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Temporal Relations between Cortical Network Oscillations
and Breathing Frequency during REM Sleep
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Nasal breathing generates a rhythmic signal which entrains cortical network oscillations in widespread brain regions on a
cycle-to-cycle time scale. It is unknown, however, how respiration and neuronal network activity interact on a larger time
scale: are breathing frequency and typical neuronal oscillation patterns correlated? Is there any directionality or temporal
relationship? To address these questions, we recorded field potentials from the posterior parietal cortex of mice together with
respiration during REM sleep. In this state, the parietal cortex exhibits prominent h and c oscillations while behavioral activ-
ity is minimal, reducing confounding signals. We found that the instantaneous breathing frequency strongly correlates with
the instantaneous frequency and amplitude of both h and c oscillations. Cross-correlograms and Granger causality revealed
specific directionalities for different rhythms: changes in h activity precede and Granger-cause changes in breathing fre-
quency, suggesting control by the functional state of the brain. On the other hand, the instantaneous breathing frequency
Granger causes changes in c frequency, suggesting that c is influenced by a peripheral reafference signal. These findings
show that changes in breathing frequency temporally relate to changes in different patterns of rhythmic brain activity. We
hypothesize that such temporal relations are mediated by a common central drive likely to be located in the brainstem.
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Significance Statement

The study of the interactions between respiration and brain activity has been focused on phase entrainment relations, in
which cortical networks oscillate phase-locked to breathing cycles. Here we discovered new and much broader interactions
which link breathing frequency to different patterns of oscillatory brain activity. Specifically, we show that the instantaneous
breathing frequency strongly correlates with the instantaneous frequency and amplitude of u and g oscillations, two major
network patterns associated with cognitive functions. Interestingly, changes in breathing frequency follow u , suggesting a
central drive, while in contrast, g activity follows changes in breathing frequency, suggesting the role of a reafferent signal.
Our results reveal new mechanisms by which nasal breathing patterns may relate to brain functions.

Introduction
Several recent studies have shown that nasal breathing induces
local field potential (LFP) oscillations at the same frequency
as respiration in multiple regions of the rodent and human

brain (for reviews, see Tort et al., 2018a; Heck et al., 2019).
LFP phase-locking to respiratory cycles includes regions not
primarily related to olfaction (Ito et al., 2014; Lockmann et
al., 2016; Nguyen Chi et al., 2016; Zelano et al., 2016;
Biskamp et al., 2017; Herrero et al., 2018; Karalis and Sirota,
2018; Köszeghy et al., 2018; Rojas-Líbano et al., 2018; Tort et
al., 2018b), suggesting that respiration-entrained oscillations
aid the integration of widespread information (Heck et al.,
2017, 2019; Tort et al., 2018a), similar to the proposed func-
tion of other slow network rhythms (Isomura et al., 2006;
Canolty and Knight, 2010). Given the alleged beneficial
effects of some respiratory practices to mood, behavioral per-
formance, and cognitive abilities (Pascoe and Bauer, 2015;
Zelano et al., 2016; Melnychuk et al., 2018; Nakamura et al.,
2018; Perl et al., 2019; Novaes et al., 2020), the fact that nasal
breathing can modulate brain oscillations in nonolfactory
regions has sparked large interest, including in popular sci-
ence media, since it could provide a way through which
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respiration would affect brain functions (Heck et al., 2017;
Varga and Heck, 2017; Tort et al., 2018a).

The research on relations between respiration and neuronal
network activity has so far mainly focused on phase entrainment
relations, in which a given cortical LFP is shown to oscillate
phase-locked to breathing cycles, typically accompanied by a
peak in the LFP power spectrum at the breathing frequency
(Tort et al., 2018b), or by modulation of action potential proba-
bility by the breathing phase (Zhong et al., 2017; Karalis and
Sirota, 2018; Köszeghy et al., 2018). Other studies have shown
that the breathing phase is also capable of modulating the instan-
taneous amplitude of faster, g -frequency oscillations (Ito et al.,
2014; Yanovsky et al., 2014; Rojas-Líbano et al., 2018; Cavelli et
al., 2019), especially in frontal regions (Biskamp et al., 2017;
Zhong et al., 2017). All these findings are, however, confined to
the time domain of individual oscillation cycles. Nevertheless,
both breathing frequency and the pattern of neuronal network
oscillations vary over time, and it remains unclear whether there
is any interaction between these rhythmic phenomena at the
time scale of such variations. Of note, we have recently reported
such an interaction by showing that the strength of u -g coupling
depends on respiratory frequency (Hammer et al., 2020).

We therefore performed a systematic analysis of relations
between the varying patterns of cortical oscillations and breath-
ing. In particular, we searched for correlations and Granger cau-
sality between the instantaneous breathing frequency and the
instantaneous amplitude and frequency of neocortical network
oscillations. To that end, we recorded respiration through a
whole-body plethysmograph while simultaneously recording
field potentials from the posterior parietal cortex of mice. We
focused on periods of REM sleep, which is characterized by
prominent activity in the u and g bands (Montgomery et al.,
2008; Scheffzük et al., 2011). Moreover, this state guarantees a
stable behavior: that is, any observed changes in breathing are
not because of changes in motor demands, and cognitive-behav-
ioral interference with the environment is minimal. Our results
reveal strong correlations between the instantaneous breathing
frequency and the instantaneous amplitude and frequency of u
and g oscillations. We also report a clear temporal relation, with
u oscillations being Granger-causal for changes in breathing fre-
quency which, in turn, is Granger-causal for g activity.

Materials and Methods
Ethics statement. This study was approved by the Governmental

Supervisory Panel on Animal Experiments of Baden-Württemberg (35-
9185.81 G84/13 and G-115/14). All experiments were conducted in line
with the guidelines of the European Science Foundation (2001) and the
U.S. National Institutes of Health’s Guide for the care and use of labora-
tory animals (1996).

Animal care.We used 22 C57/Bl6 mice (9 females and 13 males; age:
13-19weeks; weight: 22-37 g). The animals were housed in groups of 4
with access to food and water ad libitum. After surgery for electrode im-
plantation, animals were kept individually until completion of the
experiments. Mice were housed on a 12 h light-dark-cycle (lights off at
8:00 A.M., except 2 animals on the opposite circadian phase). Data from
these same animals were used in a recent study of ours (Hammer et al.,
2020).

Surgery. Mice were implanted with epidural surface electrodes.
Buprenorphine (0.1mg/kg) was administered for pain control before
and after surgery (every 8 h as necessary). Surgery was performed under
isoflurane anesthesia (4% for induction, 1.5% during surgery) (for fur-
ther details, see Jessberger et al., 2016; X. Zhang et al., 2016). After skull
exposure, 0.5- to 1-mm-diameter holes were drilled above the parietal
cortex according to stereotactic coordinates (2 mm posterior bregma, 1.5

mm lateral to the midline). Reference and ground electrodes were
screwed into the skull above the cerebellum. Electrodes consisted of
stainless-steel watch screws. During surgery, body temperature was
monitored and maintained at 37°C-38°C. Animals were allowed 7 d of
recovery before experiments.

Electrophysiological recordings and behavioral staging. Mice were
placed in a whole-body plethysmograph (EMKA Technologies), which
was customized to allow simultaneous recordings of respiration and
LFPs. Of note, in this work, we use the terms “respiration” and “breath-
ing” interchangeably. The plethysmograph consisted of a transparent
cylinder (78 mm inner diameter, 165 mm height) connected to a refer-
ence chamber (see Fig. 1A). Individual recording sessions lasted from 2
to 6 h (mean: 3 h). To avoid slow signal drifts, the plethysmograph-
derived respiration signal was high-pass filtered.1Hz. Monopolar elec-
trophysiological signals were filtered (1-500Hz), amplified and digitized
at 2.5 kHz (RHA2000, Intan Technologies). A three-dimensional acceler-
ometer was custom-mounted on the amplifier board located on the head
of the mice to allow movement detection. The three signals of the accel-
erometer were fed to three channels of the amplifier using the same
bandpass filter as for the LFPs (see above), therefore removing the grav-
ity-induced sustained potentials of the accelerometers.

REM sleep was manually staged by a senior researcher in the field
(J.B.) and identified as follows: (1) minimal accelerometer activity and
(2) continuous u rhythm in the parietal cortex following a sleep stage
with slow waves typical for non-REM sleep (Branka�ck et al., 2010).

Data analysis. We used built-in and custom-written routines in
MATLAB (The Mathworks). For each animal, all identified REM sleep
epochs were first detrended and then concatenated before analysis.

Power and coherence. Respiration and LFP power spectra were com-
puted using the pwelch.m MATLAB function from the Signal
Processing Toolbox. Phase coherence spectra between raw respiration
and LFP signals were computed using the mscohere.m function (Signal
Processing Toolbox). For both functions, we used 4 s windows with 50%
overlap and nfft = 216.

Time-frequency power spectrograms were computed using the spec-
trogram.m function (Signal Processing Toolbox). For the analyses shown
in Figures 2, 4, and 5, we used 500 ms windows with no overlap. The nu-
merical frequency resolution was set to 0.05Hz for slower frequencies
(0.5-20Hz) and 0.2Hz for faster frequencies (25-200Hz). The power
spectra shown in Figure 2C were obtained from the spectrogram in
Figure 2A (mean over two 500 ms windows). For each 500 ms window,
the corresponding peak frequency for u or respiration was taken as the
frequency with maximal power. For estimating slow- and fast-g peak
frequencies, the power spectrum was first smoothed (15 Hz moving av-
erage) and the fit of the power decay with increasing LFP frequencies
(see below) was subsequently subtracted (see Fig. 4A) (Branka�ck et al.,
2012; Scheffzük et al., 2013). The absolute slow- and fast-g power ana-
lyzed in Figure 7 were taken as the mean power in the corresponding fre-
quency range; the “detrended” slow- and fast-g power analyzed in
Figure 8 was obtained as the mean power at the same frequency ranges
but computed after subtracting the power decay fit. For the directionality
analyses shown in Figures 3, 6, 7, 8 (see below), the time series of instan-
taneous frequency and power were estimated from spectrograms com-
puted using 500 ms windows but with 90% overlap (i.e., 50ms step or
20Hz sampling).

Power decay fit. In order to fit the decay of LFP power with increas-
ing LFP frequencies, we used smoothed power values in three sub-bands:
30-40, 80-90, and 190-200Hz (i.e., a sub-band lower than slow-g , a sub-
band between slow- and fast-g , and a sub-band higher than fast-g ). For
fitting power values, we tested both 1/f (i.e., Power(f) = constant/fa) and
exponential decay fits (i.e., Power(f) = constant*e-a*f), and found lower
fitting deviations (mean absolute error) when using the latter. To per-
form the exponential decay fit, power values of the three sub-bands were
transformed using the natural logarithm, and the resulting linear relation
Y = aX1 b (where Y = ln(Power(f)) and X= f) was fitted using the poly-
fit.m function inMATLAB, which uses a least squares algorithm. The fit-
ting parameters were then fed into the polyval.m function to generate
the linear fit for frequencies between 25 and 200Hz. Finally, the expo-
nential was taken to convert back ln(Power(f)) to Power(f) values. The
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power decay fit tracks broadband (i.e., frequency unspecific) power
changes and was subtracted from the power spectrum to estimate the g
frequencies and detrended g power (see above and Fig. 4).

Directionality. For estimating directionality relations, the respiration
and LFP raw signals (see Fig. 1) or the time series of instantaneous fre-
quency and power (see Figs. 3, 6, 7, 8) were first z-scored. Directionality
was estimated by means of cross-correlograms (CCGs) and Granger cau-
sality. CCGs were obtained using the xcorr.m function with a maximal
lag of 1 s, using the “coeff” option to normalize CCG values between �1
and 1 (equivalent to the correlation coefficient). Granger causality was
computed through the Multivariate Granger Causality MATLAB
Toolbox (Barnett and Seth, 2014). In Figure 1B, raw LFP and respiration
signals were downsampled to 250Hz before computing Granger causal-
ity. The Variational Autoregressive model order was fixed as 20 for all
analyses. After computing Variational Autoregressive model parameters
(tsdata_to_var.m) and associated auto-covariances (var_to_autocov), the

pairwise conditional spectral Granger causality was
obtained through the Multivariate Granger
Causality toolbox function autocov_to_spwcgc.m.
The overall, “time domain” Granger causality was
obtained from integration (average) of the Granger
spectrum through the function smvgc_to_mvgc.m.

Statistical analysis. Data are expressed as mean
6 SEM unless otherwise stated. The significance of
the difference between the mean Granger causality
in each direction was assessed using paired t tests.
Of note, for each significant Granger causality dif-
ference involving the time series of frequency and/
or power values, we corroborated that such differ-
ence was also statistically significant against time-
reversed data (Winkler et al., 2016). One-sample t
tests were used to infer the significance of CCG
lags against 0ms. Repeated-measures ANOVA was
used to assess for significant relations between LFP
frequency or power and breathing frequency; for
these analyses, we used 5 nonoverlapping breathing
frequency bins: 1-3Hz (2Hz center frequency), 3-
5Hz (4Hz center frequency), 5-7Hz (6Hz center
frequency), 7-9Hz (8Hz center frequency), 9-
11Hz (10Hz center frequency). Statistical signifi-
cance was set at a =0.05.

Results
Respiration phase Granger causes
neocortical oscillations at the same
frequency as breathing
We recorded parietal cortex activity of mice
during REM sleep while mice were placed in a
plethysmograph to simultaneously monitor
their respiratory activity (Fig. 1A). REM epi-
sodes were identified by behavioral immobil-
ity and prominent u activity in the cortical
field potential (for details, see Materials and
Methods). The power spectrum of the plethys-
mograph-derived respiration signal exhibited
a peak at 3.26 0.35Hz (mean 6 SD, n=22
mice) with a long tail toward faster frequen-
cies up to values;11Hz. At the same time, the
neocortical LFP displayed, as expected, a promi-
nent peak at u frequency (7.76 0.37Hz; Fig.
1B). In addition, a smaller power bump at a
similar frequency as the respiration power peak
could also be observed in the LFP spectrum
(Fig. 1B); moreover, the phase coherence spec-
trum between respiration and LFP peaked at
the breathing frequency (Fig. 1C). Therefore,
combined, the power and coherence spectra

show that, in addition to u oscillations, the parietal cortex LFP also
displays the so-called respiration-entrained rhythm (RR) during
REM sleep, consistent with previous reports (Zhong et al., 2017;
Tort et al., 2018b). Also consistent with these reports, there was no
phase coherence between the parietal field potential and respiration
at u frequency (Fig. 1C). Furthermore, there was also no phase co-
herence when the LFP of one animal was paired with the respiration
signal of another animal (Fig. 1C); this surrogate analysis thus
shows that the actual respiration-LFP coherence is not because of
the power peaks of the individual signals.

After corroborating RR presence in the parietal cortex, we
next characterized directionality relations between respiration
and LFP signals. To that end, we computed both CCGs and
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Granger causality between their raw traces (see Materials and
Methods). Consistent with the phase coherence spectrum (Fig.
1C), the CCGs exhibited an oscillatory pattern with a period
matching the respiration cycle (3216 30ms [mean6 SD; n= 22
mice]; Fig. 1D). Interestingly, using the respiration signal as ref-
erence, the average CCG exhibited a negative peak at 110ms,
indicating that the LFP phase entrainment to respiratory cycles
lags the respiration signal (Fig. 1D). It should be noted, however,
that because of the rhythmical nature of the CCG in this case,
directionality relations cannot be unambiguously determined
(Bastos and Schoffelen, 2015). We therefore calculated the
Granger causality spectrum between raw LFP and respiration
signals, which revealed a prominent peak at the breathing fre-
quency specifically for the respiration ! LFP direction (Fig. 1E,
left). Consistently, the overall, time domain Granger causality
was statistically significantly higher in this direction than in the
LFP ! respiration direction (t(21) = 4.06, p=0.00056, paired t
test; Fig. 1E, right). As for the coherence spectrum, there was no
meaningful Granger causality relation for surrogate pairings of
LFP and respiration signals (Fig. 1E, left). Together, these results

corroborate previous observations that respiration drives neuro-
nal network oscillations of the same frequency (Nguyen Chi et
al., 2016; Karalis and Sirota, 2018).

h frequency and amplitude depend on breathing frequency
Respiration is dynamically modulated (Fig. 1A,B), similar to
other, brain-endogenous rhythms, such as u or g oscillations.
This poses the question of whether there is any influence of
breathing frequency on oscillatory network activity or vice versa.
We therefore tracked the breathing frequency during REM sleep
by computing time-frequency spectrograms of respiratory activ-
ity using 500 ms windows with no overlap. For each window, to
aid visualization, the power distribution was normalized by its
maximal value, and the instantaneous breathing frequency was
defined as the frequency of the maximal power value (which
equals 1 because of the normalization; Fig. 2A,B). The breathing
frequency typically varied between 2 and 5Hz during the ana-
lyzed REM sleep periods, although faster breathing up to 11Hz
could also be observed (Fig. 2A-C). A similar procedure was per-
formed to track the peak frequency of u in the parietal cortex
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LFP signal for the same 500 ms windows. Interestingly, the histo-
gram distribution of respiration and u peak frequencies for the
pool of 500 ms windows (Fig. 2D) resembled the average power
spectra (compare Fig. 1B). This shows that the respiration power
tail toward higher frequencies (Fig. 1B) corresponds to periods
in which the animals indeed breathed at faster rates, as opposed
to being caused by power leakage from lower breathing
frequencies.

We next grouped time windows with similar instantaneous
breathing frequency (Fig. 2A,B) into 10 groups (2 Hz bandwidth
with 1 Hz overlap: i.e., 1-3, 2-4, 3-5Hz, etc.). Figure 2E shows
power spectra from data for each instantaneous frequency (top)
together with the mean LFP power spectra for the same “respira-
tion-binned” window subsets (bottom) in one animal. This align-
ment revealed a major increase in both u frequency and u
power with increasing breathing frequency (Fig. 2E, bottom).
This result was very robust at the group level of 22 mice, for
which repeated-measures ANOVA showed a highly significant
effect of breathing frequency on both u frequency and power
(Fig. 2F; u frequency: F(4,103) = 113.32, p, 10�36; u power:
F(4,103) = 24.3, p, 10�13). Therefore, in addition to the previ-
ously described cycle-by-cycle phase-locking effects (Fig. 1),
breathing does also relate to oscillatory brain activity through its
instantaneous frequency (Fig. 2F).

Changes in h activity precede changes in breathing frequency
The results in Figure 2F show that both instantaneous frequency
and amplitude of u exhibit a strong positive relationship with
the instantaneous breathing frequency. In order to assess poten-
tial temporal relations, we next investigated directionality
between these oscillatory features. To that end, we performed a
similar approach as above, but this time, to allow for CCG and
Granger causality calculations, we used a 90% overlap among the
500 ms windows (i.e., 50 ms step size). Therefore, for the direc-
tionality analyses, we used time series of instantaneous frequency
and/or power sampled at 20Hz. Surprisingly, the average CCG
computed using the breathing frequency as the time lag reference
showed that the changes in u frequency occurred before the
changes in breathing frequency (�1256 53ms [mean 6 SD],
t(21) = �11.08, p, 10�9, one-sample t test against 0ms; Fig. 3A).
This finding was corroborated by Granger causality analysis in
the frequency and time domain (Fig. 3B), in which causality in
the direction u frequency ! respiration frequency was statisti-
cally significantly higher than in the opposite direction (t(21) =
�4.77, p=0.0001, paired t test). Thus, the instantaneous fre-
quency of u oscillations is Granger-causal for the instantaneous
frequency of respiration. We note that this result appears to con-
trast the opposite Granger causality between the raw respiration
and parietal cortex LFP signals shown in Figure 1E. Here, how-
ever, we analyzed directionality relations between the time series
of instantaneous frequencies, a derived feature from the raw sig-
nals reflecting the variance in leading frequency, rather than the
actual oscillation itself. In line with this notion, the high Granger
causality at slow frequencies in Figure 3B (left) does not corre-
spond to respiration or u frequencies but is likely because of the
slower time scale on which variations of u and breathing occur
(see Fig. 3B, left, inset plot).

We then asked whether variations in u power would also be
temporally related to respiration. Using the time series of instan-
taneous breathing frequency as reference, we found that u power
changes tended to lead breathing frequency, as inferred by both
the mean CCG lag (�806 10ms [mean 6 SD], t(21) = �3.54,
p=0.0019, one-sample t test against 0ms; Fig. 3C) and Granger

causality (t(21) = �2.12, p=0.046, paired t test between time do-
main Granger causality levels in each direction; Fig. 3D). The
magnitude of this effect was, however, much weaker than the
directionality of variations in frequency (t(21) = 8.11, p, 10�7,
paired t test between Granger causality levels). In all, as opposed
to the phase entrainment relations, which are driven by respira-
tion (Fig. 1), these results show that the instantaneous breathing
frequency does not lead, but actually follows, intrinsic changes in
brain activity in the u range.

Slow-c frequency increases with breathing frequency
In addition to RR and u oscillations (Fig. 1B), the parietal cortex
was also characterized by activity in two g sub-bands during
REM sleep. These could be clearly inferred by the power bumps
at ;50 to ;80Hz and ;120 to ;160Hz in the LFP spectrum,
especially when plotted at a logarithmic scale (Fig. 4A, left). In
this work, we refer to these frequency ranges as slow- and fast-g
activity, respectively.

We first call attention to a technical point that will influence
the interpretation of the results: to properly track the activity of
genuine g oscillations, as opposed to unspecific activity in the g
range, we estimated g frequency and power for each sub-band
after first subtracting the power decay fit from the LFP power
spectrum (see Fig. 4A,B, right panels). Therefore, by “genuine”
activity, we mean the excess power in the analyzed g sub-band
above the power decay level (also referred to as “detrended
power”). This approach controls for broad, unspecific changes of
overall power at fast frequencies. In any case, to allow compari-
son with previous approaches (e.g., Chen et al., 2011; Zheng et
al., 2015), we also present results obtained from the absolute (i.e.,
unsubtracted) power spectra, regardless of the presence or not of
prominent g power bumps.

Figure 4B shows power spectra computed for REM sleep
epochs binned by respiration frequency as in Figure 2E, but for
another example animal. The middle panel shows the absolute
LFP power, and the right panel shows the detrended power.
Note in these panels an increase in the peak frequency of both
slow- and fast-g oscillations for epochs associated with faster
breathing (dark green). The relation between slow- and fast-g
power with breathing frequency, on the other hand, depended
on how g power was estimated. Considering the absolute power
level (Fig. 4B, middle), there was a clear increase during faster
breathing for both g sub-bands. However, this apparent power
increase did not seem to be specific for the g sub-bands since
there was a broadband shift toward higher power levels for all
fast frequencies. Indeed, this was reflected in the upshift also
observed for the power decay fits (see Fig. 4B, insets). When
removing this general trend by subtracting the corresponding
broadband power fit of each spectrum, the relation between
detrended g power and respiration frequency became less clear
(Fig. 4B, right).

A systematic analysis of group data revealed that the increase
of slow-g frequency with breathing frequency was statistically sig-
nificant (F(4,103) = 8.53, p, 0.0001, repeated-measures ANOVA),
while no significant relation was observed for the fast-g frequency
(F(4,103) = 1.26, p=0.29) (Fig. 5A,B, left). Regarding g power, the
increase in the absolute power of both slow- and fast-g with
breathing frequency was highly statistically significant (slow g :
F(4,103) = 30.77, p, 10�16; fast g : F(4,103) = 70.69, p, 10�27) (Fig.
5A,B, middle). On the other hand, detrended slow- and fast-g
power exhibited large variability among animals and were not stat-
istically significantly related to breathing frequency (slow g :
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F(4,103) = 0.35, p=0.84; fast g : F(4,103) = 0.05, p=0.99) (Fig. 5A,B,
right).

Changes in slow-c frequency and power follow changes in
breathing frequency
Similar to u oscillations, we next analyzed directionality
relations between breathing frequency and the instantaneous fre-
quency of both g sub-bands. For slow-g oscillations, using res-
piration as reference, the CCG peaked at 1146 15ms (mean 6
SD), meaning that the increases in instantaneous slow-g fre-
quency lagged the increases in breathing frequency (t(21) = 3.54,
p=0.0019, one-sample t test against 0ms; Fig. 6A, top). Granger
causality analysis revealed a consistent finding, in which causality
levels in the respiration! slow-g direction were statistically sig-
nificantly higher than in the slow-g ! respiration direction
(Fig. 6B, top; t(21) = 8.68, p, 10�7, paired t test). For the fast-g
band, the CCG exhibited a peak at�2026 115ms (t(21) = �8.25,
p, 10�7, one-sample t test against 0ms; Fig. 6A, bottom), sug-
gesting a possible lead by fast-g ; however, the Granger analysis
showed no difference in causality directions (Fig. 6B, bottom;
t(21) = �0.36, p=0.72, paired t test). In addition, Granger causal-
ity levels for fast-g and respiration frequency were much lower
than the causality levels found between respiration and slow-g
frequency (t(21) =�10.16, p, 10�8, paired t test).

Finally, we investigated directionality relations between g
power and breathing frequency. For the absolute power values
(Fig. 7A,B), we found that the breathing frequency was Granger-
caused by both slow-g and fast-g power (slow g : t(21) = �6.07,
p, 10�5; fast g : t(21) = �9.82, p, 10�8, paired t tests between
directions; Fig. 7B), a result confirmed by inspection of the CCG
peak lags (slow g : �1756 72ms [mean 6 SD], t(21) = �11.41,

p, 10�9; fast g : �1206 45ms, t(21) = �12.44, p, 10�10, one-
sample t tests against 0ms; Fig. 7A). However, we did not take
this result at face value because some corollaries called our atten-
tion. For one, it sounded odd that slow-g power would drive the
breathing frequency while its frequency would follow (compare
Fig. 6). For another, it also seemed strange that Granger causality
levels were much higher for the fast-g band, which usually has
the lowest signal-to-noise ratio; indeed, fast-g Granger causality
was even higher than u power Granger causality levels (compare
Fig. 3D). We thus suspected that these causality relations could
be because of broadband, unspecific variations in the absolute
power of fast frequency activity. Consistent with this possibility,
in Figure 4 the overall power of the fitting of the power decay
with LFP frequency increases as a function of respiration fre-
quency. Therefore, we next investigated for temporal relations
between breathing frequency and the mean level of broadband
power, as inferred by the mean value of the power decay fit (Fig.
7C). The results revealed that the changes in broadband LFP
power levels are highly Granger-causal to breathing frequency
(t(21) = �14.45, p, 10�11, paired t tests between directions), and
even more so than slow- and fast-g power (F(2,63) = 54.57,
p, 10�13, one-way ANOVA; compare the right panels in Fig.
7B,D). Thus, we conclude that the Granger causality between the
absolute g power and respiration frequency is not specific to the
g sub-bands but because of broadband changes in the power of
fast LFP activity.

The picture was much different when we analyzed the
detrended power levels (Fig. 8). In this case, the Granger causal-
ity relations resembled those found for the instantaneous fre-
quency: namely, detrended slow g power changes were Granger-
caused by changes in breathing frequency (t(21) = 2.80,
p= 0.0108, paired t test between directions; Fig. 8B, top), whereas
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detrended fast g power was not related to breathing frequency
under the Granger causality analysis (t(21) = 0.75, p=0.46, paired
t test between directions; Fig. 8B, bottom). Interestingly, and
although the CCG lag was not statistically different from zero
(�116 171ms [mean6 SD], t(21) =�0.31, p=0.76), the respira-
tion-slow g CCG was negative (Fig. 8A), suggesting an inverse
relationship between genuine slow g power and respiration. In
all, we conclude that changes in respiration frequency precede
and Granger-cause changes in slow-g frequency as well as slow-
g power after correcting for broad, frequency-unspecific power
shifts. This finding contrasts with the opposite temporal relation
found between respiration and u , in which the LFP u activity
leads respiration (compare Fig. 3).

Combined, therefore, our result suggests that changes in the
frequency of cortical u oscillations precede and Granger-cause
changes in respiration frequency (Fig. 3). In contrast, the real-
time respiration-entrained LFP component (Fig. 1D,E) and
slow-g activity (Figs. 6 and 8) depend on, and follow, nasal
breathing.

Discussion
The effect of respiration on brain activity has been the subject of
much recent work. It is by now clear that respiration adds a
breathing-frequency component to neuronal network oscilla-
tions (for reviews, see Tort et al., 2018a; Heck et al., 2019).
Importantly, this effect occurs in widespread brain regions, far
beyond olfactory networks, a finding reproduced here (Fig. 1).
The present work reveals a new, much broader interaction
between respiration and different network oscillations. Both
activities do not only interact through cycle-by-cycle phase
entrainments but also through mutual dependencies involving
the instantaneous frequency. Specifically, we show that the fre-
quency and amplitude of u and g oscillations detected in the

neocortex covary with breathing frequency. Moreover, our direc-
tionality analyses revealed coherent temporal relations among
the electrophysiological and respiratory rhythms, in which
changes in u activity precede changes in breathing frequency
that, in turn, precede changes in slow g . Therefore, the present
study unveils novel relationships between respiration and brain
activity beyond the well-established phase-locking relations.

A myriad of recent studies convincingly showed that the reaf-
ferent sensory signal brought about by nasal breathing drives
LFP oscillations phase-locked to respiration (RR). This has been
demonstrated in multiple ways, including experimental (e.g.,
naris closure, olfactory epithelium ablation, bulbectomy, and tra-
cheotomy) (Ito et al., 2014; Yanovsky et al., 2014; Lockmann et
al., 2016; Bagur et al., 2018; Karalis and Sirota, 2018; Moberly et
al., 2018) and computational approaches (e.g., Granger causality
analysis) (Nguyen Chi et al., 2016; Karalis and Sirota, 2018).
Here we show different relations between variations in instanta-
neous frequency of network oscillations and respiration. Indeed,
cortical LFP activity in the u range Granger-causes respiration
frequency, rather than vice versa. Nevertheless, we believe that
this result is consistent with a causal role of a central drive under-
lying changes in both network and breathing activity. Our work-
ing hypothesis, illustrated in Figure 9, is that REM-controlling
neuronal circuits in the brainstem send signals to u -generator
circuits and to nearby respiration-controlling nuclei. Thereby,
they determine changes in u as well as respiration frequency
during REM sleep. Therefore, in this hypothesized scenario, the
central drive for accelerating u and respiration would be the
same. However, the changes in u activity would precede changes
in respiration frequency, and thus look Granger-causal to them
under directionality analyses because of a presumed faster activa-
tion of u -generating circuits, located a few synapses away,

***

ns

Frequency (Hz)
0 1 2 3 4 5

Frequency (Hz)
0 1 2 3 4 5

-1 -0.5 0 0.5 1
Lag (s)

0

0.4

C
C

G

-1 -0.5 0 0.5 1
Lag (s)

-0.1

0.3

C
C

G

0

0.15

G
ra

ng
er

 C
au

sa
lit

y

0

0.01

G
ra

ng
er

 C
au

sa
lit

y

0

0.15

G
ra

ng
er

 C
au

sa
lit

y

0

0.01

G
ra

ng
er

 C
au

sa
lit

y

LFP Freq leads ↔ Resp Freq leads

Re
sp

 F
re

q →
S F

re
q

S F
re

q→
Re

sp
 F

re
q

Re
sp

 F
re

q→
F F

re
q

F F
re

q→
Re

sp
 F

re
q

Slow

Fast

Resp Freq→ Slow Freq

Slow Freq→Resp Freq

Resp Freq→ Fast Freq

Fast Freq→Resp Freq

A B

0

150

P
ow

er
 (a

.u
.)

0

250

P
ow

er
 (a

.u
.)

Slow Freq

Frequency (Hz)
0 1 2 3 4 5

Frequency (Hz)
0 1 2 3 4 5

Fast Freq

Figure 6. Changes in slow g frequency follow changes in breathing frequency. A, Mean CCG (6SEM) between the instantaneous frequency of slow (top) and fast (bottom) g frequencies
and respiration frequency during REM sleep (n= 22 mice). B, Frequency (right) and time domain (left) Granger causality between the instantaneous frequency of g and respiration. Insets,
Mean power spectra of the g frequency time series. Respiration frequency Granger-causes slow g frequency while having no directionality relation with fast g frequency. ***p, 0.001, ns,
not significant.

5236 • J. Neurosci., June 16, 2021 • 41(24):5229–5242 Tort, Hammer et al. · Network Oscillations and Breathing Frequency



compared with the longer delays required for modulating respi-
ration, which include modulation of the underlying networks,
conduction delays to the diaphragmatic muscle, and subsequent
thoracic volume changes. Such a model is compatible with the
raw respiration signal being Granger-causal to RR (Fig. 1) since
this is determined by activation of the olfactory bulb by the pas-
sage of air through the nostrils (Fig. 9) regardless of changes in
respiration and u frequencies. On a technical aspect, we note
that here we refer to oscillations that can be empirically detected
in the parietal cortex (e.g., RR or u ) regardless of their true re-
gional origin (i.e., regardless of volume conduction) (see also
Tort et al., 2018b).

Consistent with the model in Figure 9, there is experimental
evidence for mutual connections among the brainstem microcir-
cuits controlling REM sleep, arousal, and respiration (Orem,
1980; Luppi et al., 2012; Boutin et al., 2017; Yackle et al., 2017;
Benarroch, 2018; Del Negro et al., 2018). Interestingly, there are
also connections between breathing centers and the generators
of other orofacial rhythms, such as whisking (Moore et al., 2013;
Kleinfeld et al., 2014; McElvain et al., 2018), which may become

active during REM sleep (Robinson et al., 1977; Tiriac et al.,
2012). Therefore, the interplay among brainstem nuclei is likely
to control higher arousal states within REM sleep that would be
associated with faster u and respiration frequencies.

A possibility is that these activity states play a role in process-
ing emotional information, one of the main functions attributed
to REM sleep (van der Helm et al., 2011; Groch et al., 2013;
Hutchison and Rathore, 2015; Tempesta et al., 2018), especially
considering that experiencing emotions has been related to
changes in breathing patterns (Grossman and Wientjes, 2001;
Philippot et al., 2002; Q. Zhang et al., 2017). But regardless of the
information content during these states, a recent study has
shown that the respiration frequency is the main modulator of
cerebral oxygenation (Q. Zhang et al., 2019), pointing to a close
link between breathing and metabolic brain demands. Therefore,
the higher oxygenation brought about by faster breathing indi-
cates greater energy consumption, suggesting network states of
heightened information processing.

Regarding potential behavioral or cognitive consequences of
changes in breathing frequency, it is worth noticing that
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differences in nasal flow rate influence olfactory processing
(Buonviso et al., 2006; Courtiol et al., 2011a,b; Esclassan et al.,
2012). Based on recent studies, it is well feasible that breathing
frequency changes could also influence nonolfactory processes
(Zelano et al., 2016; Varga and Heck, 2017; Arshamian et al.,
2018; Herrero et al., 2018). Interestingly, using the same dataset
analyzed here, we have recently shown that u -g coupling, a hall-
mark network activity previously associated with cognitive proc-
esses (Tort et al., 2009; Canolty and Knight, 2010; Lisman and
Jensen, 2013), depends on the breathing frequency through an
inverted V-shaped relation (Hammer et al., 2020). This novel
result suggests that indeed changes in breathing may influence
nonolfactory information processing. As a technical remark, we
note that the phenomenon of u -g coupling could not be sub-
jected to the same directionality analyses as investigated here for
the individual oscillations. This is because assessing cross-fre-
quency coupling requires using longer epoch lengths (i.e., sam-
pling several u cycles to average out noise) (Tort et al., 2010;
Scheffer-Teixeira and Tort, 2018) and cannot be performed in
the same sub-second time windows used in the present study to
assess the instantaneous frequency. Another technical aspect is
that, differently from Hammer et al. (2020), here we were unable
to analyze phasic REM sleep separately since this sub-state is
characterized by short bouts of noncontiguous activity (thus not
suitable for Granger analysis). Of note, since phasic REM sleep
only comprised 2.48% of the analyzed data, the results were
largely the same when analyzing tonic REM sleep separately,
except for the u power influence over respiration frequency,
which became nonsignificant (data not show). In addition to
influencing u -g coupling, another recent study indicated that
the breathing frequency may also affect LFP phase entrainment
by respiration (Girin et al., 2020; see also Jessberger et al., 2016),
suggesting a possible interplay between frequency and phase-
driven effects.

Strikingly, while the instantaneous breathing frequency fol-
lowed changes in u (Fig. 3), the same directionality analyses
revealed that respiration was Granger-causal to slow-g activity
(Figs. 6 and 8). This result suggests that neocortical slow-g is
likely to depend on the olfactory bulb activity, which is majorly
driven by sensory stimulation of the olfactory epithelium
(Buonviso et al., 2006; Courtiol et al., 2011a,b; Esclassan et al.,
2012; Short et al., 2016). It is worth noticing that this drive is also
provided by the mechanical stimulation through nasal air move-
ment, even in the absence of odors (Grosmaitre et al., 2007;
Connelly et al., 2015). The olfactory bulb is well known to
express prominent g activity (Ravel et al., 2003; Martin et al.,
2004; Beshel et al., 2007; Cenier et al., 2008, 2009; Kay et al.,
2009), and this region has been shown to produce more than one
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type of g with different sensitivities to respiration (Kay, 2003;
Zhong et al., 2017; Zhuang et al., 2019). Interestingly, original
accounts on g activity related this rhythm to olfaction (Adrian,
1950; Bressler and Freeman, 1980; Rojas-Líbano and Kay, 2008),
even when recorded outside primary olfactory regions
(Vanderwolf, 1992, 2001). While the present study measured g
over the parietal neocortex, it would be interesting to study its
relation to olfactory bulb g . Indeed, a recent report indicates
that olfactory bulb g is causal to g in the medial PFC (Karalis
and Sirota, 2018).

As opposed to slow g , genuine (detrended) fast-g power was
not as temporally related to the respiration frequency (Figs. 6
and 8). It is worth highlighting that the parietal recordings exhib-
ited a clear excess power in the fast-g range (a “power bump,”
see Fig. 4A). Moreover, similar to previous characterizations of
neocortical activity during REM sleep (Scheffzük et al., 2011,
2013; Branka�ck et al., 2012), u -fast g coupling was prominent in
the present dataset (Hammer et al., 2020). In other words,
although the power levels at the fast frequencies of the LFP spec-
trum may reflect unspecific, aperiodic activity, including EMG
contamination, the current data did exhibit a true oscillatory
activity in the fast-g range (i.e., a genuine fast LFP rhythm).
But despite the unequivocal presence, fast-g oscillations were
not related to respiration, suggesting they could underlie in-
ternal computations not affected by respiratory reafference.
Nevertheless, although the individual oscillatory features were
not affected, we have recently shown that the higher-order
phenomenon of cross-frequency coupling between u and fast-
g depends on breathing frequency (Hammer et al., 2020),
which underscores the complexity of respiration-brain
interactions.

Previous studies in awake animals have shown that LFP activ-
ity in the u and g ranges depend on running speed. The rela-
tionship between u and speed is in fact an old one; since the first
recordings, both u power and u frequency have been consis-
tently shown to positively correlate with locomotion speed
(McFarland et al., 1975; Sławi�nska and Kasicki, 1998; Hinman et
al., 2011). More recently, speed dependencies have also been
reported for the g sub-bands (Chen et al., 2011; Ahmed and
Mehta, 2012; Kemere et al., 2013; Zheng et al., 2015; Lopes-Dos-
Santos et al., 2018). For instance, Chen et al. (2011), working
with mice, reported a gradual amplitude increase with speed for
both slow- and fast-g oscillations recorded in CA1. The same
group later demonstrated changes in the instantaneous g fre-
quency with speed in the rat CA1 (Ahmed and Mehta, 2012).
Interestingly, this study also reported that slow g power nega-
tively correlates with speed, a result subsequently corroborated
by independent laboratories (Kemere et al., 2013; Zheng et al.,
2015; but see Lopes-Dos-Santos et al., 2018). While we recorded
from immobile mice during REM sleep, which is a particular
brain state characterized by a unique pattern of cortical activity
and excitation/inhibition balance (Niethard et al., 2016), the
speed dependencies of LFP oscillations described in awake
animals are reminiscent of the u and g relations with the
breathing frequency observed here, especially considering
that faster locomotion speeds are associated with faster
breathing (Q. Zhang et al., 2019). Future research that
simultaneously records respiration and locomotion activity
in suitable spatial arenas should help to disentangle the
contribution of each factor to modulating LFP activity. In
particular, from the present results, we already know that
changes in LFP activity with breathing may occur without
locomotion changes. Likewise, it would be interesting to

characterize the influence of speed after controlling for
changes in breathing patterns.

Some technical aspects should be observed, though, such as
the way power values are estimated, which may substantially
vary among studies (i.e., absolute vs relative power, correction or
not for broadband power shifts, use of independent components
or empirical, nonlinear decompositions, etc.) (for a recent dis-
cussion on this subject, see Donoghue et al., 2020). As illustrated
here, the precise method for estimating g power may critically
influence the results (compare Figs. 7 and 8): while the absolute
g power was Granger-causal to respiration frequency, such an
effect was not evident when correcting for broadband power
changes. Indeed, the latter could much better account for the
changes in respiration frequency than the power levels in the g
sub-bands. Of note, the cause of broadband changes in the power
of fast LFP frequencies has yet to be determined; we speculated
that EMG contamination could play a role but found no conclu-
sive evidence in a group of 6 extra animals with EMG recordings
(data not shown).

Another technical aspect is the recorded region (neocortex
vs hippocampus). While u is considered a global rhythm, g
represents more local activity and may thus exhibit different
dynamics among regions. Indeed, Zheng et al. (2015) showed
differences in the speed dependency of g activity between the
entorhinal cortex and the hippocampus. To further compli-
cate matters, Lopes-dos-Santos et al. (2018) called attention to
potential differences in speed modulations of hippocampal g
activity between rats and mice. Finally, another technical as-
pect to be kept in mind is the very definition of g activity. For
instance, the pattern that we call fast-g in the present work is
particularly prominent in the neocortex during REM sleep
(Scheffzük et al., 2011, 2013; Branka�ck et al., 2012); and, de-
spite the similar nomenclature, it is likely not to correspond to
the “fast-g” activity observed in the hippocampus of awake
animals (Belluscio et al., 2012; Schomburg et al., 2014). In this
sense, while we speculate that the same respiration frequency
relations observed here should hold true for u detected in
other brain regions (given its long-distance coherence in
mice) (Tort et al., 2018b), we are less sure about the generality
of our results regarding g oscillations.

In addition to the respiratory system, many other physio-
logical systems display ultradian rhythmicity, including
organs of the cardiovascular and digestive systems (Gray et
al., 2009; Babo-Rebelo et al., 2016; Richter et al., 2017).
Interestingly, recent studies have also started to unveil rela-
tionships between oscillatory activity produced by these sys-
tems and the brain. For instance, Tallon-Baudry and
collaborators have shown that ascending signals from the heart
and gastrointestinal tract modulate brain dynamics and affect per-
ception, emotion, and cognition (Babo-Rebelo et al., 2016; Richter
et al., 2017; Rebollo et al., 2018; Azzalini et al., 2019). In particular,
the phase of the gastric cycle has been shown to modulate the
human alpha rhythm (Richter et al., 2017). Therefore, it is increas-
ingly evident that brain activity is coupled to autonomously con-
trolled regions of the body, possibly reflecting interactions
between central pattern generators and the sympathetic/parasym-
pathetic nervous system (Guyenet, 2014). Nevertheless, the spe-
cific type of coupling (e.g., phase-amplitude coupling, n:m phase-
locking, frequency-frequency relations) and oscillatory frequencies
involved (e.g., u , a) seem to differ among species and organ
systems.

In conclusion, the present results show that the breathing fre-
quency temporally relates to u and g network oscillations and
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that the relationship between respiration and neocortical brain
activity goes beyond phase entrainment relations. These findings
motivate the investigation of breathing frequency relations in
other brain regions, in different behavioral states and cognitive
loads, and at different spatial scales, including the cellular level.
Moreover, given the link between breathing and g shown here,
it will be interesting to characterize further how specific sub-
bands of g oscillations in different brain regions relate to olfac-
tory bulb g and respiration.
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