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Single-Nucleus RNA-Seq Reveals Dysregulation of Striatal
Cell Identity Due to Huntington’s Disease Mutations
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Huntington’s disease (HD) is a dominantly inherited neurodegenerative disorder caused by a trinucleotide expansion in exon
1 of the huntingtin (HTT) gene. Cell death in HD occurs primarily in striatal medium spiny neurons (MSNs), but the involve-
ment of specific MSN subtypes and of other striatal cell types remains poorly understood. To gain insight into cell type-spe-
cific disease processes, we studied the nuclear transcriptomes of 4524 cells from the striatum of a genetically precise knock-in
mouse model of the HD mutation, HttQ175/1, and from wild-type controls. We used 14- to 15-month-old male mice, a time
point at which multiple behavioral, neuroanatomical, and neurophysiological changes are present but at which there is no
known cell death. Thousands of differentially expressed genes (DEGs) were distributed across most striatal cell types, includ-
ing transcriptional changes in glial populations that are not apparent from RNA-seq of bulk tissue. Reconstruction of cell
type-specific transcriptional networks revealed a striking pattern of bidirectional dysregulation for many cell type-specific
genes. Typically, these genes were repressed in their primary cell type, yet de-repressed in other striatal cell types.
Integration with existing epigenomic and transcriptomic data suggest that partial loss-of-function of the polycomb repressive
complex 2 (PRC2) may underlie many of these transcriptional changes, leading to deficits in the maintenance of cell identity
across virtually all cell types in the adult striatum.

Key words: gene regulation; Huntington’s disease; polycomb repressive complex 2; single-nucleus RNA-seq; striatum

Significance Statement

Huntington’s disease (HD) is a dominantly inherited neurodegenerative disorder characterized by specific loss of medium
spiny neurons (MSNs) in the striatum, accompanied by more subtle changes in many other cell types. It is thought that
changes in transcriptional regulation are an important underlying mechanism, but cell type-specific gene expression changes
are not well understood, particularly at time points relevant to the onset of disease-related symptoms. Single-nucleus (sn)
RNA-seq in a genetically precise mouse model enabled us to identify novel patterns of transcriptional dysregulation because
of HD mutations, including bidirectional dysregulation of many cell type identity genes that may be driven by partial loss-of-
function of the polycomb repressive complex (PRC). Identifying these regulators of transcriptional dysregulation in HD can
be leveraged to design novel disease-modifying therapeutics.

Introduction
Huntington’s disease (HD) is a fatal neurodegenerative disor-
der caused by dominant inheritance of trinucleotide repeat

expansion mutations in the huntingtin (HTT) gene (MacDonald
et al., 1993). Clinical symptoms include deficits in motor control
and cognition, as well as psychiatric symptoms. Although the
causal mutation has been known for .25 years, there are no
existing treatments that dramatically alter disease progression. In
the absence of treatment, symptoms progressively worsen, lead-
ing inevitably to death 10–15 years after the symptomatic age at
onset.

An enduring mystery in HD biology is why HD mutations
lead to selective neurodegeneration in specific subtypes of neu-
rons, while other nearby cells remain largely spared, despite the
fact that the HTT gene is robustly expressed in most or all cell
types. HD progression is linked to the selective cell death of me-
dium spiny neurons (MSNs) in the striatum (Vonsattel et al.,
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1985). Among MSNs, Drd2-expressing MSNs that project to the
lateral segment of the globus pallidus (termed D2 MSNs) are
thought to be more vulnerable than Drd1-expressing MSNs that
project to the entopenduncular nucleus and the substantia nigra
pars reticulata (termed D1 MSNs; Reiner et al., 1988). Striatal
interneurons are less vulnerable than MSNs but may undergo
disease-related changes that remain little studied (Zucker et al.,
2005; Deng and Reiner, 2016). Neurodegeneration in HD is
accompanied by neuroinflammatory processes. Microglial acti-
vation occurs before the clinical manifestation of the disease (Tai
et al., 2007). Reactive astrogliosis occurs relatively late in the nat-
ural progression of HD pathophysiology but may still contribute
to neurotoxicity (Liddelow et al., 2017; Diaz-Castro et al., 2019).
Changes in forebrain white matter and striatal oligodendrocytes
begin early in disease progression, including deficits in myelin-
ated axon fibers and increased oligodendrocyte cell number
(Myers et al., 1991; Bourbon-Teles et al., 2019). However, the
regulation and impact of these changes in glial cell types remain
poorly understood.

Transcriptional changes are among the earliest phenotypes in
cells and tissues expressing mHTT and are highly reproducible
in human HD (Hodges et al., 2006; Langfelder et al., 2016;
Ament et al., 2017). Studies in bulk striatal tissue have shown
that MSN-specific genes and components of synapses are down-
regulated, while upregulated genes include signatures of neuroin-
flammation (Seredenina and Luthi-Carter, 2012; Liddelow et al.,
2017). Notably, there is evidence that some transcriptional
changes are directly related to functions of HTT in the nucleus,
including interactions of both wild-type and mutant HTT with
transcriptional regulatory proteins (Zuccato et al., 2003; Seong et
al., 2010; Ament et al., 2018). However, previous transcriptomic
studies using bulk tissue failed to illuminate the cell type-specific-
ity of many disease processes.

Single-nucleus RNA-seq (snRNA-seq) has emerged as a scal-
able technology enabling an unprecedented view of cell types
and cell states in the mammalian brain. Several published studies
have applied this approach to neurodegenerative diseases, but
the regulation of cell type-specific molecular changes remains
poorly characterized (Grubman et al., 2019; Mathys et al., 2019;
Al-Dalahmah et al., 2020; Habib et al., 2020; Lee et al., 2020;
Wertz et al., 2020). Here, we analyzed the nuclear transcriptomes
of 4524 striatal cells from a genetically precise knock-in mouse
model of a juvenile-onset HD mutation, HttQ175/1. The 14- to
15-month-old mice in our study are considerably older than
those studied in previously published transcriptomic datasets
from knock-in mouse models of the HD mutation, sampling a
time point at which striatal atrophy is detectable, resembling
early changes in human HD without yet any neuronal cell death
(Deng et al., 2021). Our analyses of these data reveal numerous
insights into cell type-specific disease processes.

Materials and Methods
Experimental design and statistical analysis
We generated snRNA-seq from 14- to 15-month-old maleHttQ175/1 and
Htt1/1 mice (n=4 per genotype). Following rigorous quality control,
statistical analyses were performed using the integrated, smoothed, and
normalized unique molecular identifier (UMI) counts from 3014 cells in
n= 4 HttQ175/1 mice and 1314 cells in n=3 Htt1/1 mice. Cells were
assigned to molecular cell types using clustering algorithms in the Seurat
v3.0 R package (Butler et al., 2018). Proportions of cells assigned to each
cell type in HttQ175/1 versus Htt1/1 mice were compared using general-
ized linear models with a binomial link. Differentially expressed genes
(DEGs) in each cell type were identified using Wilcoxon signed-rank
tests implemented in the Seurat R package. Gene co-expression networks

were reconstructed by applying k-means clustering to an adjacency ma-
trix derived from pairwise Pearson correlations among all pairs of genes.
A gene regulatory network was derived using the GENIE3 R package
(Huynh-Thu et al., 2010; Aibar et al., 2017), which implements a random
forest regression approach. Three types of gene set enrichment analyses
were performed to evaluate DEGs and network models. For compari-
sons between two categorical gene lists, we used hypergeometric tests.
For comparisons between a ranked gene list and a categorical gene list,
we used the geneSetTest() function in the limma R package (Smyth,
2005). For comparisons between two ranked gene lists, we used rank-
rank hypergeometric overlap (RRHO), implemented in the RRHO R
package (Plaisier et al., 2010). Details are provided below.

Mice
HttQ175/1 mice and wild-type littermate controls on the C57BL6/J back-
ground (B6J.129S1-Htttm1.1Mfc/190ChdiJ; JAX stock #029928) were bred
and aged in the colony of the Carroll lab at Western Washington
University. The B6J.zQ175DN KI used in this study also lack a floxed
neo cassette 1.3 kbp upstream of exon 1 that is not known to have an
effect on the phenotypic characteristics of the mice. Three 14-month-old
and one 15-month-old male mice of each genotype were used to gener-
ate the primary dataset described here. Mice were deeply anesthetized
using a phenobarbital-based euthanasia solution (Fatal Plus, Henry
Schein Medical) and striatal tissue dissected on ice. Tissue was immedi-
ately flash frozen in liquid nitrogen and stored at �80°C. Experiments
were performed following National Institutes of Health animal care
guidelines and approved by Western Washington University’s
Institutional Animal Care and Use Committee under protocol 16-011.

Isolation of nuclei from frozen brain tissue
Nuclei were isolated from flash-frozen striatal tissue as described in pre-
vious protocols (Krishnaswami et al., 2016; Lake et al., 2017; Matson et
al., 2018), with slight modifications. A detergent-mechanical cell lysis
method was used, involving three major steps: lysis, homogenization,
and density barrier centrifugation. In a laminar hood, a;50-mg piece of
frozen brain tissue was placed into a prefrozen BioPulverizer (BioSpec)
and smashed to a thin frozen layer, then immediately transferred to lysis
buffer (250 mM sucrose, 25 mM KCl, 5 mM MgCl2, 1uM DTT, 1� RNase
inhibitor, 0.1% Triton X-100, and 10 mM tricine buffer, pH 8.0). Tissue
was disaggregated, flushing up and down, first using a 1 ml pipette tip,
then with a 30-G needle in a 3-ml syringe. Homogenized tissue was
diluted to 10 ml with lysis buffer and filtered through a 70-mm filter.
Homogenate was spun at 1000 � g for 8min at 4°C. Pellet was then re-
suspended and 500ml of pellet suspension was diluted with 500ml 50%
iodixanol solution (50% iodixanol, 250 mM sucrose, 150 mM KCl, 30 mM

MgCl2, 1� RNase inhibitor, and 60 mM tricine buffer, pH 8.0), filtered
for second time with a 70-mmmesh and placed on top of 500-ml layer of
29% iodixanol solution (29% iodixanol, 250 mM sucrose, 150 mM KCl,
30 mM MgCl2, 1� RNase inhibitor, and 60 mM tricine buffer, pH 8.0).
Density barrier was centrifuged at 13,500� g for 20min at 4°C. The pel-
let was collected and washed with 10 ml of PBS, 2% BSA, 1� RNase in-
hibitor, centrifuged at 1000 � g for 8min at 4°C, and finally suspended
in 1 ml of PBS, 2% BSA, 1� RNase inhibitor and filtered using a 40-mm
Flowmi cell strainer. Single nuclei suspensions were counted and eval-
uated for integrity using Propidium Iodide in a MoxiGo cytometer using
650-nm filter. Nuclei count was adjusted to 5000 nuclei/ml.

Library preparation and sequencing
A total of 13,000 nuclei were loaded into each well of a chromiummicro-
fluidics controller (10� Genomics) using PBS1 2% BSA. Sequencing
libraries were generated using the Chromium Single Cell Gene
Expression 39 kit with version 3 chemistries. Samples were sequenced
across two lanes of an Illumina HiSeq4000 Sequencer to obtain 75 base
pair paired-end reads.

Cell quality control and data preprocessing
Raw sequencing reads were processed to counts of UMIs in each droplet
with cellranger v3.0.2 (10� Genomics). Artifacts from ambient RNA
were reduced with SoupX (Young and Behjati, 2018), based on a
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uniform contamination fraction estimate of 10%. This contamination
estimate was derived using marker genes .20-fold enriched in each cell
type from DropViz (Saunders et al., 2018). Also using SoupX, we derived
the following sample-specific thresholds at which we observed relatively
low contamination, and we removed cells outside these ranges: 1260–
6300 UMIs/cell for BBY2, BCR2, BCR3, BCR4, BCR5 and BCR6, and
1260–4470 nUMIs for BCR1. One Htt1/1 sample, BBY3, was deemed to
be an outlier based on very low UMI counts across most cells and was
dropped from further analysis. In addition, using Seurat, we removed
libraries with.5% of read counts frommitochondrial genes, as the pres-
ence of these non-nuclear transcripts indicates both incomplete fractio-
nation of nuclei and cellular stress. To obtain the final set of cells for
clustering, we manually removed any remaining doublets with high
expression of mutually exclusive markers.

Normalization and batch effect correction
UMI counts from each cell were normalized to log (counts per million).
A uniform set of highly-variable genes was selected by identifying the
top 5000 most variable genes in each sample separately using the
FindVariableFeatures() function in Seurat, then taking the intersect
across samples, resulting in a final set of 937 highly-variable genes.
Expression levels for these highly-variable genes were centered and
scaled within each sample. Then, batch effects correction was performed
across samples with MNN (Haghverdi et al., 2018), implemented with
the mnnCorrect() function in the scran R package. MNN normalization
is performed sequentially across samples and lacks a built-in function to
optimize sample order. Therefore, 17 MNN iterations were performed
using different sample ordering, and the best ordering was selected based
on cell clustering results. In the final ordering, samples were in the order
BBY2, BCR1, BCR2, BCR3, BCR4, BCR5, and BCR6.

Cell type clustering and labeling
MNN-adjusted counts from 5429 cells passing the initial QC were used
for clustering, using the RunPCA(), FindNeighbors(), and FindClusters
() functions in Seurat v3.0. The clusters were visualized using the
RunTSNE() function in Seurat; npcs= 10 principal components, k = 30
shared nearest neighbors, and a Louvain clustering resolution of 0.4
were empirically determined to produce optimal clustering. Marker
genes identified in each cluster using the FindAllMarkers() function
were then used to assign a cell type label to each molecularly-defined
cluster based on known marker genes for striatal cell types (https://
dropviz.org). Three clusters were dropped from further analysis because
they included cells from only one sample, were marked by high expres-
sion of mitochondrial transcripts, or expressed markers from mixed cell
types, resulting in the final set of 4524 cells.

Identifying subtypes of MSNs presented a particular challenge, since
the small number of markers distinguishing D1 versus D2 MSNs were
dwarfed by the massive effects of HD mutations in these cells.
Therefore, we performed subclustering of MSNs using 36 marker
genes with .8-fold difference in expression between D1 versus D2
MSNs in the DropViz atlas (Saunders et al., 2018). Using the nor-
malized counts from these 36 genes, we computed pairwise
Spearman rank correlations among all canonical MSNs, and we
performed average-distance hierarchical clustering using 1 –
Spearman’s r as a distance metric, revealing two major groups of
cells with high expression of markers for D1 versus D2 MSNs,
respectively. 87 MSNs were in smaller clusters that lacked high
expression for either subtype and were discarded.

Similarly, clusters of reactive versus non-reactive astrocytes were
derived by subclustering with 87 markers of reactive and non-reactive
subtypes (Zamanian et al., 2012). In this case, subclustering was per-
formed in Seurat v3, using the top 5 principal components and a
Louvain modularity resolution of 0.5.

Smoothing of read counts
For the purpose of assessing gene expression differences between geno-
types, and subsequent analyses of pseudotime trajectories and gene co-
expression clustering, we smoothed read counts to reduce dropout
effects and improve gene-gene correlation structure. Smoothing was

performed with knn-smoothing (Wagner et al., 2018), using k= 15
neighbors and 30 PCs. Smoothed counts were normalized using the
Seurat NormalizeData() function for downstream analyses.

Cell type-specific DEGs
We identified cell type-specific DEGs in HttQ175/1 versus wild-type mice
by two methods. In our primary analysis, we compared cells of each ge-
notype using Wilcoxon Rank Sum tests implemented with the Seurat
FindMarkers() function, testing all genes with non-zero imputed counts
in at least 10% of the cells from at least one of the two genotypes. This
analysis treats the cell (not the mouse) as the primary unit of analysis.
We believe this choice is justified, as both the neurodegenerative proc-
esses in MSNs and the activation of inflammatory states in glial cells are
thought to occur in a relatively cell-autonomous fashion, resulting in a
mosaic of cell states within each mouse that would not be captured in an
analysis treating the mouse as the primary unit of analysis. To confirm
that DEGs detected by our primary approach were robust, we also con-
ducted a secondary analysis in which the Seurat FindMarkers() function
was applied to non-smoothed read counts.

Trajectory analysis
We used Seurat v3.0 to perform principal components analysis on the
centered and scaled expression levels of the 5000 most variable genes
within each cell type. We eliminated any principal component for which
the strongest loadings were dominated by mitochondrial genes, as these
vectors typically correspond to technical variation among cells rather
than biological signal. Using the embeddings of the top five remaining
principal components, we then identified a non-branching pseudotime
trajectory with the slingshot() function in the Slingshot v1.4.0 R package
(Street et al., 2018). We tested for associations of slingPseudoTime and
genotype using the t.test() function in R.

Gene set enrichment analysis
DEGs in each cell type and genes in each gene co-expression module
were tested for enrichment in curated gene sets from four sources. First,
we tested for enrichments in 2368 curated gene sets from the HDmolec-
ular Signatures Database (https://www.hdinhd.org/2018/05/22/hdsigdb/),
including lists of DEGs and weighted gene co-expression network anal-
ysis (WGCNA) modules from RNA-seq experiments, as well as known
marker genes for striatal cell types. Second, we tested for enrichments
in 12,177 Gene Ontology terms from the org.Mm.egGO2ALLEGS
object in the org.Mm.eg.db R package. Third, we tested for enrich-
ments in transcription factor regulons from ChIP-seq experiments in
the ChEA 2016 database (Lachmann et al., 2010), downloaded from the
Enrichr website (https://amp.pharm.mssm.edu/Enrichr/geneSetLibrary?
mode=text&libraryName=ChEA_2016). Fourth, we tested for enrich-
ments with evolutionarily conserved sequence motifs from RcisTarget
(Aibar et al., 2017). For the first three sources, enrichments among down-
regulated and upregulated genes were tested separately using the
geneSetTest() function in the limma R package with ranks.only = TRUE
and type = “t” and using genes ranked from most strongly downregulated
to most strongly upregulated based on the -log10(p value) multiplied by
the sign of the log2(fold change). Motif analysis was performed with
RcisTarget using default parameters.

Statistical overlap of cell type-specific DEGs across cell types
Statistical overlap among ranked lists of downregulated and upregulated
genes in each pair of cell types was evaluated using RRHO, implemented
using the RRHO() function from the RRHO R package (Plaisier et al.,
2010). The RRHO algorithm steps through two gene lists ranked by the
degree of differential expression in two independent experiments, suc-
cessively measuring the statistical significance of the number of overlap-
ping genes. Each comparison between cell types used the set of genes
expressed with a non-zero read count in at least 10% of the cells from
both cell types, with the genes ranked frommost strongly downregulated
to most strongly upregulated within each cell type based on the -log10(p
value) multiplied by the sign of the log2(fold change). We used a step
size such that each gene list was divided into 100 equally sized bins.
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Gene co-expression modules
Gene-gene correlation structure in snRNA-seq is notoriously weak
because of the sparsity of the data. Therefore, for network analyses we
used smoothed counts, as described above, to impute a more complete
representation of gene expression in each cell. We selected 8971 genes
with non-zero counts in at least 10% of the cells from any cell type. We
applied three distinct clustering algorithms to the smoothed, log-nor-
malized, centered and scaled counts to derive gene modules and com-
pared the results.

WGCNA
WGCNA was performed using the blockwiseModules() function from
theWGCNA R package (Langfelder and Horvath, 2008), with the follow-
ing parameters: maxBlockSize= 10,000, corType = “pearson,” power= 8,
TOMType = “none,” minModuleSize = 15, mergeCutHeight = 0.15,
minKMEtoStay = 0.1. This implementation of WGCNA assigns
genes to modules by hierarchical clustering of an adjacency matrix
defined by Pearson correlations.

K-means
We applied the kmeans() function to smoothed read counts with k= 50,
algorithm = “Lloyd,”max iterations = 10,000, and 10 starts. We removed
genes with Pearson’s r, 0.3 to the module centroid. We removed mod-
ules with fewer than 10 remaining genes and merged modules whose av-
erage expression was strongly correlated with r. 0.85, resulting in a
final network with 5647 genes in 42 modules.

K-means “hybrid”
Sparseness is a challenge in clustering single-cell RNA sequencing
data, resulting in lost information and biases in network recon-
struction. One solution to this problem is to cluster genes based on
metrics that are proportional to the number of neighbors that a
pair of nodes share in common, since this may be more robust to
dropouts. For instance, Seurat assigns cells to clusters by clustering
a shared nearest neighbors graph (Butler et al., 2018). Topological
overlap metrics are implemented for gene co-expression clustering
in WGCNA (Langfelder and Horvath, 2008), but empirically we
have found that WGCNA’s topological overlap matrices yield very
few modules. As an alternate approach to cluster genes based on
their network neighborhood, we computed Pearson correlations
among all pairs of genes, then applied k-means clustering to the
resulting adjacency matrix to derive gene modules. k = 150 was
manually determined to capture some of the finer structure in the
network without over-splitting. Each module’s eigengene, the first
principal component, was computed with the moduleEigengenes()
function in the WGCNA R package. We dropped modules for
which the eigengene explained ,10% of the variance, and we
merged modules whose eigengenes were .85% correlated. For
comparison, we also summarized modules by the average expres-
sion of the component genes, obtaining very similar results. These
procedures resulted in 77 modules spanning 5874 genes.

Gene regulatory network
A gene regulatory network model describing predicted interactions
between TFs and their potential target genes in the mouse striatum was
derived using GENIE3 (Huynh-Thu et al., 2010). The GENIE3 algorithm
performs network reconstruction by using a random forest regression
model to select sets of TFs whose combined expression predicts the
expression of each gene. We started with the smoothed counts of 8971
genes with non-zero counts in at least 10% of the cells from at least one
cell type, as for gene co-expression networks above. We downloaded a
curated list of all 1639 known and likely human TFs from http://
humantfs.ccbr.utoronto.ca/download/v_1.01/TFs_Ensembl_v_1.01.txt. We
identified 1373 mouse orthologs of these TFs using the biomaRt R pack-
age (accessed April 21, 2020). We then intersected this list of putative
mouse TFs with the 8971 striatally-expressed genes from our dataset,
producing a list of 589 striatally-expressed TFs. GENIE3 was run using
default parameters as implemented in the GENIE3 BioConductor pack-
age v1.1. The algorithm produces a very long list of potential TF-gene

interactions ranked by the randomForest importance score, and many of
these potential interactions are very weak. This importance score is
agnostic to whether the TF-gene interaction is positive (“activat-
ing”) or negative (“inhibitory”), but it has been suggested that inhib-
itory interactions are less reliable (Aibar et al., 2017). We therefore
retained only the predicted interactions between pairs of genes
whose expression were positively correlated (Pearson’s r. 0), and
we trimmed this list to the top remaining 180,000 TF-gene interac-
tions with the strongest importance scores, corresponding to a
mean in-degree of ;20 TFs per gene.

Overlap with polycomb repressive complex 2 (PRC2)-related
datasets
We analyzed PRC2 target genes derived from nine ChIP-seq datasets in
four cell types to test for over-representation in gene co-expression mod-
ules. When available, we used published target gene lists. Otherwise, we
downloaded aligned sequence reads, performed peak-calling with MACS
v2.1 (Zhang et al., 2008), and annotated peaks to genes with transcrip-
tion start sites within 65 kb. The nine datasets are as follows: (1)
ChIP-seq of EZH2 in mouse embryonic stem cells (Kloet et al.,
2016), obtained from ChEA (Lachmann et al., 2010); (2) ChIP-seq
of SUZ12 in mouse embryonic stem cells (Kloet et al., 2016),
obtained from ChEA (Lachmann et al., 2010); (3) ChIP-seq of
H3K27me3 in mouse embryonic stem cells, generated by Bing Ren’s
lab (UCSD) for the ENCODE consortium (ENCFF055QNY); (4)
ChIP-seq of H3K27me3 in mouse MSNs (Von Schimmelmann et al.,
2016), obtained from HDSigDB; (5) ChIP-seq of H3K27me3 in
bulk striatal tissue from four-month-old HttQ111/1 and Htt1/1 mice
(Pearl et al., 2020); (6) ChIP-seq of EZH2 in human astrocytes, gen-
erated by Bradley Bernstein’s lab for the ENCODE consortium (re-
producible peaks from ENCFF254DFD and ENCFF831JFC); (7)
ChIP-seq of H3K27me3 in human astrocytes, generated by Bradley
Bernstein’s lab for the ENCODE consortium (ENCFF315BVX); (8)
ChIP-seq of EZH2 in mouse corpus callosum (enriched for oligo-
dendrocytes; Bardile et al., 2019; their Table S3); (9) ChIP-seq of
EZH2 in mouse corpus callosum (enriched for oligodendrocytes;
Bardile et al., 2019; their Table S3). We tested for over-representa-
tion in gene co-expression modules using Fisher’s exact tests. We
also analyzed published microarray gene expression profiles
(Affymetrix 430_2 array) of MSNs from six-week-old, three-month-
old, and six-month-old Ezh1�/�; Ezh2fl/fl; Camk2a-cre versus con-
trol mice, in which PRC2 had been conditionally silenced in adult
MSNs (Von Schimmelmann et al., 2016). Normalized data were
downloaded from the Gene Expression Omnibus (GSE84243). We
fit a linear model using the lmFit() function in the limma R pack-
age, followed by post hoc contrasts contrasts.fit() and eBayes() to
estimate the effect of genotype at each time point. Over-represen-
tation analysis of gene co-expression modules among upregulated
and downregulated genes was performed with the geneSetTest()
function.

Replication in independent datasets
We downloaded snRNA-seq read counts and sample-level metadata
from six-month-old HttQ175/1 and HttQ20/1 and from HD cases and
controls from Lee et al., 2020 (GSE152058). We selected cells with
.1000 UMIs and applied uniform preprocessing to each dataset, includ-
ing ambient RNA reduction with SoupX, followed by integration and
clustering with the Seurat Standard Workflow (Butler et al., 2018). Cell
clusters were assigned to cell types based on known markers, as
described above. Markers of MSNs in the matrix versus patch compart-
ments in mouse striatum included Ebf1 and Oprm1 (Lobo et al., 2008;
Märtin et al., 2019). We downloaded read counts from translatome
profiling of striatal D1 MSNs, D2 MSNs, astrocytes, and Chat1 inter-
neurons in six-month-old mice from an HD allelic series (GSE152058;
Lee et al., 2020). Read counts were converted to log2(transcripts per mil-
lion) using the cpm() in the edgeR R package (Robinson et al., 2010). We
downloaded normalized read counts (FPKM) from mRNA-seq of bulk
striatal tissue in an HD allelic series at 2, 6, and 10 months (GSE65774;
Langfelder et al., 2016). In each dataset, we calculated the activity of the 10
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PRC2-regulated gene modules using the module
Eigengenes() function from the WGCNA R package
(Langfelder and Horvath, 2008). Effects of HD genotype
on each module in each cell type were calculated in each
cell type or type point separately using the lmFit() and
eBayes() functions in the limma R package. For allelic
series studies, we treated Q-length as a quantitative
variable.

Results
snRNA-seq of 14- to 15-month-old HttQ175/1

HD knock-in mice and wild-type controls
We generated snRNA-seq from the striatum of
four male 14- to 15-month-old HttQ175/1 mice
and four male wild-type controls using the 10�
Genomics Chromium system. HttQ175/1 is a
widely used genetically precise mouse model for
a mutation associated with juvenile-onset HD. A
humanized HTT exon 1 fragment with 140 CAG
repeats was knocked into the endogenous Htt
locus. The repeats spontaneously expanded to
;175 CAG repeats and were later stabilized at
;190 repeats. These mice have normal lifespan,
with progressive behavioral, neuroanatomical,
and transcriptomic deficits (Smith et al., 2014;
Alexandrov et al., 2016; Langfelder et al., 2016).
At 14- to 15-month-old, striatal atrophy is detect-
able, resembling early changes in human HD
without yet any neuronal cell death (Deng et al.,
2021). The mice in our study are considerably
older than those studied in previously published
transcriptomic datasets from knock-in mouse
models of the HD mutation, which have often
focused on the earliest signs of transcriptional
dysregulation in two- to six-month-old mice
(Langfelder et al., 2016; Ament et al., 2017; Lee et
al., 2020). However, even at 18months, striatal
pathology in HttQ175/1 is less severe than in pre-
manifest HD (Deng et al., 2021), suggesting a
need for studies of aging HttQ175/1 mice to
adequately model the pathologic processes lead-
ing to the onset of overt symptoms.

Following QC and normalization, we ana-
lyzed 4524 high-quality cells, of which 3210 were
derived from HttQ175/1 mice and 1314 from
wild-type mice. A web portal for visualization
and analysis of these snRNA-seq data are avail-
able at the Gene Expression Analysis Resource
(Orvis et al., 2020; https://umgear.org/p?l=
1d76bf3e&g=Penk). Louvain clustering and
annotation with known marker genes (Saunders
et al., 2018) revealed well-defined clusters corre-
sponding to each of the major cell populations in
the striatum, including 3003 MSNs, 288 Sst1
interneurons, 120 Pvalb1 interneurons, 73
Chat1 interneurons, 468 oligodendrocytes, 300
astrocytes, 112 endothelial cells, 82 microglia, and
78 polydendrocytes (Fig. 1A,B; Extended Data
Fig. 1-1). Subclustering of MSNs using 36 genes
with.8-fold differences in expression between MSN subtypes in
prior scRNAseq of mouse striatum (Saunders et al., 2018)
revealed 1809 D1 MSNs and 941 D2 MSNs (Fig. 1C), as well as
166 MSNs whose expression profiles mach the recently described

“eccentric” subtype (Saunders et al., 2018). Most cell types were
represented at similar proportions in HttQ175/1 versus wild-type
mice (Fig. 1D). Notably, however, ;30% fewer cells in HttQ175/1

mice were identified as D2 MSNs (generalized linear model:
p=1.6e-6), while a higher proportion of cells were identified as

Figure 1. Identification of cell types in snRNA-seq of 4524 cells from the striatum of 14- to 15-month-old
HttQ175/1 versus Htt1/1 mice. A, tSNE plot showing clustering of nuclei into major cell types. B, Dot plot of top
marker genes for all cell types. C, Dot plot showing marker genes for D1 versus D2 MSN subtypes. D, Proportion
of cells from HttQ175/1 versus Htt1/1 mice in each cell type. Generalized linear model: ***p, 0.001,
**p, 0.01.
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microglia (p=9.6e-3) and Chat1 interneurons (p=3.3e-4). Our
results in D2 MSNs are consistent with immunostaining of neuro-
nal subtypes in HttQ175/1 versus Htt1/1 mice, which revealed a
progressive decrease in the number of neurons expressing the D2
MSN marker enkephalin beginning as early as six months of age,
while no changes in cell counts were observed for markers of D1
MSNs or interneurons (Deng et al., 2021). However, stereological
experiments in the same study failed to detect a decrease in the
overall number of neurons. Therefore, a conservative interpretation
of the decreased numbers of cells identified as D2 MSNs both by
snRNA-seq and immunostaining is that these patterns represent a
loss of cell identity marker genes rather than loss of neurons per se

Cell type-specific gene expression changes in HD knock-in
mice
Next, we studied cell type-specific gene expression changes in
HttQ175/1 versus wild-type mice. We identified 13,897 cell type-
specific gene expression changes, involving 8124 distinct genes
[DEGs; false discovery rate (FDR), 0.05; Fig. 2A; Extended
Data Fig. 1-1]. In our primary analysis, we detected DEGs by
applying Wilcoxon rank-sum tests to smoothed read counts. A
second approach, applying Wilcoxon signed-rank tests to non-
smoothed read counts yielded a similar rank-ordering of DEGs
but with reduced statistical power. Microglia and Chat1 inter-
neurons were excluded from this analysis because of insufficient
cell numbers.

We found 5181, 3666, and 685 DEGs in D1, D2, and eccentric
MSNs, respectively. Comparison of these cell type-specific DEGs
to previously described lists of DEGs from RNA-seq of bulk
striatal tissue from 10-month-old HttQ175/1 mice versusHttQ20/1

controls (Langfelder et al., 2016) indicated that both upregulated
and downregulated DEGs in all MSN subtypes were strongly
enriched for known DEGs from bulk tissue RNA-seq (limma
geneSetTest: p, 1e-100 for DEGs in D1 and D2 MSNs; p, 1e-
30 in eccentric MSNs; Fig. 2B; Extended Data Fig. 2-1). Genes
with the lowest p values included Pde10a, Rgs9, Wnt8b, Trank1,
Scn4b, Rap1gap, Pde1b, Ptpn5, Adcy5, Atp2b1, and Arpp21, all of
which are also among the strongest and most-consistently
observed DEGs from previous studies in bulk tissue.
Downregulated genes in MSNs were enriched for synaptic func-
tions (e.g., the Gene Ontology term “neuron spine,” p= 7.95e-7,
p= 1.95e-8, and p= 8.1e-4 in D1, D2, and eccentric MSNs,
respectively; Extended Data Fig. 2-1). Upregulated genes in
MSNs were enriched for genes localized to the “nucleus”
(p=4.1e-11, p= 2.0e-10, and p= 0.014 in D1, D2, and eccentric
MSNs, respectively), especially genes related to “histone modifi-
cation” (p= 3.8e-4, p=8.8e-4, and p= 3.1e-3 in D1, D2, and
eccentric MSNs, respectively). Comparing the fold changes of
DEGs in D1, D2, and eccentric MSNs revealed that with very few
exceptions these fold changes were nearly identical in magnitude
and direction [Pearson correlation comparing the log2(fold
changes) of the top 15% of genes ranked by p value in D1 vs D2
MSNs, r= 0.97, p, 1e-308; D1 vs eccentric MSNs, r=0.77,
p=3.0e-242; Fig. 2C, left]. The slope of the regression line is ;1
in all of these comparisons among MSN subtypes. Down-sam-
pling analyses suggested that the somewhat weaker correlation
coefficient in D1 versus eccentric MSNs was primarily because of
the smaller eccentric MSN sample size and is not biologically
meaningful. Pseudotime trajectory analysis with Slingshot (Street
et al., 2018) indicated that nearly all MSNs in these 14- to 15-
month-old HttQ175/1 mice exist in a disease-specific transcrip-
tional state that is never observed in wild-type mice (Fig. 2D).
Thus, snRNA-seq revealed strong transcriptional effects of the

HD mutation in all three MSN subtypes, including eccentric
MSNs, yet the enhanced vulnerability of D2 versus D1 MSNs is
not reflected in the magnitude of transcriptional effects, at least
not in the current dataset.

We found 2351 DEGs in oligodendrocytes from HttQ175/1

versus Htt1/1mice. Neither upregulated nor downregulated
DEGs in oligodendrocytes strongly overlapped known DEGs
from bulk tissue RNA-seq of 10-month-old HttQ175/1 versus
HttQ20/1 mice (p=0.01 and p= 0.06, respectively). By contrast,
our DEGs in oligodendrocytes strongly overlapped DEGs from
RNA-seq of sorted oligodendrocytes in the striatum of BACHD
mice – a transgenic mouse model of the HD mutation – com-
pared with wild-type controls (Bardile et al., 2019; p= 6.6e-19
and p=1.8e-13 for downregulated and upregulated DEGs,
respectively). Downregulated DEGs in oligodendrocytes were
strongly enriched for oligodendrocyte-specific functions such as
“myelin sheath” (p= 6.75e-14), as well as more basic cellular
processes such as “structural constituent of ribosome” (p= 8.64e-
12) and “mitochondrion” (p=3.16e-10). Upregulated DEGs
were enriched for several categories of genes that are typically
associated with neurons, including “ion channel complex”
(p=2.0e-8) and “synaptic membrane” (p= 1.2e-6). Trajectory
analysis of oligodendrocytes suggested that oligodendrocytes
exist on a continuum from normal to disease-associated states, i.
e., in contrast to the discrete disease-associated transcriptional
states of MSNs, the disease-associated transcriptional states in
oligodendrocytes are also present in Htt1/1 mice, but at a lower
frequency (Fig. 2D). In summary, we identified thousands of re-
producible DEGs in oligodendrocytes that are obscured in bulk
tissue RNA-seq.

We found 1987 DEGs in astrocytes from HttQ175/1 versus
Htt1/1mice. The upregulated genes in astrocytes overlapped
known upregulated DEGs from bulk tissue RNA-seq of 10-
month-old HttQ175/1 versus HttQ20/1 mice (p=2.3e-12), whereas
downregulated gene sets in astrocytes did not significantly over-
lap these known DEGs (p. 0.05). Prior work has revealed neu-
rotoxic reactive astrocytes in postmortem striatal brain tissue
from HD patients, but their presence in mouse models of the
HD mutation is controversial (Liddelow et al., 2017; Diaz-Castro
et al., 2019). To identify reactive astrocytes in our dataset, we
subclustered astrocytes on the basis of 87 genes previously shown
to be induced in reactive astrocytes (Zamanian et al., 2012),
revealing a cluster of 134 reactive astrocytes, enriched for pan-re-
active markers such as Gfap (p=3.6e-14) and Vim (p=1.2e-9),
as well as two clusters of non-reactive astrocytes that do not
express these markers (Fig. 3). While reactive astrocytes were
present in both genotypes, they were significantly more abun-
dant in HttQ175/1 mice (Fisher’s exact test: OR=2.3; p= 0.001).
Many reactive astrocytes expressed markers of the “A1” neuro-
toxic subtype (e.g., H2-D1, p=1.2e-8), whereas very few cells
expressed markers of “A2” neuroprotective reactive astrocytes.
While these results support the presence of neurotoxic reactive
astrocytes in the striatum of HttQ175/1 mice aged more than
one year, several analyses suggest that prototypical reactive astro-
gliosis explains only a subset of the HD-related transcriptional
changes in astrocytes. Trajectory analyses showed a strong shift
in astrocyte cell states in HttQ175/1 versus Htt1/1mice (Fig. 2D),
but this trajectory was only weakly correlated with reactive ver-
sus non-reactive subtypes (Fig. 3H). Instead, upregulated DEGs
in astrocytes were most strongly enriched for the GO term “syn-
apse” (p=8.1e-32), while downregulated DEGs were most
strongly enriched for GO terms related to transcriptional reg-
ulation (e.g., “negative regulation of transcription by RNA
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polymerase II,” p = 2.7e-9). Thus, there are profound changes
in the transcriptomes of astrocytes from HttQ175/1 versus
Htt1/1mice, only some of which reflect known neuroinflam-
matory processes.

At an FDR, 0.05, we detected fewer than 10 DEGs in Sst1
and Pvalb1 interneurons, endothelial cells, and polydendrocytes
(Fig. 2A). Moreover, trajectory analysis indicated that the princi-
pal curve in these cell types was not correlated with genotype

Figure 2. Characterization of DEGs in nine cell types from the striatum of 14- to 15-month-old HttQ175/1 versus Htt1/1 mice. A, Counts of DEGs in each cell type (red = upregulated;
blue = downregulated; saturated color, FDR, 0.05; desaturated color, p, 0.01). B, Statistical overlap of upregulated and downregulated genes with published RNA-seq of bulk striatal tissue
from 10-month-old HttQ175/1 versus HttG20/1 mice and from HttQ140/1 versus HttG20/1 mice. C, Scatterplots and RRHO heatmaps indicating shared and unique gene expression changes in
selected pairs of cell types. D, Slingshot pseudotime trajectory analysis in MSN subtypes, astrocytes, oligodendroocytes, and SST interneurons. E, Statistical overlap of upregulated and downre-
gulated genes among pairs of cell types.
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(p. 0.05). We note that although these cell types are relatively rare,
we were able to detect hundreds of DEGs in comparably rare eccen-
tric MSNs. Therefore, our data indicate that these cell types are less
vulnerable to the transcriptional effects of the HDmutation.

Comparisons of gene expression changes across cell types
detected a marked difference in cell type-specificity of downregu-
lated versus upregulated genes. Downregulated genes were
largely non-overlapping across cell types, with the only strong

Figure 3. Characterization of reactive astrocytes in the striatum of HttQ175/1 versus Htt1/1 mice. Reactive astrocytes were identified by subclustering astrocytes on the expression of 87
markers of reactive populations. A–D, Expression of marker genes for all astrocytes (Slc1a3), pan-reactive astrocytes (Gfap), A1 reactive astrocytes (H2-D1), and A2 reactive astrocytes (Tm4sf1).
E, Assignments of astrocyte subclusters as reactive versus non-reactive based on known markers. F, Distribution of cells from HttQ175/1 versus Htt1/1 mice across astrocyte subclusters. G,
Proportion of reactive versus non-reactive astrocytes in HttQ175/1 versus Htt1/1 mice. H, Violin plots showing the relationship between the reactive state and genotype of astrocytes and
Slingshot pseudotime.
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overlaps occurring among MSN subtypes (Fig.
2E). Many of these downregulated DEGs were
“cell identity” genes that are expressed specifically
in that same cell type. That is, top genes downregu-
lated in MSNs included MSN marker genes such
as Ppp1r1b, Pde10a, and Rgs9. Genes downregu-
lated in astrocytes were enriched for astrocyte
marker genes (astrocyte marker genes (p= 1.11e-
212), including Hes5, Gjb6, and Ddhd1. And genes
downregulated in oligodendrocytes were enriched
for oligodendrocyte-specific genes (p = 3.32e-
155), including Mog, Gjb1, and Cldn11.

By contrast, many upregulated DEGs were
shared across cell types, with statistically signifi-
cant overlap among upregulated DEGs in D1
MSNs, D2 MSNs, eccentric MSNs, astrocytes, oli-
godendrocytes, endothelial cells, polydendrocytes,
and Sst1 interneurons (Fig. 2C). Thirty genes
were upregulated (FDR, 0.05) in five distinct cell
types. These included inflammation-related genes
such as colony stimulating factor 2 receptor subu-
nit a (Csf2ra), histocompatibility 2, D region locus
1 (H2-D1), and myocardial infarction associated
transcript (Miat), suggesting that some shared
changes are because of the broadly acting effects of
pro-inflammatory molecules such as cytokines.
However, broadly upregulated genes also
included genes that are not typically associated
with inflammation, including synaptic genes
like the GABAA receptor a 1 subunit (Gabra1)
and the voltage-gated sodium channel a 9 sub-
unit (Scn9a). Thus, upregulation of certain
transcripts across multiple striatal cell types is a
prominent feature of gene expression changes
in HttQ175/1 versus Htt1/1mice, involving both
neuroinflammation-related and non-neuroin-
flammation-related genes.

Network analyses reveal principles of
transcriptional dysregulation
We reconstructed and analyzed gene co-expres-
sion networks to gain deeper insight into the proc-
esses driving transcriptional dysregulation within
and across cell types. Gene co-expression networks
are widely employed in RNA-seq with bulk tissue,
but the sparseness of scRNA-seq data masks gene-
gene correlation structure (Crow et al., 2016). To
overcome this issue, we used knn-smoothing
(Wagner et al., 2018) to impute read counts
across cells (k = 15, n = 30 principal compo-
nents). We confirmed that this approach pro-
duced strong correlations among known
markers of D1 MSNs and among known
markers of D2 MSNs, without inducing spuri-
ous correlations among markers across sub-
types (Fig. 4). We compared three approaches
to compute gene co-expression modules using
these smoothed read counts: WGCNA (Langfelder
and Horvath, 2008), k-means clustering (k=50;
Pearl et al., 2019), and a novel approach in which
we applied k-means clustering to a gene-gene correlation matrix
to cluster genes based on shared interactions partners (henceforth
“k-means hybrid”; details in Materials andMethods). After merging

highly similar modules (r. 0.85), these approaches identified 26,
42, and 77 modules, respectively (Extended Data Fig. 4-1).

Five analyses support the relevance of these gene co-expres-
sion modules to gene regulation and biology and indicate that

Figure 4. Smoothing rescues gene-gene correlation structure among markers of D1 versus D2 MSNs. A, Pearson cor-
relations among 36 marker genes for D1 versus D2 MSNs in normalized, non-smoothed counts from the 4524 cells in
our dataset. B, Pearson correlations among the same 36 marker genes using smoothed counts. The 36 marker genes are
the same genes shown in Figure 1C and are ranked in order of subtype specificity based on data from the DropViz atlas.
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module detection is robust to the network reconstruction
approach (Fig. 5; Extended Data Fig. 5-1). First, gene regulatory
network reconstruction with GENIE3 (Huynh-Thu et al., 2010)
using the smoothed expression profiles from the same cells and
genes revealed TF-target gene regulons that significantly over-
lapped (p, 0.001) every gene co-expression module from each of
the three network models, predicting specific TFs as key regulators
of their activity (Fig. 5A). Second, most modules overlapped direct
target genes of TFs inferred by ChIP-seq in the ChEA 2016 data-
base (Fig. 5B; Lachmann et al., 2010). Third, most modules were
enriched for at least one Gene Ontology functional annotation
(Fig. 5C). Fourth, most modules overlapped a published gene co-
expression module from bulk RNA-seq of striatal tissue in knock-
in mouse models of the HD mutation (Fig. 5D; Langfelder et al.,
2016). Fifth, modules were highly reproducible across the three
network models, with every module significantly overlapping a
cognate module in the other network models (Fig. 5E). We
describe subsequent analyses using the 77 modules from the k-
means hybrid model, which had the largest number of modules
validated in the analyses above. Similar results were obtained using
the alternate network models.

Next, we characterized the activity of the 77 gene co-expres-
sion modules across cell types and genotypes. Our primary anal-
yses summarized each module’s expression pattern based on its
eigengene (Fig. 6). Similar results were obtained by summarizing
the modules’ expression based on the average expression of their

component genes (Extended Data Fig. 6-1). Many modules were
expressed specifically in a single cell type (Fig. 6B). Notably, gene
co-expression modules derived from snRNA-seq appeared to
have greater fidelity to specific cell types than the published net-
work derived from bulk RNA-seq (Extended Data Fig. 5-1). For
instance, genes from a large neuronally-enriched bulk RNA-seq
gene co-expression module, “bulk M2,” previously shown to be
downregulated in HD knock-in mice, were enriched in 13 dis-
tinct snRNA-seq modules from the k-means hybrid network
(modules M12, M50, M29, M101, M95, M86, M33, M46, M10,
M70, M1, M76, and M36), all of which were downregulated in
HttQ175/1 versus Htt1/1 mice but with varying specificity across
MSN subtypes and in other striatal cells (Fig. 6B). Similarly, a
downregulated non-neuronal bulk RNA-seq module, “bulk
M11,” overlapped five distinct snRNA-seq modules expressed
specifically in astrocytes (M11), oligodendrocytes (M13, M31),
or endothelial cells (M43), and across all glial cell types (M32).
Thus, network reconstruction from single-cell RNA-seq provides
complementary information about cell type-specific gene regula-
tion that is not readily apparent from standard RNA-seq.

A total of 55 of the 77 modules were differentially expressed
[adjusted p, 0.01, . 0.5 SD (z score) change in expression; Fig.
6C] in at least one cell type. These included 13 differentially
expressed modules in D1 MSNs, 15 in D2 MSNs, 9 in eccentric
MSNs, 39 in astrocytes, and 27 oligodendrocytes. Consistent
with findings from DEGs (above), we identified numerous “cell

Figure 5. Validation and comparison of gene co-expression modules. A, Enrichment of gene co-expression modules for TF-target regulons derived with GENIE3 (Huynh-Thu et al., 2010). B,
Enrichment of gene co-expression modules for TF-target regulons from ChIP-seq experiments in the ChEA 2016 database (Lachmann et al., 2010). C, Enrichment of gene co-expression modules
for Gene Ontology terms. D, Enrichment of gene co-expression modules for published gene co-expression modules derived bulk RNA seq of HTT knock-in mice (Langfelder et al., 2016). The
points in A–D indicate the -log10(p value) for the most significant regulon or GO term for each module, with the modules ranked from strongest to weakest enrichment. E, Overlap between
gene co-expression modules derived with WGCNA, k-means (k = 50), and the k-means hybrid approach.
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identity” modules that were specifically expressed in one cell
type and downregulated in cells of that same type fromHttQ175/1

versus Htt1/1 mice (Fig. 7, columns 1–4). We also identified
modules that were broadly expressed and upregulated across
most or all cell types (Fig. 7, columns 5, 6). A striking and less
expected finding was that many of the cell identity modules were
also upregulated in incorrect cell types. For instance, the MSN
identity module M12 (Fig. 7, first column) was downregulated in
D1 (effect size in standard units = �0.74, p, 1e-308), D2 (effect
size = �0.74, p= 7.0e-217) and eccentric MSNs (effect size =
�0.34, p= 3.7e-6), but upregulated in astrocytes (effect
size= 0.56, p=3.5e-7) and oligodendrocytes (effect size = 0.27, p
=7.4e-3). The astrocyte identity module M11 (Fig. 7, second col-
umn) was downregulated in astrocytes (effect size = �1.06,
p=2.1e-11), but slightly upregulated in MSNs (effect size = 0.02,
0.03; p= 4.5e-10 and p= 3.0e-4, in D1 and D2 subtypes, respec-
tively). The oligodendrocyte identity module M13 (Fig. 7, third
column) was downregulated in oligodendrocytes (effect size =
�0.96, p=1.3e-9), but upregulated in MSNs (effect size = 0.083,
0.08; p= 1.4e-27 and p= 5.5e-18 in D1 and D2 subtypes) and
astrocytes (effect size= 0.26, p= 2.0e-4). Further examples
include the parvalbumin interneuron identity module M65 (Fig.
7, fourth column) and the endothelial cell identity module M43.
Examining the expression of individual genes from these mod-
ules confirmed that they follow these same bi-directional pat-
terns of transcriptional dysregulation (Fig. 7D). Notably, our
gene regulatory network model predicted that many of these cell
identity modules are regulated by canonical cell type-specific
hub transcription factors, such as FOXP1 in M12, SOX9 in M11,

MYRF in M13, and NKX2.1 in M65 (Fig. 7A,C), which are
required for the development of MSNs, astrocytes, oligodendro-
cytes, and interneurons, respectively (Marín et al., 2000; Kang et
al., 2012; Hornig et al., 2013; Precious et al., 2016).

We postulated that these bidirectional changes in gene
expression may reflect aberrant repression and de-repression of
cell type identity genes in HttQ175/1 mice. One mechanism by
which this could occur is through interactions of wild-type and
mutant HTT with the polycomb repressive complex 2 (PRC2).
PRC2 facilitates gene repression via trimethylation of histone H3
at lysine 27 (H3K27me3), particularly in the promoters of genes
involved in the development and maintenance of cell types. The
HTT protein has genotype-specific interactions with PRC2 in
vitro (Seong et al., 2010) and in vivo (Pearl et al., 2020), and con-
ditional knock-out of PRC2 in striatal MSNs causes gene expres-
sion changes that mimic the effects of HD mutations (Von
Schimmelmann et al., 2016). To test whether dysregulated cell
type identity modules in HttQ175/1 mice involve PRC2, we
assembled nine ChIP-seq datasets profiling the genomic occu-
pancy for components of the PRC2 complex (EZH2, SUZ12) or
for H3K27me3 in four disease-relevant cell types: MSNs (Von
Schimmelmann et al., 2016; Pearl et al., 2020), astrocytes (Davis
et al., 2018), oligodendrocytes (Bardile et al., 2019), and embry-
onic stem cells (Kloet et al., 2016; Davis et al., 2018). We tested
for over-representation of each of our 77 gene co-expression
modules among putative PRC2 target genes, defined by the pres-
ence of a PRC2-related ChIP-seq peak65 kb from a gene’s tran-
scription start site. Ten modules were robustly overrepresented
for these PRC2 target genes (adjusted ps, 0.01 in at least four of

Figure 6. Expression patterns of gene co-expression modules in mouse striatum. A, Average-linkage hierarchical clustering of modules based on their first principal components (module
eigengenes). B, Mean expression level of each module eigengene in each cell type. C, Change in module eigengene activity in cells from HttQ175/1 versus Htt1/1 mice.
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Figure 7. mHTT-associated cell type identity-related gene co-expression modules. A, Graphs of the top 100 gene-gene interactions within each module. Node size corre-
sponds to eigencentrality. Node color corresponds to the change in expression between cells from HttQ175/1 versus Htt1/1 mice in the major cell type for that cluster (blue
= downregulated; red = upregulated). B, Violin plots of module eigengenes. C, Over-representation of the predicted target genes from GENIE3 for the hub transcription fac-
tors in each module for upregulated and downregulated genes in each cell type. D, Z-scores for cell type-specific upregulation or downregulation of the top 20 genes in each
regulon shown in panel C.

Figure 8. Regulation of HD-associated cell type identity modules by the PRC2. A, Cell type-specific expression of module eigengenes for 10 gene co-expression modules robustly enriched for
PRC2 target genes. B, Change in expression of module eigengenes in cells from HttQ175/1 versus Htt1/1 mice; “1” and “–” indicate statistically significant upregulation or downregulation of
eigengene expression in each cell types (adjusted p, 0.01). C, Over-representation of the genes in each module for PRC2 target genes defined by nine ChIP-seq experiments in embryonic
stem cells (ESCs), MSNs, astrocytes (AS), and oligodendrocytes (OL). D, Over-representation of the genes in each module for upregulated and downregulated genes in MSNs from six-week-old,
three-month-old, and six-month-old PRC2-silenced versus control mice.
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the ChIP-seq datasets). All of these 10
PRC2-regulated modules were ex-
pressed specifically in a single striatal cell
type (Fig. 8A), including modules specific
to MSNs (M12, M29, M50), all interneur-
ons (M23, M52), Pvalb1 interneurons
(M65), Chat1 interneurons (M54), endo-
thelial cells (M43), oligodendrocytes
(M13), and astrocytes (M11). All of these
PRC2-regulated modules except for those
specific to interneurons were significantly
downregulated in that same cell type in
HttQ175/1 mice (adjusted p, 0.01), while
the expression of interneuron-specific
modules trended downward in cells from
HttQ175/1 mice (Fig. 8B). All 10 PRC2-
regulated modules (including inter-
neuron-specific modules) were signifi-
cantly upregulated in at least one other cell
type in which these genes are not normally
expressed. As expected, the dynamics of
PRC2 occupancy across cell types was neg-
atively correlated with cell type-specific
gene expression (Fig. 8C). PRC2 target
genes in embryonic stem cells, in which
genes for all differentiated cell types are
repressed, were overrepresented in all 10
modules. PRC2 target genes in MSNs were
overrepresented in interneuron-specific
and glial-specific modules, but not in
MSN-specific modules. PRC2 target genes
in astrocytes and oligodendrocytes were
primarily enriched in neuron-specific
modules, but not in glial-specific modules.

To more directly establish the regu-
lation of these modules by PRC2, we
analyzed published microarray gene
expression profiles of MSNs from six-
week-old, three-month-old, and six-
month-old EZH2/EZH1 double condi-
tional knock-out mice, in which PRC2
was silenced specifically in adult MSNs
(Von Schimmelmann et al., 2016).
PRC2 silencing in MSNs strongly dysre-
gulated all 10 modules in the same
direction observed in MSNs from
HttQ175/1 versus Htt1/1 mice, i.e., mod-
ules specific to other cell types were
ectopically expressed in PRC2-silenced
MSNs, while MSN-specific modules
were repressed (Fig. 8D). These analyses
extend prior analyses of these data,
which had also noted the bidirectional
overlap with genes dysregulated in HD.
Our analysis indicates that a much
larger proportion of the transcriptional dysregulation in HD
knock-in mice may be explained by altered interactions with
PRC2 than had previously been appreciated and suggests
that these interactions occur in multiple striatal cell types,
not just MSNs. Thus, PRC2 regulates the cell type-specific
expression patterns of many gene co-expression modules
that are bidirectionally dysregulated in HttQ175/1 versus
Htt1/1 mice, and our data support a model in which PRC2

loss-of-function because of the HD mutation causes both the
de-repression of these modules in inappropriate cell types, as
well as their repression in their primary cell type.

PRC2-regulated modules are bidirectionally dysregulated in
multiple cell types from six-month-old HD knock-in mice
and in HD patients
Our results above suggest that bidirectional changes in the
expression of PRC2-regulated cell identity modules is a

Figure 9. Dynamics of PRC2-regulated modules in the striatum of six-month-old HttQ175/1 versus HttQ20/1 mice (snRNA-
seq). A, Clustering of cells from Lee et al. (2020) on uniform manifold approximation and projection (UMAP) coordinates. B,
Cell type-specific expression of module eigengenes for PRC2-regulated modules. C, Change in expression of module eigen-
genes in cells from HttQ175/1 versus Htt1/1 mice; “1” and “–” indicate statistically significant upregulation or downregula-
tion of eigengene expression in each cell types (adjusted p, 0.05).
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prominent effect of the HD mutation in 15-month-old
HttQ175/1 mice. We tested the robustness and generalizability
of this finding in independent datasets. First, we asked
whether the cell type-specific effects of HD mutations on
PRC2-regulated modules could also be observed at earlier
time points in HD knock-in mice, using snRNA-seq of six-
month-old HttQ175/1 versus HttQ20/1 mice, translatome profiling
of D2 MSNs, D1 MSNs, astrocytes, and Chat1 interneurons from
an HD allelic series at six months (Lee et al., 2020); and RNA-

seq of bulk striatum tissue from an HD allelic series at 2, 6, and
10 months (Langfelder et al., 2016). The snRNA-seq data con-
firmed that all 10 PRC2-regulated modules were expressed in
specific neuronal or non-neuronal cell types, as in our primary
dataset (Fig. 9A,B). snRNA-seq also confirmed that in D1 MSNs,
D2 MSNs, eccentric MSNs, oligodendrocytes, astrocytes, endothe-
lial cells, and PV interneurons the cognate module was downregu-
lated (p, 8.8e-11 in each cell type; Fig. 9C; Extended Data Fig. 9-
1), while modules specific to other cell types were aberrantly

Figure 10. Dynamics of PRC2-regulated modules in the striatum of six-month-old HD knock-in mice (translatome profiling). Network analysis of translatome profiling data
from Lee et al. (2020). Expression of eigengenes for PRC2-regulated modules in striatal D1 MSNs, D2 MSNs, Chat1 interneurons (IN Chat), and astrocytes (AS) from six-month-
old HttQ20/1, HttQ50/1, HttQ111/1, HttQ170/1, and HttzQ175/1 mice.
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upregulated. Themagnitude of the changes in glia and interneurons
appeared smaller in 6- versus 15-month-old mice. These results
indicate that bidirectional changes in the expression of PRC2-regu-
lated cell identity modules in multiple striatal cell types are an early
and progressive feature in HD knock-in mice, beginning by six
months and expanding in magnitude in 15-month-old mice.

Translatome profiling data of D1 and D2 MSNs also con-
firmed both downregulation of MSN cell identity modules and

aberrant upregulation of modules specific to other cell types in
six-month-oldHttQ170/1 andHttzQ175/1 mice (Fig. 10). However,
translatome profiling of astrocytes and Chat1 interneurons
failed to detect equivalent changes. We speculate that the
higher levels of ambient RNA inherent to translatome profil-
ing data masked bidirectional changes in these rare cell
types. Similarly, in bulk RNA-seq of 6- and 10-month-old
mice, we detected downregulation of MSN-specific modules

Figure 11. Dynamics of PRC2-regulated modules in the striatum of six-month-old HD knock-in mice (bulk tissue RNA-seq). Network analysis of mRNA-seq from (Langfelder et al., 2016).
Expression of eigengenes for PRC2-regulated modules in striatal tissue from six-month-old HttQ20/1, HttQ80/1, HttQ92/1, HttQ111/1, HttzQ140/1, and HttzQ175/1 mice.
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accompanied by upregulation or no change in the expression
of other modules (Fig. 11). These patterns mirror the
changes in MSNs, while changes in other cell types are
masked. No expression changes in these modules were
detected in RNA-seq of two-month-old mice. Thus, bidirec-
tional dysregulation of PRC2-regulated cell identity modules
can be detected by transcriptional profiling with multiple
technologies, but its full breadth across cell types is most
apparent with snRNA-seq.

Finally, we examined snRNA-seq of
dorsal and ventral striatum from (human)
HD cases versus controls (Lee et al.,
2020). We confirmed expression changes
in PRC2-regulated modules that were simi-
lar to those in 15-month-old HttzQ175/1

mice in most respects (Fig. 12). Cognate
PRC2-regulated cell identity modules were
downregulated (adjusted p, 0.05) in D1
MSNs, D2 MSNs, eccentric MSNs, oligo-
dendrocytes, astrocytes, endothelial cells,
Chat1 interneurons, and PV interneurons.
Moreover, in MSNs and Chat1 interneur-
ons, we also detected aberrant upregulation
(FDR, 0.05) of multiple modules specific
to other cell types. Interestingly,
though, in oligodendrocytes and astro-
cytes nearly all PRC2-regulated mod-
ules were downregulated, perhaps
reflecting a more extensive loss of cel-
lular function. The overall similarity of
these patterns to the HD knock-in mice
is remarkable, given that postmortem
tissue from HD patients has much
greater pathology than is observed in
the HD knock-in mice (Vonsattel et al.,
1985; Deng et al., 2021).

Discussion
Several findings from our study merit par-
ticular attention. We observe pronounced
transcriptional dysregulation in nearly all
striatal cell types, which we have here
defined and compared with genes identi-
fied with RNA-seq in bulk striatal tissue.
Analysis of HD-associated transcrip-
tional networks across cell types reveals
a striking downregulation of cell iden-
tity genes, coupled with aberrant up-
regulation of these genes in incorrect
cell types. Integration of these analyses
with existing transcriptomic and epige-
nomic data suggests that altered PRC2
function may underlie these bidirec-
tional changes, leading to dysregulation
of cell identity across essentially all cell
types in the adult striatum.

The early phases of disease progression
in HD are dominated by hyperkinetic
motor features, notably chorea. This has
been attributed to the selective atrophy
and early loss of D2 MSNs, revealed by
the preferential loss of enkephalin-con-
taining fibers across disease severity (Sapp
et al., 1995; André et al., 2011; Deng et al.,

2013). Our data reveal profound transcriptional changes across
all subtypes of MSNs. However, our data do not reveal significant
differences among MSN subtypes with respect to the genes that
are differentially expressed nor in the magnitude of the fold
changes. By contrast, Lee et al. (2020) detected certain differences
in the transcriptional effects of HD mutations in D1 versus D2
MSNs at an earlier time point (six-month-old HttQ175/1 mice).

Figure 12. Dynamics of PRC2-regulated modules in the striatum of human HD cases versus controls (snRNA-seq). A,
Clustering of cells from Lee et al. (2020) on uniform manifold approximation and projection (UMAP) coordinates. B, Cell
type-specific expression of module eigengenes for PRC2-regulated modules. C, Change in expression of module eigengenes in
cells from HD cases versus controls; “1” and “–” indicate statistically significant upregulation or downregulation of eigen-
gene expression in each cell types (adjusted p, 0.05).
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Future studies should continue to characterize the trajectory and
timing of changes in each MSN subtype.

The role of various types of glial cells in the progression of
HD has been an important avenue of research. Our data reveal
novel aspects of transcriptional dysregulation in glial cell types,
which rely on the ability to examine transcriptional changes
within specific cell types. Specifically, we find increased numbers
of microglia, consistent with previous reports that microgliosis
begins in presymptomatic HD mutation carriers (Tai et al.,
2007). In addition, we detected thousands of cell type-specific
DEGs in glia, especially astrocytes and oligodendrocytes,
many of which are not readily apparent in RNA-seq of bulk
striatal tissue. It is notable that these changes were detected in
our dataset despite a relatively small sample size. Additional
changes, especially in microglia, may be observed as snRNA-
seq sample sizes increase. Across glial cell types, we observed a
spectrum of transcriptional states, comprising of nuclei in
similar transcriptional states to wild-type nuclei, nuclei in dis-
cernably different transcriptional states, as well as intermedi-
ate states between the two that may indicate a gradual shift in
cell states, opening new areas of study. This is distinct from
our trajectory analysis of MSNs, in which we observed nearly
complete separation of wild-type and HttQ175/1 cellular states.
Activation of neuroinflammatory genes is observed across several
cell types, including astrocytes, oligodendrocytes, and MSNs.
However, the transcriptional states of glia are distinct from classi-
cal neuroinflammatory states such as A1 and A2 reactive astro-
cytes, suggesting disease-specific mechanisms.

Across cell types, a common feature is the transcriptional dys-
regulation of cell identity genes, consistent with dysfunction of cell
fate commitment. Previous studies, based on RNA-seq of bulk stria-
tal tissue, have suggested that loss of cell fate commitment may
drive MSN vulnerability in HD (Langfelder et al., 2016; Von
Schimmelmann et al., 2016). Reconstruction of gene co-expression
networks and gene regulatory networks from our data revealed
numerous gene modules that were dysregulated in HD knock-in
mice. HD-associated gene modules that are expressed primarily in
MSNs overlapped strongly with disease-associated gene modules
from bulk RNA-seq of HD and HD mouse models, which is to be
expected since MSNs represent a large percentage of cells in the
striatum. However, the improved resolution of our network models
across cell types provides greater insight into this mode of pathol-
ogy. Notably, we confirm that aged MSNs expressing mHTT have
reduced expression of MSN-specific genes, e.g., the FOXP1 regulon
in module M12. In addition, our findings reveal reduced cellular
identity genes in other cell types, including oligodendrocytes
(MYRF regulon in module M13) and astrocytes (SOX9 regulon in
module 11). Here, we observe, for the first time, that in addition to
being downregulated in their correct cell type, cell identity genes are
also aberrantly upregulated in other cell types. This expands the
model of cell fate commitment changes in HD, suggesting it may be
a shared feature of aged cells expressing mHTT, affecting virtually
all cell types in the striatum.

Given the importance of PRC2 in establishing and maintain-
ing cell fate and the known interactions between HTT and
PRC2, we compared our results to PRC2-related ChIP-seq and
RNA-seq datasets. We find that 10 of our 77 gene co-expression
modules are enriched with PRC2 target genes, all of which
were expressed and downregulated in specific cell types.
Extending these analyses to published snRNA-seq suggest that
dysregulation of these modules in multiple cell types begins at
early time points and accurately reflects the dysregulation in
human HD. Our results suggest that PRC2 helps restrict

expression of these genes to their appropriate cell type in the
adult striatum. Conditional knock-out of PRC2 and the presence
of mHTT each result in highly similar patterns of bidirectional
dysregulation across cell types. Thus, many of the transcriptional
effects of mHTT may be mediated by PRC2 loss-of-function.
Consistent with this idea, we recently described decreased
H3K27me3 levels at hundreds of loci in striatal tissue from HD
knock-in mice (Pearl et al., 2020). Future studies should test
whether restoring PRC2 function can rescue the phenotypic con-
sequences of HDmutations.
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