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Predictive Visual Motion Extrapolation Emerges
Spontaneously and without Supervision at Each Layer of a
Hierarchical Neural Network with Spike-Timing-Dependent
Plasticity
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The fact that the transmission and processing of visual information in the brain takes time presents a problem for the accu-
rate real-time localization of a moving object. One way this problem might be solved is extrapolation: using an object’s past
trajectory to predict its location in the present moment. Here, we investigate how a simulated in silico layered neural network
might implement such extrapolation mechanisms, and how the necessary neural circuits might develop. We allowed an unsu-
pervised hierarchical network of velocity-tuned neurons to learn its connectivity through spike-timing-dependent plasticity
(STDP). We show that the temporal contingencies between the different neural populations that are activated by an object as
it moves causes the receptive fields of higher-level neurons to shift in the direction opposite to their preferred direction of
motion. The result is that neural populations spontaneously start to represent moving objects as being further along their tra-
jectory than where they were physically detected. Because of the inherent delays of neural transmission, this effectively com-
pensates for (part of) those delays by bringing the represented position of a moving object closer to its instantaneous
position in the world. Finally, we show that this model accurately predicts the pattern of perceptual mislocalization that
arises when human observers are required to localize a moving object relative to a flashed static object (the flash-lag effect;
FLE).

Key words: flash-lag effect; motion processing; neural transmission delays; spike-timing-dependent plasticity; unsuper-
vised hierarchical network; visual motion extrapolation

Introduction
The transmission and processing ofp information in the nervous
system takes time. In the case of visual input to the eyes, for example,
it takes up to ;50–70 ms for information from the retina to reach
the primary visual cortex (V1; Maunsell and Gibson, 1992; Lamme
and Roelfsema, 2000), and up to ;120 ms before human observers
are able to initiate the first actions based on that information
(Thorpe et al., 1996; Kirchner and Thorpe, 2006). Because events in
the world continue to unfold during this time, visual information
becomes progressively outdated as it travels up the visual hierarchy.
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Significance Statement

Our ability to track and respond to rapidly changing visual stimuli, such as a fast-moving tennis ball, indicates that the brain
is capable of extrapolating the trajectory of a moving object to predict its current position, despite the delays that result from
neural transmission. Here, we show how the neural circuits underlying this ability can be learned through spike-timing-de-
pendent synaptic plasticity and that these circuits emerge spontaneously and without supervision. This demonstrates how the
neural transmission delays can, in part, be compensated to implement the extrapolation mechanisms required to predict
where a moving object is at the present moment.

4428 • The Journal of Neuroscience, May 19, 2021 • 41(20):4428–4438

https://orcid.org/0000-0001-5672-2772
https://orcid.org/0000-0002-8499-8394
mailto:aburkitt@unimelb.edu.au


Although this is inconsequential when visual stimuli are
unchanging on this time scale, these delays pose a problem when
input is time varying, for instance, in the case of visual motion. If
neural delays were not somehow compensated, we would consis-
tently mislocalize moving objects behind their true positions.
However, humans and many other visual animals are strikingly
accurate at interacting with even fast moving objects (Smeets et
al., 1998), suggesting that the brain implements some kind of
mechanism to compensate for neural delays.

One candidate mechanism by which the brain might com-
pensate for delays is prediction (Nijhawan, 2008). In the case of
motion, the brain might use an object’s previous trajectory to
extrapolate its current position, although actual sensory input
about the object’s current position will not become available for
some time. Consistent with this interpretation, motion extrapo-
lation mechanisms have been demonstrated in multiple levels of
the visual hierarchy, including the retina of salamanders, mice,
and rabbits (Berry et al., 1999; Hosoya et al., 2005; Schwartz et
al., 2007), cat lateral geniculate nucleus (LGN; Sillito et al., 1994),
and both cat and macaque V1 (Jancke et al., 2004; Subramaniyan
et al., 2018; Benvenuti et al., 2020). In humans, recent EEG and
MEG studies using apparent motion similarly revealed predictive
activation along motion trajectories (Hogendoorn and Burkitt,
2018; Aitken et al., 2020; Blom et al., 2020; Robinson et al.,
2020), and motion extrapolation mechanisms have been argued
to be the cause of the so-called flash-lag effect (FLE; Nijhawan,
1994; Khoei et al., 2017; Hogendoorn, 2020).

The existence of predictive mechanisms at multiple stages of
the visual hierarchy is reminiscent of hierarchical predictive cod-
ing, a highly influential model of cortical organization (Rao and
Ballard, 1999). In this model, multiple layers of a sensory hierar-
chy send predictions down to lower levels, which in turn send
prediction errors up to higher levels. In this way, the hierarchy
essentially infers the underlying causes of incoming sensory
input, using prediction errors to correct and update that infer-
ence. It is important to note, however, that the “predictions” in
predictive coding are hierarchical, rather than temporal: predic-
tive coding networks “predict” (or reconstruct) activity patterns
in other layers, rather than predicting the future. Consequently,
the conventional formulation of predictive coding cannot com-
pensate for neural delays. In fact, we previously argued that neu-
ral delays pose a specific problem for hierarchical predictive
coding, because descending hierarchical predictions will be mis-
aligned in time with ascending sensory input (Hogendoorn and
Burkitt, 2019). For any time-varying stimulus (such as a moving
object) this would lead to significant (and undesirable) predic-
tion errors.

To address this, we previously proposed a real-time tem-
poral alignment hypothesis, which extends the predictive
coding framework to account for neural transmission
delays (Hogendoorn and Burkitt, 2019). In this hypothesis,
both forward and backward connections between hierarchi-
cal layers implement extrapolation mechanisms to compen-
sate for the incremental delay incurred at that particular
step. Without these extrapolation mechanisms, delays pro-
gressively accumulate as information flows through the vis-
ual hierarchy, such that information at higher hierarchical
layers is outdated relative to information at lower hierarchi-
cal layers. Conversely, the consequence of the real-time
temporal alignment hypothesis is that for a predictable
stimulus trajectory, different layers of the visual hierarchy
become aligned in time. The hypothesis posits that extrapo-
lation mechanisms are implemented at multiple stages of

the visual system, which is consistent with the neurophysio-
logical findings outlined above, as well as with human be-
havioral experiments (van Heusden et al., 2019). However,
a key question that remains is how such extrapolation
mechanisms are implemented at the circuit level, and how
those neural circuits arise during development.

ere, we address those two questions by simulating in silico the
first two layers of a feedforward hierarchical neural network sen-
sitive to visual motion. We present the network with simulated
moving objects, and allow neurons to learn their connections
through spike-timing-dependent plasticity (STDP; Markram
et al., 1997; Bi and Poo, 1998), a synaptic learning rule that
strengthens and weakens synapses contingent on the relative
timing of input and output action potentials. We focus on the
first two layers of the hierarchical network to explore the key
mechanisms, which would be expected to occur at each higher
level of the hierarchy.

We show that when a motion-sensitive hierarchical network
is allowed to learn its connectivity through STDP (without
supervision), the temporal contingencies between the different
neural populations that are activated by the object as it moves
cause the Receptive Fields (RFs) of higher-level neurons to spon-
taneously shift in the direction opposite to their preferred direc-
tion of motion. As a result, they start to encode the extrapolated
position of a moving object along its trajectory, rather than its
physical position. However, because of the delays inherent in
neural transmission, this mechanism actually brings the repre-
sented position of the object closer to its instantaneous position
in the world, effectively compensating for (part of) those delays.
Finally, we show that the behavior of the resulting network pre-
dicts the pattern of velocity dependence in the perceptual local-
ization of moving objects.

Materials and Methods
Network architecture
The network architecture considered here is one in which a moving
object generates a visual input stimulus that is encoded at each layer of
the network by a population code that represents both the position and
velocity of the stimulus. This population code includes subpopulations
of neurons tuned to both position and velocity, as has previously been
proposed by Khoei et al. (2017) and consistent with the known velocity
tuning of a small proportion of visual neurons in the early visual system
(Orban et al., 1986). This subpopulation coding of the velocity of the
stimulus at each layer may be inherited from the lower layers, beginning
in the retina (Berry et al., 1999; Ravello et al., 2019) and LGN (Sillito et
al., 1994), and then passed on to the V1 (Jancke et al., 2004; Benvenuti et
al., 2020), and it may be further enhanced in the the motion-processing
Medial Temporal (MT) and Medial Superior Temporal (MST) areas
(Maunsell and van Essen, 1983; Koch et al., 1989; Perrone and Thiele,
2001; Inaba et al., 2011).

Three layers of the network are shown schematically in Figure 1A, in
which there are Nn position subpopulations at each layer, where n
denotes the layer and Nn the number of neurons in layer n. Although
both classical predictive coding and the real-time temporal alignment
hypothesis posit both feed-forward and feedback connections, here we
consider only feed-forward connections as proof-of-principle. In addi-
tion, in a more general scheme lateral weights at each layer could also be
included, as previously proposed by Jancke and Erlhagen (2010), but
these are neglected here.

The neural activation of each stage of processing feeds forward to the
following stage. An important aspect of the network architecture is that
each neural population receives input from a limited receptive field of
neural populations at the preceding stage. In this way, the receptive field
size of neural populations increases as the activity propagates to higher
stages of processing.
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Neural model
The Poisson neuron model is used, in which the spikes of each neuron i
(i = 1,...,N) are generated stochastically with a spiking-rate function, ri(t),
that is time dependent and described by a Poisson point process. The in-
stantaneous probability of a spike is given by this Poisson spiking-rate
function, ri(t), measured in Hertz (spikes per second), so that in numeri-
cal simulations with discrete timesteps of Dt the probability of neuron i
firing a spike at time t is ri(t)Dt. This is a stochastic neuron model that is
widely used for both analytical and computational studies (Gerstner et
al., 2014, chapter 7). A more complete mathematical description and
analysis of this model is given in Kempter et al. (1998; their Appendix
A).

The population place code of the stimulus at every stage of process-
ing is described by a set ofNn units representing overlapping place fields,
equally distributed over the interval [0, 1] and each with an identical
Gaussian distribution width sp . This width represents the number of
independent place fields, Np, in the input layer, given by Np = round(1/
sp) , and the subscript p stands for place. In this network, the Gaussian
distribution represents the activity evoked by a stimulus, as illustrated in
Figure 2, in which the neural activity of each population of active input
neurons corresponding to a particular place field (i.e., an object at a par-
ticular location) is represented by a different color, and the Gaussian
curve represents the amplitude of the firing-rate of each neuron in that
population. The firing rate, which represents the rate of action potentials,
is described by a Poisson process, with a base firing rate of 5Hz in the
absence of stimulation. Note that periodic boundary conditions are
used, so that the position code can equivalently be represented by place
on a circle. For simplicity, we consider the situation where only one
object activates the input at any time, so that the relative activations of
the input neurons give a neural representation of the position of the
object.

A layered network structure is considered, in which the units at the
input layer feed their activity forward to the following layer, which has
the same number of units, Nn. For simplicity, the layers are taken to
have an equal spatial separation and the propagation delay time for ac-
tivity between layers has a constant value tdelay. This neural transmission
delay is of the order of several milliseconds between layers of the hierar-
chy (Maunsell and Gibson, 1992).

To incorporate velocity, each place field is further subdivided intoM
distinct subpopulations, corresponding to M different velocities (or ve-
locity intervals) for the input stimulus, as illustrated in Figure 1B. The
velocity of the object is encoded by the activity in the corresponding sub-
population of the place fields. Consequently, an object moving at a con-
stant velocity will primarily activate one velocity subpopulation within
each place field, i.e., for simplicity a discrete (quantized) representation
of velocity is considered rather than a continuous representation. The
velocity is assumed here to have been encoded by an earlier stage of neu-
ral processing, such as in the retina, so that the details of how this encod-
ing occurs are not incorporated into the model. It suffices that velocity is
encoded at each stage of the processing, which is a reasonable assump-
tion as it is known that velocity is present in higher stages of the visual
pathway such as area MT (Movshon and Newsome, 1996). In addition,
the velocity subpopulations are assumed for simplicity to be precise,
with no diffusion in velocity space. A more complete description of this
process would include lateral connections between the neurons in each
layer [both across positions and velocities, as implemented in Khoei et
al. (2017) and Khoei et al. (2013)]. However, the dynamics and interac-
tions of these lateral connections are not the focus of this paper, since we
are concerned here with the first wave of feed-forward activity through
the network. Note that the place field at time t is defined as the average
marginalized over the velocity subpopulations: P x tð Þð Þ ¼

X
v
P x tð Þ; vð Þ,

where P x tð Þð Þ is the probability of the stimulus being at position x tð Þ
and P x tð Þ; vð Þ is the marginal probability of the stimulus being at posi-
tion x tð Þ given that it has velocity v.

Neural learning
We require that the computations that underlie learning in the network
must be based on known principles of synaptic plasticity, namely that
the change in a synaptic strength is activity dependent and local. The lo-
cality constraint of synaptic plasticity requires that changes in the synap-
tic strength (i.e., the weight of a connection) can only depend on the
activity of the presynaptic neuron and the postsynaptic neuron.
Consequently, the spatial distribution of the synaptic changes in
response to a stimulus are confined to the spatial extent of the position
representation of the stimulus, which has important consequences for
the structure of the network that emerges as a result of learning.

In the full network the weights are described by a matrix,W between
every pair of successive layers and these are taken to be excitatory, in
keeping with the excitatory nature of the long-range pyramidal neuron
connections in cortex. Since our focus here will be on the first two layers,

Figure 2. Place code in first (input) layer. Each color represents the neural activity of the
population of neurons, illustrated here for Np = 32 positions corresponding to the location of
the peak of each Gaussian curve, with width s p = 1/Np. A stimulus at the position indicated
on the plot by D generates firing rates in the neural population, whose amplitude is indi-
cated by the crosses on the corresponding place curves. The place distribution of population
activity for a stimulus centered at the position x= 0.5 is shown in bold-red.

Position

...

...Level 1

Level 2 ...
...

...Level 3 ...
BA

Figure 1. A, Schematic illustration of a portion of the first three layers of the hierarchical network architecture. The circles denote the neural population at each of the Nn positions (15
shown, with the central population in black). The straight lines indicate the possible non-zero weights connecting the neural populations between layers, which have a limited spatial spread.
The arrows indicate the direction of the neural connectivity (presynaptic to postsynaptic), and only the weights for a subset of neurons are illustrated. B, Each position population is further di-
vided into M velocity-tuned subpopulations. Each velocity-tuned subpopulation projects to subpopulations in the subsequent layer with the same velocity tuning. Note that the analysis in this
study focuses on two adjacent layers.
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W is taken to be a Nn � Nn matrix in which the elements wji are the
weights between neurons i and j in the first and second layer respec-
tively. The locality constraint is implemented in the network by requir-
ing that the weights from a neuron at location i in the first layer has a
probability of being connected to a neuron at location j in the second
layer that is Gaussian, namely that

Prob wji 6¼ 0
� � ¼ G

xi � yj
sw

� �
� 1

sw

ffiffiffiffiffiffiffi
2p

p exp � xi � yjð Þ2
2s 2

w

 !
; (1)

where sW is the width of the Gaussian distribution, G �ð Þ, and xi
and yj are the locations of the neurons i and j, in the first-layer and
second-layer resp. The width sw is chosen throughout to be suffi-
ciently small relative to the spatial extent of the network (i.e.,
sw,,1) that it is effectively equivalent to the von Mises circular
distribution. In simulations, the amplitudes of the non-zero
weights are initialized randomly and given small positive initial
values, winit = 0.01, while the zero-valued weights are fixed
throughout (i.e., corresponding to the absence of any synaptic con-
nection between the two neurons). In simulations this Gaussian
distribution was truncated to zero at 5sw. The non-zero weights
then evolve according to STDP, namely a change of the weight,
Dwji, will occur when an input spike generated by neuron i at time
ti arrives after a time-delay tdelay at a synapse on neuron j, and an
output spike occurs at this neuron at time tj, so that the time differ-
ence Dt lies within the STDP time-window FSTDP Dtð Þ:

Dwji ¼ rFSTDP tj � ti � tdelayð Þ; (2)

where r is the learning rate and

FSTDP Dtð Þ ¼
cpe�Dt=tp ; Dt.0
0 ; Dt ¼ 0

�cdeDt=td ; Dt,0;

8<
: (3)

with coefficients of potentiation and depression given by cp and cd,
and time constants of potentiation and depression given by tp and td
resp., and Dt ¼ tj � ti � tdelayð Þ is the difference between the spike out-
put of the postsynaptic neuron at time tj and the incoming spike (gener-
ated by neuron i at time ti) that arrives at the synapse at time ti 1 tdelay.
Throughout the simulations balanced STDP was used, i.e., the STDP
time-window has an equal amount of potentiation and depression, with
cp = cd = 1 and tp = td = 20ms, and a value of tdelay = 20ms was chosen.
An upper bound on the individual weights, wmax, ensures that the
weights do not grow unbounded. Note that the STDP learning described
here is translationally invariant, since each neuron in a layer of the hier-
archy receives a time-shifted and space-shifted version of the input
received by other neurons in the layer. Consequently, the learning is
convolutional, because the weights connecting a neuron to neurons in
the preceding layer of the hierarchy evolve to exhibit translational invari-
ance across the layer.

Consider how an arbitrary weight wij between unit i in Layer 1 at
position xi and unit j in Layer 2 at position yj (chosen here for simplicity
to be yj = 0) evolves according to STDP due the motion of an input stim-
ulus moving from left to right with velocity v. Initially each weight has a
small value w0 and the distribution of possible weights is given by
Equation 1. Suppose that the firing rate of unit i is given by ri tð Þ, then
the change in weight Dwij will depend on both the timing of the presyn-
aptic (input) spikes, with probability distribution P tið Þ / ri tð Þ, and the
timing of the postsynaptic (output) spikes, with probability distribution
P tjð Þ:

Dwij /
ð1
�1

dtiP tið Þ
ð1
�1

dtjP tjð ÞFSTDP tj � ti � tdelayð Þ: (4)

Consider now a stimulus that is a localized point-like object, such as
an insect or the spot of light from a laser pointer or a dot following a

circular trajectory on a screen, moving at velocity v. This input can be
approximated as a Dirac d function, ri tð Þ ¼ d t � tpi

� �
, where tpi ¼ xi

v .
Then the probability distribution P tjð Þ becomes

P tjð Þ / w0G
xi � yj
sw

� �
¼ w0G

vti
sw

� �
¼ w0G

v tj � tdelayð Þ
sw

� �
; (5)

where G �ð Þ is the Gaussian distribution given in Equation 1.
Consequently,

Dwij /
ð1
�1

dti rðtiÞ
ð1
�1

dtj w0G
v tj � tdelayð Þ

sw

� �
FSTDP tj � ti � tdelayð Þ:

(6)

The time integral can be separated into the potentiation and depres-
sion contributions as

Dwij /
ð1
�1

dtid ti � tpi
� �

w0 cP

ð1
ti1tdelay

dtjG
v tj � tdelayð Þ

sw

� �"

exp � tj � ti � tdelayð Þ
t P

	 

� cD

ðti1tdelay

�1
dtjG

v tj � tdelayð Þ
sw

� �

exp
tj � ti � tdelayð Þ

tD

	 
�: (7)

Integrating over ti using the properties of the Dirac d function gives

Dwij / w0 cP

ð1
tpi 1tdelay

dtjG
v tj � tdelayð Þ

sw

� �
exp � tj � tpi � tdelay

� �
t P

( )2
4

�cD

ðtpi 1tdelay

�1
dtjG

v tj � tdelayð Þ
sw

� �
exp

tj � tpi � tdelay
� �

tD

( )�: (8)

Assuming STDP with equal potentiation and depression
(t ¼ tP ¼ tD and c ¼ cP ¼ cD) gives

0w

Apot

dep
motion

x

P
(w

)

B

Figure 3. Relative change in weights generated by STDP for motion of the point-stimulus
to the right. A, Each plotted line represents the change in weight, Dw, generated by a stim-
ulus with velocity, v = 0.05 (blue dash-dot), 0.1 (red dotted), 0.15 (cyan dashed), 0.2 (ma-
genta dashed) cycles per second, plotted relative to the x-coordinate of the input
(presynaptic) neuron. The Dw= 0 line is plotted as a black solid line, with potentiation (pot)
indicated for Dw. 0 and depression (dep) indicated for Dw, 0. B, The initial Gaussian
probability distribution of weights for one postsynaptic neuron in the upper layer neuron
receiving presynaptic inputs from the lower layer (as shown in Fig. 2).
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Dwij / cw0

ð1
0

dte�t=t G
vt1xi
sw

� �
� G

vt � xi
sw

� �" #
: (9)

This change in the weight wij as a function of the position xi of the
input neuron is plotted in Figure 3 for velocities v= 0.05, 0.1, 0.15, 0.2
cycles/s. The weights on the leading (incoming) side of the weight distri-
bution experience more potentiation than depression because of STDP,
whereas the weights on the tailing (outgoing) side of the weight distribu-
tion experience more depression than potentiation. This effect becomes
larger as the velocity increases and the relative change in weights
becomes larger.

For more realistic two-dimensional motion, as occurs with neural
activation of the retina, the above analysis can be extended in a straight-
forward fashion to two neuronal dimensions. Note that this expression
does not depend on the time delay tdelay, which is to be expected since
the delay is the same for all neurons between layers 1 and 2, and it is
only the relative times of the presynaptic and postsynaptic events at the
synapses that play a role in STDP. While this expression for Dwij

describes the essence of the mechanism by which the shift in weight dis-
tribution is in the direction opposite to the direction of motion of the
stimulus, there are a number of approximations that will influence the
magnitude of this effect. The above calculation uses the continuum
expressions for the weight density, whereas in reality each neuron has a
discrete number of synaptic inputs, which introduces a discretization
error to the above calculation. Also, for larger stimuli it is necessary to
use the more complete expression (Eq. 6), as this expression takes
account of the variability in spiking associated with stimuli with greater
spatial extent. In addition, this expression provides a description of only
the initial phase of learning, as there are two features of the neural
behavior that make it more difficult to give an analytical expression for
the complete weight evolution. First, the weights have an upper bound
(i.e., once a weight reach this upper bound, it cannot be further potenti-
ated), which introduces a non-linearity into the weight evolution.
Second, the probability of the level 2 neuron spiking depends on the
complete distribution of all its input weights, which are themselves con-
stantly changing through STDP. In the above expression only the initial
Gaussian distribution is used, whereas when learning progresses the dis-
tributions will become increasingly non-Gaussian, as described by the
receptive fields observed in the numerical simulations in Results,
Moving input stimulus.

Neural simulations
Simulations of a network were conducted using MATLAB with Nn =
2000 neurons at both the input layer and the first layer. The input layer
had Np = 32 place-fields, i.e., the width sp of the Gaussian place-fields
on the input layer was chosen to be sp = 1/Np to give place-fields that
were both localized and had a reasonable amount of overlap. The weight
distribution width, sw, was also chosen to be sw = 1/Np, and the width
of the resulting place field sRF,j of each neuron in the second layer was
measured from the distribution of weights after learning. This was done
by spatially binning the weight amplitudes and finding the width of the
resulting histogram, obtained by fitting the histogram to a normal distri-
bution. The width of the place fields in the second layer are distributed
around a value that will shift depending on the velocity of the stimulus,
so these are labeled as sRF,v, to indicate this velocity dependence. A
timestep of 1ms was used for the simulations, and velocities over the
range v 2 ½0; 5�, where the units of velocity are represented in terms of
the inverse time (s�1) taken to traverse the full spatial range x 2 ½0; 1�.

Code accessibility
Custom MATLAB code used for data analysis can be found at https://
github.com/Tony-Burkitt/Burkitt-Hogendoorn_2021_JNeurosci or can
be made available on request.

Results
The analysis here focuses on the first two layers of the network,
since the structure and function of the network follows the same
principles at each successive level of the layered network.

Stationary input stimulus
In order to illustrate the effects of a moving stimulus and to have
a baseline for comparison, we consider first the case with station-
ary inputs, i.e., in which the stimulus velocity is zero. We use a
single point stimulus with an amplitude 20 times greater than
the base firing rate. In this case, there is no change in stimulus
position over time, but rather stationary stimuli are presented for
short periods of time at random positions. When the stimulus
activates the input, it will generate activity in the units at the first
layer, as described in Materials and Methods, Neural model, and
illustrated in Figure 2. Because this generates constant input to
layer two, and a balanced STDP window is used, convolution by
the STDP function would not be expected to systematically
change synaptic weights. Consequently, the network maintains a
stable position code in each layer of the network, namely a local-
ized (Gaussian-like) place field at each layer that arises through
the variance of the STDP learning of the weights (Kempter et al.,
1998).

The organization of the receptive fields of the neural popula-
tions in the second layer therefore simply reflects the input in the
first layer, which has a spatial spread sp, and the activity trans-
mitted through the weights, which has a spatial spread of sW.
Figure 4 shows the results of a simulation for this case, in which
the neural population in the second layer generates a place field
representation of the input, as expected. The weights are initial-
ized with a small value and then evolve under STDP, as described
in Materials and Methods. In this way, the width of the place
field distribution at any layer depends on the width of the place
field at the preceding layer and the spatial spread of the synaptic
connections that connect the two layers.

Moving input stimulus
We now consider the case where the same point-stimulus is
moving. The velocity is chosen to have a discrete representation
(i.e., a discrete number of velocities are chosen for simplicity,
rather than a continuous representation), the place input distri-
bution is described by a Gaussian distribution of width sp, as
outlined above, and a simulation timestep Dt= 1 ms is used. A
stimulus moving at a velocity v has a place representation that
changes over time so that at a time Dt later it has shifted a dis-
tance Dx = v Dt. A moving object will sequentially activate suc-
cessive populations of level 1 neurons, which in turn project to
level 2. Importantly, a neuron in level 2 receiving input from
level 1 neurons driven by this moving object will tend to fire
more as the stimulus moves toward the center of its place field.
Because of STDP, inputs that arrive at the level 2 neuron rela-
tively early (before its peak firing rate) will be potentiated,
whereas inputs that arrive relatively late are likely to be depressed.

Figure 4. Place code in the second layer generated by learning. Each color represents the
neural activity of a population of neurons, illustrated here for a simulation with Np = 32
position populations in the second layer. The place distribution for the population centered
at the position x= 0.5 is shown in bold.
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Consequently, the synapses connecting a given level 2 neuron to
level 1 neurons centered on the direction from which the stimulus
is arriving will tend to be potentiated by STDP. Conversely, the syn-
apses on the other side (i.e., where the stimulus departs from the
place field), will tend to be depressed, since the inputs on average
arrive after the peak in output spiking activity.

We therefore hypothesize that for neural populations tuned
to visual motion, the pattern of arrival of synaptic inputs, to-
gether with STDP, will tend to potentiate the synapses in the
incoming direction of the stimulus and depress synapses in the
departing direction of the stimulus. This would then lead to an
overall shift of the place field in the direction toward the incom-
ing stimulus. Moreover, because of the limited temporal window
of STDP, the shift in the place fields of the level 2 neurons would
be expected to be larger for larger velocities.

To investigate this hypothesis, we simulated the activity of the
neural network when it was presented with simulated objects mov-
ing at a range of velocities, and investigated the evolution of the
receptive fields of level 2 populations over time. We investigated
neural populations tuned to 26 velocities, from zero to five cycles
per second in steps of 0.2 cycles per second (since we used periodic
boundaries, one cycle is equivalent to traversing the full range of
positions once). Because of the symmetry in our neural model, we
only considered rightwards velocities, but the network behaves
equivalently for leftward velocities. Each simulation ran for five
simulated seconds (5000 timesteps of Dt = 1 ms). The simulated
object at a single location provided input to the level 1 neurons
according to their respective place fields.

To evaluate whether receptive fields indeed shifted as a result
of learning, we calculated the mean receptive field of all level 2
neurons at each timestep by aligning the 32 level 2 place fields
and averaging their receptive fields at that timestep. This yielded
a mean receptive field as a function of simulation time for each
velocity. Figure 5 shows the evolution of receptive field position
over time for six evenly-spaced velocities (0–5 cycles/s).

Velocity dependence
To be able to directly compare how the evolution of level 2 recep-
tive fields depended on velocity, for each velocity we fitted

Gaussians to the average receptive field at each timestep (Fig. 6,
each row in each panel). We then repeated the entire simulation
15 times to reduce the impact of stochastic noise. Subsequently,
we averaged the horizontal center of the best-fit Gaussians across
all 15 iterations. Finally, we plotted this receptive field center as a
function of time, separately for each velocity. The result is illus-
trated in Figure 6.

We observed two key features. First, the initial rate at which
the receptive field centers of the different velocity-tuned popula-
tions shifted increased with velocity. At zero velocity the recep-
tive field center stayed in the same position, and as velocity
increased, the initial rate of change grew until it reached an as-
ymptote. This is perhaps unsurprising, because at lower velocities
the simulated object needs more time to traverse the receptive
fields of a given number of neurons. As a result, the object drives
fewer individual neurons, and in turn provides fewer opportuni-
ties for the network to learn.

Furthermore, the neural populations tuned to different veloc-
ities differed not only in their initial rate of change, but also in
the asymptote of that change. In other words, the spatial shift in
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Figure 5. Simulated receptive field position of level 2 neural populations as a function of learning, for six different rightward velocities. Top row, In each panel, the colors in each row of pix-
els show the horizontal receptive field position at a single timestep, with hot colors indicating stronger connections to incoming signals from level 1 populations centered on that position. The
center of the receptive field at each time point is marked by a black line. For clarity, only the first 2500ms of the simulation are shown. Bottom row, Mean receptive fields before (blue) and af-
ter learning (red). Together, these plots reveal that when velocity-tuned neural populations are presented with their preferred stimulus (here rightward), STDP causes their receptive field to
shift over time in the direction opposite to their preferred velocity (i.e., here leftward).

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.005

0.010

0.015

0.020

0.025

0.030

Figure 6. The evolution of receptive field center over time, as a function of velocity.
Colors represent populations tuned to 26 equally-spaced velocities, ranging from zero (red)
to five cycles per second (blue). For all non-zero velocities, receptive fields shifted against the
direction of motion, with a clear monotonic relationship between velocity and the asymptotic
magnitude of the shift.
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receptive field position at which subsequent timesteps produced
no further net change in position increased with velocity. This
observation is significant because the asymptote represents the
position of the receptive field after learning has effectively com-
pleted, and therefore reflects the stable situation in visual systems
that have had even a short history of exposure to moving stimuli.
The rate at which the asymptote is approached depends on the
STDP learning rate. Because these velocity-tuned populations
are subpopulations of an overall population coding for position
(as illustrated schematically in Fig. 2), the overall population
effectively represents a moving object ahead of where a physi-
cally-aligned static stimulus is represented. As a consequence, we
might expect the asymptotic receptive field shift to be similarly
reflected in conscious perception as the instantaneous perceived
position of a moving object.

Behavioral predictions
Our model reveals how STDP-induced shifts in receptive field
position depend on velocity. In this section of this paper, we eval-
uate the degree to which these predictions match observed
dependencies on velocities in the localization of moving objects
by healthy human observers.

A much-studied behavioral paradigm used to probe the in-
stantaneous perceived position of a moving object is the flash-lag
paradigm, in which a flashed object is briefly presented alongside
a moving object (Nijhawan, 1994). Observers are then required
to report where they perceived the moving object to be at the
moment the flashed object was presented. Strikingly, in this para-
digm observers consistently localize the moving object ahead of
the physically aligned flashed object, a phenomenon known as
the FLE (Nijhawan, 1994). Although the mechanisms underlying
this effect have been hotly debated over the last 25 years, conver-
gent evidence supports Nijhawan’s original proposal that it
reflects some kind of neural motion extrapolation process
(Nijhawan, 1994; Hogendoorn, 2020). What is particularly rele-
vant to the present context is that the effect has been observed to
scale with velocity (Wojtach et al., 2008): when an object moves
faster, its perceived position at any given instant lies further
along the object’s trajectory.

In our model, the perceived position of a moving object cor-
responds to the level 2 neural population activated by that object.
As outlined in the previous section "Velocity dependence", this is
determined by the asymptotic receptive field position after

learning. As a measure of asymptotic receptive field shift after
learning, we averaged the receptive field shift in the final 100ms
of our simulation (Fig. 6, 100 rightmost datapoints for each
curve), averaged across the 15 iterations of the simulation. We
subsequently fitted a logarithmic function to the data, as has pre-
viously been done for behavioral estimates of perceived position
shifts using the FLE (Wojtach et al., 2008). This function
explained a total of 96.8% of the variance, showing that the de-
pendence of final receptive field position on velocity was very
well described by a logarithmic relationship (Fig. 7).

In order to compare the perceptual shifts predicted by our
model to those measured in behavioral experiments with human
observers, we compared the velocity dependence of receptive
field shifts in our model to the velocity dependence of the FLE,
as previously measured for the full range of detectable velocities
by (Wojtach et al., 2008). We noted that the magnitudes of both
RF-shifts in our model and perceptual shifts in the FLE were
very well-described by a logarithmic dependence on stimulus ve-
locity (Figs. 7, 8A). We then directly compared RF-shifts in our
model to perceptual shifts in the FLE by treating the maximum
velocities tested in each paradigm to be equal. For the behavioral
paradigm, this was 50°/s, the highest velocity at which an FLE
could be measured (Wojtach et al., 2008). For our model, this
was five cycles per second, at which point the period of the
motion (200ms) reached the approximate width of the STDP
window. The correlation between RF-shifts in our model and
perceived position shifts in the FLE was near perfect (r. 0.99).
Note that this pattern of results arose spontaneously as a result of
STPD, without requiring any tuning of the model. This shows
that the velocity dependence of STDP-induced receptive-field
shifts in our model very closely matches the velocity dependence
of perceptual mislocalization for moving objects as measured
using the FLE.

Finally, we compared the absolute magnitude of the shifts in
receptive field position produced by our model to the absolute
magnitude of perceptual shifts observed in the FLE. To do so, we
expressed the magnitude of the shift at each velocity as a time
constant, by dividing shift magnitude by velocity. This is equiva-
lent to the time necessary for an object moving at that velocity to
be displaced a distance equivalent to the receptive field shift (Fig.
8C). We observed that for both the FLE and our model, this time
constant tended to decrease exponentially with increasing veloc-
ity (exponential fits explained 96.3% and 98.5% of variance in
FLE and model time constants, respectively). Across the entire
range of velocities tested, the time constant produced by our
model was ;12–20% of the time constant for the behaviorally-
measured FLE, as might be expected given that our model
reflected receptive field shifts in just a single layer of synaptic
connections.

Parameter dependence
Parameters in our model were chosen to be biologically plausible.
For some parameters, choosing different values would be
expected to have predictable effects. For example, varying the
STDP learning rate r (Eq. 2), would be expected to cause the
model to converge to its asymptotic state either more rapidly or
more slowly. However, we would not expect it to change the as-
ymptotic state itself, merely the simulation time necessary to
reach that state. Indeed, we deliberately chose a relatively high
learning rate to keep the computation tractable; we would not
expect a biological system to reach its asymptotic state within
just 5 s of exposure.
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Figure 7. Velocity dependence of asymptotic receptive field shifts. Marker colors corre-
spond to velocities in Figure 6, and the dashed line represents a logarithmic fit to the data,
explaining 96.8% of variance.
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For other parameters, it is less obvious how choosing different
values would affect the pattern of results. In particular, we chose a
value of 32 for Np, the number of place fields in each layer. This pa-
rameter corresponds loosely to the size of receptive fields at each
layer, and might be expected to vary for neurons in different areas
in retinotopic visual cortex. For example, place field width inevitably
varies as a function of eccentricity, with foveal retinotopic areas
showing smaller receptive fields than peripheral retinotopic areas.
To investigate the effect of manipulating this parameter, we ran
additional simulations with higher (64) and lower (16) values of Np.
Although we observed small differences in the absolute magnitude
of predicted receptive field shifts, the overall pattern of results was
very similar (Fig. 9). In particular, the pattern of velocity depend-
ence for both absolute receptive field shifts and the equivalent time
constants was highly similar, giving confidence that our results are
not restricted to a small region of parameter space.

Discussion
We investigated a computational problem faced by the brain in
processing the visual position of moving objects: the fact that

neural transmission takes time, and that the brain therefore only
has access to outdated visual information. Motion extrapolation
is one way the brain might compensate for these delays: by
extrapolating the position of moving stimuli along their trajec-
tory, their perceived position would be closer to the their physi-
cal position in the world (Nijhawan, 1994, 2008; Hubbard, 2005;
Hogendoorn, 2020). We simulated a possible neural mechanism
(STDP) by which a layered neural network might implement
such an extrapolation mechanism. We show that a two-layer
hierarchical network comprised of velocity-tuned neural popula-
tion is not only able to implement motion extrapolation, but
actually learns to do so spontaneously without supervision, due
only to the temporal contingencies of its connectivity. We go on
to show that the velocity dependence of the resulting receptive
field shifts predicts previously reported, behaviorally measured
effects on the perceived position of moving objects.

The magnitude of the receptive field shifts we observe for
each velocity in our simulations corresponds roughly to the
equivalent displacement resulting from 10 to 20ms of motion at
that velocity. Although this is five to eight times smaller than the
FLE, it is important to note that the model analyzed here
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includes just two layers, and only one stage at which learning
takes place. If we were to extend our model to include additional
layers, each with comparable properties, then each output layer
would constitute the input layer for the synapses at the next
stage. As a result, we would expect the same learning process,
and therefore the same receptive field shift, to take place at each
stage. In this way, receptive field shifts would add up as informa-
tion ascends the hierarchy. Although it is unknown which corti-
cal areas ultimately determine where we consciously perceive a
moving object, it seems highly likely that information from the
retina will cross at least a handful of synapses before it is accessed
for conscious awareness. The magnitude of the receptive field
shifts predicted by our model are therefore of roughly the same
order of magnitude as, and comparable to, those we would
expect based on the magnitude of the perceptual effect.

It is interesting to note that the FLE is just one of several
related motion-position illusions in which the position of a mov-
ing object is biased by motion (Eagleman and Sejnowski, 2007).
In the Fröhlich effect (Kirschfeld and Kammer, 1999), for exam-
ple, a moving object suddenly appears, and the perceived initial
position of the object is mislocalized in the direction of motion.
The pattern of receptive fields shifts that we observe in our
model can also qualitatively explain the Fröhlich effect. Subtle
differences with the FLE paradigm (such as the likely transient
neuronal onset response to the initial appearance of the moving
object in the Fröhlich effect) are not currently captured by our
model, but a direct comparison of predictions for these (and
other) illusions could be informative to further develop the
model.

The magnitude of receptive field shifts predicted by our
model is also consistent with previous neurophysiological
recordings as well as human neuroimaging. Jancke and col-
leagues (Jancke et al., 2004) recorded neurons in cat V1,
and compared the latencies of responses to flashes with the
latencies of responses to smoothly moving objects. They
observed that peak neural responses to smoothly moving
objects were ;16 ms further along the motion trajectory
than peak responses to static flashed objects. Almost identi-
cal results were found by Subramaniyan and colleagues
(Subramaniyan et al., 2018) who recorded neurons in V1 of
awake macaques, and observed a latency advantage for
moving stimuli compared with flashed stimuli of between
10 and 20 ms depending on stimulus velocity. These results
from invasive recordings in cats and macaques are therefore
in quantitative agreement with the predictions of our
model. In humans, we recently used an EEG decoding para-
digm to investigate the latency of neural responses to pre-
dictably and unpredictably moving objects (Hogendoorn
and Burkitt, 2018). Using an apparent motion paradigm, we
showed that when objects move along predictable trajecto-
ries, their position is represented with a lower latency than
when they move along unpredictable trajectories. Like the
neurophysiology studies, we observed a latency of 16 ms for
the predictably moving object. Our present modeling result
is therefore consistent not only with behavioral measure-
ments of motion perception, but also with neural record-
ings in both humans and animals.

The mechanism underlying our results is the same property
of STDP that causes neurons to tune to the earliest spikes (Song
et al., 2000; Guyonneau et al., 2005), which has diverse manifes-
tations in the brain’s neural circuits, including in the context of
phase precession in the hippocampus (Mehta et al., 2000) and of
localizing a repeating spatiotemporal pattern of spikes that were

embedded in a noisy spike train (Masquelier et al., 2008).
Essentially STDP leads to potentiation of the weights associated
with the leading edge of the receptive field as the receptive field
is entered, and depression of weights on the trailing edge as the
motion moves out of the neuron’s receptive field as illustrated in
Figure 3. Our study extends the understanding of this mecha-
nism by examining the velocity dependence of this effect. It is
important to note that in our model, the extrapolation mecha-
nism emerged spontaneously and without supervision, simply as
a result of STDP. By extension, extrapolation would similarly be
expected to develop spontaneously in any hierarchical network
of velocity-selective populations when it is exposed to visual
motion. Furthermore, it would be expected to arise between ev-
ery layer in such a network. This structure of extrapolation
mechanisms at multiple levels of the visual hierarchy is consist-
ent with previous empirical findings showing extrapolation at
both monocular and binocular stages of processing (van
Heusden et al., 2019). It is also consistent with the real-time tem-
poral alignment hypothesis that we recently proposed
(Hogendoorn and Burkitt, 2019) as a theoretical extension of
classical predictive coding (Rao and Ballard, 1999), although this
hypothesis also posited feedback projections that are not
included in our current model. Indeed, the network architecture
considered here is entirely feed-forward, which presumably rep-
resents a good model for the initial wave of neural activity travel-
ing through the visual pathway in response to a stimulus, but
neglects the feedback activity from higher visual centers. This de-
scending feedback activity, which occurs and can persist over a
longer timeframe than the initial wave of neural activity, may
play an important role in the understanding of temporal process-
ing in the brain on these longer timescales.

The mechanism here differs from that proposed by Lim and
Choe (2006), who show that STDP, together with facilitating
synapses, can provide a neural basis for understanding the orien-
tation FLE, a visual illusion involving the perceived misalign-
ment of a rotating bar, which is located between two aligned
flanking bars that briefly flash when the rotating bar is aligned
with them. Importantly, their model architecture is different,
involving a bilaterally ring-connected network of orientation-
tuned neurons, in which the lateral connections between these
neurons are trained using a combination of STDP and activity-
dependent facilitation, rather than the feedforward connections
examined in our study. They also did not examine the velocity
dependence of the effect.

The network and learning parameter values chosen for this
proof-of-concept study represent values consistent with cortical
neural processing, but without incorporating many of the details
of visual processing in the human visual pathway. The descrip-
tion of the neural activity in terms of a Poisson process is a
widely used approximation for the time distribution of action
potentials. Although it neglects all spike after-effects, such as
refractoriness, it nevertheless provides a good description for the
situation examined here in which the visual stimulus moves with
a constant velocity and is modeled as having a spatial intensity
distribution that is Gaussian, without any edges or other spatial
discontinuities (Aviel and Gerstner, 2006). The STDP time con-
stants of potentiation and depression, tp and td, are chosen to
both have a value of 20ms, which is in the range of that observed
in neurons in the visual cortex (Froemke and Dan, 2002).

In the primate visual system, the processing of motion begins
in the retina, where it has long been known that there are direc-
tion-selective retinal ganglion cells (Barlow and Hill, 1963;
Barlow et al., 1964). These neurons are maximally activated by
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motion in their preferred direction and strongly suppressed by
motion in the opposite direction. Within the retina there are a
number of mechanisms involving multilayered retinal circuits
that provide reliable motion detection (Frechette et al., 2005;
Manookin et al., 2018), consistent with the broad experimental
evidence for velocity tuning neurons in the retina of mammals
and other vertebrates (Olveczky et al., 2007; Vaney et al., 2012;
Ravello et al., 2019; for review, see Wei, 2018). This motion selec-
tive information is presumably transmitted via the LGN to the
V1, where direction selective neurons are concentrated in layer
4B of V1 and project from there to higher motion processing
areas of the visual hierarchy pathway, particularly area MT
(Maunsell and van Essen, 1983).

In the analysis presented here, we have made the simplifying
assumption that the same principles apply at each successive
level of a layered network. However, in the visual system, the
receptive fields of neurons at successive levels become progres-
sively larger as information moves up the visual hierarchy. For
example, a motion selective neuron in area MT which has a
receptive field of 10° diameter receives its input from neurons in
V1 that have receptive fields of 1° diameter (Andersen, 1997).
The restricted receptive field of neurons in the lower stages of
this vision processing hierarchy can result in ambiguous motion
signals as a result of the aperture effect. Consequently, at each
successive stage of the visual hierarchy the motion information is
not only transmitted, but it also can be refined: the information
at earlier stages is integrated so that the motion of larger objects
can be more accurately determined and objects moving at differ-
ent speeds are disambiguated – for a review see Bradley and
Goyal (2008). The larger receptive field sizes in the higher stages
of the hierarchy correspond to broader place field representa-
tions, which it would be straightforward to accommodate in a
multi-layer extension of the processing framework presented
here. It may also be possible that the dorsal and ventral pathways
of the visual system (i.e., the “where” and the “what” pathways)
have very different encoding of velocity. While the dorsal path-
way relies on an accurate representation of position and the vis-
ual motion extrapolation analyzed here, it is possible that in the
ventral pathway the velocity coding is so broadly tuned that it is
effectively absent.

In the analysis presented here, we have for convenience used
a discrete coding of the velocity, rather than allowing it to take a
continuum of values from zero up to some maximal value.
Consequently, an object with changing velocity will, in this sim-
plified model, make discrete jumps between velocity subpopula-
tions. It is, however, also possible to formulate the velocity using
such a continuous representation, for example, as a set of over-
lapping Gaussian distributed velocity fields similar to the (spa-
tial) place fields. We anticipate that this would give a smoother,
possibly more biologically plausible, transition between velocity
subpopulations, but that it would not change the essential results
of this study in any significant way.

In sum, we have implemented STDP in a layered network of
velocity-selective neurons, and shown that this results in a pat-
tern of receptive-field shifts that causes the network to effectively
extrapolate the position of a moving object along its trajectory.
The magnitude of this shift is in quantitative agreement with pre-
vious findings from both animal neurophysiology and human
neuroimaging experiments, and also qualitatively predicts the
perceptual mislocalization of moving objects in the well-known
FLE. Most strikingly, we show that it emerges spontaneously and
without supervision, suggesting that extrapolation mechanisms
are likely to arise in many locations and at many levels in the vis-
ual system.

Finally, the model we present here includes only feed-forward
connections, and a natural extension to the model would be to
include lateral and/or feedback connection. Previous modeling
work, most notably by Jancke and Erlhagen (2010), has proposed
an instrumental role for lateral connections in generating the
perceptual mislocalization that characterizes the FLE. It would
be interesting to investigate in more detail what the emergent
characteristics would be of a network implementing both STDP
and lateral connectivity, and whether that would explain any
other perceptual phenomenology. In a similar vein, it would be
interesting to implement feedback connections in the model we
present here, as we proposed in our previous real-time temporal
alignment hypothesis (Hogendoorn and Burkitt, 2019). An excit-
ing possibility is that these feedback connections might function
to calibrate receptive field shifts to the relative transmission
delays between layers in the hierarchy, allowing extrapolation
mechanisms to accurately compensate for processing delays.
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