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Responses to Heartbeats in Ventromedial Prefrontal Cortex
Contribute to Subjective Preference-Based Decisions

Damiano Azzalini,1,2 Anne Buot,1,2 Stefano Palminteri,1,2 and Catherine Tallon-Baudry1,2
1Laboratoire de Neurosciences Cognitives et Computationnelles, Ecole Normale Supérieure, PSL University, 75005 Paris, France, and 2Institut
National de la Santé et de la Recherche Médicale, 75005 Paris, France

Forrest Gump or The Matrix? Preference-based decisions are subjective and entail self-reflection. However, these self-related
features are unaccounted for by known neural mechanisms of valuation and choice. Self-related processes have been linked
to a basic interoceptive biological mechanism, the neural monitoring of heartbeats, in particular in ventromedial prefrontal
cortex (vmPFC), a region also involved in value encoding. We thus hypothesized a functional coupling between the neural
monitoring of heartbeats and the precision of value encoding in vmPFC. Human participants of both sexes were presented
with pairs of movie titles. They indicated either which movie they preferred or performed a control objective visual discrimi-
nation that did not require self-reflection. Using magnetoencephalography, we measured heartbeat-evoked responses (HERs)
before option presentation and confirmed that HERs in vmPFC were larger when preparing for the subjective, self-related
task. We retrieved the expected cortical value network during choice with time-resolved statistical modeling. Crucially, we
show that larger HERs before option presentation are followed by stronger value encoding during choice in vmPFC. This
effect is independent of overall vmPFC baseline activity. The neural interaction between HERs and value encoding predicted
preference-based choice consistency over time, accounting for both interindividual differences and trial-to-trial fluctuations
within individuals. Neither cardiac activity nor arousal fluctuations could account for any of the effects. HERs did not inter-
act with the encoding of perceptual evidence in the discrimination task. Our results show that the self-reflection underlying
preference-based decisions involves HERs, and that HER integration to subjective value encoding in vmPFC contributes to
preference stability.
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Significance Statement

Deciding whether you prefer Forrest Gump or The Matrix is based on subjective values, which only you, the decision-maker,
can estimate and compare, by asking yourself. Yet, how self-reflection is biologically implemented and its contribution to sub-
jective valuation are not known. We show that in ventromedial prefrontal cortex, the neural response to heartbeats, an intero-
ceptive self-related process, influences the cortical representation of subjective value. The neural interaction between the
cortical monitoring of heartbeats and value encoding predicts choice consistency (i.e., whether you consistently prefer Forrest
Gump over Matrix over time. Our results pave the way for the quantification of self-related processes in decision-making and
may shed new light on the relationship between maladaptive decisions and impaired interoception.

Introduction
Do you prefer Forrest Gump or The Matrix? The decision is sub-
jective: only you know which movie you like best. The subjective
values used in preference-based decision-making are internally
generated and intrinsically private, and entail self-reflection. In
other words, estimating a subjective value requires a reflection
about how an item affects you. In contrast, the evidence required
to decide which of the two words “listen” and “look” has more
characters is publicly and objectively available to any reader of
this article. While the neural underpinnings of valuation and
choice have been well studied, the biological mechanism sup-
porting the self-reflection intrinsic to subjective decisions
remains unspecified. It might derive from the simplest biological
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implementation of self-reflection (i.e., the monitoring of one’s
current physiological state; Craig, 2002; Blanke and Metzinger,
2009; Damasio, 2010; Park and Tallon-Baudry, 2014; Azzalini et
al., 2019) required to select the most appropriate behavior to
restore homeostatic balance, thus ensuring the integrity of the
living organism. It follows that the organism needs to track its in-
ternal state to assign a value to a given option (Keramati and
Gutkin, 2014; Juechems and Summerfield, 2019), and that an
imprecise representation of the internal state may lead to subop-
timal choice (Paulus, 2007).

The monitoring of current physiological state is notably
indexed by the transient neural response automatically elicited
by each heartbeat, also known as the heartbeat-evoked response
(HER; Montoya et al., 1993; Kern et al., 2013). HERs have been
linked to subjective, self-related cognitive processes in ventrome-
dial prefrontal cortex (vmPFC; Park et al., 2014; Babo-Rebelo et
al., 2016a,b). A separate stream of studies repeatedly showed that
vmPFC encodes subjective values (Lebreton et al., 2009; Bartra et
al., 2013; Grueschow et al., 2015). We thus hypothesized that (1)
HERs in vmPFC would signal the recruitment of self-reflective
processes in preparation for a subjective decision, but absent
when preparing to an objective decision, and (2) that HER fluc-
tuations would affect valuation in subjective preference-based

decisions, but not in decisions based on objective evidence pub-
licly available in the outside world, such as perceptual discrimi-
nations. We tested these hypotheses in a paradigm where
participants performed either a subjective, preference-based
choice, or a control, objective perceptual discrimination, between
two visually presented movie titles (Fig. 1), while their neural
and cardiac activity were measured with magnetoencephalogra-
phy (MEG) and electrocardiography (ECG), respectively. Each
trial began with an instruction period, with a symbol indicating
which type of decision to perform, during which we measured
HERs. Once options were displayed, participants selected the
title of the movie they preferred in subjective preference trials,
and the title written with the highest contrast in objective percep-
tual discrimination trials. We found that (1) HERs during the
instruction period were larger when preparing for preference-
based decisions than for discrimination ones, and we demon-
strated that (2) HER amplitude interacted with the neural encod-
ing of subjective value in vmPFC during choice. The neural
interaction between HER and value encoding was associated
with more consistent subjective choices. This functional coupling
was specific to subjective decisions: HER did not interact with
the encoding of perceptual evidence in objective visual discrimi-
nation trials.

Figure 1. Experimental design and behavioral results. A, Trial time course. After a fixation period of variable duration, a symbol (square or diamond) instructed participants on the type of
decision to perform on the upcoming movie titles: either a subjective preference-based choice or an objective perceptual discrimination task. Decision type varied on a trial-by-trial basis. The
two movie titles appeared above and below fixation and remained on screen until response or until 3 s had elapsed. B, Rationale for data analysis. Left, Interoceptive self-related processes
were indexed by HERs computed during the instruction period, before option presentation, by averaging MEG activity locked to the T-waves of the electrocardiogram. Right, Response-locked
MEG activity during choice was modeled on a trial-by-trial basis with a GLM to isolate the spatiotemporal patterns of neural activity encoding value. The central question is whether HERs before
option presentation and value encoding interact. C, Behavioral results. In both tasks, performance (choice consistency or discrimination accuracy) increased (F(3,60) = 99.25, p, 10�15), and
response times decreased (F(3,60) = 41.14, p, 10�13) for easier choices (i.e., larger difference in subjective value for preference-based decisions, or difference in contrast for perceptual ones).
D, Only task-relevant information significantly contributed to choice in both preference-based and perceptual decisions as estimated by logistic regression (two-tailed t test against zero). Each
dot represents one participant. **p, 0.01.
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Materials and Methods
Experimental design

Participants. Twenty-four right-handed volunteers with normal or
corrected-to-normal vision took part in the study after having given
written informed consent. They received monetary compensation for
their participation. The ethics committee Comités de Protection des
Personnes Ile de France III approved all experimental procedures. Three
subjects were excluded from further analysis: one subject for too low
overall performance (74%, 2 SDs below the mean=87.6%), one subject
was excluded for an excessive number of artifacts (29.7% of trials, 2 SDs
above the mean = 7%), and one subject was excluded because the inde-
pendent component analysis (ICA) correction of the cardiac artifact was
not successful.

Twenty-one subjects were thus retained for all subsequent analyses
(9 males; mean6 SD age, 23.576 2.4 years).

Tasks and procedure. Participants came on 2 consecutive days to the
laboratory (mean elapsed time between the two sessions, 22.286 3.55 h)
to complete two experimental sessions. The first session was a likability
rating on movies (behavior only), from which we drew the stimuli used
in the second experimental session, during which brain activity was
recorded with MEG.

Rating session. We selected 540 popular movies from the Web
(https://www.allocine.fr/) having a maximal title length of 16 characters
(spaces included). DVD covers and titles of the preselected movies were
displayed one by one on a computer screen, and subjects had to indicate
whether they had previously watched the currently displayed movie by
pressing a “yes” or “no” key on a computer keyboard, without any time
constraint. Participants were then presented with the list of movie titles
they had previously watched and were asked to name the two movies
they liked the most and the two they liked the least. Participants were ex-
plicitly instructed to use these four movies as reference points (the
extremes of the rating scale) to rate all other movies. Last, the titles and
the covers of the movies belonging to the list were displayed one by one
at the center of the computer screen in random order. Participants
assigned to each movie a likability rating by displacing (with arrow keys)
a cursor on a 21 point Likert scale and validated their choice with an
additional button press. Likability ratings were self-paced, and the start-
ing position of the cursor was randomized at every trial.

Stimuli. Experimental stimuli consisted of 256 pairs of written movie
titles drawn from the list of movies that each participant had rated on
the first day. Each movie title was characterized along the following two
experimental dimensions: its likability rating (as provided by the partici-
pant), and its contrast. The mean contrast was obtained by averaging the
RGB value (between 40 and 100; gray background at 190, no unit) ran-
domly assigned to each character of the title. We manipulated trial diffi-
culty by pairing movie titles so that the differences between the two
items along the two dimensions (i.e., likability and contrast) were para-
metric and orthogonal. Additionally, we controlled that the sum of
ratings and the sum of contrast within each difficulty level were inde-
pendent of their difference and evenly distributed. Each pair of stimuli
was presented twice in the experiment: one per decision type. A given
movie title could appear in up to 10 different pairs. The position of the
movie titles on the screen was pseudorandomly assigned so that the posi-
tion of the correct option (higher likeability rating or higher contrast)
was fully counterbalanced.

Two-alternative forced-choice task. On the second day, subjects per-
formed a two-alternative forced-choice task while brain activity was
recorded with MEG. At each trial, participants were instructed to per-
form one of the two decision types on the pair of movie titles (Fig. 1A):
either a preference decision, in which they had to indicate the item they
liked the most, or a perceptual discrimination, in which they had to indi-
cate the title written with the higher contrast. Each trial began with a fix-
ation period of variable duration (uniformly distributed between 0.8 and
1.2 s in steps of 0.05 s) indicated by a black fixation dot surrounded by a
black ring (internal dot, 0.20° of visual angle; external black ring, 0.40° of
visual angle), starting from which participants were required not to blink
anymore. Next, the outer ring of the fixation turned either into a square
or a diamond (0.40° and 0.56° visual angle, respectively), indicating
which type of decision participants were to perform (preference-based

or perceptual, counterbalanced across participants), for 1.5 s. Then, the
outer shape turned again into a ring, and two movie titles appeared
above and below it (visual angle, 1.09°). Options remained on screen
until a response was provided (via button press with the right hand) or
until 3 s had elapsed. After response delivery, movie titles disappeared
and the black fixation dot surrounded by the black circle remained on
screen for 1 more second. The central dot turned green and stayed on
screen for a variable time (uniformly distributed between 2.5 and 3 s in
steps of 0.05 s), indicating to participants that they were allowed to blink
before the beginning of next trial. Each recording session consisted of
eight blocks of 64 trials each.

Before the recording session, participants familiarized themselves
with the experimental task by carrying out three training blocks. The
first two blocks (10 trials each) comprised trials of one type only, and
hence preceded by the same cue symbol. The last block contained inter-
leaved trials (n=20), as in the actual recording. The movie pairs used
during training were not presented again during the recording session.

Heartbeat counting task. After performing the eight experimental
blocks, we assessed participants’ interoceptive abilities by asking them to
count their heartbeats by focusing on their bodily sensations, while fixat-
ing the screen (Schandry, 1981). Subjects performed six blocks of differ-
ent durations (30, 45, 60, 80, 100, and 120 s) in randomized order. No
feedback on performance was provided. Since the acquisition of our
dataset, this widely used paradigm has been criticized in several respects
(Ring et al., 2015; Desmedt et al., 2018; Zamariola et al., 2018).

Questionnaires. Once subjects left the MEG room, they filled out the
following four questionnaires in French: Beck’s Depression Inventory
(BDI; Beck et al., 1961); Peter’s et al., Delusions Inventory (PDI; Peters
et al., 2004); the State-Trait Anxiety Inventory (STAI; Spielberger et al.,
1983); and the Obsessive-Compulsive Inventory (OCI; Foa et al., 2002).

Recordings
Neural activity was continuously recorded using a MEG system with 102
magnetometers and 204 planar gradiometers (sampling rate, 1000Hz;
online low-pass filter, 330Hz; Neuromag TRIUX, ELEKTA). Cardiac
activity was simultaneously recorded (sampling frequency, 1000Hz;
online filter, 0.05–35Hz; BIOPAC Systems). The electrocardiogram was
obtained from four electrodes (two placed in over the left and right
clavicles, two over left and right supraspinatus muscles; Gray et al., 2007)
and referenced to another electrode on the left iliac region of the abdo-
men, corresponding to four vertical derivations. The four horizontal der-
ivations were computed offline by subtracting the activity of two
adjacent electrodes. Additionally, we measured beat-to-beat changes in
cardiac impedance, to compute the beat-by-beat stroke volume (i.e., the
volume of blood ejected by the heart at each heartbeat; Kubicek et al.,
1970). Impedance cardiography is a noninvasive technique based on the
impedance changes in the thorax due to the changes in fluid volume
(blood). A very low-intensity (400 mA rms), high-frequency (12.5 kHz)
electric current was injected via two source electrodes: the first one was
placed on the left side of the neck, and the second 30 cm below it
(approximately on the sixth rib). Two other monitoring electrodes
(placed 4 cm apart from the source electrodes, below the source electrode
on the neck and above the source electrode on the rib cage) measured
the voltage across the tissue. To determine left ventricular ejection time,
aortic valve activity was recorded by placing a nonmagnetic homemade
microphone (online bandpass filter, 0.05–300Hz) on the chest of the
subject.

Pupil diameter and eye movements were tracked using an eye-
tracker device (EyeLink 1000, SR Research) and four electrodes (two
electrodes placed on the left and right temples, and two electrodes placed
above and below the participant’s dominant eye).

Cardiac events and parameters
Cardiac events were detected on the right clavicle–left abdomen ECG
derivation in all participants. We computed a template of the cardiac
cycle by averaging a subset of cardiac cycles, which was then convolved
with the ECG time series. R-peaks were identified as peaks of the result
of the convolution, normalized between 0 and 1, exceeding 0.6. All other
cardiac waves were defined with respect to R-peak. In particular, T-
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waves were identified as the maximum amplitude occurring within 420
ms after the Q-wave. R-peak and T-wave automatic detection was visu-
ally verified for each participant.

Interbeat intervals (IBIs) were defined for each phase of the trial as
the intervals between two consecutive R-peaks. More specifically, we
considered for “fixation,” “instruction period,” and “response” phases
the two R-peaks around their occurrence. IBIs during ‘choice’ were
based on the two R-peaks preceding response delivery. Interbeat vari-
ability was defined as the SD across trials of IBIs in a given trial phase.

Stroke volume was computed according to the following formula
(Kubicek et al., 1970; Sherwood et al., 1990):

SV ¼ r � L2

Zo2

� �
� LVET � dZ

dTðmaxÞ
;

where r is the resistivity of the blood (135 V * cm; Berntson et al.,
2007), L2 is the distance between the two source electrodes, Zo2 is the
base impedance, LVET is the systolic left ventricular ejection time (in
seconds), and dZ=dTðmaxÞ is the largest impedance change during systole
(in ohms per second). Note that because we obtained stroke volume by
injecting a current at 12.5 kHz, rather than the more typical frequency of
100 kHz, absolute stroke volumes are systematically underestimated, but
relative values are preserved.

MEG data preprocessing
External noise was removed from the continuous data using MaxFilter
algorithm. Continuous data were then high-pass filtered at 0.5Hz
(fourth-order Butterworth filter). Trials (defined as epochs ranging from
fixation period to 1 s after response) contaminated by muscle and move-
ment artifacts were manually identified and discarded from further anal-
yses (average, 6% of trials; range, 0–15%).

ICA (Delorme and Makeig, 2004), as implemented in FieldTrip
Toolbox (Oostenveld et al., 2011), was used to attenuate the cardiac artifact
on MEG data. ICA was computed on MEG data epoched6200ms around
the R-peak of the ECG in data segments that were free of artifacts, blinks,
and saccades .3°. The number of independent components to compute
was set to be equal to the rank of the MEG data. Mean pairwise phase con-
sistency (PPC) was estimated for each independent component (Vinck et
al., 2010) with the right clavicle–left abdomen ECG derivation signal in the
frequency band 0–25Hz. Components (up to 3) that exceeded 3 SDs from
mean PPC were then removed from the continuous data.

To correct for blinks, 2 s segments of data were used to estimate blink
and eye-movement components. Mean PPCwas then computed with respect
to vertical electro-oculogram signal, and components exceeding the mean
PPCplus3 SDs were removed from continuous data. The procedure was iter-
ated until no component was beyond 3 SDs or until three components in
total were removed. Stereotypical blink components were manually selected
in two participants as the automated procedure failed to identify them.

ICA-corrected data were then low-pass filtered at 25Hz (sixth-order
Butterworth filter).

Trials selection
Trials had to meet the following criteria to be included in all subsequent
analysis: no movement artifacts, sum of blinking periods ,20% of total
trial time, at least one T-peak during instruction period (see HERs sec-
tion), and reaction time (RT) neither too short (at least 250ms) nor too
long. To identify exceedingly long RTs, we binned the trials of each task
in four difficulty levels based on the difference of the two options (i.e.,
difference in ratings in preference-based choice and difference in con-
trast for the perceptual ones). Within each difficulty level, for correct
and error trials separately, we excluded the trials with reaction times
exceeding the participant’s mean RTplus 2 SDs.

The mean 6 SD number of trials retained per participant was
421.676 43.36.

Heartbeat-evoked responses
Heartbeat-evoked responses were computed on MEG data time locked
to T-wave occurring during the instruction period. T-waves had to be at
minimum 400ms distance from the subsequent R-peak. To avoid

contamination by transient visual responses or by preparation for the
subsequent visual presentation, we only retained T-waves that occurred
at least 300 ms after the onset of the instruction cue and 350 ms before
the onset of options presentation. If more than one T-wave occurred in
this period, HERs for that trial were averaged. HERs were analyzed from
T-waveplus 50ms to minimize contamination by the residual cardiac ar-
tifact (Dirlich et al., 1997) after ICA correction.

We verify that differences in HERs between the two types of decision
were truly locked to heartbeats, and that a difference of similar magni-
tude could not arise by locking the data to any time point of the instruc-
tion period. To this end, we created surrogate timings for heartbeats
(within the instruction period), to break the temporal relationship
between neural data and heartbeats, and computed surrogate HERs. We
created a 500 surrogate heartbeat dataset by permuting the timings of
the real T-wave between trials belonging to the same decision type (i.e.,
the timing of the T-wave at trial i was randomly assigned to trial j). We
then searched for surrogate HER differences between trial types using a
cluster-based permutation test (Maris and Oostenveld, 2007; see below).
For each of the 500 iterations, we retained the value of the largest cluster
statistics [sum(t)] to estimate the distribution of the largest difference
that could be obtained randomly sampling ongoing neural activity dur-
ing the same instruction period. To assess statistical significance, we
compared the cluster statistics from the original data against the distri-
bution of surrogate statistics.

Statistical analysis
Nonparametric statistical testing of MEG data. The difference in

HERs between preference-based and perceptual trials during instruction
presentation was tested for statistical significance using a cluster-based
permutation two-tailed t test (Maris and Oostenveld, 2007) as imple-
mented in FieldTrip toolbox (Oostenveld et al., 2011), on magnetometer
activity in the time window of 50–300ms after T-wave. This method
defines candidate clusters of neural activity based on spatiotemporal
adjacency exceeding a statistical threshold (p, 0.05) for a given number
of neighboring sensors (n=3). Each candidate cluster is assigned cluster-
level test statistics corresponding to the sum of t values of all samples
belonging to the given cluster. The null distribution is obtained nonpara-
metrically by randomly shuffling conditions labels 10,000 times, com-
puting at each iteration the cluster statistics and saving the largest
positive and negative t sum. The Monte Carlo p value corresponds to the
proportion of cluster statistics under the null distribution that exceeds
the original cluster-level test statistics. Because the largest chance values
are retained to construct the null distribution, this method intrinsically
corrects for multiple comparisons across time and space. Control analy-
ses involving the clustering procedure were performed with the same
parameters.

The significance of b time series obtained from general linear model
(GLM) analyses at the sensor level was obtained using a cluster-based
permutation two-tailed t test against zero.

Bayes factor.We used Bayes factors (BFs) to quantify the evidence in
support of the null hypothesis (H0 = no difference between two meas-
ures). To this aim, we computed the maximum log-likelihood of a
Gaussian model in favor of the alternative hypothesis and for the model
favoring the null adjusting the effect size to correspond to a p= 0.05 for
our sample size (n= 21 for all analyses except for pupil for which n= 16,
and for three ECG derivations for which n=20). Finally, we computed
Bayesian information criterion and the corresponding Bayes factor. As a
summary indication, BF, 0.33 provides substantial evidence in favor of
the null hypothesis; BF between 0.33 and 3 does not provide enough evi-
dence for or against the null (Kass and Raftery, 1995).

For regression analyses, the Bayes factor was computed using the
online calculator tool (http://pcl.missouri.edu/bf-reg) based on the study
by Liang et al. (2008).

General linear model on response-locked single trials. To analyze
how task-related variables are encoded in neural activity during a deci-
sion, we ran a GLM on baseline-corrected (�500 to �200ms before
instruction presentation) single-trial MEG data time locked to button
press. We predicted z-scored MEG activity at each time point and
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channel using task-relevant experimental variables. For preference-based
decisions, we modeled MEG activity as follows:

MEGt;c ¼ b 0 1 b ChosenSV 1 b UnchosenSV 1 b Buttonpress GLM1að Þ;

where t and c represent MEG activity at time point t at channel c, b 0 is
the intercept, b ChosenSV are the z-scored ratings of the chosen option,
b UnchosenSV is the z-scored rating of the alternative unchosen option and
b Buttonpress is a categorical variable representing motor response (i.e., top
or bottom).

Similarly, for perceptual decisions we used the following:

MEGt;c ¼ b 0 1 b ChosenCtrs 1 b UnchosenCtrs 1 b Buttonpress GLM1bð Þ;

where b ChosenCtrs and b UnchosenCtrs are the z-scored contrast of the cho-
sen and unchosen options, respectively.

This procedure provided us with a time series of b values at each
channel that could be tested against zero for significance using spatio-
temporal clustering (Maris and Oostenveld, 2007). Once significant clus-
ters encoding task-related variables were identified at the sensor level,
we reconstructed the cortical sources corresponding to the sensor-level
activity averaged within the significant time window. We modeled
source-reconstructed neural activity with the same GLMs to identify the
cortical areas contributing the most to the significant sensor-level effect.

General linear model on posterior right vmPFC. To quantify the
influence of HER in anterior right vmPFC (r-vmPFC) during instruc-
tions on subjective value encoding during choice, we modeled the activ-
ity of posterior r-vmPFC, encoding subjective value with the following
GLM:

Posterior r–vmPFC ¼ b 0 1 b ChosenSV 1 b HER 1 b HER�ChosenSV GLM2ð Þ;

where, b 0 is the intercept, b ChosenSVare the z-scored ratings of the cho-
sen option, b HER is the z-scored activity in the anterior right vmPFC
cluster, defined by comparing HERs in preference-based versus percep-
tual choices, and b ChosenSV�HER is the interaction term obtained by mul-
tiplying the z-scored previous predictors.

To verify that the interaction between subjective value encoding and
HER amplitude was specifically time locked to heartbeats and not a gen-
eral influence of baseline activity in anterior r-vmPFC, we ran the fol-
lowing alternative model to explain posterior r-vmPFC activity:

Posterior r–vmPFC ¼ b 0 1 b ChosenSV 1 b BLvmPFC

1 b BLvmPFC�ChosenSV GLM3ð Þ;

where, b 0 is the intercept, b ChosenSVare the z-scored ratings of the cho-
sen option, b BLvmPFC is the z-scored activity in anterior r-vmPFC during
instructions averaged across the whole instruction period, not time-
locked to heartbeats, and b BLvmPFC�ChosenSV is the interaction between
the two preceding predictors. Note that regressors are not orthogonal-
ized in any of the GLMs.

Anatomical MR acquisition and preprocessing
An anatomic T1 scan was acquired for each participant on a 3 tesla
Siemens TRIO (n=2), a Siemens PRISMA (n= 20), or a Siemens VERIO
(n= 2) scanner. Cortical segmentation was obtained by using an auto-
mated procedure as implemented in the FreeSurfer software package
(Fischl et al., 2004). The results were visually inspected and used for min-
imum-norm estimation.

Source reconstruction
Cortical localization of neural activity was performed with BrainStorm
toolbox (Tadel et al., 2011). After coregistration of individual anatomy
and MEG sensors, 15,003 current dipoles were estimated using a linear
inverse solution from time series of magnetometers and planar gradiom-
eters (weighted minimum-norm; signal-to-noise ratio, 3; whitening

PCA; depth weighting, 0.5) using an overlapping-spheres head model.
Current dipoles were constrained to be normally oriented to cortical sur-
face, based on individual anatomy. Source activity was obtained by aver-
aging sensor-level time series in the time windows showing significant
effects (difference between HERs and b values different from zero), was
spatially smoothed (FWHM, 6 mm), and was projected onto the brain of
one template participant (15,003 vertices). Note that sources in subcorti-
cal regions cannot be retrieved with the reconstruction method used
here.

To assess which cortical areas contributed the most to the effects
observed at the sensor level, we ran a parametric two-tailed t test and
reported all clusters of activity spatially extending .20 vertices with
individual t values corresponding to p, 0.005 (uncorrected for multiple
comparisons). We reported the coordinates of vertices with the maximal
t value and their anatomic labels according to an Automated Anatomical
Labeling atlas (Tzourio-Mazoyer et al., 2002). For clusters falling into
prefrontal cortices, we reported the corresponding areas according to
the connectivity-based parcellation developed by Neubert et al. (2015).

Pupil data analysis
Pupil data that contained blinks (automatically detected with EyeLink
software and extended before and after by 150ms), saccades beyond 2°
and segments in which pupil size changed abruptly (signal temporal de-
rivative exceeding 0.3 a.u.) were linearly interpolated. All interpolated
portions of the data that exceeded 1 s were removed from further analy-
ses. Continuous pupil data from each experimental block were then
bandpass filtered between 0.01 and 10Hz (second-order Butterworth fil-
ter) and z-scored. Sixteen subjects were retained for pupil analysis; 5 sub-
jects were excluded because of data of too low quality. Pupil analysis was
performed in the following two ways: (1) averaged pupil diameter in the
same time period used for HER computation (i.e., 300ms after instruc-
tion presentation until 350ms before options display); and (2) averaged
pupil diameter in the time window spanning 1 s before button press
until its execution.

Data availability
The custom code and the source data used for the main analyses in this
article can be accessed online at https://github.com/DamianoAzzalini/
HER-preferences. Participants did not give any formal agreement to
publicly share the MEG and physiological data, hence, the raw data sup-
porting the findings are available from the corresponding authors on
reasonable request.

Results
Behavioral results
Participants were asked to choose between two simultaneously
presented movie titles according either to their subjective prefer-
ences or to the visual contrast of movie titles, as indicated by
trial-by-trial instructions presented before the alternatives (Fig.
1A). Decision difficulty, operationalized as the difference
between the two options (in the preference task: difference
between likeability ratings measured 1 d before the MEG session
(see Materials and Methods); in the perceptual task: difference
between contrasts), had the expected impact on behavior in both
tasks. Both preference consistency and discrimination accuracy

Table 1. Logistic regression against choice, for task-relevant and task-irrele-
vant stimulus information

Regressor

Preference decisions
two-tailed t test against 0
(uncorrected p value)

Perceptual decisions
two-tailed t test against 0
(uncorrected p value)

ChosenSV t(20) = 8.59, p= 3.8 * 10�8 t(20) = �1.14, p= 0.27
UnchosenSV t(20) = �11.95, p= 1.46 * 10�10 t(20) = 0.78, p= 0.45
ChosenCtrs t(20) = �0.50, p= 0.62 t(20) = 13.65, p= 1.36 * 10�11

UnchosenCtrs t(20) = 1.83, p= 0.08 t(20) = �12.17, p= 1.05 * 10�10

Button press t(20) = �1.88, p= 0.07 t(20) = �0.79, p= 0.44
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increased, and reaction times decreased for easier decisions
(Fig. 1C; preference task, one-way repeated measure ANOVA,
main effect of difficulty: accuracy, F(3,60) = 99.25, p, 10�15;
RT, F(3,60) = 41.14, p, 10�13; perceptual task, main effect of
difficulty: accuracy, F(3,60) = 280.2, p, 10�15; RT, F(3,60) =
87.67, p, 10�15). Preference and perceptual decisions were
matched in accuracy (two-way repeated-measures ANOVA;
main effect of task on accuracy: F(1,20) = 0.38, p = 0.55; interac-
tion task � difficulty, F(3,60) = 2.53, p = 0.07), but preference-
based decisions were generally slower (two-way repeated-
measures ANOVA; main effect of task: RT, F(1,20) = 57.64,
p, 10�6) and reaction times decreased less rapidly for easier
decisions (interaction task � difficulty: F(3,60) = 4.08, p = 0.01).
Participants only used task-relevant information (subjective
value or objective contrast) to decide, since nonrelevant infor-
mation could not predict choice (Fig. 1D, Table 1).

Neural responses to heartbeats are larger when preparing for
preference-based decisions
HERs in vmPFC have been previously shown to index self-
related processes (Park et al., 2014; Babo-Rebelo et al., 2016a,b).
We thus predicted that HERs would be larger when preparing
for subjective, preference-based decisions relying on self-reflec-
tion than when preparing for objective, perceptual ones.
Importantly, we devised our experimental design to clearly iso-
late two distinct phases in the trial: the preparatory phase in
which participants prepared for the upcoming decision, and in
which we analyzed HERs, and the evaluation phase, beginning
when options were revealed. This temporal separation permits
the analysis of HERs in the absence of concomitant processes,
such as evaluation, comparison, and motor preparation, which
could hinder the interpretability of the results. Using a non-
parametric clustering procedure that corrects for multiple
comparisons across time and space (Maris and Oostenveld,
2007), we found that HERs during the instruction period,
before option presentation, were indeed larger when partici-
pants prepared for preference-based decisions than for per-
ceptual ones (Fig. 2A,B; nonparametric clustering, 201–
262ms after T-wave; sum(t) = 1789; Monte Carlo cluster level,
p = 0.037). Averaging cluster activity separately in the two
conditions results in an effect size Cohen’s d of 1.28. Although
the accuracy for the two decision types was matched across
participants, we explored whether interindividual differences
in accuracy between the two tasks are related to the magnitude
of HER difference. Correlating HER amplitude differences in
the significant cluster (Fig. 2A,B) with the difference in mean
accuracy between the two decision types across subjects
revealed that subjects with larger HER differences were also
more accurate in the preference-based decisions relative to
perceptual ones (robust regression, b = 0.47; t(19) = 2.11,
p = 0.05, r2 = 0.19). The cortical regions that mostly contrib-
uted to the HER difference (Fig. 2C) were localized as
expected in right and left anterior vmPFC (areas 11m and 14
bilaterally; cluster peak at MNI coordinates [1, 57, �21] and
[�3, 47, �6]; t = 4.68 and t = 3.76, respectively), but also in
the right post-central complex ([32, �22, 56]; t = 5.57) and
right supramarginal gyrus ([41, �33, 43]; t = 3.98).

The HER difference between subjective preference-based tri-
als and objective perceptual discrimination trials was not accom-
panied by any difference in ECG activity (paired t test on four
ECG vertical derivations: all p� 0.89; all BFs� 0.24; paired t test
on four ECG horizontal derivations: all p� 0.34, all BFs� 0.47),
in cardiac parameters (interbeat intervals, interbeat interval

variability, stroke volume, T-wave mean latency, and variability),
or in arousal indices (alpha power and pupil diameter) measured
during the instruction period (Table 2). HER difference is thus
neither because of differences in cardiac inputs nor to overall
changes in brain states. Note that if the HER difference was
driven by differences in the task difficulty, as differences in reac-
tion times between perceptual and preference trials might sug-
gest, one would also expect brain states to be different in
preparation to easier (perceptual) versus more difficult (prefer-
ence-based) decisions. However, our control analyses on arousal
measures rule out this possibility. In addition, there is no evi-
dence that reaction time differences between the two tasks con-
tribute to HER differences, accounting for an extremely low
percentage (0.06%) of this variance (robust regression across par-
ticipants, b =0.08, t(19) = 0.35, p= 0.73, R2 = 0.006, BF= 0.41).
Importantly, the HER difference was time locked to heartbeats
and thus did not reflect a baseline difference between conditions
(Monte-Carlo cluster level, p=0.026; for details, see Materials
and Methods).

The subjective value of the chosen option is encoded in
medial prefrontal cortices in preference-based decisions
We then identified when and where the subjective value was
encoded during preference-based choice. First, we modeled
single-trial response-locked neural activity at the sensor level
using a GLM (GLM1a; see Materials and Methods), using as
regressors the subjective values of the chosen (ChosenSV) and
unchosen (UnchosenSV) options, as well as the response but-
ton used. Neural activity over frontal sensors encoded the sub-
jective value of the chosen option in two neighboring time
windows (b ChosenSV; first cluster: �580 to �370ms before
response, sum(t) = �7613; Monte Carlo cluster level, p= 0.004;
second cluster: �336 to �197ms before response, sum(t) =
�4405; Monte Carlo cluster level, p = 0.033; Fig. 2D,E). No clus-
ter of neural activity significantly encoded the subjective value of
the unchosen option. Motor preparation was encoded later in
time in two posterior–parietal clusters of opposite polarities
(b Button Press; negative cluster: �287 to �28ms before response;
sum(t) = �10,918; Monte Carlo cluster level, p= 0.003; positive
cluster: �373 to �196ms before response; sum(t) = 5848; Monte
Carlo cluster level, p= 0.02).

To identify the cortical regions contributing to the encoding
of subjective value at sensor level, we used the same model
(GLM1a) to predict source-reconstructed activity averaged in the
time window identified at sensor level (�580 to �197ms before
response). The subjective value of the chosen option was encoded
as expected in medial prefrontal regions (right posterior vmPFC
areas 32 and 24: cluster peak at MNI coordinates [7, 40, 0];
t=4.52; right dorsomedial PFC (dmPFC) area 8m: cluster peak at
MNI coordinates [5, 30, 40]; t=3.73), as well as in bilateral occipi-
tal poles (MNI coordinates [6, �77, 11] and [�1, �85, 16]; t =
4.17 and t = 3.85, respectively) and in mid-posterior left insula
(MNI coordinates [�34,�27, 17]; t =4.48; Fig. 2F).

HER amplitude during instruction interacts with subjective
value encoding in right vmPFC during choice on a trial-by-
trial basis
We thus show that two different subregions of vmPFC were
involved at different moments in a trial: during the instruction
period, HERs were larger when participants prepared for prefer-
ence-based versus perceptual decisions in left and right anterior
vmPFC, and, during the choice period, subjective value was
encoded in right posterior vmPFC. We then addressed our main

Azzalini et al. · HERs Contribute to Subjective Preferences J. Neurosci., June 9, 2021 • 41(23):5102–5114 • 5107



question (Fig. 1B): does the amplitude of neural responses to
heartbeats during the instruction period interact with the encod-
ing of subjective value during choice in vmPFC?

We tested whether subjective value encoding in right posterior
vmPFC was affected by HER amplitude measured in either left or
right anterior vmPFC in a two-by-two ANOVA with HER ampli-
tude (high or low, median split across trials) and hemisphere as fac-
tors. The ANOVA revealed a significant interaction between HER
amplitude and hemisphere (Fig. 3A; F(1,40) = 5.07, p=0.036; no
main effect of HER amplitude: F(1,20) = 2.69, p=0.12; no main effect
of hemisphere: F(1,20) = 0.19, p=0.67). This interaction corre-
sponded to a significantly stronger subjective value encoding in tri-
als where HERs in right vmPFC were larger during instructions
(two-tailed paired t test on b ChosenSV in large versus small HER val-
ues in right vmPFC: t(20) = 2.52, p=0.02, Cohen’s d=0.55).

The influence of HER amplitude was specific to value encod-
ing: the amplitude of visual responses evoked by option

presentation was unrelated to HER amplitude (Table 3). HER am-
plitude is thus not a mere index of cortical responsiveness, inter-
acting with any other brain response. HER amplitude in r-vmPFC
did not vary with pupil diameter or with alpha power, either dur-
ing choice or during value encoding (Table 3), indicating that
HER fluctuations are not driven by an overall change in brain
state. Last, to definitively rule out an influence of attention/arousal,
we tested whether the strength of value encoding was modulated
by fluctuations in alpha power or pupil diameter measured during
instructions. We median-split trials based on either alpha power
or pupil diameter, but found no difference in value encoding (a,
paired t test on b ChosenSV: t(20) = 0.19, p=0.85, BF=0.25; pupil,
paired t test: t(20) =�0.23, p=0.82, BF=0.24).

The interaction between HER amplitude and subjective value
encoding in right vmPFC was further tested using a full paramet-
ric approach. Here (GLM2), we predicted the activity of posterior
r-vmPFC during choice from the subjective value of the chosen

Table 2. Cardiac parameters and arousal measures during instructions do not differ between preference-based and perceptual decisions

Measure
Preference
(mean 6 SEM)

Perceptual
(mean 6 SEM)

Two-tailed paired t test
(uncorrected p value) Bayes factor

Interbeat interval (ms) 862.816 28.10 863.496 28.05 t(20) = �0.55, p= 0.59 0.30 Substantial
Interbeat variability (ms) 65.146 5.74 65.246 5.47 t(20) = �0.07, p= 0.94 0.24 Substantial
Stroke volume (ml) 39.976 8.11 40.546 8.74 t(20) = �0.85, p= 0.40 0.40 Inconclusive
T-wave latency variability relative to instruction onset (ms) 218.936 6.97 217.046 6.77 t(20) = 0.81, p= 0.43 0.39 Inconclusive
Mean T-wave latency relative to instruction onset (ms) 728.666 3.44 730.326 3.91 t(20) = �0.37, p= 0.72 0.26 Substantial
Pupil diameter (a.u.) �0.0756 0.05 �0.0736 0.05 t(15) = �0.08, p= 0.94 0.23 Substantial
Alpha power (fT2/Hz) 1826 22 1796 22 t(20) = 1.17, p= 0.26 0.62 Inconclusive

Figure 2. HERs and subjective value encoding. A, Topography of the significant HER difference between preference-based and perceptual decisions during the instruction period (201–
262 ms after cardiac T-wave, Monte Carlo cluster level, p= 0.037). B, Time course of HER (6SEM) for preference-based and perceptual decisions in the cluster highlighted in white in A. The
portion of the signal (50 ms after T-wave) still potentially contaminated by the cardiac artifact appears in lighter color. The black bar indicates the significant time window, as established by
nonparametric clustering procedure. C, Brain regions mostly contributing to the HER difference between preference-based and perceptual decisions (at least 20 contiguous vertices with uncor-
rected p, 0.005). D, Topography of the significant encoding of the chosen option subjective value (�580 to �197 ms before motor response) during choice in preference-based trials. E,
Time course (6SEM) of the GLM parameter estimate for the chosen option subjective value in the cluster highlighted in white in D. Black bars indicate significant time windows, as established
by nonparametric clustering procedure. F, Brain regions mostly contributing to the encoding of the subjective value of the chosen option (at least 20 contiguous vertices with uncorrected,
p, 0.005). *p, 0.05, **p, 0.01.
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option, the HER amplitude in anterior r-vmPFC during the
instruction period, and the interaction between these two terms
(Fig. 3B). Since the posterior vmPFC region of interest was
defined based on its encoding of the chosen value, the parameter
estimate for chosen value was, as expected, large (b ChosenSV =
�0.066 0.02; two-tailed t test against 0: t(20) = �3.37, p=0.003).
Activity in posterior vmPFC was also predicted by the amplitude of
HERs occurring ;1.5 s earlier, during the instruction period,

independently from the chosen value (bHER = 0.046 0.02; two-
tailed t test against 0: t(20) = 2.13, p=0.046), and, importantly, by the
interaction between HERs and chosen value (bHER * ChosenSV =
�0.056 0.02; two-tailed t test against 0: t(20) = �2.41, p=0.025).
Both the median-split analysis and the parametric model thus reveal
a significant interaction between the amplitude of HERs during the
instruction period and the neural encoding of subjective value dur-
ing choice.

Figure 3. The interaction between HER and value encoding accounts for interindividual variability in choice consistency and for intraindividual trial-by-trial fluctuations of choice precision. A,
Parameter estimates for the encoding of the chosen option value in posterior r-vmPFC during choice, in trials where HERs during task preparation were small (yellow) or large (orange) in left
anterior vmPFC (left) or in right anterior vmPFC (right). Each dot represents a participant, the horizontal line indicates the mean. The difference in value encoding between large and small
HERs (gray bars; error bars indicate SEM) was significant in right vmPFC (ANOVA on value encoding; significant interaction of HER amplitude� hemisphere: F(1,40) = 5.07, p= 0.036; two-tailed
paired t test comparing encoding strength for trials with large or small HERs in right vmPFC: t(20) = 2.52, p= 0.02) B, Activity in posterior r-vmPFC is by design explained by the chosen option
subjective value, but it is also explained by HER amplitude in anterior r-vmPFC during instructions and by the interaction between HER and value encoding. C, Robust regression shows that the
magnitude of the interaction between HER and value encoding positively predicts interindividual variability in choice consistency. D, Behavioral data (dots) and fitted psychometric function
(lines) for one representative participant, in trials with a large or small interaction between HER and value encoding. Error bars represent SEM. E, Criterion and slope of the psychometric func-
tion in all participants, revealing a significantly steeper slope for trials with large interaction between HER and value-related vmPFC activity (p= 0.037). The decision criterion is unaffected.
Black lines represent the parameter estimates of the participant displayed in D. *p, 0.05, **p, 0.01. ns, not significant.

Table 3. Arousal states and physiological parameters do not differ between low and high HER amplitude in preference trials

Measure
Low HER
(mean 6 SEM)

High HER
(mean 6 SEM)

Two-tailed t test
(uncorrected p) Bayes factor

Pupil diameter (a.u.) during option presentation, [�1 to 0 s] 0.276 0.07 0.246 0.07 t(15) = 0.57,
p= 0.58

0.29 Substantial

Pupil diameter (a.u.) during value encoding
[�0.580 to �0.197 s]

0.326 0.08 0.296 0.08 t(15) = 0.57,
p= 0.58

0.29 Substantial

Alpha power (fT2/Hz) maximum 15 channels during option
presentation, [�1 to 0 s]

1.24 � 102 6 0.14 � 102 1.25 � 102 6 0.13 � 102 t(20) = �0.42,
p= 0.68

0.27 Substantial

Alpha power (fT2/Hz) in the value encoding cluster
[�0.580 to �0.197 s]

0.56 � 102 6 0.03 � 102 0.56 � 102 6 0.03 � 102 t(20) = �0.71,
p= 0.48

0.35 Inconclusive

RMS of visual response to options (fT) [0–250 ms] 62.86 2.43 62.56 2.40 t(20) = 0.28
p= 0.78

0.25 Substantial
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We then verified that the effect on the neural encoding
of subjective value was specific to HER amplitude, and not
because of an overall baseline shift in anterior r-vmPFC
during the instruction period. We ran an alternative model
(GLM3) in which the activity in posterior r-vmPFC was
predicted from the subjective value of the chosen option,
the activity in anterior r-vmPFC averaged during the whole
instruction period (i.e., activity was not time locked to
heartbeats) and the interaction between the two terms. This
analysis revealed that while the subjective value of the chosen
option still significantly predicted the activity of posterior
r-vmPFC (b ChosenSV = �0.056 0.02; two-tailed t test against
0: t(20) = �3.27, p = 0.004), the other two terms did not (activ-
ity in anterior r-vmPFC averaged during instruction period:
b BL vmPFC = 0.0066 0.03; two-tailed t test against 0: t(20) =
0.22, p = 0.83, BF = 0.25; interaction: b BL vmPFC* ChosenSV

�0.036 0.02, two-tailed t test against 0, t(20) = �1.55, p = 0.14,
BF = 1.14). The encoding of subjective value is thus specifically
modulated by HER amplitude in anterior r-vmPFC and not by
an overall baseline shift unrelated to heartbeats in the same
region.

The functional coupling between HERs and subjective
value encoding was also region specific: HER amplitude in
anterior r-vmPFC was unrelated to the strength of value
encoding in any other value-related regions (two-tailed
paired t test on b ChosenSV in large vs small HER values in
right dmPFC: t(20) = �0.89, p = 0.38, BF = 0.43; right occipital
pole: t(20) = �0.86, p = 0.40, BF = 0.41; left occipital pole:
t(20) = �1.60, p = 0.13, BF = 0.81; left posterior insula: t(20)=
1.00, p = 0.33, BF = 0.49). Conversely, HERs outside anterior
r-vmPFC did not significantly interact with value encoding
in posterior r-vmPFC. Splitting trials based on the amplitude
in the two other cortical regions showing differential heart-
beat-evoked responses (Fig. 2C) showed no significant mod-
ulation of value encoding in right posterior vmPFC (post-
central complex: two-tailed paired t test on b ChosenSV: t(20)=
�1.41, p = 0.17, BF = 0.90; right supramarginal gyrus, two-
tailed paired t test: t(20)= �1.96, p = 0.06, BF = 2.41).

We thus show that HER fluctuations in right anterior
vmPFC predict the strength of value encoding in right poste-
rior vmPFC. To gain a deeper insight into which factors may
drive HER fluctuations, we tested whether single-trial HER
amplitude in preference-based trials could be explained by
past trial experience. To this end, we modeled single-trial
HER amplitude in right anterior vmPFC as a function of
characteristics of the previous two trials (switches between
tasks, decision difficulty, the overall likeability of items), and
as a function of the average value of the chosen option up to
the current trial. Our analysis showed that none of these ex-
perimental-related variables could account for a significative
portion of HER amplitude (no parameter estimate was differ-
ent from zero, t test vs 0: all t(20) � 1.48, all p� 0.15, all
BFs� 1.01). To rule out the possibility that these null results
were driven by the large number of predictors used in the
same model, we performed the same analysis by modeling
HER amplitude as a function of one variable at a time, result-
ing in 7 different models. None of these 7 models could
predict a significant portion of HER amplitude (maximal
explained variance across models, 0.75%). We can thus con-
clude that fluctuations in HER amplitude are not driven by
task alternation, past decision difficulties, the likeability of
items presented in the two preceding trials, or the average
subjective value of the chosen option.

The interaction between HER and value encoding predicts
choice consistency
To what extent does the interaction between HER and value
encoding in vmPFC predict behavior? We first tested whether
the interaction between HER and value encoding relates to inter-
individual differences in choice consistency (i.e., whether partici-
pants selected the movie to which they had attributed the
greatest likeability rating the day before). Given the overall high
consistency in preference-based decisions, which may reduce our
ability to detect significant relationships, we computed mean
choice consistency using the top 50%most difficult trials (i.e., tri-
als above median difficulty in each participant). We regressed
the model parameter of the interaction between HER and value
encoding (bHER * ChosenSV obtained from GLM2) against mean
choice consistency across participants. The larger the interaction
between HER and value encoding, the more consistent were par-
ticipants in their choices (b robust = 0.41, robust regression R2 =
0.22, t(19) = 2.29, p=0.03; Fig. 3C). In other words, 22% of inter-
individual difference in behavioral consistency is explained by
the magnitude of the interaction between HER and value
encoding.

The correlation between neural activity and behavior was
specific to the interaction parameter: interindividual differ-
ences in choice consistency could not be predicted from the
model parameter estimate of HER (bHER from GLM2:
b robust = 0.02, R2 = 4 * 10�4, t(19) = 0.09, p = 0.93, BF = 0.39),
or from the parameter estimate of value (b ChosenSV from
GLM2: b robust = �0.19, R2 = 0.04, t(19) = �0.88, p = 0.39,
BF = 0.52). The interaction between HER and subjective
value encoding did not covary significantly either with the
personality traits, assessed through self-reported question-
naires (robust regressions on BDI scores: t(19) = �0.17,
p = 0.87, BF = 0.40; STAI scores: t(19) = 0.90, p = 0.38,
BF = 0.52; OCI scores: t(19) = �1.23, p = 0.22, BF = 0.70; PDI
scores: t(19) = �0.32, p = 0.75, BF = 0.60), or interoceptive
ability, assessed with the heartbeat counting task (t(19) =
�0.73, p = 0.48, BF = 0.48).

So far, results are based on parameter estimates computed
across trials for a given participant. To assess how within-partici-
pant trial-by-trial fluctuations in behavior relates to the interac-
tion between HERs and subjective value encoding, we computed
the z-scored product of the HER amplitude in anterior r-vmPFC
during the instruction period and the value-related activity in
posterior r-vmPFC during choice. We then median split the tri-
als according to this product and modeled participants’ choices
separately for trials with a small versus large interaction (Fig.
3D). When the interaction was large, psychometric curves fea-
tured a steeper slope, corresponding to an increased choice preci-
sion (two-tailed paired t test: t(20) =�2.24, p= 0.037, Cohen’s d =
�0.49; after removal of the unique outlier with a slope estimate
exceeding 3 SDs from population mean: t(19) = �3.30, p=0.003,
Cohen’s d = �0.74; Fig. 3E), while decision criterion was not
affected (two-tailed paired t test: t(20) =�1.20, p= 0.25, BF= 0.64;
after outlier removal: t(19) =�0.96, p=0.35, BF= 0.46; Fig. 3E).

To control for the specificity of the interaction, we estimated
the psychometric function on trials median-split on HER ampli-
tude alone but found no difference in choice precision (two-
tailed paired t test: t(20) = 0.41, p= 0.69, BF= 0.27) or in criterion
(two-tailed paired t test: t(20) = 0.52, p=0.61, BF= 0.29).
Similarly, median-splitting trials on value-related posterior r-
vmPFC activity alone revealed no difference in the psychometric
curve (two-tailed paired t test; slope: t(20) = 0.21, p= 0.84,
BF= 0.25; criterion: t(20) = �0.57, p=0.58, BF= 0.30). Therefore,
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our results indicate that trial-by-trial choice precision is specifi-
cally related to the interaction between HERs in anterior r-
vmPFC and value-related activity in posterior r-vmPFC.

Altogether, these results indicate that the interaction between
HER amplitude and subjective value encoding accounts both for
within-subject intertrial variability and for interindividual differ-
ences in preference-based choice consistency.

HER effects are specific to preference-based choices
Finally, we tested whether the effect of HER was specific to sub-
jective value or whether it is a more general mechanism interact-
ing with all types of decision-relevant evidence. To this aim, we
analyzed perceptual discrimination trials using the same
approach as for preference-based trials. First, we modeled the
single-trial response-locked MEG sensor-level data using a GLM
(GLM1b) with the parameters accounting for choice in the per-
ceptual task (i.e., contrast of the chosen option, ChosenCtrs, and
the contrast of the unchosen option, UnchosenCtrs), as well as the
response button. The nonparametric clustering procedure
revealed the presence of a frontocentral cluster encoding the con-
trast of the chosen option (b ChosenCtrs, �257 to �25ms before
response; sum(t) = 8121; Monte Carlo cluster level, p=0.005;
Fig. 4A,B). We also found two clusters of opposite polarities
encoding the contrast of the unchosen option (b UnchosenCtrs: pos-
itive cluster, �250 to �79ms before response; sum(t) = 6182;
Monte Carlo cluster level, p= 0.008; negative cluster, �211 to
�88ms before response; sum(t) = �4127; Monte Carlo cluster
level, p=0.04) and two clusters encoding motor preparation
(b Button Press; positive cluster: �193 to 0ms before response; sum
(t) = 11,103; Monte Carlo cluster level, p=0.0004; negative clus-
ter: �222 to 0ms before response; sum(t) = �10,395; Monte
Carlo cluster level, p= 0.0004). The same model (GLM1b)
applied to source-reconstructed activity averaged in the time
window identified at sensor level (�257 to �25ms before

response) revealed the following four cortical areas encoding the
contrast of the chosen option (Fig. 4C): left midcingulate area
(peak at MNI coordinates, [11, 27, 43], t = 5.14), left superior
frontal gyrus ([15, 7, 71], t = 4.70), bilateral inferior parietal
lobule (IPL, right: [47, 55, 53], t = 4.25; left: [44, 42, 49], t = 5.51).
Finally, we median split perceptual trials according to the ampli-
tude of HERs in anterior r-vmPFC. The encoding strength of the
contrast of the chosen option did not interact with heartbeat-
evoked response amplitudes in any of the contrast-encoding
regions (all p values � 0.26, BF� 0.62; Table 4). The results thus
indicate that HER amplitude in r-vmPFC is specifically linked to
the cortical encoding of subjective value.

Discussion
We show that preparing for subjective preference-based deci-
sions led to larger responses to heartbeats in vmPFC, as expected
from previous studies relating self and HERs (Park et al., 2014;
Babo-Rebelo et al., 2016a, b), and in post-central gyrus, a region
known to respond to heartbeats (Kern et al., 2013; Azzalini et al.,
2019; Al et al., 2020). We further reveal that HERs before option
presentation interact specifically with subjective value encoding
during choice in vmPFC. The interaction between HERs and
value encoding predicted preference-based choices: it was associ-
ated with more precise decisions at the single-trial level and pre-
dicted interindividual variability in choice consistency over time.
No interaction between HER and the encoding of perceptual evi-
dence could be found in the control objective task. Neither the
HER difference between the two tasks, nor the interaction
between HER and value in the subjective preference task, could
be trivially explained by changes in cardiac parameters (heart
rate, heart rate variability, ECG, stroke volume) or by changes in
arousal state (pupil diameter, alpha power). Altogether, our
results reveal how the self-reflection intrinsic to preference-based
decisions involves the neural readout of a physiological variable
and its integration into the subjective valuation process.

In line with previous studies relating the self with HERs in
vmPFC (Park et al., 2014; Babo-Rebelo et al., 2016a,b, 2019), we
find that HERs are more pronounced when preparing for the
subjective preference task than when preparing for the objective
discrimination task. A number of self-related processes might
take place specifically when preparing for the subjective prefer-
ence-based task, such as turning attention inward or preactivat-
ing autobiographical memory circuits. Note that HERs cannot be
influenced by processes triggered by the movie titles themselves,

Table 4. Encoding strength for contrast during perceptual decisions does not
depend on HER amplitude in anterior r-vmPFC

Region
Two-tailed paired t test
HER– vs HER1 Bayes factor

L midcingulate area t(20) = 1.17, p= 0.26 0.62 Inconclusive
L superior frontal gyrus t(20) = 0.90, p= 0.38 0.43 Inconclusive
L inferior parietal lobule t(20) = 0.11, p= 0.92 0.24 Substantial
R inferior parietal lobule t(20) = 0.79, p= 0.44 0.38 Inconclusive

L, Left; R, right.

Figure 4. Neural encoding of perceptual evidence. A, Topography of the significant encoding of the chosen option contrast (�257 to�25ms before motor response) during choice in objec-
tive visual discrimination trials. B, Time course (6SEM) of the GLM parameter estimate for the chosen option contrast in the cluster highlighted in white in A. The black bar indicates the signif-
icant time window, as established by nonparametric clustering procedure. C, Brain regions mostly contributing to the encoding of the contrast of the chosen option (at least 20 contiguous
vertices with uncorrected p, 0.005). **p, 0.01.

Azzalini et al. · HERs Contribute to Subjective Preferences J. Neurosci., June 9, 2021 • 41(23):5102–5114 • 5111



such as retrieving movie-specific information from memory,
since options are not yet available in the instruction period where
HERs are measured. We thus interpret the HER difference
between the tasks as indexing the degree of self-reflection
engaged in the two tasks: necessary to evaluate how an option
fits with one’s taste and absent, or most certainly reduced, when
comparing visual contrasts in perceptual discrimination. This
would also account for why HER fluctuations were not associ-
ated with any change in the neural encoding of objective percep-
tual evidence. This result might seem to be at odds with
previously reported effects of HERs on sensory detection at
threshold (Park et al., 2014; Al et al., 2020). However, as opposed
to the perceptual discrimination task used here, sensory detec-
tion at threshold is intrinsically subjective, since participants are
asked to introspect and report their fluctuating subjective experi-
ence in response to physically and objectively constant stimuli
(Ress and Heeger, 2003; Campana and Tallon-Baudry, 2013).
Last, there was no difference in cardiac parameters between the
two tasks, indicating that HER fluctuations relevant for valuation
and behavior correspond to changes in the quality of the neural
monitoring in cardiac inputs, rather than to changes in cardiac
activity.

We successfully retrieved with MEG the cortical valuation
network described in the fMRI literature (Levy and Glimcher,
2012; Bartra et al., 2013; Clithero and Rangel, 2014), including
dmPFC and vmPFC, during the choice period. These findings
are interesting per se, as data on the temporal course of value-
based choices in the human prefrontal cortex remain scarce
(Hunt et al., 2012, 2015; Polanía et al., 2014; Lopez-Persem et al.,
2020). Here, we find that chosen value is robustly encoded in the
valuation network from 600 to 200ms before motor response,
with a temporal (but not spatial) overlap with motor preparation.
Note that we did not find a robust encoding of the unchosen
value, which is in line with electrophysiological recordings in the
monkey orbitofrontal cortex where the encoding of the chosen
value dominates (Padoa-Schioppa and Assad, 2006; Strait et al.,
2014; Hunt et al., 2015; Rich and Wallis, 2016). In the objective
discrimination task, relevant perceptual evidence was encoded
in, among other regions, posterior parietal cortex, which is con-
sistent with the monkey electrophysiology literature (Shadlen
and Newsome, 2001; Heekeren et al., 2008).

To date, vmPFC has been investigated by two separate
streams of studies concerning valuation (Fellows, 2006; Delgado
et al., 2016; Vaidya et al., 2018) and self (Qin and Northoff, 2011;
Andrews-Hanna et al., 2014). Here, we show a functional cou-
pling between these two seemingly separated processes, namely
through the interaction between HERs and subjective value rep-
resentation. These results are in keeping with the proposed inte-
grative role of vmPFC in value-based decision-making (Vaidya
and Fellows, 2020) and subjective appraisal (Dixon et al., 2017),
but they substantially advance our understanding of the func-
tional role of vmPFC by identifying the mechanism through
which this integration occurs. More in general, our results reveal
the centrality of the self-reflective process for subjective evalua-
tion and its stability over time.

Because fluctuations in HERs occurred during task prepara-
tion, before option presentation, their influence on value encod-
ing might generally pertain to interactions between ongoing
activity (during task preparation) and stimulus-evoked activity
(in response to option presentation). HERs constitute a very spe-
cific subset of such interactions: HERs interacted only with value,
but not with visual evoked responses, for instance, and only in
vmPFC in the subjective task. Our results are thus in keeping

with our initial hypothesis, based on recent findings (Park et al.,
2014; Babo-Rebelo et al., 2016a,b, 2019) that HERs are specifi-
cally linked to self-related processes, and further reveal the func-
tional relationship with subjective evaluation. However,
alternative interpretations of these results should be considered.
First, HER fluctuations may reflect changes in vmPFC prestimu-
lus activity, which has been shown to have an additive effect on
pleasantness ratings (Abitbol et al., 2015; Lopez-Persem et al.,
2020). Here, the effect of HERs on neural encoding of subjective
value and on choice consistency is multiplicative. In addition,
the link between prestimulus activity and value that we identified
is specific to HERs: the prestimulus activity not locked to heart-
beats does not interact with value. A second alternative interpre-
tation may be that trial history affects baseline activity (Bouret
and Richmond, 2010), thus driving HER fluctuations. However,
our control analysis rules out this interpretation: HER amplitude
fluctuations are not explained by the average value of the options
chosen so far, by the difficulty or overall likeability of previous
decisions, or by the recent switches between tasks. Finally, our
results cannot easily be interpreted in the framework of the so-
matic marker hypothesis (Bechara and Damasio, 2005), where
changes in peripheral bodily signals are related to performance
(Bechara et al., 1997). In the present data, fluctuations in HERs
affecting behavior are not accompanied by changes in peripheral
states. Altogether, HER fluctuations appear related to trial-to-
trial fluctuations in self-reflective processes occurring during
subjective decision preparation. This interpretation also accounts
for the HER difference between the self-reflective valuation task,
and the non-self-related perception task. Self-reflection might
entail internally oriented attention, but it is not accompanied by
changes in arousal, as probed by pupil diameter and alpha power
during instructions. To conclude, our results identify that part of
the unspecified “neural noise” driving fluctuations in choice con-
sistency (Padoa-Schioppa, 2013; Kurtz-David et al., 2019; Webb
et al., 2019) comes from the interaction between interoceptive
self-related processes, indexed by neural monitoring of cardiac
signals, and the neural encoding of subjective value.

A more detailed mechanistic account of how responses to
heartbeats during task preparation influence the subjective valua-
tion process taking place ;1.5 s later remains to be established.
One possibility is that neural responses to heartbeats during deci-
sion preparation reflect the precision with which subjects are
able to sample internally generated evidence via self-reflection.
Computationally, this may translate into a better retrieval of
cached subjective values. Our experimental design does not allow
us to address this question, requiring further studies to specifi-
cally test this mechanism. Future research should also investigate
how HERs contribute to subjective valuation during the decision
phase, an analysis that, given the very few suitable heartbeats
occurring in the decision phase, was precluded in this study. Still,
our results pave the way for the quantification of self-related
processes in decision-making, an aspect mostly absent from
computational models of decision-making despite its relevance
to understanding maladaptive decisions in psychiatric disorders
(Paulus, 2007; Moeller and Goldstein, 2014; Sui and Gu, 2017).

Decisions on primary goods such as food integrate informa-
tion about internal bodily states to select options that preserve
the integrity of the organism that needs to be fed and protected
—the simplest notion of self. We show here that the subjective
valuation of cultural goods, which relies on the same cortical val-
uation network as used for primary goods (Chib et al., 2009;
Lebreton et al., 2009; Levy and Glimcher, 2011; McNamee et al.,
2013; Sescousse et al., 2013), has inherited a functional link with
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the central monitoring of physiological variables. Even when
choosing between cultural goods that do not fulfill any immedi-
ate basic need, the neural monitoring of heartbeats supports self-
reflection underlying evaluation, contributing to the precision of
subjective decisions and fostering the stable expression of long-
lasting preferences that define, at least in part, our identity.
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