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The external pallidum (globus pallidus pars externa [GPe]) plays a central role for basal ganglia functions and dynamics and,
consequently, has been included in most computational studies of the basal ganglia. These studies considered the GPe as a
homogeneous neural population. However, experimental studies have shown that the GPe contains at least two distinct cell
types (prototypical and arkypallidal cells). In this work, we provide in silico insight into how pallidal heterogeneity modulates
dynamic regimes inside the GPe and how they affect the GPe response to oscillatory input. We derive a mean-field model of
the GPe system from a microscopic spiking neural network of recurrently coupled prototypical and arkypallidal neurons.
Using bifurcation analysis, we examine the influence of dopamine-dependent changes of intrapallidal connectivity on the GPe
dynamics. We find that increased self-inhibition of prototypical cells can induce oscillations, whereas increased inhibition of
prototypical cells by arkypallidal cells leads to the emergence of a bistable regime. Furthermore, we show that oscillatory
input to the GPe, arriving from striatum, leads to characteristic patterns of cross-frequency coupling observed at the GPe.
Based on these findings, we propose two different hypotheses of how dopamine depletion at the GPe may lead to phase-am-
plitude coupling between the parkinsonian beta rhythm and a GPe-intrinsic c rhythm. Finally, we show that these findings
generalize to realistic spiking neural networks of sparsely coupled Type I excitable GPe neurons.
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Significance Statement

Our work provides (1) insight into the theoretical implications of a dichotomous globus pallidus pars externa (GPe) organiza-
tion, and (2) an exact mean-field model that allows for future investigations of the relationship between GPe spiking activity
and local field potential fluctuations. We identify the major phase transitions that the GPe can undergo when subject to static
or periodic input and link these phase transitions to the emergence of synchronized oscillations and cross-frequency coupling
in the basal ganglia. Because of the close links between our model and experimental findings on the structure and dynamics
of prototypical and arkypallidal cells, our results can be used to guide both experimental and computational studies on the
role of the GPe for basal ganglia dynamics in health and disease.

Introduction
The basal ganglia (BG) are a set of interconnected subcortical
nuclei that form different feedback loops with cortex and thala-
mus (Alexander and Crutcher, 1990; Bolam et al., 2000). Because

of its recurrent connections with nearly all other BG nuclei, the
globus pallidus pars externa (GPe) plays a major role in informa-
tion transmission through the BG (Kita, 2007). In Parkinson’s
disease (PD), synchronized oscillations have been reported
throughout all major BG nuclei (Wichmann, 2019), including
the GPe (Wichmann and Soares, 2006; Mallet et al., 2008). These
oscillations are characterized by transient power increases in the
b frequency band (12-30Hz) and an increased phase-amplitude
coupling (PAC) between the phase of a b signal and the ampli-
tude of a high-frequency g signal (50-250Hz) (Jenkinson et al.,
2013; Lofredi et al., 2019; Gong et al., 2021). Computational
models of BG phase transitions in PD suggest that the GPe is
involved in the oscillation generation, either via its recurrent
coupling with the subthalamic nucleus (STN) or via its process-
ing of inputs from striatum (STR) (Pavlides et al., 2015; Schroll
and Hamker, 2016; Rubin, 2017). Most of these computational
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models regarded the GPe as a homogeneous population of neu-
rons. However, two major cell types have been identified within
the GPe, which differ in their electrophysiological properties, fir-
ing rates, and firing patterns: prototypical (GPe-p) and arkypalli-
dal (GPe-a) cells (Cooper and Stanford, 2000; Abdi et al., 2015;
Hegeman et al., 2016). Regarding their efferent synapses, it has
been shown that GPe-p cells preferentially project to subthalamic
nucleus (STN) and BG output nuclei, whereas GPe-a cells provide
feedback to striatum (STR) (Mallet et al., 2012; Hernández et al.,
2015; Fujiyama et al., 2016). Furthermore, recent studies found
that STN and STR differentially affect GPe-p and GPe-a in mice
(Pamukcu et al., 2020; Ketzef and Silberberg, 2021). Regarding cell
type-specific differences in GPe-intrinsic axon collaterals, there is
evidence from mice experiments that prototypical cells express
more numerous axon collaterals than arkypallidal cells (Mallet et
al., 2012; Higgs et al., 2021; Ketzef and Silberberg, 2021). Still, a
substantial number of arkypallidal axon collaterals was identified
that targeted prototypical GPe cells (Mallet et al., 2012).

Depending on the pattern of mutual inhibition between those
two major GPe cell populations, different modes of GPe internal
dynamics may exist. Asymmetric connections between the two
cell types may give rise to a feedforward inhibition scenario,
where an excitatory input to one population could silence the
other population. Alternatively, winner-takes-all (WTA) dynam-
ics can arise in scenarios of mutual inhibition between two popu-
lations (Schmidt et al., 2018). Either of these two scenarios could
explain the recent findings from optogenetic stimulation in mice,
where silencing the GPe-p led to increased GPe-a firing
(Aristieta et al., 2021). The same work suggests that STN and
STR express asymmetric projections to GPe-p versus GPe-a that
allow for transient switching between the two different output
pathways of the GPe. To be able to infer the neurodynamic
mechanism underlying such data, we argue for an improved
understanding of the relationship between synaptic coupling and
neural dynamics in a GPe composed of arkypallidal and proto-
typical cells. Whereas some computational models have consid-
ered the role of arkypallidal feedback to STR (Nevado-Holgado
et al., 2014; Corbit et al., 2016; Je�drzejewski-Szmek et al., 2018),
a neurodynamic understanding of the structure-function rela-
tionships inside a dichotomous GPe is still missing. In this study,
we examine the effects of GPe coupling patterns on GPe behav-
ior. For this purpose, we derive and analyze a mean-field descrip-
tion of two fully coupled inhibitory populations, following the
approach by Luke et al. (2013) and Montbrió et al. (2015).
Importantly, this mean-field description captures the exact mac-
roscopic dynamics of the underlying, heterogeneous spiking neu-
ral network and can thus capture population-intrinsic spike
resonance phenomena that classic mean-field approaches would
miss. This in itself makes our modeling approach interesting for
the understanding of synchronization processes inside the GPe.
Using bifurcation analysis of the two-population GPe model, we
identify monostable, bistable, and oscillatory regimes, the exis-
tence of which depends on the GPe-intrinsic coupling pattern.
We then show that the GPe expresses distinct responses to peri-
odic input when initialized in either of these regimes. Finally, we
analyze how the macroscopic phase transitions found in the GPe
mean-field model translate to spiking neural networks with real-
istic numbers of neurons and axons.

Materials and Methods
Model definition

Mathematical formulation of population dynamics. We consider the
GPe as a nucleus of two distinct populations of GABAergic projection

neurons (Kita, 2007; Hegeman et al., 2016). Whereas prototypical neu-
rons express high average spontaneous firing rates of 50-70Hz (DeLong,
1971; Wichmann and Soares, 2006; Jaeger and Kita, 2011), arkypallidal
neurons fire with considerably reduced average firing rates of 5-15Hz
(Abdi et al., 2015; Dodson et al., 2015; Hernández et al., 2015; Aristieta
et al., 2021). To model synaptic influences on the spike timings of GPe
neurons, it is important to know their type of excitability. This can be
inferred from their phase-response curve (Gutkin et al., 2005). Neurons
can either express Type I excitability, meaning that the direction in
which the excitability of a neuron is changed by extrinsic input is not de-
pendent on the intrinsic phase of the neuron, or express Type II excit-
ability, meaning that the direction in which the excitability of a neuron
is changed by extrinsic input does depend on the intrinsic phase of the
neuron (Izhikevich, 2000). While computational studies demonstrated
that both Type I and Type II excitability can be identified in single-cell
models of GPe neurons (Schultheiss et al., 2010; Fujita et al., 2012), ex-
perimental investigations only revealed Type I excitability so far
(Wilson, 2013). Furthermore, it has been shown that coupled networks
of Type I excitable neurons can express Type II excitability on the net-
work level (Dumont and Gutkin, 2019). Thus, as a base neuron model,
we use the quadratic integrate-and-fire neuron (QIF), which is the ca-
nonical form of Type I excitable neurons and expresses a quadratic and
thus nonlinear input-output relationship (Izhikevich, 2000). This choice
also accounts for the nonlinear input-output relationship reported in
prototypical and arkypallidal cells (Kita, 2007; Abdi et al., 2015). The
evolution equation of the jth QIF neuron embedded within either the
GPe-p or GPe-a is given by the following:

t _Vj ¼ V2
j 1 h j 1 IðtÞ1 Jmt ; (1)

m ¼ 1
N

XN
i¼1

X
k tki ,t

ðt

�1
gðt � t9Þd ðt9� tki Þdt9; (2)

with neural excitability h j, synaptic strength J, evolution time constant
t , extrinsic input I(t), and synaptic activationm. A neuron j generates its
kth spike at time tkj . At this time, it reaches the spiking threshold V u and
the membrane potential Vj is reset to a reset potential Vr. The integral
kernel gðt � t9Þ represents synaptic dynamics, for example, in the case of
mono-exponential synapses gðtÞ ¼ e�t=tm=tm with synaptic time scale
tm. We introduce the exact shape and timescales of g in the following
subsection. Equations 1 and 2 represent an all-to-all coupled network of
N QIF neurons with homogeneous connection strengths J. Assuming
all-to-all connectivity as well as infinitely large neural populations, we
can use the mean-field model proposed by Montbrió et al. (2015). The
authors derived a set of two coupled differential equations describing the
evolution of the macroscopic firing rate r and membrane potential v of
the QIF population given by Equations 1 and 2 as follows:

t _r ¼ D
pt

1 2rv; (3)

t _v ¼ v21h1IðtÞ1Jmt � ðprtÞ2; (4)

m ¼
ðt

�1
gðt � t9Þrðt9Þdt9 ¼ r � g: (5)

Here, the synaptic activation m takes the form of a simple convo-
lution of the average firing rate r with the synaptic response kernel
g, henceforth abbreviated by the convolution operator �. The pa-
rameters h and D are the center and half-width at half-maximum of
a Lorentzian distribution over the single-neuron parameters h j.
Thus, h and D allow to control the average and heterogeneity of the
firing rates inside the QIF population, respectively. Spontaneous fir-
ing rates of GPe cells cannot be explained by glutamatergic input
alone, since brain slice recordings still showed autonomous activity
of up to 26 Hz after synaptic transmission was blocked
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pharmacologically (Günay et al., 2008). In other words, GPe cells
are strong pacemaker cells that show regular firing at a cell-specific
frequency under synaptic isolation (Mercer et al., 2007; Abrahao et
al., 2017). Across GPe cells, a substantial amount of heterogeneity of
the intrinsic firing frequencies has been reported (Wilson, 2013). By
considering the background excitabilities h j as distributed quanti-
ties, we account for these findings.

We are aware that the all-to-all coupling and infinite population
sizes are in contrast to the actual GPe structure (Wilson, 2013;
Hegeman et al., 2016). However, it has been recently shown that
the mean-field model predictions can generalize to a fairly wide
range of network sizes and coupling probabilities (Gast et al.,
2020). Even for QIF networks with recurrent coupling probabil-
ities of 1%, the authors found that population sizes of N = 8000
neurons were sufficient to reproduce the macroscopic dynamics
predicted by the mean-field model accurately. Given that popula-
tion sizes of primate GPe are on the order of 105 and recurrent
coupling probabilities are ;5% (Wilson, 2013), we expect that this
mean-field model is sufficient to capture the macroscopic dynam-
ics of QIF populations with realistic cell counts and coupling
probabilities.

Mathematical formulation of axonal propagation and synaptic dy-
namics. In a next step, we define the coupling function g which, in
our model, acts as a lumped representation of axonal propagation
and synaptodendritic integration. In other words, g serves to link
single spikes emitted by neuron j to changes in the membrane
potential of any other neuron. GPe to GPe connections have been
suggested to express axonal transmission delays of ;1.0 ms (Jaeger
and Kita, 2011) and make use of GABAergic synapses (Kita, 2007).
Since axon collaterals can express a substantial variability in indi-
vidual axon diameters and myelination properties (Schmidt and
Knösche, 2019), we modeled the axonal transmission delays via g
distributions (Smith, 2011). The probability density function of
the g distribution can be written as follows:

gðk ; b ; tÞ ¼ kb tb�1e�k

ðb � 1Þ! ; (6)

with shape parameter b and scale parameter k . These parameters
can be used to control the mean m and width s of the delay distri-

bution via the functional relationships m ¼ b

k
and s 2 ¼ b

k 2
(Smith,

2011). Choosing Equation 6 as functional form of the function g in
Equation 5, the synaptic convolution operation can be approxi-
mated by the following set of coupled ordinary differential equa-
tions (ODEs):

_mi ¼ kðmi�1 �miÞ; (7)

where i ¼ 0; 1; 2; :::; b andm0 = r (Smith, 2011). Using this formula-
tion, the number of coupled ODEs depends on the shape parameter of
the g function, which means that the overall dimensionality of the sys-
tem depends on the order parameters b at each synaptic connection in
the model.

In addition to the axonal delays, we also included a dynamic model
of the electrochemical processes that lead to a change in the postsynaptic
potential after a presynaptic action potential traveled down the axon. A
popular choice to express these dynamics is via a convolution with a
biexponential synaptic response kernel, for which the rise and decay
time constants are specific to the type of presynapse and postsynapse
(Deco et al., 2008). Such a biexponential synaptic response function is
given by the following:

zðt r; t d; tÞ ¼ t rt d

t r1t d
ðe� t

t r � e�
t
td Þ; (8)

with t r and td, denoting the synaptic rise and decay time constants,
respectively. A convolution of the delayed axonal response mb with

Equation 8 can be approximated by two coupled ODEs of the following
form:

_m ¼ x; (9)

_x ¼ 1
t rt d

ðmb � xðt r 1 t dÞ �mÞ; (10)

withm being the final synaptic input entering into Equation 3. Thus, we
specify the convolution integral expressed by Equation 5 in our model as
subsequent convolutions of r with the g function (Eq. 6) and the biexpo-
nential function (Eq. 8), allowing us to capture the characteristics of
both axonal delay distribution and postsynaptic currents.

Specification of the two-population GPe model. Based on these
dynamic equations for neural populations and synaptic transmission, we
can now introduce the full set of equations of our GPe model. Since the
number of equations of the ODE approximation (Eq. 7) to the g kernel
convolution (Eq. 5) depends on the parameter b of (Eq. 6), we chose to
provide a set of integro-differential equations for generality and brevity.
However, for our results, each g kernel convolution was formulated as a
set of coupled ODEs of the form (Eq. 7) and each convolution with a
synaptic response kernel of the form (Eq. 8) was formulated as the ODE
system given by Equations 9 and 10. The following set of coupled inte-
gro-differential equations describes the average firing rate and average
membrane potential dynamics at GPe-p and GPe-a as follows:

t p _rp ¼ Dp

pt p
1 2rpvp; (11)

t p _vp ¼ v2p 1 h p 1 IpðtÞ � ðJpampa 1 Jppmpp 1 Jpere � JpsrsÞt p

� ðprpt pÞ2; (12)

t a _ra ¼ Da

pt a
1 2rava; (13)

t a _va ¼ v2a 1 h a 1 IaðtÞ � ðJapmap 1 Jaamaa 1 Jaere � JasrsÞt a

� ðprat aÞ2; (14)

where p and a are the subscripts for prototypical and arkypallidal GPe,
respectively, and subscripts of the form Axy represent the variable A that
is specific to the synaptic transmission from population y to population
x. Hence, each synaptic response function gxy is specific to a given synap-
tic transmission and takes the following form:

mxy ¼ zðt xy
r ; t

xy
d ; tÞ � gðk xy; b xy; tÞ � ryðtÞ (15)

with connection specific synaptic rise and decay times t xyr and t
xy
d and

connection-specific axonal delay distribution shape and scaling kxy and
b xy. Finally, we added inputs from STN and STR to the model. These
can affect GPe dynamics via their constant steady-state firing rates re
and rs, which are again scaled by population specific connectivity con-
stants Jxy.

Mathematical formulation of extrinsic model inputs. Extrinsic input
can generally be applied via the extrinsic forcing parameters Ip(t) and Ia(t)
to GPe-p and GPe-a, respectively. In our simulations, we applied step func-
tion inputs to each of the populations. These are defined as follows:

IxðtÞ ¼
(
a; if tstart,t,tend
0; otherwise:

(16)

Here, a defines the input strength, whereas tstart and tend define the
beginning and end of the time interval in which the input is applied.
Furthermore, we also applied periodic input to the GPe-p, since the
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GPe-p seems to be most strongly affected by subthalamopallidal and
striatopallidal inputs (Aristieta et al., 2021). We used the Stuart-Landau
oscillator as the generating model of a sinusoidal signal with period v
(Fujimura, 1997) as follows:

_X ¼ � 2pY
v

1Xð1� X2 � Y2Þ; (17)

_Y ¼ 2pX
v

1Yð1� X2 � Y2Þ: (18)

Additionally, to account for the bursting characteristics of typical
striatal inputs arriving at the GPe (Jaeger et al., 1995), we applied a sig-
moidal transformation to the Stuart-Landau oscillator, giving us the final
input as follows:

IpðtÞ ¼ SðXðtÞ;a; g ;v ; tonÞ � zðt r; t d; tÞ; (19)

SðX;a; g ;v ; tonÞ ¼ a

1:01e�g X�costonpvð Þ ; (20)

where S represents a sigmoidal transform with maximum a and steep-
ness g . The cosine term ensures that the input Ip(t) only expresses bursts
around the maxima of X. We set the steepness of the bursts to g = 100.0
and the width of the bursts to ton = 5.0ms. For a more detailed descrip-
tion of this sigmoidal transformation of a sinusoidal signal to a periodic
square wave, see Lourens et al. (2015). Finally, the result of the sigmoidal
transform is convoluted with a bi-exponential synaptic kernel, where the
rise and decay times are chosen as t r = 0.5 and td = 5.0, thus accounting
for the time constants of GABAergic synapses reported in the GPe (Sims
et al., 2008). This way, the final input Ip(t) reflects burst-like striatal input
that enters at GPe neurons via GABAergic synapses.

Model analysis
To analyze the behavior of the model given by Equations 11–14, we used
the open-source Python toolbox PyRates (Gast et al., 2019). We chose
PyRates’ interface to the SciPy Runge-Kutta solver with adaptive integra-
tion step-size (Virtanen et al., 2020) for numerical integration of the
model dynamics for a given initial condition. For bifurcation analysis,
we used PyRates’ interface to Auto-07p (Doedel et al., 2007) to perform
numerical parameter continuation and automatic bifurcation detection
(for an in-depth explanation of these techniques, see Kuznetsov, 2004;
Meijer et al., 2009). To analyze the behavior of the spiking neural net-
works corresponding to our mean-field models, we used custom
MATLAB code. Numerical integration of the spiking neural net-
work dynamics was performed via an explicit Euler algorithm with
an integration step-size of 0.001ms, which we found to be suffi-
ciently small to capture all model dynamics. The scripts and config-
uration files for all simulations and parameter continuations are
available at the following public Github repository: https://github.
com/Richert/GPe_Dynamics.

Spectral analysis
We also analyzed the GPe model behavior in the frequency domain. To
this end, we used time series of 320 s of simulated GPe-p firing rate dy-
namics sampled at 1ms and cut off the first 20 s to remove initial transi-
ents from the time series. Power spectral densities were calculated from
the raw simulation data using Welch’s method. We used FFT segments
of length 2048 and an overlap between segments of 1024 time steps. For
quantification of PAC and phase-phase coupling (PPC) between differ-
ent frequency components of the GPe-p firing rate dynamics, we fol-
lowed the procedure described by Gong et al. (2021). PAC measures the
amount of modulation of the amplitude of a high-frequency signal by
the phase of a low-frequency signal and was evaluated by means of the
Kullback-Leibler-based modulation index (KL-MI) (Tort et al., 2010).
Both the low- and high-frequency signals were acquired by bandpass fil-
tering the GPe-p firing rate time series. Following the procedure
described by Gong et al. (2021), we evaluated the KL-MI for multiple

pairs of phases at frequencies fp 2 2; 4; 6; :::; 30 Hz and amplitudes at
frequencies fa 2 50; 60; 70; :::; 250 Hz. For each pair of fp and fa, we fil-
tered the GPe-p firing rate using an FIR bandpass filter centered at fp
with a bandwidth of 2Hz and using another FIR bandpass centered at fa
with a bandwidth of fp Hz. We then applied the Hilbert transform to the
two bandpass filtered signals and extracted the phase from the signal fil-
tered around fp and the amplitude of the signal filtered around fa. Phases
were then sorted into 16 bins, and the amplitudes corresponding to each
bin were averaged. Then, the KL-MI of the distribution of the average
amplitude across phase bins was calculated as described by Tort et al.
(2010), which measures the difference to a uniform distribution.
Furthermore, we evaluated PPC for the GPe-p firing rates filtered
around fp and fa using the waveform analysis described by Gong et al.
(2021). In short, this method calculates the average waveform of the
high-frequency signal, time-locked to the zero-crossing of the low-fre-
quency signal. The resulting metric is bounded between 0 and 1, with
PPC=1 indicating that the phase of the high-frequency signal (filtered at
fa) is always the same at zero-crossings of the phase of the low-frequency
signal (filtered at fp). Hence, for a given GPe-p firing rate time series, we
acquired a 15� 21 PAC (PPC) matrix Cpa (Cpp) with entries for each
pair of fa and fp. To evaluate the overall amount of PAC in a time series,
we calculated the average across the PAC matrix (mean PAC in Fig. 4).
To evaluate the similarity between PAC and PPC across low- and high-
frequency components of a time series, we calculated the Pearson corre-
lation coefficient between the PAC and the PPC matrix (PAC-PPC
correlation in Fig. 4).

Model parameters
The dynamics at GPe-p and GPe-a are each governed by membrane
time constants t and two parameters h and D that determine the center
and half-width at half-maximum of the distribution of single-cell firing
rates inside the populations. Additionally, the four synaptic connections
between GPe-p and GPe-a are each parameterized via a lumped synaptic
strength J, two axonal delay parameters m and s , and the synaptic rise
and decay time constants t r and td. For all model analysis, we used re-

scaled synaptic strength parameters k ¼ J
10
. To find a parameterization

of the model that resembles realistic macroscopic neural dynamics inside
the GPe, we imposed the following conditions for the model behavior:
(1) The input-output relationship of isolated GPe-p and GPe-a QIF neu-
rons should qualitatively replicate the data reported by Abdi et al.
(2015). (2) The distribution of single-cell firing rates in the GPe-p and
GPe-a populations should qualitatively resemble the data reported previ-
ously (Kita et al., 2004; Miguelez et al., 2012; Aristieta et al., 2021; Ketzef
and Silberberg, 2021). (3) The average firing rates of GPe-p and GPe-a
neurons should behave as reported previously (Kita et al., 2004;
Wichmann and Soares, 2006; Aristieta et al., 2021) under control condi-
tions as well as conditions of striatal stimulation, subthalamic inhibition,
or blockade of AMPA/GABAA transmission. By hand-tuning our
model, we found the parameter set reported in Table 1 to meet these
conditions well. We provided references for parameters that were
additionally constrained by the literature. If not reported otherwise,
model parameters were set to these default values. As can be seen in
Figure 1A, our model replicates the findings that GPe-p neurons
express more heterogeneous firing rates than GPe-a neurons,
whereas GPe-a includes a larger number of silent neurons than
GPe-p (Dodson et al., 2015; Aristieta et al., 2021). Furthermore, the
I-f curves shown for GPe-p and GPe-a populations and single cells
in Figure 1B agree with the data by Abdi et al. (2015). Finally, Figure
1C shows that the model responses to extrinsic manipulation of
inputs and synaptic strengths of the GPe populations match the ex-
perimental results reported previously (Kita et al., 2004; Wichmann
and Soares, 2006; Aristieta et al., 2021).

Results
In this section, we report the results of our analysis of the rela-
tionship between model parameters and neural dynamics for the
GPe model given by Equations 11–14. We focus on parameters
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that contribute to a difference between GPe-p and GPe-a, which
include the coupling strengths within the GPe as well as addi-
tional inputs to the two populations. All coupling parameters are

reported as kxy ¼
Jxy
10

throughout this section.

Effects of GPe-intrinsic coupling
As the first part of our analysis, we performed a bifurcation anal-
ysis of the GPe mean-field model given by Equations 11–14 to
investigate whether different coupling patterns between proto-
typical (GPe-p) and arkypallidal (GPe-a) cells promote different
macroscopic states and phase transitions. We started out from
the GPe coupling strengths listed in Table 1, which represent a
coupling pattern where GPe-p inhibition of GPe-a is strongest
and GPe-a axon collaterals are weaker than GPe-p axon collater-
als, but still exist (for a comparison to experimental findings, see

Mallet et al., 2012; Ketzef and Silberberg, 2021). In this default
state, input to the GPe populations led to changes in their firing
rates but did not induce any phase transitions (Fig. 2A). Still, in-
hibition of GPe-p via decreases in hp caused a fast increase in
GPe-a firing rates. This interaction pattern between GPe-p and
GPe-a changes when the intrinsic connections of the GPe are
altered. As can be seen in Figure 2C, D, increases in kpp lead
to the emergence of a stable limit cycle via a supercritical
Andronov-Hopf bifurcation. The emerging oscillations express
a frequency in the g range (�50-60Hz) and can be induced
by changes in kpp as well as changes in hp (Fig. 2D,E). The Hopf
curve in the hp-kpp plane shows that this emergence of
synchronized oscillations critically depends on kpp . 0 as well as

a sufficient excitatory drive as given by hp .
0. We encountered a different phenomenon
when increasing kpa, the connection strength
from GPe-a to GPe-p. For sufficient increases
in kpa, the system expresses twofold bifurca-
tions that mark the outer boundaries of a
bistable regime, in which transient inputs to
GPe-p (or GPe-a) allow to switch between
two stable states (Fig. 2F,H). One of those two
stable states is a focus for which the GPe-p is
in a high-activity regime and forces the GPe-a
to a low-activity regime. The other stable
state is also a focus where the GPe-a is in a
high-activity regime and forces the GPe-p to
a low-activity regime. These two stable equi-
libria are separated by a saddle focus. Thus,
we found that strong bidirectional coupling
between prototypical and arkypallidal GPe
populations allows for the existence of a
bistable activity regime, where the two popu-
lations compete over a high-activity state. In
Figure 2G, we show the curve of the fold
bifurcations in the hp-kpa plane, which col-
lapse in a cusp bifurcation when kpa becomes
small. Furthermore, we find another Hopf
curve that touches the fold curve at a zero-
Hopf bifurcation. This Hopf curve covers a
relatively small parameter range, however,
and only appears on the lower branch within
the bistable regime. The oscillations emerging
from this limit cycle are small-amplitude g
oscillations.

As a next step, we investigated whether
the frequency of the oscillations identified for
increased self-inhibition of GPe-p critically

depends on the axonal delays in our model, since estimates of
these delays differ substantially in the literature (Jaeger and Kita,
2011; Ketzef and Silberberg, 2021). To this end, we simulated
the behavior of our model for increasing values of
mxy;8x; y 2 fp; ag. As can be seen in Figure 3, increasing mxy

appears to drive the system over a Hopf bifurcation but does not
affect the oscillation frequency in biologically plausible ranges.

GPe response to periodic forcing
By now, we have established an understanding of the intrinsic,
coupling-dependent GPe response to static, afferent inputs. We
found that a dichotomous organization of the GPe with two dis-
tinct populations GPe-a and GPe-p results in coupling-depend-
ent dynamic behavior that situates the GPe either near a bistable
or near an oscillatory regime. These two different scenarios may

Table 1. Model parameters

Parameter Value Reference Parameter Value

t p 18.0 ms Nambu and Llinas (1994) Dp 9.0
t a 32.0 ms Cooper and Stanford (2000) Da 3.0
mpp, maa, mpa, map 1.0 ms Jaeger and Kita (2011) h p 12.0
s pp, s aa, s pa, s ap 0.6 ms Jaeger and Kita (2011) h a 26.0
t ppr ; t

aa
r ; t

pa
r ; t

ap
r 0.5 ms Sims et al. (2008) Jpp 15.0

t ppd ; t
aa
d ; t

pa
d ; t

ap
d 5.0 ms Sims et al. (2008) Jap 20.0

re 20.0 Hz Wichmann and Soares (2006) Jpa 5.0
rs 2.0 Hz Wichmann and Soares (2006) Jaa 1.0
Jpe 50.0 Pamukcu et al. (2020) Jps 100.0
Jae 15.0 Pamukcu et al. (2020) Jas 10.0

Figure 1. Configuration of the GPe model. A, Distributions of steady-state QIF firing rates under synaptic isolation,
i.e., with Jxy ¼ 08x; y 2 fp; a; e; sg, for h p = 11 and h a = 0.5. B, I-f curves for single GPe-p and GPe-a neurons
(left) and the GPe-p and GPe-a populations (right) under synaptic isolation, i.e., with Jxy ¼ 0 8x; y 2 fp; a; e; sg. C,
Steady-state average firing rates of GPe-p and GPe-a calculated from 1 s of model behavior under different conditions.
(control) default parameters as reported in Table 1. (STR 1) STR excitation, i.e., rs = 40 Hz. (STN -) STN inhibition, i.e.,
re = 2 Hz. (GABAA -) blockade of GABAergic synaptic transmission, i.e., Jpp = 1.5, Jap = 2.0, Jpa = 0.5, Jaa = 0.1, Jps =
10.0, and Jas = 1.0. (AMPA/GABAA -) blockade of all glutamatergic and GABAergic synaptic transmission, i.e.,
J�xy ¼ Jxy

10 8x; y 2 p; a; e; sf gf , where J�xy represents the synaptic strengths used to calculate the firing rates.
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have substantially different consequences
for the transmission and amplification of
periodic input arriving at the GPe. Hence,
as a next step, we analyzed the response of
the GPe to periodic inputs when initialized
in the bistable regime, in the oscillatory re-
gime, or in the healthy steady-state regime.
To this end, we applied periodic striatal
input with period v and amplitude a to
the prototypical population. The bursting
properties of striatal input were generated
by applying a sigmoidal transformation to
a Stuart-Landau oscillator (see Eqs. 17-20).
In each regime, we performed numerical
simulations of the model behavior for
different values of v and a. We then
evaluated the average PAC between the
phase of low-frequency signal compo-
nents (2-30Hz) and the amplitude
of high-frequency signal components
(50-250Hz) of the GPe-p firing rate dy-
namics. Furthermore, we evaluated the
PPC, that is, the phase dependency of
the high-frequency components on the
phase of the dominating low-frequency
component. A detailed description of
these measures is provided in Materials
and Methods. As can be seen in Figure 4,
we find that the GPe responds differ-
ently to periodic input depending on
its dynamic regime.

In Figure 4A, the GPe response to peri-
odic input is depicted for the default cou-
pling pattern. In this case, a stable focus is
the only equilibrium, and the input per-
turbs the system around that equilibrium
at the input frequency. After a perturba-
tion, the system relaxes back to the focus
via damped oscillations. The amplitude of
these oscillations scales with a, as can be
seen by comparing time series 1 and 2 of
Figure 4A. Thus, stronger inputs gener-
ate stronger modulation of high-fre-
quency amplitudes by low-frequency
phases, resulting in increased PAC. Since
the high-frequency focus dynamics are
directly elicited by the low-frequency pertur-
bations, increases in PAC always co-occur
with increased PPC.

Figure 4B depicts the response of a
bistable GPe to periodic input. In this re-
gime, periodic inhibition forces the GPe-p
toward the low-activity regime, if suffi-
ciently strong (time series 1 and 2 of Fig.
4B for inputs that are too weak and suffi-
ciently strong, respectively). If forced to-
ward the low-activity regime, the GPe-p
attempts to relax back to its natural high-
activity regime (time series 2 and 4 of Fig.
4B). In this relaxation process, the system
is affected by the strong focus dynamics of
the saddle that separates the two stable
states. For most combinations of a and v ,

Figure 2. Phase transitions in the GPe. A, One-parameter bifurcation diagram varying the background input of GPe-p
h p for the default connectivity. B, Depiction of the GPe circuit and the bifurcation parameters. C, 1D parameter continuation
in h p for kpp = 5. Green circles represent Andronov-Hopf bifurcations. Lines starting at the Hopf bifurcation indicate the min-
ima and maxima of the emerging limit cycle. Solid (dotted) lines indicate stable (unstable) equilibria. D, 2D bifurcation dia-
gram in h p and kpp. Black curve represents the continuation of the 1D Hopf bifurcation from C in the 2D parameter space.
Shaded regions represent the parameter space where stable oscillations exist. E, GPe-p and GPe-a firing rates for kpp = 5
and h p = 30 show that additional input Ip(t) = 10.0, applied between 2200� t, 2600, forced the system over the Hopf
bifurcation. F, 1D parameter continuation in h p for kpa = 5. Gray triangles represent fold bifurcations. G, 2D bifurcation dia-
gram in h p and kpa. Gray rhombus represents a cusp bifurcation. Black star represents a zero-Hopf bifurcation. H, GPe-p and
GPe-a firing rates for kpa = 5 and h p = 21.0 show switching between the two stable branches via Ip(t) = 5 applied between
2200� t, 2400 and Ip(t) = – 5 applied between 2600� t, 2800.

Figure 3. Effect of increasing axonal delays on GPe oscillations. Time series represent average firing rates of GPe-p, abbre-
viated as r. Reported values ofm and s refer to changes the parametermxy and s xy; 8x; y 2 fp; ag.
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this behavior creates oscillations with interleaved large- and
small-amplitude oscillations, where the large-amplitude oscilla-
tions act as an amplification of the low-frequency input and cause
cross-frequency coupling with the high-frequency, small-ampli-
tude focus dynamics. Stronger inputs generate stronger modula-
tion of high-frequency amplitudes by low-frequency phases, as
evaluated by PAC. Such increases in PAC occur together with
increased phase locking between low- and high-frequency compo-
nents. This can be observed by the generally high PAC-PPC correla-
tions in Figure 4B. Interestingly, there also exists a relatively narrow
window in v , where the periodic inhibition of the GPe-p forces the
system to stay within the domain of influence of the unstable saddle
focus, thus causing periodic oscillations with strongly reduced PAC
(see time series 3 of Fig. 4B).

More complex, resonant behavior can arise for periodic forc-
ing of the GPe, if the GPe already expresses oscillations autono-
mously (Fig. 4C,D). When increasing a, the system undergoes a

torus bifurcation that emerges from the interaction between the
intrinsic limit cycle and the extrinsic, periodic input. As can be
seen from the firing rate dynamics in Figure 4C, strong ampli-
tude modulations of the intrinsic limit cycle exist in the vicinity
of this torus bifurcation. A continuation of the torus bifurcation
in the v-a plane reveals that the system expresses various
resonances of the intrinsic limit cycle with the extrinsic input.
Close to regimes of 1:2 resonances, we were able to identify small
loci of period doubling bifurcations, suggesting the existence of
chaotic regimes. These bifurcations are also reflected in the PAC
and PPC profiles of the system. PAC values are low before the
system undergoes the torus bifurcation and increase near and af-
ter the torus bifurcation. In the vicinity of the torus bifurcation,
we find regimes where strong PAC can coexist with low PPC val-
ues. These regions express negative correlations between PAC
and PPC and are clearly separated from regions where increased
PAC and PPC coexist (Fig. 4C).

Figure 4. PAC and PPC in the periodically inhibited GPe. The input Ip(t) was applied with different frequencies 1
v and amplitudes a. For each input, the mean PAC between phases of low-

frequency components (2-30 Hz) and amplitudes of high-frequency components (50-250 Hz) of the GPe-p firing rate was calculated. Furthermore, the correlation between PAC and PPC values
was evaluated across all pairs of low- and high-frequency components. Exemplary time series are provided for GPe-p (purple) and GPe-a (orange) firing rates of four different inputs: (1) v =
61ms, a = 0.3; (2) v = 61ms, a = 1.1; (3) v = 71ms, a = 1.1; and (4) v = 74ms, a = 1.1. A, Results for default parameters. B, Results for kpa = 50 and h p = 24. C, Results for
kpp = 50 and h p = 40. D, 2D Bifurcation diagram in the a – v plane, which shows emergence of resonant behavior and period doubling of GPe oscillations along a torus bifurcation curve.
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Model generalization to GPe spiking neural networks
In this section, we report how the above-described findings
generalize to spiking neural networks (SNNs) of coupled
GPe-p and GPe-a cells with realistic cell counts and coupling
probabilities. To this end, we attempted to replicate the
mean-field model dynamics shown in time series 3 of Figure
4B and time series 4 of Figure 4C and in SNNs with (1) dif-
ferent network sizes and (2) different coupling probabilities.
We created a total of four SNNs with (1) either all-to-all cou-
pling or only 5% of all possible connections, and (2) either
Np = 4000 (Na = 2000) GPe-p (GPe-a) cells or Np = 40 000
(Na = 20 000) GPe-p (GPe-a) cells. We then repeated our
simulations of the GPe response to periodic stimulation for
spiking neural networks initialized near the bistable and in
the oscillatory regime (same parameterizations as reported
in Fig. 4 for the mean-field model). The dynamics of all four
SNNs can be seen compared with the mean-field predictions
in Figure 5. As expected, we find that an all-to-all coupled
SNN of large size behaves nearly identical to the mean-field
prediction, where the remaining difference in the oscillation
amplitude is an effect of the network size and would vanish if
we increased the network size even further (see difference
between SNNs with N1 and N2). Interestingly, we find that
reducing the number of synaptic connections to p= 5% of all
possible connections attenuates synchronized oscillations in the
network for small network sizes. However, for a sufficiently
large network, the SNN follows the macroscopic dynamics pre-
dicted by the mean-field model, even when p= 5%. This holds
for both the bistable as well as the oscillatory regime.

Discussion
In this work, we investigated the implications of a dichotomous
GPe structure on its intrinsic dynamic regimes and on its response
to oscillatory input. This was motivated by experimental results
that strongly suggest that there exist two neuron types (GPe-p
and GPe-a) inside GPe with different projection targets and
electrophysiological features (Mallet et al., 2012; Abdi et al.,
2015; Hernández et al., 2015; Hegeman et al., 2016). Our inves-
tigations were based on populations of coupled QIF neurons,
for which we derived exact mean-field equations describing the
low-dimensional dynamics of average membrane potentials
and firing rates. This two-population model was set up such
that it accounts for the I-f curves of GPe-p and GPe-a cells
(Abdi et al., 2015), firing rate heterogeneity inside each popula-
tion (Miguelez et al., 2012; Aristieta et al., 2021; Ketzef and
Silberberg, 2021), as well as the response of GPe-p and GPe-a to
extrinsic stimulation (Kita et al., 2004; Aristieta et al., 2021).
Next, we investigated the dependence of the macroscopic neu-
rodynamics of this model on the underlying connectivity
between GPe-p and GPe-a. We found that strong GPe-p projec-
tions and weak GPe-a projections produced realistic steady-state
firing rates (rp � 60Hz and ra �10Hz) and responses to STR and
STN stimulation (Kita et al., 2004; Dodson et al., 2015; Aristieta et
al., 2021). In this regime, the model was relatively robust to
changes in its extrinsic input. While alterations of the background
input led to changes in the average firing rates, they were not suffi-
cient to induce phase transitions in the model.

Under dopamine depletion, GABAergic postsynaptic currents
of GPe-to-GPe synapses have been reported to increase in

Figure 5. Comparison between mean-field model (dashed lines) and spiking neural networks (solid lines) under periodic stimulation. The first and second columns represent the average fir-
ing rate and average membrane potential across the population, whereas the last column represents spike timings from 200 randomly chosen neurons of the population. SNNs are composed
of Np ¼ 4N1=2 GPe-p and Na ¼ 2N1=2 GPe-a neurons, where N1 = 1000 and N2 = 10,000. From all possible synaptic connections in the SNN, either p1 = 100% or p2 = 5% is established. A,
Results for kpa = 5, h p = 24, a = 1.1, and v = 71. B, Results for kpp = 5, h p = 40, a = 1.1, and v = 74.
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strength (Miguelez et al., 2012). However, it is unclear which
GPe-to-GPe synapses are affected by this and how these changes
may influence GPe dynamics. Thus, we investigated whether
increases in the strength of specific GPe connections induce
changes in the behavior of the system. To this end, we focused
on the synapses inhibiting the GPe-p, since increased inhibition
of GPe-a would merely reduce its already low steady-state firing
rates and, hence, not induce any phase transitions to the GPe
dynamics.

When the strength of GPe-p inhibition by GPe-a was
increased, we found that a bistable regime emerged in which
GPe-p and GPe-a competed over a high-activity state. This re-
gime could provide a form of network memory and a reliable
way to switch GPe output between the different projection tar-
gets of GPe-p (STN) and GPe-a (STR). Furthermore, if the GPe
was situated in the bistable regime, periodic inputs from STR
were amplified because of the existence of two different attract-
ing states. Indeed, when we applied periodic input from STR to
GPe-p in the b frequency range characteristic for PD (Brown,
2003; Hammond et al., 2007), the GPe-p was periodically forced
from a high-activity state down to a low-activity state, thus reso-
nating at the input frequency. Importantly, this led to strong
phase-amplitude as well as PPC between b and g components
of the GPe-p firing rate dynamics. Interestingly, the synchron-
ized neural activity that has been detected in recordings of STN
and GPe activity from PD patients expressed not only increased
power in the b frequency band, but also increased PAC between
the phase of b components and the amplitude of g components
(López-Azcárate et al., 2010). Our model can explain these find-
ings as follows: dopamine depletion at the GPe leads to an
increased strength of GPe-a to GPe-p synapses in PD (Miguelez
et al., 2012). This structural change moves the system closer to a
bistable regime. By moving closer to the boundaries of the bista-
ble regime, oscillatory inputs from STN or STR become more
likely to elicit switching between the two stable states of the GPe.
At both of these input sites, increased b oscillations have been
reported in PD (Brown, 2003; Belluscio et al., 2014). Periodic
forcing of the bistable GPe would then perturb the system in a
phase space controlled by multiple stable and unstable foci with
focus frequencies in the g range, thus causing damped g oscilla-
tions with input-triggered amplitude modulations. Hence, in this
scenario, PD-related intrinsic changes can cause increased sus-
ceptibility of the GPe to periodic inputs, but not autonomous
GPe oscillations.

When we instead increased the GPe-p to GPe-p self-inhibi-
tion, we found that stable oscillations in a g frequency range
(�50-60Hz) could emerge. These oscillations were driven by the
dynamic interactions between the pace-making properties of the
GPe-p and its delayed self-inhibition. Most likely, these oscilla-
tions reflect the same synchronization mechanism as reported
for a single population with delayed self-inhibition (Luccioli et
al., 2019). According to their results, oscillations are counteracted
by neural heterogeneity. This way, our results can be linked to
the considerations in (Wilson, 2013), which suggest that strong
firing rate heterogeneity together with recurrent inhibition inside
GPe may serve to desynchronize GPe activity under healthy con-
ditions. In accordance with experimental data, we modeled the
GPe-p with highly heterogeneous single-cell firing rates (Miguelez
et al., 2012; Hernández et al., 2015; Aristieta et al., 2021;
Ketzef and Silberberg, 2021). This way, inhibitory feedback
from the GPe-p provides the means to suppress synchron-
ized oscillations inside the GPe, which supports these con-
siderations. Experimental evidence from animal models of

PD suggest that GPe activity shows increased synchroniza-
tion in PD (Wichmann and Soares, 2006; Mallet et al., 2012).
Our model can explain these findings as follows: dopamine
depletion causes the strength of GPe-p self-inhibition to
increase in PD (Miguelez et al., 2012). This moves the GPe
system closer to or even across the boundaries of an oscillatory re-
gime. The emerging limit cycle leads to narrow-band g oscillations
and thus cannot explain the emergence of b oscillations in the par-
kinsonian BG (Brown, 2003; Hammond et al., 2007). However,
assuming that burst-like afferent inputs drive the GPe at a b fre-
quency, our findings predict that GPe-intrinsic g oscillations can
resonate with the input, leading to a waxing and waning of the g
oscillations. Such waxing-and-waning behavior also implicates
increased PAC, which may occur together with decreased PPC,
according to our simulations. The latter finding was unique for the
oscillatory regime of the GPe. Similarly, complex patterns of cross-
frequency coupling have been reported previously in an instantane-
ously coupled two-population QIF model with sinusoidal forcing
in the a frequency range (10Hz) (Ceni et al., 2020). Thus, our
results show under which conditions the GPe system can express
the characteristic dynamics that have been identified in more
abstract models of two populations with mutual inhibition.

The mathematical model presented in this paper can serve as
a basis for future BG models. We have shown that a mean-field
model derived under the assumptions of all-to-all coupling and
an infinite number of neurons accurately describes the dynamics
of a SNN with realistic cell counts and coupling densities
(Hegeman et al., 2016). Thus, our model lends itself to multiscale
approaches. It can easily be extended by additional biological
details, such as plasticity mechanisms (Gast et al., 2020) or gap
junctions (Pietras et al., 2019). The latter may be of particular in-
terest to investigate parkinsonian conditions inside the GPe
(Schwab et al., 2014). Furthermore, our model can be used as a
basis for experimental investigations of GPe structure-function
relationships in healthy and diseased states. First, the I-f curves
reported at the single-cell and population level allow a compari-
son of our model with experimental data on the input-output
relationship of GPe cells. Second, our model predicts specific
phase transitions of GPe dynamics to emerge for increased
strengths of GPe-p to GPe-p or GPe-a to GPe-p synapses.
Experimental investigation of the GPe response to GPe-p stimu-
lation under dopamine-depleted conditions could serve to infer
whether GPe dopamine depletion increases these synaptic
strengths sufficiently to induce these phase transitions. Finally,
our results indicate that the GPe expresses distinct responses to
periodic input from STR, based on its dynamic regime.
Specifically, PAC and PPC profiles of GPe firing rates can distin-
guish between the healthy steady-state regime, the bistable re-
gime, and the oscillatory regime of the periodically forced GPe.
Thus, extrinsic periodic stimulation of indirect pathway STR
projection neurons could be used in combination with measure-
ments of PAC and PPC of GPe firing rates to infer the underly-
ing dynamic regime and synaptic connectivity of the GPe in
healthy versus diseased states.
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