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VGLUT?2 Is a Determinant of Dopamine Neuron Resilience
in a Rotenone Model of Dopamine Neurodegeneration
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Parkinson’s disease (PD) is characterized by progressive dopamine (DA) neuron loss in the SNc. In contrast, DA neurons in the VTA
are relatively protected from neurodegeneration, but the underlying mechanisms for this resilience remain poorly understood. Recent
work suggests that expression of the vesicular glutamate transporter 2 (VGLUT2) selectively impacts midbrain DA neuron vulnerabil-
ity. We investigated whether altered DA neuron VGLUT2 expression determines neuronal resilience in rats exposed to rotenone, a mi-
tochondrial complex I inhibitor and toxicant model of PD. We discovered that VTA/SNc DA neurons that expressed VGLUT2 are
more resilient to rotenone-induced DA neurodegeneration. Surprisingly, the density of neurons with detectable VGLUT2 expression in
the VTA and SNc increases in response to rotenone. Furthermore, dopaminergic terminals within the NAc, where the majority of
VGLUT2-expressing DA neurons project, exhibit greater resilience compared with DA terminals in the caudate/putamen. More
broadly, VGLUT2-expressing terminals are protected throughout the striatum from rotenone-induced degeneration. Together, our data
demonstrate that a distinct subpopulation of VGLUT2-expressing DA neurons are relatively protected from rotenone neurotoxicity.
Rotenone-induced upregulation of the glutamatergic machinery in VTA and SNc neurons and their projections may be part of a
broader neuroprotective mechanism. These findings offer a putative new target for neuronal resilience that can be manipulated to pre-
vent toxicant-induced DA neurodegeneration in PD.
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Environmental exposures to pesticides contribute significantly to pathologic processes that culminate in Parkinson’s disease
(PD). The pesticide rotenone has been used to generate a PD model that replicates key features of the illness, including dopa-
mine neurodegeneration. To date, longstanding questions remain: are there dopamine neuron subpopulations resilient to ro-
tenone; and if so, what are the molecular determinants of this resilience? Here we show that the subpopulation of midbrain
dopaminergic neurons that express the vesicular glutamate transporter 2 (VGLUT2) are more resilient to rotenone-induced
neurodegeneration. Rotenone also upregulates VGLUT2 more broadly in the midbrain, suggesting that VGLUT2 expression
generally confers increased resilience to rotenone. VGLUT2 may therefore be a new target for boosting neuronal resilience to
prevent toxicant-induced DA neurodegeneration in PD. j
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Introduction

Parkinson’s disease (PD) is a neurodegenerative movement
disorder characterized by a loss of dopaminergic (DA) neu-
rons in the SNc¢ (Nussbaum and Ellis, 2003; de Lau and
Breteler, 2006; Wood-Kaczmar et al., 2006). DA neurons of
the VTA, however, are relatively protected from DA neuro-
degeneration (Surmeier, 2018). An important clue to resil-
ience of VTA DA neurons is that a significant fraction of
these cells express the vesicular glutamate transporter 2
(VGLUT2), which packages glutamate into synaptic vesicles
(Shen et al., 2018; Mingote et al., 2019). In contrast, in the
adult SNc, VGLUT2" DA neurons constitute <5% of the
total DA neuron pool (Dal Bo et al., 2008; Bérubé-Carriére et
al., 2009). Although the precise purpose and mechanisms of
DA/glutamate corelease from these VGLUT2-expressing DA
neurons remain controversial, VGLUT2" DA neurons are
more likely to survive neurotoxic insults in several preclini-
cal PD models, suggesting that VGLUT2 expression in DA
neurons confers increased resilience (Dal Bo et al., 2008;
Bérubé-Carriére et al., 2009; Shen et al., 2018; Steinkellner et
al., 2018). Consistent with this, conditional VGLUT2 KO
from DA neurons increases vulnerability to cell loss in
response to DA neurotoxins (Shen et al., 2018; Steinkellner
et al., 2018). Moreover, striatal VGLUT2 expression is upreg-
ulated both in preclinical models and clinical PD (Kashani et
al., 2007; Dal Bo et al., 2008; Zheng et al., 2019). In all, these
data suggest that DA neuron VGLUT2 expression modifies
vulnerability.

While DA neurotoxin models of PD, including 6-OHDA and
MPTP, have been carefully examined in studies of VGLUT2’s
roles in DA neuron vulnerability (Shen et al., 2018; Steinkellner
et al., 2018), it remains unknown whether VGLUT?2 is similarly
implicated in vulnerability to rotenone, a pesticide and prototyp-
ical mitochondrial complex I inhibitor (Betarbet et al., 2000;
Cannon et al,, 2009). Unlike other toxicant models, rotenone
causes significant and progressive deficits in the autophagy-lyso-
somal pathway, neuroinflammation, and accumulation of intra-
cellular protein (e.g., a-synuclein), recapitulating hallmark
pathology observed in human PD (De Miranda et al, 2019;
Rocha et al.,, 2020). Critically, environmental toxicants, such as
rotenone, play important roles in causing sporadic PD and/or
amplifying preexisting PD risk (Betarbet et al., 2000; Tanner et
al.,, 2014; Kolber and Kriiger, 2019). Indeed, environmental expo-
sures to rotenone years before clinical symptoms may trigger the
biological processes that lead to DA neurodegeneration (Tanner
et al., 2014). The rotenone model can therefore reveal broader,
shared mechanisms of action by which DA neuron VGLUT2
expression modifies vulnerability compared with stressors such
as 6-OHDA which produce a narrower constellation of patho-
logic changes in dopaminergic cells, as well as offer new insights
into environmental precipitants of sporadic PD (Betarbet et al.,
2002; Cannon et al., 2009).

Here, using a combination of multiplex RNAscope and immu-
nohistochemical approaches, we discovered that midbrain DA neu-
rons that express VGLUT?2 are more resilient to neurodegeneration
caused by rotenone. In addition, rotenone treatment significantly
increased the density of VGLUT2-immunoreactive puncta (i.e., pu-
tative glutamatergic terminals) in the VTA and SNc. Moreover,
striatal nerve terminals expressing VGLUT2 are more resilient to
rotenone-induced degeneration. Together, our findings suggest that
VGLUT?2 expression is a critical component of a more global sur-
vival response that offers protection from rotenone-induced
neurodegeneration.
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Materials and Methods

Animal husbandry

Adult 10-month-old male Lewis rats (Envigo) were separated into sin-
gle-housing 2 weeks before the beginning of experiments and handled
daily to minimize stress. This study was limited to male Lewis rats since
the dosage of rotenone that causes severe, symptomatic DA neurodegen-
eration in male rats (2.8 mg/kg) does not cause dopaminergic degenera-
tion in females (De Miranda et al., 2019), making it difficult to directly
compare males versus females using the same rotenone dose. The rats
were maintained under standard temperature-controlled conditions
with a 12 h light-dark cycle, and food and water were available ad libi-
tum. All animals were cared for in accordance with all appropriate ani-
mal care guidelines according to the National Institutes of Health
Animal Care and Use Program as well as the Animal Research:
Reporting of In Vivo Experiments guidelines for reporting animal
research (Drummond et al., 2010). Moreover, every effort was made to
ameliorate animal suffering. All experiments were approved by the
University of Pittsburgh Institutional Animal Care and Use Committee.

Rotenone administration

Rotenone was dissolved in 2% DMSO and Miglyol 812 (IOI Oleo) to
reach a final concentration of 2.8 mg/kg. Rotenone and vehicle (2%
DMSO and Miglyol 812) groups were randomly assigned and adminis-
tered a daily intraperitoneal injection. Rotenone-treated animals were
determined to have reached a motor behavioral endpoint once severe
bradykinesia or a loss of 25% of body mass was observed. Once at end-
point, animals were killed with pentobarbital followed by decapitation.
For immunohistochemistry experiments, animals were transcardially
perfused with 4% PFA; and after 24 h fixation in PFA, brains were trans-
ferred to 30% sucrose and stored at 4°C until sectioned using a freezing
microtome. For ISH experiments, brain tissue was flash frozen in pow-
dered dry ice and stored at —80°C before sectioning.

Motor behavior

Motor deficits were assessed daily using the Postural Instability Test
(PIT), which can measure changes in forelimb motor dysfunction,
including detection of the development of asymmetry (between left and
right paws), as described previously (Woodlee et al., 2008; Cannon et al.,
2009; De Miranda et al., 2018, 2019). Briefly, rats (vehicle: N = 3; rote-
none: N=3) were first habituated to handling for 2 weeks before the
study to minimize stress. In performing the PIT, each rat was held with
1 forelimb immobilized, and the opposite forelimb was placed on a
metered surface with texture to prevent slipping. The animal was slowly
moved forward until the forelimb was in contact with the surface, forc-
ing the subject to take a step (distance to trigger), and the distance (in
centimeters) was recorded as the PIT. The PIT consisted of an average of
three trials per day for each animal and was conducted until each rat
reached its motor behavioral endpoint, defined as the rat’s inability to
successfully complete the PIT, by becoming akinetic. All behavioral tests
were conducted by fully blinded investigators.

Stereology

Stereological analysis of dopamine neuron number in the SNc was per-
formed by an experimenter blinded to the treatment group via a protocol
adapted from Tapias et al. (Tapias et al, 2013; Tapias and Greenamyre,
2014) and further described previously (De Miranda et al., 2018, 2019;
Zharikov et al., 2019; Rocha et al., 2020). Briefly, nigral tissue sections were
stained for TH and counterstained with DAPI, since NeuN is not a reliable
marker of DA neurons (Cannon and Greenamyre, 2009), and fluorescent
Nissl NeuroTrace Dye (640; Thermo Fisher Scientific, Invitrogen). Sections
were imaged on a Nikon 90i upright fluorescence microscope equipped
with high NA plan fluor/apochromat objectives, Renishaw linear encoded
microscope stage (Prior Electronics) and Q-imaging Retiga cooled CCD
camera (Center for Biological Imaging, University of Pittsburgh). Collected
images were then processed using Nikon NIS-Elements Advanced Research
software (version 4.5, Nikon), which enabled unbiased, automated quantita-
tion of colocalizing DAPI, TH, and Nissl-positive stains.
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Table 1. Primary antibody information
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Antigen Antibody catalog information Company Host species Immunohistochemistry/immunocytochemistry concentration
TH AB1542 EMD Millipore Sheep 1:2000

VGLUT2 Ab79157 Abcam Mouse 1:500

VGLUT2 135403 Synaptic Systems Rabbit 1:250

[B-Actin Ab8226 Abcam Mouse 1:1000

FISH brain tissue sections were washed with PBS, and then immunostained

Multiplex RNAscope mRNA detection. Our multiplex RNAscope
detection of mRNA expression employed protocols and reagents estab-
lished for fresh-frozen tissue by Advanced Cell Diagnostics (Newark,
California) as described previously (Erben and Buonanno, 2019). Brains
(vehicle: N=5; rotenone: N =4) were cryostat-sectioned, and two tissue
sections (20 pum) were collected at —5.3 mm from bregma, followed by
mounting onto Superfrost Plus slides (Thermo Fisher Scientific). Slides
were immersed in chilled 4% PFA and then switched to 50% ethanol, fol-
lowed by 70% ethanol and then 100% ethanol. A hydrophobic barrier
was drawn on the slide around the tissue, and then slides were incubated
in Pretreatment 3 to cover the tissue. Probes for rat VGLUT2 (Channel
1, Alexa-488; ACD) and rat TH (Channel 2, Atto 550, ACD) mRNAs
were added to completely cover the tissue, and slides were incubated at
40°C in an EZ Hybridization oven (ACD). After incubation, slides were
washed twice and incubated with Amplification Reagent (Ampl) at 40°
C. The wash and incubation steps were repeated with Amp2, Amp3, and
Amp4 reagents. Slides were then incubated with DAPI at room tempera-
ture for cell nucleus labeling and mounted with Prolong Gold Antifade
Mountant (Thermo Fisher Scientific, Invitrogen).

Fluorescence microscopy and image analysis of mRNA expression.
Images were acquired with an Olympus IX83 inverted fluorescence
microscope (Olympus America) equipped with a Hamamatsu ORCA-
Flash4.0 CCD camera (Hamamatsu) and high-precision BioPrecision2
XYZ motorized stage with linear XYZ encoders (Ludl Electronic
Products) using a 60 x 1.4 NA SC oil immersion objective. Image stacks
(2048 x 2048 pixels; 0.2 um z steps) were taken over the total tissue
thickness in the VTA and SNc and were randomly selected using a grid
of 100 pm? frames spaced by 500 um, leading to imaging of 8-18 sites
per hemisphere. Image collection and processing were performed using
Slidebook 6.0 (Intelligent Imaging Innovations) and MATLAB (The
MathWorks) software. First, a Gaussian channel was constructed for
each channel by calculating a difference of Gaussians using o values of
0.7 and 2. Images were then separated into quantitative TIFF files of
each individual channel and transferred to the HALO image analysis
platform equipped with a fluorescent ISH add-on (version 3.0, Indica
Labs). Using HALO software, DAPI-stained nuclei were quantified as
any 40-500 pm? object; VGLUT2" and TH™ puncta were quantified as
any 0.1-0.5 um® object. After determining the average puncta density
levels for each group (VGLUT2/vehicle: 2.7 puncta/DAPI-stained nu-
cleus; VGLUT?2/rotenone: 3.0 puncta/DAPI-stained nucleus; TH/vehicle:
27.7 puncta/DAPI-stained nucleus; TH/rotenone: 6.0 puncta/DAPI-
stained nucleus), thresholds were set as follows: 10 mRNA grains for
VGLUT?2, 20 mRNA grains for TH. These thresholds represented ~3
times the smaller observed density level and were used as cutoffs for pos-
itive cells to eliminate false positives that occur because of nuclei neigh-
boring positive cells. Therefore, a DAPI-stained nucleus was deemed
VGLUT2" if it contained a minimum of 10 VGLUT2 puncta within
5 pm of the nucleus edge, and a cell was determined to be TH™ if it con-
tained a minimum of 20 TH puncta within 5 um of the nucleus edge.

Immunohistochemistry

Staining. Serial sections (35 um thickness, vehicle: N =4-7; rotenone:
N=5-8 for SN, vehicle: N=3; rotenone: N=3 for VTA, vehicle: N=6,
rotenone: N=3-6 for striatum) encompassing the entire ventral mid-
brain and/or striatum in a 1/6 series were cut on a freezing microtome.
Uniform anatomic landmarks between animals were identified based on
bregma area. We selected sections that aligned with bregma —5.30 mm,
encompassing the medial SN. All sections were maintained at —20°C in
cryoprotectant before performing immunohistochemistry. Free-floating

with TH and VGLUT?2 antibodies (Table 1). The specificity of both TH
and VGLUT2 antibodies has been previously described (Herzog et al.,
2006; Zhang et al., 2015; Wang et al., 2016; Strand et al., 2018). Sections
were incubated with anti-mouse 555, anti-rabbit 488, and/or anti-sheep
647 secondary antibodies raised in donkey (Invitrogen). Sections were
then mounted onto glass slides for imaging. Additionally, we used a “pri-
mary antibody delete” (secondary antibody-only) stained section to sub-
tract background fluorescence.

Confocal microscopy and image analysis of protein expression in the
ventral midbrain. Images were acquired using an Olympus BX61 confo-
cal microscope equipped with 60x and 100X oil immersion objectives;
equipment was controlled by Fluoview 1000 software (Olympus
America). Imaging parameters, including laser power and exposure
times, were held constant across all samples, and quantitative fluores-
cence measurements were thoroughly monitored to ensure that images
contained no saturated pixels. As noted above, the sections we selected
and analyzed for TH and VGLUT2 staining all aligned with bregma
—5.30 mm, encompassing the medial SN. Analysis was performed using
Nikon NIS-Elements Advanced Research software (version 4.5) and
ImageJ (National Institutes of Health). At least 6 images were analyzed
per slice per animal, averaging 9-15 neurons per image (~180 cells per
animal, per histologic stain). After background subtraction, fluorescent
objects were size gated between 0.05 and 0.7 pm® (Rocco et al., 2016).
Notably, all puncta analyzed were fully contained within each virtual
counting frame and thus unaffected by sectioning angle.

For distinguishing and quantifying the VGLUT2" puncta localized
to midbrain TH™ cells versus on DA cell membranes (e.g., presynaptic
inputs), an automated detection function of Nikon Elements Advanced
Research Software (NIS-AR, version 4.5) was used to: (1) identify the
ROI boundaries of TH" dopaminergic neurons using an autodetect set-
ting to limit user bias, based on the presence of TH immunofluorescence
in a 100X brain tissue image. (2) NIS-AR parameters were set to exclude
any puncta touching the ROI boundary, as these puncta could not be
ruled out as synaptic inputs from other neurons. (3) NIS-AR autode-
tected VGLUT2" puncta within the ROI boundary of each TH™ neuron,
with defined parameters to exclude size (<10 pixels). Results were
reported as numbers of TH" cells, numbers of puncta within TH" cells
(i.e., number of objects per TH" cell), and intensity of TH" and
VGLUT2" puncta.

Confocal microscopy and image analysis of protein expression in the
striatum

For studies of striatal TH™ and VGLUT2" puncta colocalization, images
were collected on an Olympus IX81 inverted microscope equipped with
an Olympus spinning disk confocal unit, Hamamatsu ORCA-Flash4.0
CCD camera and high precision BioPrecision2 XYZ motorized stage
with linear XYZ encoders using a 60 x 1.40 NA SC oil immersion objec-
tive. Equipment was controlled by SlideBook 6.0 software. 3D image
stacks (1024 x 1024 pixels, 0.25 um z steps) were acquired over 50% of
the total thickness of the tissue sections. Caudate/putamen (CPu) and
NAc were identified using previously described stereotactic coordinates
(Paxinos and Watson, 2007), and image stacks were randomly selected
using a sampling grid of 100 um? frames spaced by 1250 pm, leading to
imaging of 8-12 sites per section. Each fluorescent channel was decon-
volved using Autoquant’s Blind Deconvolution algorithm. Then, a
Gaussian channel was made for each deconvolved channel by calculating
a difference of Gaussians using o values of 0.7 and 2. The Gaussian
channel was used for data segmentation only, which was performed via
MATLAB. For segmentation, object masks were created using a size-gat-
ing 0f 0.05-0.7 um® as performed previously (Rocco et al., 2016). Density
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of overlapping VGLUT2" and TH™ puncta (at least one voxel) was ana-
lyzed in the CPu and NAc. To confirm the levels of puncta overlap were
not because of random chance from overlaying two densely labeled
channels, TH- and VGLUT2-immunoreactive pixels were selected using
Costes” automatic thresholding (Costes et al., 2004), grouped into blocks
of 7 x 7 pixels, and randomized 200 times. The average correlation coef-
ficient (Pearson’s r) of the 200 randomized permutations was compared
with the correlation coefficients of TH and VGLUT?2 pixels in the actual
image. For all immunohistochemical analyses, all fluorescent puncta an-
alyzed were fully contained within the sampling grid.

N27 cell rotenone treatment

The N27-A rat dopaminergic neuronal cell line was plated onto glass
coverslips coated with poly-D-lysine (Thermo Fisher Scientific) at a den-
sity of 1 x 10° cells per well and cultured using standard DMEM media
plus L-glutamine (Invitrogen, Thermo Fisher Scientific) with 1x penicil-
lin/streptomycin and 10x FBS supplements. Twenty-four hours after
plating, N27-A cells were treated with 100 nM rotenone or vehicle
(DMSO) for a 24 h period and subsequently fixed using 4% PFA. The
cells were stained for [B-actin (ab8226, Abcam) and VGLUT2 (135403,
Synaptic Systems), followed by corresponding secondary antibodies
AlexaFluor-488 and -555 (Thermo Fisher Scientific). Immunocytochemistry
images were obtained using an Olympus BX61 confocal microscope and
Fluoview 1000 software.

Statistical analysis

All data are expressed as mean * SEM. Postural instability, immunohis-
tochemistry, and ISH data were analyzed using Kruskal-Wallis tests
with Mann-Whitney post hoc comparisons. Dunn’s correction for multi-
ple comparisons was used where appropriate. Pixel correlations were
compared with random distributions using a Wilcoxon matched-pairs
signed-rank test. For all statistics, significance was defined as p < 0.05.
All statistical analyses were conducted using SPSS (version 25, IBM) and
GraphPad Prism software (version 8.2, GraphPad Software).

Results

Rotenone treatment leads to severe motor deficits and loss of
TH' DA neurons

Age-matched adult rats underwent a chronic administration of
rotenone (2.8 mg/kg/d, i.p.) until motor and/or behavioral end-
points were reached, as this method of rotenone administration
has previously been shown to reproduce key motor and patho-
logic features of PD (De Miranda et al., 2018, 2019; Rocha et al,,
2020). Consistent with our earlier studies, we found decreased
Nissl-stained cells in the SNc of the rotenone-treated rats (Fig.
1A), confirming that rotenone indeed caused marked midbrain
DA neurodegeneration. This was accompanied by rotenone-
induced decreases in immunoreactivity to TH, the rate-limiting
enzyme for DA biosynthesis and canonical DA neuron marker,
in both the dopaminergic cell bodies of the SNc and their striatal
projections (Fig. 1B). In line with this, unbiased stereological
quantification demonstrated a 38% loss of TH" DA neurons in
the SNc compared with the vehicle control (U=0, p=0.0025;
Fig. 1C). Moreover, TH fluorescence intensity significantly dimin-
ished among TH™ nerve terminals projecting into the dorsolateral
striatum in response to rotenone versus vehicle (U=0, p=0.0022;
Fig. 1D). To further confirm midbrain DA neurodegeneration, we
examined whether our rotenone regimen produced motor behav-
ior deficits using the PIT, an assay sufficiently sensitive to detect
subtle daily changes in motor behavior caused by progressive DA
neuron loss (Woodlee et al., 2008; Cannon et al, 2009; De
Miranda et al., 2018). We showed that progressively worsening
performance on the PIT was correlated with duration of rotenone
administration (* = 0.95, Hy, = 41.8, p < 0.001; Fig. 1E). Dunn’s
post hoc comparisons revealed that rotenone-treated rats had
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Figure 1.  Rotenone-induced nigrostriatal degeneration causes motor deficits in adult rats.
A, Representative images of Nissl-stained midbrain from rotenone- or vehicle-treated rats,
indicating substantial neuronal cell body loss in the SNc in response to rotenone; 20x mag-
nification. Dashed lines indicate SNc. Scale bar, 100 pm. B, Representative images of TH-im-
munostained DA neurons (red) from the SNc (left) and striatum (right) from vehicle- or
rotenone-treated rats; 20 magnification. Dashed lines indicate SNc. Scale bars, 100 um. C,
Quantification of immunostained TH* DA neurons in the SNc (Mann-Whitney U test,
p=0.0025) and (D) TH fluorescence intensity from TH™ nerve terminals in the dorsolateral
striatum showed significant loss in response to rotenone compared with vehicle (Mann—
Whitney U test, p=0.0022). Striatal TH fluorescence intensity is normalized to vehicle condi-
tion. E, PIT of vehide (black)- or rotenone (red)- treated rats shows impairment in rotenone-
treated rats (Hy, = 41.8, p << 0.001). Data are mean == SEM. N'=5-7 per group for stereol-
ogy and immunohistochemistry. N =3 per group for PIT. *p << 0.05. **p < 0.01.

significantly worse performance on the test starting at day 12 com-
pared with day 1 of drug administration (post hoc p=0.015).
Together, the combined decreases in Nissl staining and TH immu-
noreactivity in the SNc and striatum, coupled with these PIT data,
indicate that our rotenone treatment successfully produced sub-
stantial midbrain DA neuron loss over time.

VGLUT2-expressing DA neurons are protected from
rotenone-induced neurodegeneration

To investigate rotenone’s effect on midbrain TH and VGLUT2
expression, TH and VGLUT2 mRNA levels were measured in
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Figure 2.  VGLUT2-expressing DA neurons are more resistant to rotenone-induced cell loss. Representative images of TH and VGLUT2 mRNA in vehicle- and rotenone-treated rats. 4, 4x and
(B) 60 magnification images of VTA/SNc of vehicle-treated rats showed a high level of TH expression (red) and a subset of TH™ cells that coexpress VGLUT2 (green). Yellow arrows indicate
TH™ /VGLUT2 ™ -coexpressing cells. Scale bars: 4x image, 2 mm; 60 image, 25 um. Lipofuscin depicted in 60 images (white). C-1, Quantification of TH and VGLUT2 mRNA expression in ro-
tenone- and vehicle-treated rats. C, D, Although TH mRNA grains per average cell volume were significantly decreased in rotenone-treated rats compared with vehicle (Mann—Whitney U test,
p=0.032; (), there was no change in VGLUT2 grains per average cell volume in rotenone-treated rats (Mann—Whitney U test, p =0.99; D). E, There was a significant decrease in number of
DAPI-stained nuclei in VTA and SNc in response to rotenone treatment. £, Rotenone diminished the number of TH™ cells in both VTA and SNc compared with controls. G, In contrast, TH™/
VGLUT2™ cell numbers were not significantly changed with rotenone treatment. H, The percentage of TH™ cells that expressed VGLUT2 increased after rotenone treatment, indicating that TH/
VGLUT2-coexpressing neurons were more resistant to rotenone-induced neurodegeneration. /, There was no increase in VGLUT2 expression within TH™ /VGLUT2™ cells after rotenone. Data are
mean == SEM. N'=4 or 5 per group. *p << 0.05 compared with vehicle. *p << 0.05 compared with other regions.

the VTA and SNc of vehicle- and rotenone-treated rats via multi-  (U=1, p=0.032; Fig. 2C). In contrast, rotenone did not change
plex RNAscope (Fig. 2). Rotenone significantly decreased overall =~ VGLUT2 mRNA expression (U= 10, p > 0.99; Fig. 2D). We also
TH mRNA expression in the ventral midbrain, which was meas-  examined effects of rotenone on DAPI-labeled cell density in the
ured as the number of grains per average cell volume in animage =~ VTA and SNc and discovered that rotenone diminished
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Figure 3.  Rotenone increases density of VGLUT2™ neurons. A, Rotenone treatment increased the total number of VGLUT2™" cells that did not also coexpress TH mRNA (TH™/VGLUT2™) (H,
=46, p=0.033). B, There was no change in VGLUT2 mRNA grain expression within TH™/VGLUT2™ cells in either VTA or SNc of rotenone-treated rats compared with the vehicle control. Data

are mean = SEM. N=4 or 5 per group, *p << 0.05.

numbers of DAPI-stained nuclei (H; = 25.6, p < 0.001), with no
differences in this decrease between the VTA and SNc (H; =
0.03, p>0.99; Fig. 2E). Both the VTA and SNc had a signifi-
cantly lower number of DAPI* cells (40% reduction) after rote-
none treatment compared with vehicle (post hoc p < 0.05 for all
regions). These findings strongly suggest that rotenone caused
cell death in the ventral midbrain, confirming our initial observa-
tions (Fig. 1) and consistent with earlier work (Cannon et al.,
2009; Blesa and Przedborski, 2014; Johnson and Bobrovskaya,
2015; Radad et al., 2019). Rotenone also led to a severe reduction
(>85%) of DA neurons expressing only TH (THT, H, = 222,
p <0.001; Fig. 2F). Notably, there was a relative sparing of the
medial VTA, which demonstrated a smaller reduction (60%) in
TH-expressing DA cells (p =0.29).

Midbrain DA neurons that also expressed VGLUT2 (TH™/
VGLUT2") did not exhibit significant cell number decreases in
response to rotenone (H; = 1.1, p = 0.28; Fig. 2G), suggesting that
TH"/VGLUT2" neurons were more resilient to rotenone com-
pared with DA neurons that only expressed TH. When com-
pared as a percentage of all TH™ cells, a higher percentage of
TH™ cells were VGLUT2" after rotenone treatment compared
with vehicle in the lateral SNc (p = 0.048; Fig. 2H). Additionally,
in vehicle-treated animals, there was a regional difference in the
proportion of TH" cells that were also VGLUT2". We found
that the medial VTA had the highest percentage of TH" cells
that were VGLUT2" compared with all other brain regions (post
hoc p=0.024 vs lateral VTA, medial SNc, and lateral SN¢; Fig.
2H), consistent with previous studies (Yamaguchi et al., 2011,
2015). Finally, we investigated whether the number of VGLUT2
grains within TH"/VGLUT2" neurons was altered by rotenone.
We found neither a significant effect of rotenone (H;=0.5,
p=0.50) nor regional differences (H; = 2.7, p=0.43; Fig. 2I).
This indicates that, while TH"/VGLUT2" cells were more likely
to survive, rotenone exposure did not change levels of VGLUT2
mRNA expression in midbrain DA neurons. In all, our findings
suggest that neurons in the medial VTA are relatively spared
from rotenone-induced degeneration, and that VGLUT2 expres-
sion in DA neurons confers increased resilience to rotenone-
induced DA neurodegeneration in the midbrain.

Rotenone increases density of VGLUT2" cells negative for
TH in the VTA and SNc¢

Surprisingly, after rotenone treatment, we found an increase in
the density of midbrain cells that were VGLUT2™" but that did not
coexpress TH mRNA compared with vehicle-treated animals (H;
= 4.6, p=0.033; Fig. 3A). There was no significant effect of

rotenone (H; = 0.1, p=0.82) or brain region (H; = 2.1, p=0.55)
on VGLUT2 mRNA grain numbers within VGLUT2™" cells (Fig.
3B). These findings indicate that rotenone treatment increases the
number of cells with detectable VGLUT2 expression while not
increasing the total amounts of VGLUT2 mRNA within these
VGLUT2" cells.

Rotenone increases VGLUT2 protein expression in the VTA
and SNc¢
Since midbrain DA neurons that expressed VGLUT2 at the
mRNA level were protected from rotenone-induced neurode-
generation, we investigated whether these results also translated
to the level of VGLUT2 protein expression (Fig. 4). There was no
significant effect of rotenone (H; = 2.8, p=0.09) or brain region
(i.e, VTA vs SNc¢) on VGLUT2 puncta intensity (H; = 0.0,
p=1.0; Fig. 4C). In contrast, we found significant effects of rote-
none (H; = 6.7, p=0.01) and brain region (H; = 3.9, p=0.049)
on the density of VGLUT2" puncta, indicating an increase in
glutamatergic terminals projecting into the midbrain (Fig. 4D).
Surprisingly, we observed a main effect of rotenone (H; = 7.6,
p=0.006) on VGLUT2 puncta within midbrain TH-immunore-
active cells (Fig. 4E), suggesting rotenone-induced upregulation
of VGLUT?2 protein in DA cell bodies. Since significant quanti-
ties of VGLUT2 puncta have not been typically reported in the
cell bodies of DA neurons under physiological conditions
(Hnasko et al., 2010; Fortin et al., 2019; Silm et al., 2019), we
examined VGLUT2 localization in rotenone-treated N27
cells, immortalized rat mesencephalic dopaminergic cells
that share key features of DA neurons and that also endoge-
nously express VGLUT2 (Clarkson et al., 1998; Drechsel et
al., 2007). We found that 24 h treatment with rotenone (100
nm) produced significant cortical B-actin reorganization
accompanied by retraction of dopaminergic cell processes,
including axons (Fig. 5). In the absence of efficient traffick-
ing to the axons because of rotenone-induced changes to
the cytoskeleton, these results suggest a mechanism by
which newly produced VGLUT2 accumulates in the cell
bodies of DA neurons in response to rotenone.

Striatal VGLUT2" DA terminals are more resilient to
rotenone treatment

We investigated whether rotenone treatment altered VGLUT2
expression in the nerve terminals projecting to the striatum from
midbrain DA neurons (Fig. 6A). We specifically compared TH
and VGLUT?2 protein expression in striatal DA nerve terminals
within the CPu and the NAc, as DA neurons in the SNc largely
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of rotenone-treated rats. Scale bar, 30 jim. €, While there was no significant change in relative intensity of VGLUT2™ puncta in either the VTA or SNc, there was a significant increase in (D)
VGLUT2* puncta density and (E) the number of VGLUT2-immunoreactive puncta within TH™ cells. Data are mean = SEM. N = 3-8 per group. *p << 0.05. **p < 0.01.

VGLUT2
& Lo

Rotenone (100 nM)

Figure 5. Rotenone treatment alters actin cytoskeleton and VGLUT2 distribution in N27
cells. Representative images of the rat dopaminergic neuron N27 cell line showed increased
VGLUT2 signal (green) in the cell body with accompanying retraction of cell processes and
reorganization of cortical 3-actin (red) after 100 nu rotenone treatment. Scale bar, 20 pum.

project to the CPu (Gibb, 1992; Abeliovich et al., 2000; Matsuda
et al., 2009; Sulzer and Surmeier, 2013; Surmeier et al., 2017),
whereas DA neurons in the VTA project to the NAc (Ikemoto,
2010; Mingote et al., 2019). Moreover, in examining the NAc
projections, we split our analyses according to the anatomically
well-defined NAc shell and core subregions, as DA neurons in
medial VTA send a significant number of projections to the NAc
shell, whereas those in the lateral VTA project to the NAc core
(Yamaguchi et al., 2011; Mingote et al., 2015, 2017, 2019; Poulin
et al,, 2018). There was a regional difference in intensity of TH
immunoreactivity, suggesting region-specific differences in TH
expression (H, = 6.4, p =0.041; Fig. 6B). Analysis of specific sub-
regions revealed significantly decreased TH signal intensity in
the CPu (post hoc p=0.048) but not in the NAc core (post hoc
p>0.99) or shell (post hoc p>0.99). This suggests that expres-
sion of TH is more vulnerable to rotenone in DA terminals pro-
jecting to the CPu compared with terminals in the NAc. Next,
we examined whether rotenone altered the density of DA termi-
nals projecting to the striatum. Quantification of the TH™"
puncta representing these DA nerve terminals in the CPu versus
NAc subregions (core, shell) showed a regional difference in the
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density of TH™ striatal DA terminals
(H, = 12.5, p=0.002; Fig. 6B). We found
an overall greater density of TH™ termi-
nals in the CPu compared with the NAc
core (p=0.006). Moreover, although
there was no significant main effect of
rotenone (H; = 0.27, p=0.61), post hoc
comparisons revealed decreased TH™
terminal density in the CPu after rote-
none treatment (p=0.048), suggesting
that TH" terminals in the CPu are more
vulnerable to rotenone versus those in
the NAc shell or core. Together, these
findings suggest regional differences in
resilience to rotenone within the stria-
tum, with NAc terminals more resilient
to rotenone-induced decreases in TH
expression and terminal density com-
pared with CPu terminals.

We also examined striatal VGLUT?2,
finding neither significant differences in
signal intensity nor puncta density (all
p>0.06; Fig. 6C). This suggests that,
unlike in the VTA and SN¢, VGLUT2
protein expression and axonal integrity
are unaltered throughout the striatum af-
ter rotenone administration.

Finally, we analyzed the density of the
subpopulation of DA terminals that
express both TH and VGLUT?2 in stria-
tum. We found a greater density of TH
puncta that colocalized with VGLUT2 in
the NAc shell compared with NAc core
(H; = 47, p=0.031; Fig. 6D,E). This is
consistent with recent work showing
that medial VTA DA/glutamate neurons
preferentially innervate the NAc shell
(Yamaguchi et al, 2011; Mingote et al.,
2015, 2017, 2019; Poulin et al., 2018).
Further, comparing TH/VGLUT2 pixel
colocalization to randomized TH and
VGLUT? pixel distributions in the same
images confirmed that colocalization
levels of TH" and VGLUT2™" puncta
in the NAc were greater than by ran-
dom chance (Extended Data Fig. 6-1).
However, rotenone treatment did not
increase TH and VGLUT?2 colocaliza-
tion in the NAc (H;, = 3.5, p=0.061;
Fig. 6E), suggesting that VGLUT2
expression in striatal DA terminals
was not significantly altered.

Discussion

We used the rotenone model of PD to
examine VGLUT2-dependent mechanisms
of selective DA neuron vulnerability since,
in contrast to many DA neurotoxin models
(e.g., 6-OHDA, MPTP), rotenone recapitu-
lates critical neuropathological features of
PD, including endolysosomal dysfunction,
neuroinflammation, and a-synuclein accu-
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Figure 6.  Rotenone leads to region-specific loss of TH protein and increased density of TH and VGLUT2-colocalizing puncta in the
NAc. A, Representative 60 images showing loss of TH signal but no change in VGLUT2 in the CPu of rotenone-treated rats. Scale
bar, 20 pum. B, There was a significantly lower TH signal intensity in the CPu (Dunn’s post hoc p = 0.048), but not the NAc core (post
hoc p > 0.99) or shell (post hoc p > 0.99), after rotenone treatment. Similarly, there was a significantly lower TH puncta density in
the CPu (post hoc p = 0.048), but not in the NAc core (post hoc p > 0.99) or shell (post hoc p > 0.99), after rotenone treatment. (,
There was no change in the intensity or density of VGLUT2™ puncta in nerve terminals within the CPu or NAC of rotenone-treated
rats compared with vehicle (Kruskal-Wallis H test, all p > 0.06). D, Representative 60 images of TH (red) and VGLUT2 (green)
puncta in the NAc core and shell in vehicle- and rotenone-treated rats. White circles represent colocalizing TH and VGLUT2 puncta.
Scale bar, 10 pum. E, Within the NAc, a greater density of TH puncta colocalized with VGLUT2 in the NAc shell compared with the NAc
core (Kruskal-Wallis H test, p=0.031), but there was no significant effect of rotenone (p = 0.061). Data are mean = SEM. N=3-6
per group. *p << 0.05 compared with vehicle. *p << 0.05 compared with CPu. See Extended Data Figure 6-1.
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mulation (Johnson and Bobrovskaya, 2015). We found that chronic
rotenone administration decreased DA neuron number, consistent
with prior stereological counts of TH™ /Nissl™ DA neurons after ro-
tenone (Cannon et al.,, 2009; De Miranda et al., 2019). Although rote-
none-induced cell loss was less severe versus acute models, such as 6-
OHDA (Betarbet et al., 2002), it was still sufficient to impair motor
performance. This may be since rotenone is more focused than other
DA neurotoxins by producing striatal DA terminal loss specifically in
the dorsolateral striatum (Cannon et al., 2009). Additionally, because
rotenone is a systemic toxicant, it may take longer to cause profound
DA neurodegeneration than other toxins, which are injected directly
into brain (Martinez and Greenamyre, 2012). Finally, most stud-
ies correlating motor function with DA neurodegeneration
have relied on neurotoxin-induced unilateral lesions.
However, compensation involving the unlesioned hemi-
sphere likely masks motor impairment and raises levels of
nigral cell loss needed to detect motor deficits. In contrast,
rotenone causes simultaneous, bilateral nigrostriatal lesions
that limit compensation, enabling detection of motor dys-
function at lesser levels of nigral cell loss.

We found that rotenone-induced decreases in DA neuron
number were greater than decreases in TH immunoreactivity in
the dorsolateral striatum. This is consistent with some reports
(Tapias et al., 2014, 2019) but not others (Betarbet et al., 2000;
De Miranda et al., 2019), likely because of variability in rote-
none’s severity between cohorts and the appearance of hyper-
trophic TH terminals because of compensation (Cannon et al.,
2009). We also observed greater loss of TH mRNA compared
with TH protein. DA neurons may compensate for rotenone-
induced decreases in TH mRNA expression by upregulating
translation and/or inhibiting degradation of TH protein to main-
tain normal levels of the enzyme. Second, TH protein has a half-
life (~30 h) approximately double that of TH mRNA (Tank et
al., 1986; Roe et al., 2004), suggesting that loss of TH protein is
slower than mRNA. Ultimately, severe loss of TH mRNA
because of rotenone may obscure regional differences in vulner-
ability between VTA and SNc earlier in the degenerative process,
although medial VTA TH™ cells are still relatively protected.

TH"/VGLUT2" cells are enriched in the medial VTA and
project to the medial NAc shell (Poulin et al., 2018; Mingote et
al., 2019). Importantly, medial VTA DA neurons and their
striatal projections are selectively protected from neurodegen-
eration compared with SNc, raising the possibility that this
VGLUT2" subpopulation is more resilient to rotenone
(Surmeier et al., 2017). Indeed, we observed resilience of do-
paminergic terminals in the NAc shell, which are predomi-
nantly THY/VGLUT2" (Mingote et al., 2019). However,
medial VTA TH"/VGLUT2" neurons appeared to be less
protected than TH"/VGLUT2" neurons in other midbrain
regions. Because medial VTA DA neurons that did not express
VGLUT?2 were also protected from rotenone, we propose that
the higher survival rates for all medial VTA TH" neurons
may mask the greater protection TH'/VGLUT2" neurons
enjoy in other midbrain regions. Alternatively, VGLUT2" DA
neurons may belong to a larger group of medial VTA neurons
protected via other mechanisms. Earlier studies demonstrated
that other subpopulations of TH™ cells in the medial VTA are
similarly protected in PD models, including TH" cells that
express calbindin (Liang et al., 1996; Poulin et al., 2014, 2018).
Previous work suggests calbindin’s ability to buffer calcium pro-
tects mitochondria from PD neurotoxins (Jung et al., 2019; Ricke
et al, 2020). When mitochondrial respiratory complexes are
inhibited, calcium levels rise and enhance mitochondrial reactive
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oxygen species (ROS) production (Feissner et al, 2009;
Freestone et al., 2009). By diminishing local calcium, calbindin’s
calcium buffering may decrease ROS and boost resilience
(Brookes et al., 2004; Feissner et al., 2009). Interestingly, TH*Y/
VGLUT2" neurons in the lateral SNc exhibited the greatest pro-
tection from rotenone, suggesting that these neurons express
additional factors that further enhance resilience. Indeed, lateral
SNc TH'/VGLUT2" neurons possess expression patterns dis-
tinct from medial VTA TH™/VGLUT2" neurons (Poulin et al.,
2018). Future studies will identify these subpopulation-specific
markers that also modify DA neuron resilience.

We observed increased VGLUT2 protein within DA neuron
cell bodies in response to rotenone. While VGLUT?2 trafficking
to nerve terminals is well established, its localization to the soma
is less understood. Elevated levels of VGLUT?2 protein in the cell
bodies may be the consequence of rotenone-induced disruptions
in protein trafficking from the soma to the cell periphery.
Consistent with this, we found retraction of dopaminergic cell
processes likely because of alterations in actin cytoskeletal orga-
nization. Indeed, a-synuclein-positive inclusions have been
found in DA neurons after rotenone treatment which impair in-
tracellular trafficking as well as endoplasmic reticulum and Golgi
apparatus function (Betarbet et al., 2000; Mazzulli et al., 2016). It
is therefore possible that a novel mechanism of rotenone’s cyto-
toxicity is because of impaired ability of DA neurons to transport
VGLUT2" vesicles to the axon terminals for release.

Surprisingly, we observed altered VGLUT?2 protein expression
in TH" cell bodies despite absence of significant changes in
VGLUT2 mRNA expression. This lack of rotenone-induced DA
neuron VGLUT2 mRNA upregulation contrasts with upregula-
tion of DA neuron VGLUT2 mRNA levels previously described in
response to 6-OHDA and MPTP (Dal Bo et al., 2008; Shen et al.,
2018; Steinkellner et al., 2018; Kouwenhoven et al., 2020). Unlike
these acute toxins, since rotenone induces its neurotoxicity over a
subchronic timeframe, we cannot exclude that VGLUT2 mRNA
expression may increase as an early response to neuronal damage
only to recede later and therefore not be captured by the study
endpoint. Additionally, while an overall low proportion of TH"
terminals colocalize with VGLUT2 across the entire NAc, there
are distinct NAc subregions exhibiting more TH and VGLUT2
colocalization than others, suggesting spatially segregated sites par-
ticularly enriched in glutamatergic vesicles within DA axons and
terminals (Fortin et al., 2019; Silm et al., 2019).

There was an overall increase in cells expressing VGLUT2
mRNA in the VTA and SNc after rotenone. This was accompa-
nied by an increase in VGLUT2" terminal density in the VTA
and SNc, suggesting that rotenone also acts on nondopaminergic
cells. Consistent with this, the VTA possesses glutamatergic affer-
ents that express VGLUT?2 (Geisler and Wise, 2008). Intriguingly,
genetic fate-mapping demonstrated that, like DA neurons, the ma-
jority of cholinergic neurons in the mesopontine tegmentum also
express VGLUT2 during development only to repress it in adult-
hood; these cholinergic neurons include the pedunculopontine
tegmental nucleus, which projects to the midbrain (Steinkellner et
al., 2019). Thus, neurotoxin exposure may lead to reemergence of
VGLUT?2 expression in adult pedunculopontine tegmental nu-
cleus neurons that project to midbrain as part of a neuroprotective
response (Steinkellner et al., 2018, 2019). It is also possible that
some TH/VGLUT2" neurons were DA neurons that downregu-
lated TH after rotenone exposure. Earlier studies showed chronic
rotenone decreased TH protein expression in rodent midbrain
(Sherer et al., 2003; Testa et al., 2005). Such TH downregulation
may boost resilience, as decreasing DA synthesis via diminished
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TH expression could lower ROS-generating reactive DA metabo-
lites (e.g., DOPA quinones) (Asanuma et al., 2003).

Our data suggest that VGLUT2 expressed in midbrain boosts
resilience to rotenone, but the mechanisms remain poorly charac-
terized. We previously demonstrated that VGLUT2 dynamically
enhances activity-dependent vesicular DA loading and release
(Aguilar et al., 2017), suggesting that DA neuron VGLUT2 may
be used by surviving neurons to maintain synaptic DA neuro-
transmission. By increasing DA sequestration into vesicles,
VGLUT2 may diminish the cytoplasmic DA available for conver-
sion into ROS (Meiser et al., 2013). Last, VGLUT2 may modulate
local glutamate availability to mitochondria to protect neurons
from metabolic dysfunction after insults. In addition to being an
excitatory neurotransmitter, neurons use glutamate as an anapler-
otic energy source. Glutamate is converted to a-ketoglutarate to
fuel the TCA cycle and maintain adequate ATP synthesis, which
may help restore metabolic homeostasis (Divakaruni et al., 2017).

Study limitations include the inability to distinguish between
purely glutamatergic VGLUT2" midbrain neurons versus
VGLUT2" dopaminergic neurons that substantially downregu-
lated TH in response to rotenone toxicity. Future work needs to
identify markers distinct for nondopaminergic VGLUT2" neu-
rons and those unique to TH'/VGLUT2" cells. Second, limita-
tions of light microscopy make it difficult to definitively resolve
the extent to which VGLUT2" puncta localize to dopaminergic
terminals and whether rotenone treatment alters this distribution.
Follow-up studies using electron- and super-resolution micros-
copy can conclusively determine the localization of VGLUT2"
puncta. Finally, we did not investigate sex differences since the ro-
tenone dosage that causes severe DA neurodegeneration in males
does not cause degeneration in females (De Miranda et al., 2019).
Subsequent studies will examine other toxicants that cause degen-
eration in both sexes at identical doses to directly compare males
versus females.

In conclusion, we show that TH"/VGLUT2" cells are more
resilient to rotenone and that rotenone-induced VGLUT2 upreg-
ulation throughout the VT'A and SNc¢ may represent a neuropro-
tective mechanism, shielding neurons from neurodegeneration.
Elucidating mechanisms behind VGLUT2-mediated neuropro-
tection may lead to novel therapeutic strategies to mitigate or
prevent DA neuron neurodegeneration.
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