms using concentric bipolar tungsten electrodes (SNEX-
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100, Kopf) at ~50% of maximal stimulation intensity that did not elicit
further increases in evoked EPSC (eEPSC) amplitude. One electrode was
placed in stratum radiatum (SR) to stimulate the Schaffer collaterals
(SCs), and the other was placed in stratum lacunosum moleculare (SLM)
to stimulate the temporoammonic (TA) pathway. eEPSC amplitudes
were calculated from the baseline to the peak of each evoked response,
and the paired-pulse ratio (PPR) was calculated using the amplitude ra-
tio of the evoked pair (peak 2/peak 1). To measure the AMPAR-medi-
ated EPSC, peak responses at —70mV were measured, and for
NMDAR-mediated EPSC responses, peak responses 50ms following
stimulation at +40mV holding potential were measured. To induce
depolarization-induced suppression of excitation (DSE), CA1 neurons
were given a depolarizing voltage command to 0 mV for 5 and 10 s. Data
were normalized and expressed as a percentage of the baseline values
(—1 to Omin before the initial DSE step) in each cell. Peak DSE values
were obtained by averaging evoked amplitudes every 15 s. To avoid epi-
leptiform activity in CA1, a cut was made at the border of CA1 and CA3.
The GABAj receptor agonist baclofen (5 um) or the CB1 receptor antag-
onist AM251 (2 uM) was added to the bath as needed. Signals were
amplified and filtered (low pass at 1 kHz) with a Multiclamp 700B ampli-
fier (Molecular Devices) and digitized at 10 kHz using a data acquisition
system (Digidata 1322A, Molecular Devices). Analysis was conducted
offline with Clampfit 9.2 (Molecular Devices) and MiniAnalysis
(Synaptosoft). Cumulative probability and average values for sEPSC fre-
quency and amplitude from all cells recorded were obtained using
MiniAnalysis. All electrophysiological datasets comprised results from
animals reported as “N” and number of cells as “n,” obtained from a
minimum of three litters. In addition, data were collected over a period
of >3 years from multiple cohorts of animals.

Golgi staining. It was important to determine whether dendritic
spine counts in the CAl neurons were similar in the control and LPS
groups, considering that our electrophysiological analyses indicated
striking differences between properties of adult mice treated with LPS at
P14. Therefore, Golgi silver impregnation was done using a commer-
cially available kit (FD Rapid GolgiStain Kit, FD NeuroTechnologies) as
we previously described (Acharjee et al., 2018; Gomez et al., 2019).
Experimental animals were anesthetized with sodium pentobarbital
(80mg/kg, ip.), and the brains were harvested. Coronal sections
(100 um) were cut on a vibratome (model VT1000S, Leica), mounted
on gelatin-coated slides and developed following the protocol in the
FD Rapid GolgiStain Kit. CAl pyramidal neurons from the dorsal
hippocampus were imaged using reflective confocal microscopy
(model DM5500 B, Leica) with a 488 nm laser and a 40X objective
(1.62 numerical aperture). Five neurons were imaged per animal (N =3-
4/group, each from a separate litter). Care was taken to ensure that
imaged neurons did not extend processes to the very end part of the sec-
tions to avoid dendritic stumps, and that processes of the neurons could
be clearly identified. Moreover, neurons chosen were sufficiently distant
from their neighbors to minimize the overlap of dendritic trees.
Confocal image stacks were imported into Image] for analysis. Dendritic
spines were counted from the 3D stacked images using the Cell Counter
plugin. For analysis, five CA1 pyramidal neurons were chosen from each
animal, and the spines were counted from two dendritic processes from
stratum lacunosum moleculare, and two from stratum radiatum of each
neuron. Within each dendritic process, spines were counted for a length
of 20-60 um from the distal tip, depending on the length of the process.
Spine density was calculated by dividing the number of spines by the
length of the part of the dendrite from which the spines were counted.
Spines with well defined heads and bifurcated spines were identified vis-
ually and quantified. All analyses were completed blinded to the experi-
mental/control status of the animal.

Data analysis. All statistical analyses were performed using GraphPad
Prism version 8.0. Seizure threshold, synaptic properties, and Golgi stain-
ing data were verified for normal distribution, then analyzed using one-
way or two-way ANOVA with Tukey’s post hoc test, unpaired or paired
Student’s ¢ test, effect size by Cohen’s d, and Pearson correlation coeffi-
cients as needed. Results are reported as the mean = SEM. Statistical sig-
nificance was set at p < 0.05 based on the animal number for seizure
threshold data and on the number of cells for electrophysiological data.
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Results

Early-life inflammation increases seizure susceptibility in
adult mice

To evaluate whether a systemic inflammatory event induced by
LPS on P14 influences seizure susceptibility in female and male
mice differentially in later life, LPS-pretreated and control ado-
lescent and adult mice of both sexes were injected intravenously
with the proconvulsive agent PTZ, and the seizure threshold was
then measured (Fig. 1A). All experimental mice developed a gen-
eralized tonic-clonic seizure. When comparing effects of early-
life LPS treatment on seizure threshold, significant differences
were observed in all female mice (Veh: 92.8 = 4.5mg/kg PTZ;
N=23; LPS: 77.7 = 5.6 mg/kg PTZ; N=21; unpaired Student’s ¢
test: 42y = 2.1, p=0.04; Cohen’s d = 0.63; Fig. 1B) and male mice
(Veh: 79.8 = 4.3 mg/kg PTZ; N=20; LPS: 66.4 * 4.5 mg/kg PTZ;
N=18; t36) = 2.1, p=0.04; Cohen’s d =0.69; Fig. 1D).

Multiple comparisons among groups revealed that the differ-
ences were attributed to an ~36% lower seizure threshold in
adult female mice (Veh: 969 * 5.7mg/kg PTZ; N=13; LPS:
61.1 = 4.1 mg/kg PTZ; N=11; two-way ANOVA: F 49y = 12.8,
Tukey’s post hoc analysis, p =0.0006; Fig. 1C), but not adolescent
female mice (Veh: 87.5 *7.2mg/kg PTZ; N=10; LPS: 96.1 =
7.4mg/kg PTZ; N=10; p=0.78; Fig. 1C) exposed to early-life
inflammation compared with controls. Likewise, adult male mice
(Veh: 78.8 = 5.5mg/kg PTZ; N=11; LPS: 53.1 = 3.9 mg/kg PTZ;
N=9; two-way ANOVA: F(; 34y = 4.6; Tukey’s post hoc analysis,
p=0.01; Fig. 1E), but not adolescent male mice (Veh:
80.8 = 7.2 mg/kg PTZ; N=9; LPS: 79.6 = 5.4mg/kg PTZ; N=9;
p=0.99; Fig. 1E) showed similar increases in seizure susceptibil-
ity, suggesting age-dependent but not sex-dependent reduced
seizure threshold in these mice.

Altered synaptic transmission in adult CA1 pyramidal
neurons exposed to early-life inflammation
Increased seizure susceptibility could be the result of alterations
in intrinsic membrane properties of cells or of altered synaptic
transmission (Barker-Haliski and White, 2015). As we previously
showed that adult males, but not females, displayed altered mem-
brane properties as a result of early-life inflammation (Gomez et
al,, 2019), it is unlikely that these changes explain the increased
seizure susceptibility seen here in both female and male mice.
Therefore, we hypothesize that exposure to early-life inflamma-
tion leads to changes in synaptic transmission efficacy at gluta-
matergic synapses onto hippocampal CA1 pyramidal neurons.
With this purpose, whole-cell recordings were obtained and
spontaneous EPSCs were examined. Figure 2A shows spontane-
ous EPSCs for representative control (Veh, dark traces) and early
LPS-inflamed (LPS, green traces) CAl pyramidal neurons from
both adolescent and adult female mice. When spontaneous
EPSC amplitude was analyzed using two-way ANOVA, no sig-
nificant differences were found (F(; 103 = 0.18, p=0.67) in early
LPS-inflamed CA1 pyramidal neurons of adolescent female mice
(Veh: 16.5*0.8pA; n=28; N=5; LPS: 17.1 £ 0.8 pA; n=26;
N=6; Fig. 2B) and adult female mice (Veh: 17.5 = 0.8 pA; n =25;
N=7; LPS: 17.9 £ 0.4 pA; n=28; N=7; Fig. 2B) compared with
controls. Interestingly, we observed an age (F(103 = 4.75,
p=0.03) dependent effect of the early-life LPS treatment on
spontaneous EPSC frequency in CAl pyramidal neurons.
Multiple comparisons by Tukey’s post hoc analysis revealed that
previously inflamed neurons displayed higher spontaneous
EPSC frequency, but not amplitude, compared with controls
only in adult female mice (Veh: 1.8 = 0.3 Hz; n=25; N=7; LPS:
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34+ 04Hz; n=28; N=7; p=0.0005; Fig. 2B), A
with no significant changes in adolescent female
mice (Veh: 1.4+ 02Hz n=28 N=5; LPS:
1.8 = 0.2 Hz; n=26; N=6; p=0.72; Fig. 2B).

We also asked whether early-life inflamma-
tion affects the synaptic transmission in male
mice. Figure 2C shows spontaneous EPSCs for
representative control (Veh, dark traces) and
inflamed (LPS, blue traces) CA1 pyramidal neu-
rons from both adolescent and adult male mice.
Statistical analysis revealed that, similar to
females, no significant differences in spontane-
ous EPSC amplitude were found (two-way
ANOVA: Fq 101y = 0.02; p=0.88) in CA1 pyram-
idal neurons of neonatally-inflamed adolescent
male mice (Veh: 18.0 * 0.9pA; n=26; N=§;
LPS: 189 = 0.9pA; n=25; N=6; Fig. 2D) and
adult male mice (Veh: 17.4 = 0.8pA; n=28;
N=5; LPS: 18.4 £ 0.8 pA; n=26; N=7; Fig. 2D).
When comparing effects of age and early-life
inflammation on spontaneous EPSC frequency,
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Factors that could influence the spontaneous 0
EPSC frequency include the number of synapses
and the glutamate release probability (Kerchner
and Nicoll, 2008; Acharjee et al., 2018). First, we
asked whether the higher synaptic frequency
found in early LPS-inflamed CA1 pyramidal neu-
rons of adult mice was a result of changes in the
number of synapses. Hippocampal CA1 pyrami-
dal neurons receive cortical afferents directly via
the TA pathway and indirectly via the SC to their
dendrites located in the stratum lacunosum
moleculare and stratum radiatum, respectively
(Aksoy-Aksel and Manahan-Vaughan, 2013).
Using Golgi staining, we thus investigated
whether the number of CA1 pyramidal neuron
spines located in these two principal regions was
affected by early-life inflammation. This method allows a com-
plete staining of the whole neuron, including soma and dendritic
trees, hence enabling a detailed analysis of the morphologic fea-
tures of individual neurons. When spine density was analyzed
using two-way ANOVA, no significant differences were found in
CAl pyramidal neurons of adult female mice (SC: Veh,
0.95* 0.05 spines/um, n=14, N=3; LPS, 1.03 = 0.04, n=14,
N=3; TA pathway: Veh, 0.81*0.05 n=13, N=3; LPS,
0.93 £ 0.05, n =14, N=3; F(; 51y = 0.13, p=0.72; Fig. 3A) and adult
male mice (SC: Veh, 0.84 * 0.05 spines/pm, n=18, N=4; LPS,

Figure 1.
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Early-life inflammation reduced seizure threshold to the proconvulsive agent PTZ in adult, but not ado-
lescent, female and male mice. A, Schematic showing experimental inflammatory paradigm; mice of both sexes
were injected with LPS or Veh at P14, then returned to the home cage. Adolescent (~P40) and adult (~P60) mice
received intravenous infusion of PTZ, which was terminated when a tonic—clonic seizure appeared. B, D, Cumulative
probability of seizure threshold (ST) frequency in all female (B) and male (D) mice indicates a left ward shift (reduc-
tion) in a dose of PTZ required to elicit a seizure. Insets, Plots depicting amount of PTZ per kilogram of body weight
necessary to induce a tonic—clonic seizure in all female ($) and male (3) mice. €, E, Summary data on the right
show that increased seizure vulnerability (i.e., reduced PTZ dose) was in LPS-treated adult female (€) and male mice
(E) compared with controls. No significant differences were observed in seizure threshold in adolescent mice exposed
in early life to Veh or LPS. Each symbol represents one animal and the horizontal lines are the mean (Y N =44, 3
N'=38). p < 0.05, ##xp < 0.001.

0.86 = 0.04, n=19, N=4; TA pathway: Veh, 0.68 = 0.05, n=18,
N=4; LPS, 0.76 + 0.06, n=19, N=4; F(; 70, = 0.33, p=0.56; Fig,
3B) exposed to early-life inflammation (green/blue symbols) com-
pared with their respective controls (white symbols). Additionally,
considering that changes in spines with well defined heads or bi-
furcated are associated with spine maturation and synaptic activ-
ity, a more in-depth spine morphology analyses was performed.
We found, however, that early-life inflammation had no signifi-
cant effect on either the number of bifurcated spines (female:
Fu51) = 0.04, p=0.85; male: F(; 70 = 0.05, p=0.82; Fig. 3A), or
spines with mature heads (female: F; 5;) = 0.19, p=0.66; male:
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LPS-inflamed CA1l pyramidal neurons of both
adult female mice (Veh: 1.69 + 0.05; n=19; N=6;
LPS: 1.67 = 0.04; n=19; N=6; p=0.98; Fig. 4C)
and adult male mice (Veh: 1.74 = 0.05; n=22;
N=5;LPS: 1.72 = 0.04; n=21; N=5; p=0.97; Fig.
4D). These data suggested increased glutamate
release from SC fibers, but not TA fibers. Given
that we only observed changes in PPR when SC
was stimulated, we focused on that pathway for all
additional experiments.

Considering that alterations in spontaneous
EPSC frequency could reflect changes in silent
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Figure 2.

#p < 0,05, #33p < 0,001,

F170) = 023, p=0.63; Fig. 3B) of CAl pyramidal neurons from
both sexes compared with controls. Therefore, the absence of
changes in spines density, along with no evident changes in the
number of bifurcated spines or spines with well defined heads
suggests that other mechanisms may account for the differences
in spontaneous EPSC frequency that we observed.

A second factor that could influence the spontaneous EPSC
frequency is the glutamate release probability, so next we asked
whether the higher synaptic frequency found in CA1 pyramidal
neurons of adult mice exposed to early-life inflammation was a
result of altered presynaptic release. With this purpose, we

—
Adolescent Adult

80

Early-life inflammation increased SEPSC frequency in adult, but not adolescent, mice. 4,
Representative traces of spontaneous synaptic activity of CA1 pyramidal cells from female (4) and male (€) mice
previously injected with Veh (dark traces) or LPS (green/blue traces) at P14. Calibration: 20 pA; top trace for each
color, 1's; bottom trace, 0.1 s. B, D, Cumulative probability distribution of SEPSC frequency (left) and amplitude
(right) of pyramidal neurons from female mice (B) and male mice (D). Insets show frequency and amplitude plot-
ted for individual cells. Summary data display no significant differences in sEPSC amplitude and frequency in ado-
lescent mice early exposed to Veh (white symbols) or LPS (green/blue symbols) at P14. Nevertheless, augmented
SEPSC frequency, but not amplitude, was found in LPS-treated adult female and male mice compared with con-
trols. Horizontal lines are the mean (n=25-28 cells, 5-8 mice/group). SO, Stratum oriens; PTX, picrotoxin.

synapses (Kerchner and Nicoll, 2008; Acharjee et
al., 2018), we examined the AMPA/NMDA ratio,
which is a standard approach used to directly esti-
mate changes in the number of silent/unsilent syn-
apses. Statistical analysis showed no significant
differences (two-way ANOVA: F(s3 = 0.44,
p=0.51) in the AMPA/NMDA ratio in CA1 py-
ramidal neurons of adult female mice (Veh:
5.55+ 0.76; n=13; N=7; LPS: 6.46 = 1.06; n=15;
N=7; Fig. 5A) and adult male mice (Veh:
581 +0.75; n=19; N=8; LPS: 8.0 = 1.19; n=15;
N=7; Fig. 5B) exposed to early-life inflammation
(Fig. 5, green/blue symbols) compared with con-
trols (Fig. 5, white symbols). Together, all these
data strongly imply a selective increase of glutamate release from
SC fibers with no changes in the numbers of functional synapses.

Preserved endocannabinoid system in adult CA1 pyramidal
neurons exposed to early-life inflammation

The endocannabinoid (eCB) system is a well established modula-
tor of presynaptic glutamate release in nearly all areas of the
brain, including the hippocampus (Kreitzer and Regehr, 2001;
Maejima et al.,, 2001). Interestingly, in the amygdala, this system
was shown to be affected by early-life inflammation (Zavitsanou
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Figure 3.  Dendritic spine density of CAT pyramidal neurons from adult mice is unaltered
by early-life inflammation. 4, B, Scatter graphs show no significant differences in spine den-
sity, number of bifurcated spines and number of spines with well defined heads of CAT py-
ramidal cells from adult female (green symbols) and male (blue) mice early exposed to LPS
compared with controls (white symbols). Each symbol represents one cell, and the horizontal
lines are the mean (n = 13-19 cells, 3-4 mice/group).

et al,, 2013; Doenni et al., 2016). We explored here, the possibility
that the eCB pathways somehow could also be altered in adult
hippocampus after early-life inflammation, thus causing aberrant
presynaptic glutamate release. DSE is an eCB-mediated short-
term synaptic plasticity and a feature that can be used to monitor
eCB pathway activities. To achieve a rapid and transient inhibi-
tion (<1min) through retrograde transmission of eCBs (i.e.,
DSE) in CAl pyramidal neurons, long depolarization times (7-
10 s) are required (Ohno-Shosaku et al., 2002).

As shown in Figure 6, we compared DSE of eEPSCs recorded
from control (Veh, black traces) and previously-inflamed (LPS,
green/blue traces) CA1l pyramidal neurons from adult female
mice (A) and adult male mice (B). Postsynaptic depolarization
(=70 to 0mV for 5 s) resulted in an immediate slight, but insig-
nificant depression of eEPSCs in CAl pyramidal neurons of
female mice (DSE: Veh, 5.25 *2.29% from baseline; one-way
ANOVA, Fs135 = 2.09, p=0.07, n=27, N=6) and male mice
(DSE: Veh, 6.27 £2.45% from baseline; F5g4) = 2.13, p=0.07,
n=13, N=5), which recovered within ~30 s (98.98 + 3.104%
and 96.74 = 3.08%, respectively). A second postsynaptic depola-
rization of a longer duration (=70 to 0mV for 10 s) induced
clear DSE in both female mice (20.64 * 2.24% from baseline;
one-way ANOVA, Fs 135 = 34.71; Tukey’s post hoc analysis,
p < 0.0001; Fig. 6A,C, top) and male mice (17.79 * 2.15% from
baseline; one-way ANOVA, Fs g4y = 35.18; Tukey’s post hoc anal-
ysis, p<<0.0001; Fig. 6B,C, bottom), which recovered within
~1min (99.25 £2.66% and 99.18 = 2.47%, respectively). Post
hoc analysis revealed similar DSE in inflamed CA1l pyramidal
neurons from female mice (p = 0.96; Fig. 6C, top) and male mice
(p=0.99; Fig. 6C, bottom) compared with controls. We also veri-
fied that the DSE was eCB mediated, as it was blocked in the
presence of AM251(CBI receptor antagonist; Fig. 6A4,B). Thus, a
possible involvement of eCB receptor changes on glutamatergic
terminals was unlikely to have contributed to the increased pre-
synaptic glutamatergic transmission observed after early-life LPS
administration.
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Reduced presynaptic GABAj receptor activity induced by
early-life inflammation

We further explored a potential mechanism that would explain
higher glutamate release and altered excitability in CA1 pyrami-
dal neurons following early-life inflammation. Thus, we consid-
ered a role for GABAg receptors, which are known to negatively
regulate release probability via a presynaptic localization on glu-
tamatergic hippocampal boutons (Colmers and Pittman, 1989;
Kulik et al., 2006; Guetg et al., 2009). Interestingly, previous stud-
ies reported that mRNA expression, immunoreactivity, and pre-
synaptic and postsynaptic responses of GABAjp receptors are
decreased in hippocampus and cortex of patients with epilepsy
(Princivalle et al., 2002; Teichgriber et al., 2009). To the best of
our knowledge, the impact of the early-life inflammation on
GABAg-mediated responses has not been documented. On these
bases, we next investigated whether these receptors are differen-
tially activated in control and inflamed CA1 pyramidal neurons
of adult female and male mice exposed early in life to LPS.

Figure 7A summarizes the hypothesis we tested (ie., that
early-life LPS treatment reduces GABAp receptor activity on
Shaffer collateral glutamatergic terminals). Figure 7B shows rep-
resentative traces of evoked EPSC responses to electrical stimula-
tion of presynaptic SC fibers for control (Fig. 7B, Veh, black
traces) and previously-inflamed (Fig. 7B, LPS, green/blue traces)
CA1l pyramidal neurons from adult female (Fig. 7B, left) and
male mice (Fig. 7B, right) before and after the application of
baclofen (5 um), a GABAg receptor agonist. In both females and
males pretreated with Veh and LPS, the application of baclofen
caused an increased PPR (Fig. 7C,D), consistent with its presyn-
aptic inhibitory action. However, its effectiveness was different as
a function of early-life treatment. When comparing the effects of
baclofen treatment on presynaptic glutamate release, statistical
analysis revealed a significantly increased PPR in CA1 pyramidal
neurons of female mice (Veh: 21.24 * 2.9% increase over base-
line; paired Student’s ¢ test, 9y = 6.97, p <0.0001, n=10, N=4;
LPS: 6.29 = 1.8% increase over baseline; t;0) = 3.27, p=0.008,
n=11, N=5; Fig. 7C) and male mice (Veh: 25.55 = 4.55% over
baseline; fg) = 5.65, p=0.0003, n=10, N=4; LPS: 8.41 = 2.08%
over baseline; to) = 3.90, p=0.003, n=10, N=5; Fig. 7D).
Notably, in offspring exposed to early-life LPS inflammation, the
baclofen-mediated increased PPR was less pronounced in both
sexes (females: unpaired Student’s t test, t19) = 4.3, p=0.0004;
males: tg) = 3.42, p=0.003; Fig. 7C,D, right) compared with
control. Further, the percentage of the baclofen-induced decrease
in eEPSC amplitude and the baclofen-induced increase in PPR
in control and inflamed CA1 pyramidal neurons of female mice
(Veh: r=0.776, p=0.008; LPS: r=0.653, p=0.029; Fig. 7E) and
male mice (Veh: r=0.779, p=0.008; LPS: r=0.641, p=0.045;
Fig. 7F) were found to be significantly and positively correlated.

GABAjg receptor activity has been observed to modulate
EPSC frequency, but not amplitude, at hippocampal glutama-
tergic synapses (Scanziani et al., 1992). Next, we explored
whether spontaneous EPSC amplitude and frequency were also
differentially affected by baclofen treatment in control and
inflamed CA1l pyramidal neurons from adult animals. With
this aim, spontaneous EPSCs were examined before and after
the application of the GABAp agonist. Figure 8 shows sponta-
neous EPSCs for representative control (Veh, black traces) and
early LPS-inflamed (LPS, green/blue traces) CA1l pyramidal
neurons from both adult female (Fig. 84) and male (Fig. 8B)
mice. When comparing the effects of baclofen treatment on
spontaneous EPSC amplitude, as expected, there were no sig-
nificant effects in CAl pyramidal neurons of females (Veh:



Gomezetal. o Early-Life LPS Alters CAT Synaptic Transmission

Q B Veh
3' *k 3' -
o | o | -
® ®
e 2 9 2
LPS B 1 LPS 31 )
;‘E &
0 04 Veh LPS

1 veh LPs W
[

D ven

»TO
A

C Veh
o - b .f e}
® ®
SO — 4
CA1 % 2] %2 @ ’
LPs = =
SR o 1' 9:) 1
Y c
+PTX ol veh LPs ol ven LPS
SLM L

Figure 4. Early-life inflammation selectively increased the probability of glutamate release in adult mice. A-D,
Representative scaled traces of paired pulse recording of CA1 pyramidal cells evoked by the stimulation of afferent fibers in
the Schaffer collateral (A, B) or temporoammonic (C, D) pathway (as indicated on the schematic on the left) from adult
female (A, €) and male (B, D) mice exposed early in life to Veh (dark traces) or LPS (green/blue traces) at P14. Calibration:
100 pA, 50 ms. Scatter graphs on right show PPR of individual cells. Summary data display decreased PPR in CAT pyramidal
cells from both female (green symbols) and male (blue symbols) mice exposed to early inflammation compared with con-
trols (white symbols) when the Schaffer collateral (4, B) was stimulated. However, when the temporoammonic pathway
was stimulated (C, D), no significant differences in PPR were observed. Horizontal lines are the mean (n = 18-25 cells, 5—
8 mice/group). SO, Stratum oriens; PTX, picrotoxin. #:p < 0.01.
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Figure 5. AMPA/NMDA ratio was not affected by early inflammation induced by LPS. A, B, Sample scaled traces of AMPA cur-
rents recorded at —70 mV and NMDA currents at +40 mV of CA1 pyramidal cells evoked by stimulation of afferent fibers in the
Schaffer collateral pathway (as indicated on schematic on left) from adult female (4) and male (B) mice early exposed to Veh
(dark traces) or LPS (green/blue traces) at P14. Calibration: 100 pA, 50 ms. Scatter graphs on right show the AMPA/NMDA ratio of
individual cells. Summary data display no significant differences in the AMPA/NMDA ratio in pyramidal neurons from both female
(green symbols) and male (blue symbols) mice early exposed to inflammation compared with controls (white symbols).
Horizontal lines are the mean (n=13-19 cells, 7-8 mice/group). SO, Stratum oriens; PTX, picrotoxin.

J. Neurosci., May 19, 2021 - 41(20):4367-4377 - 4373

—244 %+ 2.06% of baseline; paired Student’st
test, fo = 145 p=0.18 LPS: —348+
1.74% of baseline; t(;0) = 2.11, p = 0.06; Fig. 8C)
and males (Veh” —4.09 + 2.97% of baseline;
toy = 142, p=0.18; LPS: —4.40 = 3.05% of
baseline; g = 150, p=0.16; Fig. 8D).
Furthermore, statistical analysis showed a sig-
nificant decrease because of baclofen in EPSC
frequency onto CAl pyramidal neurons of
female mice (Veh: —55.19 + 9.8% from base-
line; paired Student’s t test, fo = 4.9,
p=0.0008; LPS: —11.69 + 3.11% from base-
line; 10y = 3.25, p=0.008; Fig. 8E) and male
mice (Veh: —45.88 + 8.23% from baseline;
o) = 5.02, p=0.0007; LPS: —8.87 * 2.54%
from baseline; t) = 3.80, p=0.004; Fig. 8F).
However, in offspring exposed to early-life
LPS inflammation, the baclofen-mediated
decreased EPSC frequency was much less pro-
nounced in both sexes (females: unpaired
Student’s ¢ test, fj9) = 4.38, p=0.0003; males:
fas) = 4.30, p=0.0004; Fig. SEF, right) com-
pared with control. GABAg receptors are also
located on postsynaptic pyramidal cells, where
they are coupled by a different mechanism to
potassium  conductances (Colmers and
Pittman, 1989). Nevertheless, statistical analy-
sis shows no significant effect on resting mem-
brane potential among groups in female mice
(Veh: —65.2 = 1.18 mV; plus baclofen, —64.7
*+ 1.15mV; paired Student’s ¢ test, ¢y = 0.97,
p=0.35,n=10, N=4; LPS: —64.5 = 1.07mV;
plus baclofen, —64.1 = 1.25mV; tq) = 0.42,
p=0.68, n=11, N=5) and male mice (Veh:
—65.0 £ 1.64mV; plus baclofen, —64.5=*
1.02mV; fo = 040, p=070, n=10, N=4;
LPS: —64.7 = 0.97 mV; plus baclofen, —63.8 =
105mV; to = 121, p=026, n=10, N=5),
Together, these data suggest that the mecha-
nisms underlying the alterations in presynaptic
glutamate release and seizure susceptibility
may involve a reduced activity of presynaptic
GABAj receptors on the glutamatergic termi-
nals in the hippocampus.

Discussion

Our study provides novel evidence that
early-life inflammation evoked by LPS dur-
ing a critical period of development, by
itself, causes an age-dependent but not sex-
dependent increased seizure susceptibility to
the proconvulsant agent PTZ in vivo, which
is associated with altered hippocampal syn-
aptic transmission in vitro. These synaptic
changes included increases in spontaneous
EPSC frequency in CAl pyramidal neurons,
a selective increase of glutamate release
from the Schaffer collateral, but not TA
fibers and a decreased activity of presynaptic
GABAp receptors, alterations that may
underlie increased seizure susceptibility
seen in response to PTZ injections. Another
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; ; ; Figure 6.  Early-life inflammation did not modify the DSE in adult CA1 pyramidal neurons. A, B, Representative traces of
temic neurotoxic substances. It is well

known that inflammation causes break-
down of the BBB through the upregulation
of inflammatory molecules (Varatharaj
and Galea, 2017), and it has been described
as a pathogenic hallmark of epileptic foci
in animal models of acquired epilepsies
(Ravizza et al., 2008; Vezzani et al., 2015).
At this time, we do not know whether the
increase in seizure susceptibility observed
is associated with a change in PTZ perme-
ability into the brain mediated by alterations in BBB integrity. In
neonate mice, however, the BBB was shown to be resistant to dis-
ruption even with a dose of LPS three times higher (300 pg/kg,
i.p.) than the one used here. Furthermore, rupture of the hippo-
campal BBB was only seen with a high dose of LPS (3 mg/kg, i.p,;
Banks et al, 2015). Therefore, it is unlikely that our dose of
100 pg/kg, i.p., LPS used to induce early-life inflammation results
in BBB disruption. Furthermore, the fact that increased excitabil-
ity was also seen in vitro is consistent with a direct neuronal
effect of PTZ, independent of possible BBB changes. Future
experiments might also address whether the altered seizure sus-
ceptibility seen in the adult females occurs for other convulsants,
as has been reported in males.

Previous studies have described short-term alterations in the
hippocampal expression levels of the inflammatory cytokines
interleukin-18 (IL-18) and tumor necrosis factor-a (TNF-«),
and microglial activation induced by systemic inflammation with
LPS at P14 (Galic et al., 2008; Dinel et al., 2014). Furthermore,
we were able to show that brain TNF-a was causal for the
increased seizure susceptibility (Galic et al., 2008). It is possible
that TNF-« is also responsible for the synaptic changes we have
seen in this study, although we cannot discount the possibility
that the many other CNS changes, including the elevated inter-
leukin-18 levels we previously reported (Galic et al, 2008),
could also be implicated.

Peripheral LPS injection has been reported to acutely alter
>2400 genes in microglia alone (Sousa et al., 2018); furthermore,
proinflammatory cytokines have been reported to acutely affect
many different conductances and receptors (Lynch, 2002). It is
beyond the scope of the current article to identify the precipitat-
ing factors in the neonate that account for the current electro-
physiological alterations observed. Brain inflammation is well
known to increase brain excitability (Vezzani et al, 2013).
However, most evidence suggests that the inflammatory response
arising from the early-life LPS treatment does not persist into

eEPSC recording (baseline: 1, immediately after 10 s postsynaptic depolarization: 2, and 1 min later: 3, corresponding to the
indicated shaded region below) of CAT pyramidal cells evoked by stimulation in the Schaffer collaterals from adult female
(A) and male (B) mice exposed in early life to Veh (dark traces) or LPS (green/blue traces) at P14. Far right superimposed
traces show responses in the presence and absence of the (B, receptor antagonist AM251. Calibration: 200 pA, 100 ms.
Bottom, Time course of eEPSC amplitude following postsynaptic depolarization to 0 mV for 5 or 10 s for Veh- or LPS-pre-
treated groups as well as after AM251 (2 uM) was added to block DSE (gray symbols). ¢, Summary data corresponding to
shaded region in A and B showing that depression of eEPSC induced by 10 s depolarization is not significantly different
between control and LPS pretreated CA1 pyramidal neurons from adult female (p = 0.96, top) and male mice (p = 0.99, bot-
tom). n=13-27 cells, 5-6 mice/group. ::p < 0.0001, ns, not significant.

adulthood. Thus, it is unlikely that the effects we see in the cur-
rent study arise from ongoing inflammatory activity. More likely,
LPS effects induced transiently in the neonate (Galic et al., 2008;
Dinel et al, 2014) may somehow become permanently
entrenched when they occur in an early developmental stage.

Spontaneous EPSC frequency can be modulated through
changes in the presynaptic function, comprising alterations in
the number of synapses and/or in transmitter release (Kerchner
and Nicoll, 2008; Acharjee et al., 2018). In line with this, there
are dynamic changes in dendritic spine density induced by sys-
temic inflammation (Bitzer-Quintero and Gonzalez-Burgos,
2012). For example, a gradual increase over 4-8 weeks of spine
density was observed in cortices of mice exposed to LPS (Kondo
et al,, 2011). We did not observe any significant change between
control and inflamed mice in spine density, number of bifurcated
spines or spines with well defined heads located in the stratum
lacunosum moleculare and stratum radiatum. Similar findings
were obtained from P14 LPS-treated mice in another study, but
the sex of the animals was not given (Shen et al., 2016). Thus, it
is likely that other mechanisms may explain the observed effects
of early-life LPS treatment on excitatory transmission in CA1 py-
ramidal cells. Our sEPSC data, and similar data from recordings
of miniature EPSCs (Shen et al., 2016) revealing alterations in
frequency, suggest a change in spontaneous glutamate release
from excitatory terminals after early-life LPS treatment. Our
evoked current data are even more definitive in this regard,
showing a reduced PPR indicative of increased transmitter
release in LPS-pretreated males and females. What was even
more remarkable was that this was restricted to SR afferents and
was not seen in SLM afferents. We are uncertain why there is
this differential effect, but it should be noted that significant
functional differences have been seen in response to stress and
drug treatments in these two synaptic pathways (Kallarackal et
al,, 2013).

eCBs are one of the main systems controlling both excitatory
and inhibitory neurotransmission, through activation of
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Figure 7.  Early-life inflammation diminished presynaptic GABAg receptor activity in adult
mice. A, Top, Diagram showing synaptic cleft in presence of the GABAg receptor agonist
baclofen in a vehicle-treated adult pyramidal cell; normal GABA receptor activity maintains
low presynaptic glutamate release and low postsynaptic spontaneous EPSC frequency (f).
Bottom, Diagram illustrates that baclofen acting on GABA receptors is less effective (dotted
line) to decrease presynaptic glutamate release and postsynaptic spontaneous EPSC f in adult
neonatally inflamed pyramidal cells. B, Representative scaled traces of paired pulse recording
(with/without baclofen) of CAT pyramidal cells evoked by stimulation of afferent fibers in
the Schaffer collateral pathway from adult female (left) and male (right) mice exposed in
early life to Veh (dark traces) or LPS (green/blue traces). Calibration: 200 pA, 20 ms. C, D,
Scatter graphs on left show PPR of individual cells (with/without baclofen) and violin graphs
on right show the comparison of the percentage of change among groups in females (€) and
males (D). E, F, Pearson correlation coefficients between the baclofen-induced decrease in
eEPSC amplitude and baclofen-induced increase in PPR from control and inflamed CA1 py-
ramidal neurons of female (E) and male mice (F). n=10-11 cells, 4-5 mice/group.
sep < 0,01, #5p < 0,001, 555p < 0,0001.

presynaptic cannabinoid type 1 receptors (CB1Rs; Kreitzer and
Regehr, 2001; Ohno-Shosaku et al., 2001; Wilson and Nicoll,
2001). These receptors are highly expressed in the hippocampus
(Matsuda et al., 1993; Tsou et al., 1998). CBIR activation by its
endogenous ligands anandamide (Devane et al, 1992) and 2-
arachidonylglycerol (Mechoulam et al, 1995; Sugiura et al,
1995) leads to several effects, including a decreased probability of
glutamate release (Di Marzo et al., 1998). Previous studies show
that prenatal or postnatal LPS treatment caused alterations in
CBI receptor binding and/or expression, in endocannabinoid
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Figure 8.  Early-life inflammation augmented spontaneous synaptic currents by decreasing
presynaptic GABAg receptor activity in adult mice. 4, B, Representative traces of spontaneous
EPSCs (with/without baclofen) of CA1 pyramidal neurons from adult female () and male (B)
mice previously injected with Veh (dark traces) or LPS (green/blue traces) at P14 (top trace
and after addition of baclofen). Calibration: 20 pA, 200 ms. (~F, Scatter graphs on left show
amplitude and frequency for individual cells (with/without baclofen) and violin graphs on
right show comparison of the percentages of change among groups in females (C, E) and
males (D, F). n=10-11 cells, 45 mice/group. *:p << 0.01, sxp < 0.001.

levels, and in endocannabinoid-related plasticity of inhibitory
synapses later in life (Zavitsanou et al., 2013; Doenni et al., 2016;
Guo et al., 2018). Furthermore, a transient hyperthermic seizure
in neonatal rats was shown to increase brain excitability (Dube et
al,, 2000) and alter short-term plasticity of IPSCs in adulthood in
a cannabinoid-sensitive fashion (Chen et al., 2003; Feng et al,,
2016). Nevertheless, our results revealed that early-life inflamma-
tion did not alter the endocannabinoid-related short-term plas-
ticity of excitatory synapses in adult hippocampus. Thus, these
findings suggest that early-life inflammation may not have long-
lasting impact on components of the eCB system controlling
excitatory glutamate release in the SR-CAL1 synapse of the hippo-
campus. This of course does not rule out possible alterations in
the eCB system at other synapses both in the hippocampus and
elsewhere in the brain.

It has been shown that presynaptic GABAp receptors are acti-
vated under basal synaptic activity and impact the probability of
excitatory neurotransmitter release (Laviv et al.,, 2010). Activity
changes in these receptors could influence neuronal excitability.
For instance, GABAg receptor knock-out mice exhibited sponta-
neous seizures and developed a generalized epilepsy (Prosser et
al., 2001; Schuler et al., 2001). In addition, GABAg receptor
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antagonists were shown to induce hippocampal seizure activity
(Vergnes et al., 1997; Leung et al., 2005, 2019). Interestingly, a
recent study shows that an early-life insult induced by kainic
acid has a long-lasting effect in decreasing GABAg receptor-
mediated presynaptic inhibition of glutamatergic terminals in
the hippocampus (Leung, 2019). In line with this, we found that
early-life LPS inflammation causes a reduced GABAj receptor
activity in adult CA1 pyramidal neurons, thus increasing presyn-
aptic glutamate release, which may ultimately lead to increased
seizure vulnerability. However, future studies should focus on
further clarifying the exact mechanisms by which early-life
inflammation/stress insults affect GABAg activation and down-
stream pathways.

In conclusion, this study demonstrates that early-life inflam-
mation leads to a selective increase of glutamate release from SC
fibers and altered activity of GABAjy receptors, resulting in aug-
mented excitatory synaptic transmission in CA1 pyramidal cells
from both female and male mice in adult life. Given that previ-
ously we have also seen changes in intrinsic membrane proper-
ties in male animals, one might predict that males would be
particularly susceptible to early-life inflammation. Additionally,
our results imply that changes in the hippocampal glutamatergic
synaptic activity may play a crucial role in determining the
increased seizure susceptibility that emerges in adulthood after
early-life inflammatory challenges.
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