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The overexpression of calcineurin leads to astrocyte hyperactivation, neuronal death, and inflammation, which are character-
istics often associated with pathologic aging and Alzheimer’s disease. In this study, we tested the hypothesis that tacrolimus,
a calcineurin inhibitor, prevents age-associated microstructural atrophy, which we measured using higher-order diffusion
MRI, in the middle-aged beagle brain (n= 30, male and female). We find that tacrolimus reduces hippocampal (p= 0.001)
and parahippocampal (p= 0.002) neurite density index, as well as protects against an age-associated increase in the parahip-
pocampal (p= 0.007) orientation dispersion index. Tacrolimus also protects against an age-related decrease in fractional ani-
sotropy in the prefrontal cortex (p, 0.0001). We also show that these microstructural alterations precede cognitive decline
and gross atrophy. These results support the idea that calcineurin inhibitors may have the potential to prevent aging-related
pathology if administered at middle age.
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Significance Statement

Hyperactive calcineurin signaling causes neuroinflammation and other neurobiological changes often associated with patho-
logic aging and Alzheimer’s disease (AD). Controlling the expression of calcineurin before gross cognitive deficits are observ-
able might serve as a promising avenue for preventing AD pathology. In this study, we show that the administration of the
calcineurin inhibitor, tacrolimus, over 1 year prevents age- and AD-associated microstructural changes in the hippocampus,
parahippocampal cortex, and prefrontal cortex of the middle-aged beagle brain, with no noticeable adverse effects.
Tacrolimus is already approved by the Food and Drug Administration for use in humans to prevent solid organ transplant
rejection, and our results bolster the promise of this drug to prevent AD and aging-related pathology.

Introduction
Alzheimer’s disease (AD) is the most prevalent neurodegenera-
tive disorder in the world, affecting .45 million people (Dos
Santos Picanco et al., 2018). It is primarily characterized by

dementia, a decline in memory, and other cognitive skills beyond
what is typically observed in healthy aging (Reitz and Mayeux,
2014). The greatest risk factor for AD remains age, and most
people in whom the disease develops are older than 65 years
(Inouye et al., 2010).

The two major neuropathological features of AD are abnor-
mally folded b -amyloid (Ab ) peptides and the accumulation of
hyperphosphorylated tau proteins in amyloid plaques and neuro-
fibrillary tangles (Perl, 2010; Holtzman et al., 2011; Stancu et al.,
2014; Forestier et al., 2015; Hendrie et al., 2015; Liu et al., 2015).
Because of the overwhelming evidence that Ab plaques play a
role in AD and the amyloid cascade hypothesis (Hardy and
Higgins, 1992), most therapeutic strategies have focused on
reducing or at least controlling the formation of these plaques.
However, clinical trials that use Ab -reducing approaches have
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shown limited clinical efficacy, prompting the exploration of
treatments that target other factors or pathways driving this dis-
ease, perhaps upstream of Ab accumulation (Pahnke et al.,
2009).

Mounting evidence suggests that the Ca21/calmodulin-de-
pendent protein phosphatase, calcineurin, and downstream
signaling pathways are an attractive target for ameliorating
cognitive decline in AD and related disorders (Reese and
Taglialatela, 2011; Sompol and Norris, 2018). Calcineurin is
found at high levels in neurons and reactive glial cells where
it modulates synaptic plasticity, neuroinflammation, gluta-
mate regulation, and memory formation (Mansuy, 2003).
Elevated levels of calcineurin expression and signaling are
found in the hippocampus and other cortical areas at the out-
set of cognitive decline in humans (Abdul et al., 2009;
Mohmmad Abdul et al., 2011) and are highly correlated with
pathologic features in later disease stages (Liu et al., 2005;
Abdul et al., 2009). Overexpression or hyperactivation of calci-
neurin in experimental models recapitulates key features of AD,
including glial reactivity (Norris et al., 2005), synaptic degenera-
tion (Wu et al., 2010), and cognitive dysfunction (Malleret et al.,
2001). Conversely, the inhibition of calcineurin signaling via
genetic or pharmacologic means reverses many of these AD-
related biomarkers in animal models (Reese et al., 2008;
Taglialatela et al., 2009; Rozkalne et al., 2011; Furman et al.,
2012; Hudry et al., 2012; Rojanathammanee et al., 2015; Kumar
and Singh, 2017; Sompol et al., 2017). In the clinic, calcineurin
inhibitors, like tacrolimus, are used primarily as immunosuppres-
sants to combat organ transplant rejection and other autoimmune
disorders. However, an epidemiological study in 2015 showed that
kidney transplant patients treated with tacrolimus had a signifi-
cantly lower incidence of dementia relative to age-matched indi-
viduals in the general population (Taglialatela et al., 2015).
Collectively, this work suggests that tacrolimus and other Food
and Drug Administration (FDA)-approved calcineurin inhibitors
could be repurposed for the prevention of AD and dementia.

The FDA-approved status, and the well known safety profiles
and contraindications of calcineurin inhibitors would certainly
make the path to AD clinical trials easier. But, to ensure that cal-
cineurin inhibitors have the best chance of succeeding as anti-
AD therapeutics requires further optimization in a preclinical
model that better approximates human metabolism, neural func-
tion, treatment course, and biomarker milestones.

Dogs have a metabolism that is very similar to that of humans
and are excellent preclinical models for testing pharmacological
agents (Dalgaard, 2015). More importantly for investigating anti-
AD treatments, dogs naturally show age-related amyloid plaque
pathology, neuroinflammation, and neurodegeneration (Sarasa
and Pesini, 2009; Prpar Mihevc and Majdi�c, 2019). Human-like
deficits in cognition also arise with aging and correlate well with
pathologic features. Because of their longer life span, larger brain
size, and complexity, and ease of training, dogs are amenable to
the longitudinal assessment of neurologic function using com-
plex cognitive/behavioral batteries and brain imaging, which are
common to most modern human clinical trials. (Patronek et al.,
1997; Hoffman et al., 2018). Given these clear benefits, we
explored the microstructural consequences of tacrolimus on the
brain of a preclinical aging beagle model (age, 4–8 years) using dif-
fusion-weighted imaging (DWI). Though traditional MRI proce-
dures (like T1- and T2-weighted imaging) are noninvasive, they
only provide a mesoscopic view as even their highest resolutions
are well too coarse to resolve changes at the expected microscopic
level, at least directly. In contrast, DWI provides measures that are

sensitive to the underlying microstructure and its changes in dis-
orders such as AD (Chua et al., 2008). Here, we use the following
two types of diffusion analysis techniques to survey the potential
cytoarchitectural changes (or lack thereof) that tacrolimus could
induce in the beagle brain: (1) traditional diffusion tensor fitting
(Basser et al., 1994); and (2) neurite orientation dispersion and
density imaging (NODDI) analysis (Zhang et al., 2012).

Materials and Methods
Animals and drug delivery
Forty-five (7 males and 38 females) purpose-bred beagles ranging in age
from 5 to 8 years were assessed for general health status and cognition,
as described previously (Head et al., 1998; Milgram et al., 1999, 2002;
Tapp et al., 2003; Christie et al., 2005; Studzinski et al., 2006). Dogs
ranged in weight from 8.6 to 14.5 kg. Since tacrolimus has previously
been associated with nephrotoxicity in renal transplant patients
(Randhawa et al., 1997), blood samples were taken every 6 months to
monitor the overall health and to assess blood urea nitrogen (BUN), cre-
atine, and phosphorous levels of the dogs. All institutional and national
guidelines for the care and use of laboratory animals were followed.

Cognitive testing
Cognitive testing used a modified Wisconsin General Test Apparatus
described previously (Head et al., 2008). Dogs were given 10–12 trials/d,
5 d/week, depending on the cognitive task. All tasks were reward moti-
vated and based on visual cues. Dogs were given baseline tests of visual
discrimination learning and reversal learning to assess learning and ex-
ecutive function. Subsequently, a spatial delayed nonmatch to sample
task was used to assess spatial learning and memory. At the end of base-
line testing, dogs were ranked according to cognitive test scores and bal-
anced into three groups consisting of 15 animals/group. Groups were
also balanced for age.

Drug administration
Oral tacrolimus at a concentration of 0.075mg/kg twice a day (n= 15;
two males) or an oral placebo control (n=15; two males) was adminis-
tered for 1 year. The remaining 15 animals were assigned to another
intervention study not relevant to this article; only their baseline data are
included here to improve the statistical power of age associations. The
concentration of the drugs was designed to provide minimal immuno-
suppression to reduce adverse effects (Margarit et al., 1998).

MRI image acquisition
Dogs were placed under general anesthesia using propofol (4–8mg/kg, i.
v., by slow injection to effect). After orotracheal intubation and mainte-
nance on isoflurane 1–4%, delivered in 100% O2, dogs were scanned
using a 3 T MRI scanner (Prisma, Siemens) both at baseline before treat-
ment and after 1 year of treatment.

T1 weighted. A high-resolution T1-weighted (T1w) MPRAGE
image was collected [repetition time (TR) = 2530 ms; echo time
(TE) = 2.49 ms; flip angle = 7°; matrix size = 0.4� 0.4� 0.7 mm;
averages = 1; average acquisition time = 10min, 30 s] for structural
analysis and image registration.

DWI. Diffusion imaging (TR=5700 ms; TE=62 ms; 48 coronal slices
in the animal reference frame; phase encoding, superior–inferior; average
acquisition time=12min, 30 s) was performed using a double refocused
echoplanar sequence with an isotropic 1.6 mm voxel for three gradient
values: b= 500, 1000, and 2000 s/mm2. Gradients were applied in a total of
114 directions, along with 13 images with no diffusion weighting (b=0).

Diffusion data preprocessing
All preprocessing steps used MRtrix3 (Tournier et al., 2012; https://
www.mrtrix.org/) commands or MRtrix3 scripts that linked external
software packages. Physiologic noise arising from thermal motion of
water molecules in the brain was removed first (Veraart et al., 2016), fol-
lowed by the removal of Gibbs ringing artifacts (Kellner et al., 2016).
The image intensity was then normalized across subjects in the log-do-
main (Raffelt et al., 2012; Andersson and Sotiropoulos, 2016).
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Structural data processing
The T1w images were corrected for intensity inhomogeneities using
advanced normalizations tools (ANTs) N4 bias field correction (Tustison
et al., 2010). The structural image of each dog was then nonlinearly core-
gistered to their respective preprocessed b0 image, so that the structural
and diffusion images were in the same space for the rest of the analyses.
To help standardize our results, we used the Aguirre high-resolution ex
vivo template (Datta et al., 2012). In this space, we generated a high-reso-
lution central tendency template from the structural scans using ANTs
with an initial cohort of 10 animals and a bootstrapping approach. We
then used this template to generate initial priors for both brain extraction
and tissue type segmentation (gray matter, white matter, CSF, deep gray
matter, and cerebellum) again using ANTs and a bootstrapping approach
with more refined priors. The result was a set of priors that can be used in
a modified ANTs cortical thickness pipeline to generate final tissue seg-
ments for each subject. Though the Aguirre template provides an excellent
standard template space complete with high-resolution ex vivo scans, it
does not provide adequate labels for ROI-specific analyses. To solve this
problem, we coregistered two different atlases, hereby referred to as the
Nitzsche atlas (Nitzsche et al., 2019) and the Czeibert atlas (Czeibert et al.,
2019) to the same template space using the affine1SyN nonlinear registra-
tion in ANTs. The Nitzsche atlas was used for large-area ROIs like entire
lobes, while the Czeibert atlas was used for more specific subregions like
the hippocampus. All resulting images were visually inspected for quality
and rerun with new command line parameters when necessary (Fig. 1).
Region-wise volumes were determined by warping the annotated atlas
back to each individual’s subject space and quantifying the number of vox-
els that made up each region of interest.

Deriving diffusion metrics
We calculated traditional tensor metrics [fractional anisotropy (FA) and
mean diffusivity (MD)] using FSL (version 6.0.1; Jenkinson et al., 2012)
and higher-order, multicompartment metrics [neurite density index
(NDI), orientation dispersion index (ODI), and fractional isotropy
(FISO)] using the NODDI (Zhang et al., 2012) model with the
Microstructure Diffusion Toolbox (Harms et al., 2017). The traditional

tensor metrics are widely used, but typically are applied only to white
matter. NODDI metrics are tissue type agnostic and can readily be used
in gray matter as it characterizes diffusion within each voxel as a combi-
nation of intracellular, extracellular, and CSF-based components. The in-
tracellular compartment ostensibly captures neurite membranes and
myelin sheaths and is modeled as a set of sticks with restricted diffusion
perpendicular to the orientation of the axonal bundles and unhindered
diffusion along them. The extracellular compartment is designed to
model the space around the neurites, composed of glia and somas, as
hindered Gaussian anisotropic diffusion. The CSF is modeled as iso-
tropic diffusion. A summary of all the diffusion metrics used is provided
in Table 1.

The hippocampus, parahippocampal gyrus, and prefrontal cortex
(PFC) were selected as a priori regions because aging and AD present
early changes in these regions in dogs (Shimada et al., 1992; Thal et al.,
2002; Ezekiel et al., 2004; Su et al., 2005; Tapp et al., 2004, 2006; Hwang
et al., 2008; Head, 2011). Region-specific averages were obtained by
aligning the Czeibert atlas (Czeibert et al., 2019) to each subject’s para-
metric maps. Diffusion metrics were then averaged across each region of
interest using AFNI (Analysis of Functional NeuroImages; Cox, 1996).
All statistical analyses were performed in Python Scipy (Jones et al.,
2001; https://www.scipy.org) or GraphPad Prism 8.3.0. All regression
analyses were simple linear regressions. The effects of interventions were
assessed with ANOVA, and multiple comparisons were corrected using
Holm–Sidak statistical hypothesis testing (Holm, 1979).

Whole-brain exploratory analysis was conducted to measure global
longitudinal changes in each group separately using a paired t test in a
voxelwise manner using 3dttest11 in AFNI. The AFNI clusterwise sim-
ulations (Forman et al., 1995) were used to correct for multiple compari-
sons. Parametric maps of each subject were passed in after they were
registered to a common space, and a brain mask was passed in to improve
power. To assess the interaction between intervention and time, a differ-
ence image was created (T0-T1) for each metric and each subject, and the
difference images of each group were compared through an unpaired t
test. The -clustsim option was used to determine the minimum cluster
threshold for each individual test to maintain a final a of 0.05.

Figure 1. Summary of the analysis pipeline.
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Data availability
Code for data processing and analysis
is available at https://github.com/
StarkLabUCI/Woofusion.

Results
The NDI of the beagle hippocampus
and parahippocampal gyrus
increases with age
Our first question was whether dif-
fusion within hippocampal and
parahippocampal gray matter was
affected by age. Previous work in our
laboratory has shown that the NDI
of the hippocampus as a whole
(Venkatesh et al., 2020), and specifi-
cally the DG/CA3 subfields (Radha-
krishnan et al., 2020), is higher in
older humans (59–84 years of age)
than young adults (20–38 years of
age) and that this increase is nega-
tively correlated with memory performance (Radhakrishnan et al.,
2020). Here, we found a similar relationship between age and hip-
pocampal NDI at baseline, before treatment, in the canine model
across all groups (simple linear regression: R2 = 0.111, p=0.031; Fig.
2). Moreover, we observed a similar relationship between age and
parahippocampal NDI (R2 = 0.131, p=0.018; Fig. 2). This relation-
ship between age and NDI was insignificant overall when averaging
over the entire temporal lobe (R2 = 0.008, p=0.567), suggesting a
focused change in these regions with age.

To determine whether these results were driven by gray mat-
ter or white matter voxels, we classified individual voxels in these
regions into gray or white matter by FA thresholding. Those vox-
els with FA. 0.4 were classified as likely white matter voxels,
while those with FA, 0.4 were classified as likely gray matter
voxels (Kumar et al., 2016). We found that the ratio of gray mat-
ter to white matter voxels was, on average, 7.48:1 in the hippo-
campus and 9.07:1 in the parahippocampal gyrus, suggesting
that a clear majority of the signal we were detecting in these

ROIs was driven by gray matter. Moreover, removal of the white
matter voxels from the regions of interest when averaging across
the parametric maps did not significantly change the results.

None of the other studied metrics showed a reliable rela-
tionship with age in the hippocampus or the parahippocam-
pal gyrus, further bolstering our claim that the NDI might
be capturing unique aging-associated microstructural prop-
erties in hippocampal and parahippocampal gray matter
not typically detected by simple tensor metrics. We found
no significant differences in NDI between hemispheres in
both regions. Our male/female distribution did not permit
us to test for sex differences.

One year treatment with tacrolimus results in a decrease in
hippocampal and parahippocampal NDI and an increase in
parahippocampal ODI
Dogs treated with tacrolimus for a year had significantly lowered
hippocampal NDI (repeated-measures ANOVA, Sidak multiple-
comparisons test: t=3.976, p= 0.001, df = 25) and para-

Table 1. A description of the diffusion metrics used

Metric Abbreviation Description Range

Fractional anisotropy FA A measure of axonal organization or integrity based on the coherence of orientations of the
bundles. Mainly used to study white matter, and generally decreases with age. Reductions
in FA can mean neurodegeneration, a myelin sheath depletion, or just general atrophy of
fiber bundles (Song et al., 2003; Budde et al., 2007). FA reductions have also been associ-
ated with the accumulation of amyloid plaques (Tievsky et al., 1999; Wieshmann et al.,
1999; Kealey et al., 2004)

0 (most isotropic) to 1 (least isotropic)

Mean diffusivity MD Another measure of white matter bundle integrity calculated as the average amount of water
diffusion inside the voxel. MD in most regions increases with age, also suggesting demye-
lination or axonal degradation (Abe et al., 2002; Grieve et al., 2007; Hsu et al., 2008)

Continuous (directly proportional to the
amount of diffusion)

Neurite density index NDI Calculated as the proportion of the voxel expressing unhindered diffusion along a given set of
sticks, and restricted diffusion perpendicular to the same set of sticks. It measures intracel-
lular volume fraction and could detect inflammation as cell swelling results in increased
volume (Colgan et al., 2016; Garcia-Hernandez et al., 2020)

0 (most extracellular) to 1 (most
intracellular)

Orientation dispersion index ODI A measure of tortuosity coupling an intracellular and extracellular space. Gives the variability
of neurite orientations, and might be able to pick up on the dispersion of axons and neu-
rons within a voxel (Billiet et al., 2015). May also be positively correlated with microglial
density (Colgan et al., 2016; Yi et al., 2019; Garcia-Hernandez et al., 2020)

0 (least dispersed) to 1 (most dispersed)

Fractional isotropy FISO A measure of the amount of isotropic free volume within a voxel and is usually proportional
to the amount of CSF in a voxel. Might also pick up on other free water entities like dead
cells (Billiet et al., 2015)

0 (least CSF) to 1 (most CSF)

A version of this table first appeared in Radhakrishnan et al. (2020).

Figure 2. At baseline, before treatment, the NDI of the hippocampus and the parahippocampal gyrus are positively correlated
with age. Individual dots represent individual subjects. The line of best fit is in black, and the teal lines represent 95% confidence
intervals.
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hippocampal NDI (t=3.711, p=0.002,
df = 25) NDI compared with baseline,
suggesting that the drug might be res-
cuing some level of age-associated
change (Fig. 3). Such a change was not
observed between the time points for
the control dogs in either of the
regions. Though the dogs are not old
enough to be exhibiting significant
cognitive deficits (Milgram, 2003),
previous studies in humans using
structural equation modeling show
that increased hippocampal NDI
mediates age-related cognitive decline
(Radhakrishnan et al., 2020), indicat-
ing that the drug may have the poten-
tial to protect against cognitive deficits
if administered for a longer period of
time.

The parahippocampal ODI signifi-
cantly increased after a year in the
control dogs (t= 3.197, p= 0.007), but
not in the dogs treated with tacrolimus
(t=0.082, p=0.995). We also observed a critical interaction
between drug and time on ODI (F= 4.660, p= 0.040, ANOVA).
We did not notice any correlations between parahippocampal
ODI and age at baseline (R2 = 0.039, p=0.805; Fig. 4), possibly
because the dogs are middle aged, and we have a relatively re-
stricted range. However, age-related increases in ODI have been
reported in human studies with negative consequences (Nazeri
et al., 2015; Mole et al., 2020; Venkatesh et al., 2020).

As with the previous analysis, removal of the white matter
voxels from the regions of interest when averaging across the
parametric maps did not significantly change the results. No
other studied metric showed an effect of time or intervention in
these regions. We found no significant difference in the diffusion
metrics between hemispheres for all regions studied.

Tacrolimus protects against structural changes in the
prefrontal cortex
We next turned to changes outside of the hippocampal region.
One of the first regions to be affected in the aging canine brain is
the PFC. MRI studies have shown that the PFC starts reducing in
volume at an earlier age (8–11 years) compared with the hippo-
campus (Tapp et al., 2004). Cognitively, aging also leads to

poorer performance on tasks associated with the PFC, like rever-
sal learning and visuospatial memory (Head et al., 1998; Tapp et
al., 2003; Studzinski et al., 2006). While it is unclear whether the
prefrontal cortex is an early region affected by age-related neuro-
inflammation, it is one of the first areas in the canine brain to de-
velop plaques (Wieshmann et al., 1999; Bosch et al., 2012).
Formation of these plaques has consistently been reflected in dif-
fusion MRI studies as a reduction of fractional anisotropy
(Tievsky et al., 1999; Wieshmann et al., 1999; Kealey et al., 2004).
It is not very surprising that we found no significant relationship
between age and prefrontal NDI or ODI at baseline (NDI: R2 =
0.001, p=0.806; ODI: R2 = 0.006, p= 0.608), and these metrics
did not significantly change in either group over the year.
However, despite the lack of a significant relationship between
age and prefrontal FA at baseline (R2 = 0.015, p= 0.440), it
decreased in the control dogs after a year (t=5.042, p, 0.001).
This observation is directly analogous to the negative correlation
between age and FA consistently observed in humans (Bennett
et al., 2010; Kantarci et al., 2013). Interestingly, prefrontal FA did
not decrease in the dogs treated with tacrolimus for a year
(t=1.890, p=0.135), suggesting that the drug may be preventing
age-associated structural deterioration in the prefrontal cortex
(Fig. 5). The lack of a cross-sectional relationship with age at

Figure 3. One year treatment with tacrolimus significantly reduces the NDI in both the hippocampus (t= 3.976, p= 0.001) and the parahippocampal gyrus (t= 3.711, p= 0.002). There
was a significant interaction between intervention and time in the hippocampus (F= 4.482, p= 0.044, ANOVA), but not in the parahippocampal gyrus (F= 2.579, p= 0.120). Error bars show
the SEM.

Figure 4. Though there was no correlation between age and parahippocampal ODI at baseline, the ODI of the parahippocam-
pal gyrus increased in the control dogs after 1 year (t= 3.197, p= 0.007), but not in the dogs treated with tacrolimus
(t= 0.082, p= 0.995), with a significant interaction between intervention and time (F= 4.660, p= 0.040, ANOVA). Error bars
show the SEM.
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baseline might be attributed to individual differences and the
dogs not being old enough to exhibit clear differences.

We also segmented the PFC into white matter and gray mat-
ter regions, as described in the The NDI of the beagle hippocam-
pus and parahippocampal gyrus increases with age subsection.
We found that the ratio of gray matter to white matter voxels
was, on average, 60.55:1, showing that an overwhelming majority
of the signal was driven by gray matter. Removal of the white
matter voxels from the regions of interest when averaging across
the parametric maps did not significantly change the results. No
other studied metric showed an effect of time or intervention in
these regions. All effects reported were bilateral. Our male/female
distribution did not permit us to test for sex differences.

Whole-brain exploratory analysis revealed disorganized
decreases in white matter of the control dogs, but not of the
dogs treated with tacrolimus
Following these a priori regional analyses, we conducted a
whole-brain exploratory analysis to determine whether these
changes were unique to these areas or whether they were found
previously as well. Voxelwise comparisons were performed in a
pairwise manner for each dog in both groups using the AFNI
3dttest11. We used the -clustsim option to determine the mini-
mum cluster threshold to ensure an false discovery rate-cor-
rected p value of at least 0.05, with an a of 0.05. We observed a
disorganized, but large-scale, decrease in FA in many white mat-
ter regions (Fig. 6; 59,207 voxels survived thresholding) only in
the control dogs. This was not unexpected, as the loss of white
matter integrity is a classic hallmark of aging (Vernooij et al.,
2008; Bennett et al., 2010; Madden et al., 2012). The dogs treated
with tacrolimus did not show this same decrease (no voxels sur-
vived thresholding), further suggesting that the drug may be pro-
tecting against even sporadic neurodegeneration. However, these
results should be interpreted cautiously as we found no signifi-
cant interaction between intervention and time at our chosen
thresholds [i.e., no voxels survived thresholding when comparing
the difference image in time (T0 – T1) between the two groups].

Interestingly, no other diffusion metric studied exhibited reli-
able differences over time in either group, suggesting a very spe-
cific age-related decrease in the control dogs in only the a priori
regions and a distinct protection against this effect by the drug.

This finding bolsters our theory that NDI and
ODI are sensitive to specific microstructural
changes associated with age, and may be early
predictors of medial temporal lobe pathology in
these specific regions.

The hippocampal volume of both groups
decreased over time, but not in the other a
priori regions
We observed no significant relationship
between age and hippocampal or parahippo-
campal volume at baseline as measured by the
T1w image (hippocampus: R2 = 0.003, p=0.771;
parahippocampal gyrus: R2 = 0.027, p= 0.404),
further demonstrating that these diffusion met-
rics may be detecting microstructural changes
well before more large-scale volumetric changes
present themselves. However, we observed a
main effect of time on hippocampal volume for
both groups (F= 9.986, p=0.0041, ANOVA),
suggesting that while the drug may protect
against specific cytoarchitectural changes, it

may not be able to protect against overall age-related volumetric
atrophy in the hippocampus. As expected, no cross-sectional
relationship between age and prefrontal volume was observed at
baseline, and prefrontal volume did not change over the year in
either group. There was also no global reduction in volume in ei-
ther group, suggesting that age-associated atrophy is limited to
the hippocampus at this stage in the life span. These results sup-
port the theory that volumetric changes in these regions occur
further down the life span and that diffusion metrics may be ear-
lier indicators of future pathologic and cognitive decline and
may be more sensitive to measure interventional changes.

Limited cognitive changes were observed over time
We also assessed the effect of age on baseline cognition as well as
the interaction between intervention and cognition after a year.
We observed no significant relationship between age and dis-
crimination learning (R2 = 0.014, p= 0.442) or reversal learning
(R2 = 0.017, p= 0.393). However, age had a negative effect on
spatial accuracy at 20 s (R2 = 0.172, p=0.007) and spatial accu-
racy at 70 s (R2 = 0.109, p=0.036), but not with spatial accuracy
at 110 s (R2 = 0.045, p= 0.186). After 1 year of intervention, there
was no significant difference in either group with respect to dis-
crimination learning (control, p=0.821; tacrolimus, p=0.628) or
spatial accuracy (control: p=0.151, 0.796, 0.504; tacrolimus:
p= 0.999, 0.471, 0.625 for 20, 70, and 110 s accuracy versions,
respectively). Performance on reversal learning trended toward a
decrease in error scores (i.e., better function) over time in the
control dogs (p= 0.057), but not in the dogs treated with tacroli-
mus (p=0.112). After the removal of an outlier in the tacrolimus
group, this effect of time was significant in both groups (control,
p= 0.041; tacrolimus, p=0.029). These data, in conjunction, sug-
gest that while these dogs are not exhibiting major cognitive
decline, continued treatment will allow for more opportunities to
see improvements. To that end, continued treatment may also be
able to reveal whether the structural protection that tacrolimus
grants to the study group translates to cognitive benefits as well.
None of the cognitive scores studied were significantly correlated
with the diffusion metrics, possibly because the middle-aged
dogs do not yet show significant decline but are already display-
ing signs of microstructural deterioration.

Figure 5. After 1 year, FA significantly reduced in the prefrontal cortex of the control dogs (t= 5.042,
p, 0.0001), but not in the dogs treated with tacrolimus (t= 1.890, p= 0.135). The interaction between interven-
tion and time was also significant (F= 4.568, p= 0.042, ANOVA). Error bars show the SEM.

Radhakrishnan et al. · Tacrolimus Protects the Aging Beagle Brain J. Neurosci., June 9, 2021 • 41(23):5124–5133 • 5129



Discussion
In this study, we used the drug tacrolimus to test the hypothe-
sis that calcineurin inhibitors can prevent aging-related
pathology, as measured by neuroimaging, in the middle-
aged canine. We observed a positive correlation between
hippocampal and parahippocampal NDI with age at base-
line, a relationship that agreed with our observations in
humans from previous studies (Radhakrishnan et al., 2020;
Venkatesh et al., 2020). Interestingly, 1 year treatment with
tacrolimus resulted in a decrease in both hippocampal and
parahippocampal NDI, while the control dogs did not ex-
hibit this effect. The drug also protected against an increase
in parahippocampal ODI and a decrease in prefrontal FA,
both consistently recognized as negative consequences of
aging. We also showed that these changes precede most
widespread volumetric changes and all cognitive changes
and are specific to the a priori regions studied. These data,
put together, suggest that (1) calcineurin inhibitors may
rescue negative microstructural outcomes associated with
age and (2) advanced diffusion imaging measures may be
valuable biomarkers for predicting aging-associated pathol-
ogy well before other symptoms are present.

The overexpression of calcineurin helps drive neuroinflam-
mation and astrogliosis, which are commonly observed in aging
(Rusnak and Mertz, 2000; Norris et al., 2005; Reese and
Taglialatela, 2011). Although neuroinflammation is ultimately a
systemic consequence of age, the dogs we studied are not old
enough to exhibit these changes globally (subsection Whole-
brain exploratory analysis revealed disorganized decreases in
white matter of the control dogs, but not of the dogs treated with
tacrolimus). However, the hippocampus and nearby regions are
thought to be some of the initial hotspots of such inflammation
(Akiyama et al., 2000; Verbitsky et al., 2004; Gavilán et al., 2007;
Head, 2011), which could potentially be captured in our middle-
aged model. Older dogs display an increase in GFAP

immunoreactivity and protein levels in the hippocampus and
neighboring regions, as well as increased astrogliosis and astro-
cyte hypertrophy (Borràs et al., 1999; Pugliese et al., 2006;
Hwang et al., 2008). While there are currently no effective meth-
ods to measure such inflammatory changes noninvasively, sev-
eral mouse studies have demonstrated reliable positive
correlations between both the NDI and the ODI with immunore-
activity, astrocyte reactivity, and microglia count (Colgan et al.,
2016; Grussu et al., 2017; Wang et al., 2019). Here, we showed
that tacrolimus reduces hippocampal and parahippocampal NDI
after just a year of treatment. Though neuropathological out-
comes have not yet been obtained, increases in NDI in gray mat-
ter regions could be a consequence of inflammation, as
microglial and astrocyte swelling cause the cells to expand,
resulting in an increase in intracellular volume fraction, which is
estimated by NDI (Colgan et al., 2016; Garcia-Hernandez et al.,
2020). The hypothesis that tacrolimus may prevent neuroinflam-
mation is further supported by our finding that it protects
against an increase in parahippocampal ODI, which could be a
marker for microglial density (Colgan et al., 2016; Yi et al., 2019;
Garcia-Hernandez et al., 2020). Region-specific increases in
microglial densities in the hippocampus and parahippocampal
regions also precede plaque formation and are suppressed in
mouse models of AD by inhibition of calcineurin signaling path-
ways (Furman et al., 2012; Sompol and Norris, 2018), again sug-
gesting that tacrolimus administration in dogs may be protecting
against aging-related pathologic changes through calcineurin in-
hibition (Marlatt et al., 2014; Fakhoury, 2018). However, these
theories must be handled cautiously, as we are yet to find
adequate histologic evidence for the neurobiological specificity
of NODDI metrics.

We also found that tacrolimus protects against an age-asso-
ciated decrease in prefrontal FA, suggesting that the drug
may be capable of preventing, or at least delaying, the for-
mation of amyloid plaques (Andrews-Hanna et al., 2007;

Figure 6. Difference in T0 – T1 in FA of the control dogs. We found significant decreases in white matter FA after 1 year in control dogs, but not in the tacrolimus-treated dogs. Colored
regions show regions where the FA at T0 was significantly different from the FA at T1 for control dogs (red–yellow, T0. T1; teal–blue, T0, T1). Dogs treated with tacrolimus are not pic-
tured here as there were no significant voxels of difference when comparing the two time points.
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Kantarci et al., 2017; Nasrabady et al., 2018), which, again,
is consistent with the effects of calcineurin inhibition in
rodent models (Hong et al., 2010). Moreover, the dogs
showed no adverse effects on kidney function as a conse-
quence of the drug, as measured by BUN, creatine, and
phosphorous levels in the blood, reducing concerns that
tacrolimus might cause nephrotoxicity in this model.

Perhaps most striking is the fact that these effects are specific
to the prefrontal and hippocampal regions in both groups of
dogs. Other than the drug protecting against global neurodegen-
eration in white matter (reflected as a decrease in FA in the con-
trol dogs, but not those treated with tacrolimus), the diffusion
metrics in no other brain regions, except those considered a pri-
ori aging hotspots, changed after a year. This specificity and the
fact that these protections are displayed before cognitive decline
is promising. These results strongly support the potential of
tacrolimus to prevent age-related pathologic decline and suggest
that similar drugs could be used as middle-aged preventative
care in humans. More research on the neurobiological mecha-
nisms of calcineurin inhibitors would help to indicate a more
specific time frame in the human life span in which these drugs
could be most effective in preventing neuropathology.

The results from this study also suggest a compelling case for
using higher-order diffusion imaging measures. NDI, ODI, and
even tensor metrics like FA computed on multishell data, all
show potential to be early biomarkers for aging-related pathol-
ogy. They may be sensitive to microstructural alterations preced-
ing other measurable pathologies and capture these changes well
before gross atrophy or cognitive decline is present. Acquisition
of higher-order, multishell data allows for both forms of analyses,
and the complexity and the tissue-agnostic approach of NODDI
(Zhang et al., 2012) makes it far more applicable to the study of
gray matter microstructure and longitudinal change that may
result from AD-associated neuropathological changes (e.g.,
inflammation and astrogliosis).

This study provides novel outcomes that include (1) evidence
for treatment benefits of tacrolimus on brain structure before
cognitive decline; and (2) support for a canine model that shows
changes in NODDI metrics that can be detected both in both
cross-sectional and longitudinal studies. However, this study is
not without limitations. The advanced diffusion metrics, specifi-
cally NDI and ODI, have not been adequately histologically vali-
dated, and though some studies suggest that they might be
sensitive to inflammation, these results must be interpreted cau-
tiously. The male/female ratio prevents us from assessing sex dif-
ferences, and these results may not be as significant in male
beagles. However, all male dogs studied had diffusion metrics
well within the range of their female counterparts, with no signif-
icant outliers. Moreover, dogs were middle aged without signs of
significant cognitive decline, posing a challenge to detect struc-
ture–behavior relationships. Unfortunately, both groups showed
a significant decrease in hippocampal volume after 1 year, sug-
gesting that the drug may not be able to protect against more
macrostructural atrophy. The study will continue for another
year, and our hypothesis that structural brain changes occur
before cognitive decline may be testable at the next time point.
Also, future neuropathology outcome measures will help us
determine whether our speculations regarding FA and Ab , and
NDI and glial activation/inflammation are valid.

In summary, treatment with low doses of tacrolimus in the
canine model of aging protects against age-associated structural
changes, as shown by neuroimaging and presents no observable
adverse effects. It is intriguing to consider that the structural

neuroimaging outcomes noted here may precede cognitive
decline in control dogs and may predict benefits in treated ani-
mals, which will be evaluated as the study continues.
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