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Noise Correlations for Faster and More Robust Learning
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Distributed population codes are ubiquitous in the brain and pose a challenge to downstream neurons that must learn an
appropriate readout. Here we explore the possibility that this learning problem is simplified through inductive biases imple-
mented by stimulus-independent noise correlations that constrain learning to task-relevant dimensions. We test this idea in a
set of neural networks that learn to perform a perceptual discrimination task. Correlations among similarly tuned units were
manipulated independently of an overall population signal-to-noise ratio to test how the format of stored information affects
learning. Higher noise correlations among similarly tuned units led to faster and more robust learning, favoring homogenous
weights assigned to neurons within a functionally similar pool, and could emerge through Hebbian learning. When multiple
discriminations were learned simultaneously, noise correlations across relevant feature dimensions sped learning, whereas
those across irrelevant feature dimensions slowed it. Our results complement the existing theory on noise correlations by
demonstrating that when such correlations are produced without significant degradation of the signal-to-noise ratio, they can

improve the speed of readout learning by constraining it to appropriate dimensions.
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Significance Statement

o

Positive noise correlations between similarly tuned neurons theoretically reduce the representational capacity of the brain, yet
they are commonly observed, emerge dynamically in complex tasks, and persist even in well-trained animals. Here we show
that such correlations, when embedded in a neural population with a fixed signal-to-noise ratio, can improve the speed and
robustness with which an appropriate readout is learned. In a simple discrimination task such correlations can emerge natu-
rally through Hebbian learning. In more complex tasks that require multiple discriminations, correlations between neurons
that similarly encode the task-relevant feature improve learning by constraining it to the appropriate task dimension.
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Introduction

The brain represents information using distributed population
codes in which particular feature values are encoded by large
numbers of neurons. One advantage of such codes is that a
pooled readout across many neurons can effectively reduce the
impact of stimulus-independent variability (noise) in the firing
of individual neurons (Pouget et al., 2000). However, the extent
to which this benefit can be employed in practice is constrained
by noise correlations, or the degree to which stimulus-independ-
ent variability is shared across neurons in the population
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(Averbeck et al., 2006). In particular, positive noise correlations
between neurons that share the same stimulus tuning can reduce
the amount of decodable information in the neural population
(Averbeck et al., 2006; Hu et al., 2014; Moreno-Bote et al., 2014).
Despite their detrimental effect on encoding, noise correlations
of this type are reliably observed, even after years of training on
perceptual tasks (Cohen and Kohn, 2011). Furthermore, noise
correlations between neurons are dynamically enhanced under
conditions where two neurons provide evidence for the same
response in a perceptual categorization task (Cohen and
Newsome, 2008), raising questions about whether they might
serve a function rather than simply reflect a suboptimal encoding
strategy.

At the same time, learning to effectively read out a distributed
code also poses a significant challenge. Learning the appropriate
weights for potentially tens of thousands of neurons in a low sig-
nal-to-noise regime is a difficult, high-dimensional problem,
requiring a very large number of learning trials and entailing
considerable risk of overfitting to specific patterns of noise
encountered during learning trials. Nonetheless, people and ani-
mals can rapidly learn to perform perceptual discrimination
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tasks, albeit with performance that does not approach theoreti-
cally achievable levels (Hawkey et al., 2004; Stringer et al., 2019).
In comparison, deep neural networks capable of achieving
human-level performance typically require a far greater number
of learning trials than would be required by humans and other
animals (Tsividis et al., 2017). This raises the question of how
brains might implement inductive biases to enable efficient
learning in high-dimensional spaces.

Here we address open questions about noise correlations and
learning by considering the possibility that noise correlations
facilitate faster learning. Specifically, we propose that noise corre-
lations aligned to task-relevant dimensions could reduce the
effective dimensionality of learning problems, thereby making
them easier to solve. For example, perceptual stimuli often con-
tain a large number of features that may be irrelevant to a given
categorization. At the level of a neural population, individual
neurons may differ in the degree to which they encode task-irrel-
evant information, thus making the learning problem more diffi-
cult. In principle, noise correlations in the relevant dimension
could reduce the effects of this variability on learned readout.
Such an explanation would be consistent with computational
analyses of Hebbian learning rules (Oja, 1982), which can both
facilitate faster and more robust learning (Krotov and Hopfield,
2019) and, in turn, may induce noise correlations. We propose
that faster learning of an approximate readout is made possible
through low-dimensional representations that share both signal
and noise across a large neural population. In particular, we
hypothesize that representations characterized by enhanced
noise correlations among similarly tuned neurons can improve
learning by focusing adjustments of the readout onto task-rele-
vant dimensions.

We explore this possibility using neural network models of a
two-alternative forced-choice perceptual discrimination task in
which the correlation among similarly tuned neurons can be
manipulated independently of the overall population signal-to-
noise ratio (SNR). Within this framework, noise correlations,
which can be learned through Hebbian mechanisms, speed
learning by forcing learned weights to be similar across pools of
similarly tuned neurons, thereby ensuring learning occurs over
the most task-relevant dimension. We extend our framework to
a cued multidimensional discrimination task and show that
dynamic noise correlations similar to those observed in vivo
(Cohen and Newsome, 2008) speed learning by constraining
weight updates to the relevant feature space. Our results demon-
strate that when information is extrinsically limited, noise corre-
lations can make learning faster and more robust by controlling
the dimensions over which learning occurs.

Materials and Methods

Our goal was to understand the computational principles through which
correlations in the activity of similarly tuned neurons affect the speed
with which downstream neurons could learn an effective readout.
Previous work has demonstrated that manipulating noise correlations
while maintaining a fixed variance in the firing rates of individual neu-
rons leads to changes in the theoretical encoding capacity of a neural
population (Averbeck et al., 2006; Moreno-Bote et al., 2014). To mini-
mize the potential impact of such encoding differences, we took a differ-
ent approach; rather than setting the variance of individual neurons in
our population to a fixed value, we set the signal-to-noise ratio of our
population to a fixed value. Thus, our approach does not ask how maxi-
mum information can be packed into the activity of a given neural popu-
lation but rather how the strategy for packing a fixed amount of
information in a population affects the speed with which an appropriate
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readout of that information can be learned. We implement this approach
in a set of neural networks described in more detail below.

Learning readout in perceptual learning task. Simulations and analy-
ses for a simple perceptual discrimination task were performed with a
simplified and statistically tractable two-layer feedforward neural net-
work (see Fig. 3A). The input layer consisted of two homogenous pools
of 100 units that were each identically tuned to one of two motion direc-
tions (left, right). On each trial normalized firing rates for the neural
population were drawn from a multivariate normal distribution
that was specified by a vector of stimulus-dependent mean firing
rates (signal: +1 for preferred stimulus, —1 for nonpreferred stim-
ulus) and a covariance matrix. All elements of the covariance ma-
trix corresponding to covariance between units that were tuned to
different stimuli were set to zero. The key manipulation was to sys-
tematically vary the magnitude of diagonal covariance components
(e.g., noise in the firing of individual units) and the within-pool
covariance elements (e.g., shared noise across identically tuned
neurons) while maintaining a fixed level of variance in the
summed population response for each pool as follows:

0';00, = na? . +n(n — 1)Cov(withinpool), (1)

unit
where 0'127001 is the variance on the sum of normalized firing rates from
neurons within a given pool, 7 is the number of units in the pool and the
within-pool covariance, Cov(withinpool), specifies the covariance of
pairs of units belonging to the same pool. SNR was defined as the popu-
lation signal (preferred/antipreferred) divided by the SD of the popula-
tion response in the signal dimension. SNR was set to be 2 for each
individual pool of neurons, leading to a signal-to-noise ratio for the
entire population (both pools) equal to 21/2. Given this constraint, the
fraction of noise that was shared across neurons within the same pool
was manipulated as follows:
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Cov(withinpool) = ¢ o2, ., (3)

where ¢ reflects the fraction of noise that is correlated across
units, which we refer to in the text as noise correlations. Noise cor-
relations (¢) were manipulated across values ranging from 0 to 0.2
for simulations. Note that because ¢ appears in the denominator
of Equation 2, adding noise correlations while sustaining a fixed
population signal-to-noise ratio leads to lower variance in the fir-
ing rates of single neurons, differing from previous theoretical
assumptions (see Fig. 2).

The input layer of the neural network was fully connected to an out-
put layer composed of two output units representing left and right
responses. Output units were activated on a given trial according to a
weighted function of their inputs as follows:

Faulput = WFileula (4)

where Foupy is a vector of firing rates of output units, Fj,p,, is a vector of
firing rates of the input units, and w is the weight matrix. Firing of an
individual output unit can also be written as a weighted sum over input
unit activity as in the following:

200
Fj: g Wi.jFi. (5)

i=1

where F; reflects the firing of the jth output unit, F; reflects the fir-
ing of the ith input unit, and w;; reflects the weight of the connec-
tion between the ith input unit and the jth output unit. Actions
were selected as a softmax function of output firing rates as
follows:
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where S is an inverse temperature, which was set to a relatively deter-
ministic value (10,000). Learning was implemented through reinforce-
ment of weights to the selected output neuron (subscript j below) as
follows:

(6)

Aw;; = adF;, (7)

where F; is the normalized firing rate of the ith input neuron, § is the
reward prediction error experienced on a given trial (+0.5 for correct
trials and —0.5 for error trials), and « is a learning rate (set to 0.0001 for
simulations; see Fig. 2). The network was trained to correctly identify
two stimuli (each of which was preferred by a single pool of input neu-
rons) over 100 trials (of which the last 20 trials were considered testing).
Simulations were repeated 1000 times for each level of ¢, and performance
measures were averaged across all repetitions. Mean accuracy per trial
across all simulations was convolved with a Gaussian kernel (SD = 0.5 trials)
for plotting (see Fig. 2B). Mean accuracy across the final 20 trials was used
as a measure of final accuracy (see Fig. 2E). Statistics on model performance
were computed as Pearson correlations between noise correlations ¢ and
performance measures across all simulations and repetitions.

Analytical learning trajectories. One advantage of our simple net-
work architecture is its mathematical tractability. To complement the
simulations described above, we also explored learning in the network
analytically. Specifically, we decomposed weight updates into two cate-
gories: weight updates in the signal dimension and weight updates per-
pendicular to the signal dimension. Weight updates in the signal
dimension improved performance through alignment with the signal
itself, whereas weight updates in the perpendicular dimension limited
performance through chance alignment with trial-to-trial noise. An intu-
ition for our approach and derivation are provided below.

The two-alternative discrimination task is a one-dimensional signal
detection problem because it depends only on the difference between
two scalars. In particular, if y = [y1, y2] denotes the readout activity in
the pair of pools, and r denotes the response (e.g., r = —1 is respond left,
and r = 1 is respond right), then r = r(y1 — y2) = r(Ay). In addition,
Ay = wix — wox = Awx, where x reflects the firing rates of the input
units and w; reflects the vector of weights mapping input activation
onto output unit 1 (y,). To determine how accuracy is affected by noise
correlations, we ask how Mahalanobis distance (d'), mean separation
(d), and signal variance (o-f*) diverge over training time for the different
noise correlation conditions. The effective variance, o2, differs from the
true noise variance in the signal dimension because of the fact that out-
of-signal-dimension noise is transferred into the signal dimension by
imperfect readout weights. Intuitively, learning speed may be improved
by noise correlations because less out-of-dimension noise is learned into
the weights, thereby reducing the transfer of out-of-dimension noise
into the signal space on any given trial.

The logic of training is as follows. On a correct trial, the weights to
the chosen unit are incremented by a multiple of the input vector x, as in
the following:

w; — w;+adx. (8)

Here a reflects a positive learning rate, x reflects the activity of the
input units, and § is the reward prediction error, which we use as the
absolute reward prediction error instead of the signed one in this section
for convenience.

Now the input is a sum of signal and zero mean noise as follows:

x=puté. )

The expectation of noise is zero (E(¢) = 0), and the signal p can
take only two values u € {*u,}. Therefore, if the weights start from
some value Aw(0), we will find the following:
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E[Aw(t)] = tad py+Aw(0) , (10)

where ¢ reflects the current timestep of learning. In words, we expect the
amount of signal in the weights to increase linearly over time. This
means that we expect the response to a noise-free signal (u, ) after  time-
steps to be the following:

Ay(py, 1) = Aw(t) g + Awopty = tad ||y |[*+Awopy. 1y

This is the measure d between the two Gaussian peaks in the one-
dimensional signal detection problem described above. Below, we ignore
the initial weight term as it does not change over time. To compute accu-
racy and d” over training time, we also need to compute the effective var-
iance along the signal dimension. First we note that the noise can be
decomposed as follows:

§=§&+&., (12)

where ¢, and £ are orthogonal components of the noise in the signal
dimension (&) and perpendicular to the signal dimension (¢ ). Here
we consider cases where the noise along the signal dimension (&) has
constant variance, following the assumption that SNR is set to a constant
value and that the mean signal is the same for all noise correlation
conditions.

The difference Ay on any given trial decomposes into a sum of terms,
one reflecting a weight-based transfer of signal and one reflecting the
transfer of orthogonal noise. This latter term arises because the weights
are not, at any finite time, a perfect matched filter for the signal. Letting
subscripts s and L continue to denote signal and perpendicular dimen-
sions, we have the following:

Ay = Awx (13)
Ay = (Aw,+Aw ) (u+ é.+ €)) (14)
A)’ = AWS(IU' + fs) + AWL §L7 (15)

where the final equation reflects the absence of terms that have zero
products by definition of the perpendicular subspaces. The variance of
Ay can be computed using independence and orthogonality properties
as follows:

Var(Ay) = Var(Aw,(u+ &) + Aw, &) (16)

Var(Ay) = AW'E[£2] + AW E[£]. (17)

For any given network, the term Aw(t)’ is a mean-zero diffusion
process arising from the fact that noise is added to the weights at every
timestep. For the Gaussian white noise case, Aw(t)i is equivalent to
Brownian motion in the (n — 1) dimensions perpendicular to the signal.
Because (n — 1) is not small, the summed empirical variance of these
processes, operative on each component, is likely to be close to the theo-
retical total variance. If we split the term Aw(t)’ into the (n — 1) com-

ponents and index them with i, this gives the following:

t
n—1

Awil = ad o, (18)

The denominator of (n — 1) appears here because Brownian motion
determines growth in the variance of each of the (n — 1) perpendicular
noise directions among which the total variance o, is distributed.
Technically, our manipulation of the noise covariance fixes the variance
in a second direction of the space as well, so that noise variance is
actually evenly distributed over only (n — 2) of the (n — 1) perpendicular
dimensions, but this inhomogeneity is inconsequential if # is not small.
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In effect, we are ignoring an order 1 term relative to an order n term for
simplicity. To understand how perpendicular weights grow with time,
we need only to determine o, (¢ ), where ¢ is the parameter control-
ling the noise covariance matrix in our simulations. Specifically, the first
row of the covariance matrix takes the following form:

D> (€), = b, b, $b,...¢b,0, ..., 0]. (19)

Using the additional fact that row sums are set to o2 to control the
signal variance, we find the following:

b+ Gf 1)¢b:a§ (20)
207
ST o

Because the eigenvalues of Y (&) are the variances in different
dimensions of the space, we can find the total variance perpendicular to
the signal by subtracting the known signal variance from the trace of

() as follows:

o) =Var(¢)) = Tr(Z(f)) — Var(&) (22)

o’ =Var(¢,) =nb— o’ (23)

Putting this together with previous results, we have the following:

t(aﬁ)zo‘i

Var(Ay) = (tadpo,)* + —

(24)

This provides analytic prediction for the variance of our readout de-
cision variable Ay after learning for ¢ trials, using a learning rate a to
learn from from prediction errors of magnitude 6. Note that o, was
fixed in our simulations but that o4 depends on ¢ through b, so that
larger values of ¢ lead to smaller values of b, and thus a smaller a'f_,
reducing the second term in Equation 24. Furthermore, as the first term
in Equation 24 scales with t2, its contributions dominate as more trials
are observed. This leads to identical asymptotic variance in the limit of
large t because the first term does not depend on ¢ .

By combining the mean and variance information in Equations
11 and 24 we computed accuracy as one minus the cumulative
probability density of the Gaussian distribution as follows: N

t(a§)2

4
(tad ||| |* (tad wors)* + ;TL), evaluated from negative infinity to

Zer0.
Noise correlations with fixed signal-to-noise ratio and single-unit
variance. Noise correlations produced by the simulations above lead to
reductions in the overall variance of single-unit firing rates. To validate
that our results depend on maintaining signal-to-noise, rather than
depending on single-unit variance, we also consider the case where noise
correlations are introduced with a fixed level of single-unit variance. In
this case, signal-to-noise ratio was maintained by scaling the amount of
signal according to the level of noise correlations (see https://github.
com/NassarLab/NoiseCorrelation for the full derivation) as follows:

2 _
Seuron = M7 (25)

where Syeuron reflects the amount of signal provided by each unit,
o2, reflects a fixed variance assigned to each unit, n reflects the
number of units in the pool, and ¢ reflects the level of noise corre-
lations. Thus, when we simulated correlated noise using this equa-

tion, neurons maintained the same variance (02,;,) but increased
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the signal of the neurons relative to the zero noise correlation con-
dition (¢p =0).

Noise correlations that are bounded to a maximum signal-to-noise
ratio. To examine the importance of our assumption regarding fixed sig-
nal-to-noise ratio, we also considered a parameterized model, where sig-
nal (Speuron) Was set according to a linear mixture as follows:

Uinit(1+(n*1)¢)+(l_m) /% (26)
n n

where m is a mixing parameter that combines the signal producing a
fixed signal-to-noise ratio (first term) with a fixed signal that does not
depend on the level of noise correlations (second term). When m is set
to 1, this parameterized model obeys our assumptions regarding fixed
signal-to-noise ratio, but when m is set to 0, the model conforms to
more standard assumptions regarding fixed single-unit variance and
signal.

Hebbian learning of noise correlations in three-layer network. We
extended the two-layer feedforward architecture described above to
include a third hidden layer to test whether Hebbian learning could facil-
itate the production of noise correlations among similarly tuned neurons
(see Fig. 5A). The input layer was fully connected to the hidden layer,
and each layer contained 200 neurons. In the input layer, neurons were
homogenously tuned (100 leftward, 100 rightward) as described above, with
¢ set to zero (e.g., no noise correlations). Weights to the hidden layer were
initialized to favor one-to-one connections between input layer units and
hidden layer units by adding a small normal random weight perturbation
(mean = 0, SD = 0.01) to an identity matrix (although an alternate initializa-
tion produced qualitatively similar results). During learning, weights
between the input and hidden layer were adjusted according to a normal-
ized Hebbian learning rule as follows:

Sneuron = M

AW = ayu,FF,, (27)

where F| is a normalized vector of firing rates corresponding to the
input layer, and F, is a normalized vector of firing rates corresponding
to the hidden layer units. The learning rate for Hebbian plasticity (e )
was set to 0.00005 for simulations (see Fig. 4). Weights were normalized af-
ter Hebbian learning to ensure that the Euclidean norm of the incoming
weights to each unit in layer two was equal to one. The model was trained
over 100 trials in the same perceptual discrimination task described above,
and an additional 100 trials of the task were completed to measure emergent
noise correlations in the hidden layer. Noise correlations were measured by
regressing out variance attributable to the stimulus on each trial, and then
computing the Pearson correlation of residual firing rate across each pair of
neurons for the 100 testing trials (see Fig. 4B,C).

Learning readout in multiple discrimination task. To test the impact
of contextual noise correlations on learning (Cohen and Newsome, 2008),
the perceptual discrimination task was extended to include two dimensions
and two interleaved trial types, one in which an up/down discrimination
was performed (vertical), and one in which a right/left discrimination was
performed (horizontal). Each trial contained motion on the vertical axis (up
or down) and on the horizontal axis (left or right), but only one of these
motion axes was relevant on each trial as indicated by a cue.

To model this task, we extended our two-layer feedforward network
to include four pools of input units, four output units, and two task units
(see Fig. 5A). Each homogenous pool of 100 input units encoded a con-
junction of the movement directions (up-right, up-left, down-right,
down-left). On each trial, the mean firing rate of each input unit popula-
tion was determined according to the tuning preferences of each unit
population as follows:

u=V+H, (28)
where V was +1/—1 for trials with the preferred/antipreferred vertical

motion direction, H was +1/—1 for trials with the preferred/antipre-
ferred horizontal motion direction. Firing rates for individual neurons were
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sampled from a multivariate Gaussian distribution

with mean u and a covariance matrix that depended

on trial type (vertical vs horizontal) and the level of

same-pool,  relevant-pool, and irrelevant-pool R
correlations.

To create a covariance matrix, we stipulated a
desired SEM for summed population activity
(SEM =20 for simulations; see Fig. 7) and deter-
mined the summed population variance that would
correspond to that value (0127001)‘ We then deter-
mined the variance on individual neurons that _
would yield this population response under a given x
noise correlation profile as follows:

2
0-2 _ a-puol
=
uni n+n(n — I)QSMW + 12D retevant — " D irretovant
(29)

’ x

where ¢ . is the level of same-pool correlations
(range, 0-0.2 in our simulations), @ ,,,,a.: is the level v
of relevant-pool correlations (range, 0-0.2 in our sim-
ulations), @ ;eevan: 1S the level of irrelevant-pool cor-

relations (range, 0-0.2 in our simulations. Note that

increasing the same pool or in-pool correlations )
reduces the overall variance to preserve the same level
of variance on the task-relevant dimension in the pop-
ulation response, but increasing irrelevant-pool corre-
lations has the opposite effect. Covariance elements of
the covariance matrix were determined as follows:

Figure 1.
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Covariance matrix: vertical trials

N i o

Schematic of covariance matrix for two-dimensional motion discrimination task. The covariance between
units with different motion tuning (reflected by the arrows labeling columns and rows) is schematically represented
for a simplified input layer, where only two identically tuned neurons are in each pool (In actual simulations there
were 100 units per pool.). Same pool correlations are controlled by covariance elements between neurons with identi-

cal tuning (orange hoxes). Relevant pool correlations are controlled by covariance elements between neurons that are
similarly tuned to the task-relevant feature. Task-irrelevant correlations are controlled by covariance elements between

Cov(samepool) = ¢ ., 07 (30)

same ™ unit

neurons that are similarly tuned to the task-irrelevant feature. The covariance matrix shown here is for a vertical trial;

on a horizontal trial the irrelevant pool and relevant pool locations would be reversed. Covariance elements for pairs

Cov(relevantpool) = ¢ (31)

2
relevant O unit

of neurons that differed in tuning on both dimensions were set to zero. Each input population has been depicted as
two units here for presentation purposes. Background color reflects the case where same pool correlations = 0.2 and

relevant pool correlations = 0.1.

Cov(irrelevantpool) = @ jeieyan T i (32)

The variance and covariance values above were used to construct a covar-
iance matrix for each trial type (vertical/horizontal) as depicted in Figure 1

Output units corresponded to the four possible task responses (up,
down, left, right) and were activated according to a weighted sum of
their inputs as described previously. Task units were modeled as con-
taining perfect information about the task cue (vertical vs horizontal),
and each task unit projected with strong fixed weights (1000) to both
responses that were appropriate for that task. Decisions were made on
each trial by selecting the output unit with the highest activity level.
Weights to a chosen output unit were updated using the same reinforce-
ment learning procedure described in the two-alternative perceptual
learning task.

Results

We examine how noise correlations affect learning in a simplified
neural network where the appropriate readout of hundreds of
weakly tuned units is learned over time through reinforcement.
To isolate the effects of noise correlations on learning, rather than
their effects on other factors such as representational capacity, we
consider population encoding schemes at the input layer that can
be constrained to a fixed signal-to-noise ratio. This assumption
differs from previous work on noise correlations where the var-
iance of the neural population is assumed to be fixed, and covari-
ance is changed to produce noise correlations, thereby affecting
the representational capacity of the population (Fig. 2A; Averbeck
et al., 2006; Moreno-Bote et al., 2014). Under our assumptions, a
fixed signal-to-noise ratio can be achieved for any level of noise
correlations by scaling the variance (Fig. 2B; Egs. 1-3), or

alternately scaling the magnitude of the signal (Eq. 25). Although
we do not discount the degree to which noise correlations affect
the encoding potential of neural populations, we believe that in
many cases the relevant information is limited by extrinsic factors
(e.g., the stimulus itself or upstream neural populations providing
input; Ecker et al.,, 2011; Beck et al,, 2012; Kanitscheider et al.,
2015). Under such conditions, reducing noise correlations can
increase information only until it saturates because all the available
incoming information is encoded. Beyond that, increasing encod-
ing potential is not possible as it would be tantamount to the pop-
ulation creating new information that was not communicated by
inputs to the population. Therefore, our framework can be
thought of as testing how best to format limited available informa-
tion in a neural population to ensure that an acceptable readout
can be rapidly and robustly learned.

We propose that within this framework, noise correlations of
the form that have previously been shown to limit encoding are
beneficial because they constrain learning to occur over the most
relevant dimensions. In general, a linear readout can be thought
of as a hyperplane serving as a classification boundary in an N
dimensional space, where N reflects the number of neurons in a
population. Learning in such a framework involves adjustments
of the hyperplane to minimize classification errors. The most
useful adjustments are in the dimension that best discriminates
signal from noise (Fig. 2C,D, central arrows), but adjustments
may also occur in dimensions orthogonal to the relevant one
(such as twisting of the hyperplane, depicted by curved arrows in
Fig. 2C,D) that could potentially impair performance or slow



Nassar et al. e Noise Correlations for Faster Learning

J. Neurosci., August 4, 2021 - 41(31):6740-6752 - 6745

neurons learned more rapidly (Fig. 3B).
After learning, networks that employed such
noise correlations assigned more homoge-
nous weights to input units of a given pool
than did networks that lacked noise correla-
tions (compare Fig. 3C,D). This led to better
trained task performance (Fig. 3E; Pearson
correlation between noise correlations and
test performance, R = 0.29, p < 10e-50) and
greater robustness to adversarial noise pro-
files (Fig. 3F; R = 0.81, p < 10e-50) in the

networks that employed noise correlations.
Critically, these learning advantages emerged
despite the fact that optimal readout of all
networks achieved similar levels of perform-
ance and robustness (Fig. 3E,F; compare
optimal readout across conditions).

Learning benefits from noise correlations
are greatest for large, low SNR
populations

To better understand how noise correlations
promoted faster learning, we developed an
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noise correlations by assuming that population variance is fixed and that covariance is manipulated to produce noise cor-
relations. Under such assumptions, the firing rate of two similarly tuned neurons is plotted in the absence (solid line) or
presence (dotted line) of information-limiting noise correlations. B, Here we assume that the signal-to-noise ratio of the
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down learning. Our motivating hypothesis is that by focusing pop-
ulation activity into the task-relevant dimension, noise correla-
tions can increase the fraction of hyperplane adjustments that
occur in the task-relevant dimension (Figure 2D), thus reducing
the effective dimensionality of readout learning.

Noise correlations enable faster learning in a fixed signal-to-

noise regime

To test our overarching hypothesis, we constructed a fully con-
nected two-layer feedforward neural network in which input
layer units responded to one of two stimulus categories (pool 1
and pool 2), and each output unit produced a response consist-
ent with a category perception (Figure 3A, left/right units). On
each trial, the network was presented with one stimulus at ran-
dom, and input firing for each pool was drawn from a multivari-
ate Gaussian with a covariance that was manipulated while
preserving the population signal-to-noise ratio. Output units
were activated according to a weighted average of inputs, and a
response was selected according to output unit activations. On
each trial, weights to the selected action were adjusted according
to a reinforcement learning rule that strengthened connections
that facilitated a rewarded action and weakened connections that
facilitated an unrewarded action (Law and Gold, 2009).

Noise correlations led to faster and more robust learning of
the appropriate stimulus-response mapping. All neural networks
learned to perform the requisite discrimination, but neural net-
works that employed correlations among similarly tuned

analytical method for describing learning
trajectories (see above, Materials and
Methods). Our method considered the
impacts of the following two influences on
weight updates over time: (1) weight updates
in the signal dimension that tend to align
with the signal and improve performance
and 2) weight updates perpendicular to the
signal dimension, which through chance
alignment with trial-to-trial firing rate
variability allow noise to have an impact
on decisions and therefore hinder per-
formance (Fig. 4A). Noise correlations
implemented using our methods decreased
the latter form of weight updates (Fig. 4B), leading updates in
the signal dimension to more quickly dominate performance
(Fig. 4C), thereby speeding analytical predictions for learning
(Fig. 4D,E). The analytically derived learning advantage for
fixed-SNR noise correlations was greatest for situations in
which SNR was relatively low and neural populations were
large (Fig. 4F).

The advantage of noise correlations for learning speed did
not depend on specific assumptions about whether SNR was
balanced by adjusting signal or noise. We employed an alter-
nate method for creating fixed-SNR noise correlations that
amplified signal, rather than reducing variance, to maintain
SNR for higher levels of noise correlation (Eq. 25). Such
noise correlations could be thought of as reflecting amplifi-
cation of both signal and shared noise that would result from
top-down recurrent feedback (Haefner et al., 2016). Under
such assumptions, noise correlations sped learning and led
to more robust weight profiles, similar to our previous simu-
lations (Fig. 5A).

Noise correlations that do not maintain signal-to-noise ratio
can introduce a trade-off between learning speed and
asymptotic performance

In contrast, our learning speed results depended critically on the
assumption that signal-to-noise ratio is maintained across differ-
ent levels of noise correlation. To test this dependency, we
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examined performance of a family of
models that contained a single parameter,
allowing them to range in assumptions
from fixed SNR (m = 1) to fixed single-
unit signal and variance (m = 0), analo-
gous to assumptions of Averbeck et al
(2006). Consistent with our previous
results, noise correlations improve learn-
ing in the m = 1 case, and consistent with
Averbeck et al. (2006), asymptotic per-
formance is reduced by noise correlations
in the m=0 case (Fig. 5B). Interestingly,
for intermediate assumptions between
these two extremes, noise correlations
promote faster learning, improving per-
formance in the short run but at the cost
of lower asymptotic accuracy. Thus,
under such assumptions, adjusting noise
correlations between similarly tuned neu-
rons could potentially optimize a trade-off
between short-term gains from rapid learn-
ing and long-term gains from higher as-
ymptotic performance.

Hebbian learning can produce useful
noise correlation structure

Given that noise correlations implemented
in our previous simulations, like those
observed in the brain, depended on the
tuning of individual units, we tested
whether such noise correlations might be
produced via Hebbian plasticity. Spe-
cifically, we considered an extension of our
neural network in which an additional in-
termediate layer is included between input
and output neurons (Fig. 6A). Input units
were again divided into two pools that dif-
fered in their encoding, but variability was
uncorrelated across neurons within a given
pool. Connections between the input layer
and intermediate layer were initialized so
that each input unit strongly activated one
intermediate layer unit and were shaped
over time using a Hebbian learning rule
that strengthened connections between
coactivated neuron pairs. Despite the lack
of noise correlations in the input layer of
this network [Fig. 6B; mean(std) in-pool
residual correlation = 0.0015(0.10])], neu-
rons in the intermediate layer developed
tuning-specific noise correlations of the
form that were beneficial for learning in
the previous simulations [Fig. 6C; mean
(std) in-pool residual correlation = 0.55
(0.07); t test on difference from input layer
correlations, ¢ = 443, df = 19,800, p <
10e-50]. Hebbian learning produced anal-
ogous noise correlation structure when ini-

tialized with random weights. The ability of Hebbian learning to
reduce the dimensionality of the input units is consistent with pre-
vious theoretical work showing that it extracts the first principal
component of the input vector, which in this case is the signal

(Oja, 1982).
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crimination. A, A two-layer feedforward neural network was designed to solve a two-alternative forced-choice motion dis-
crimination task at or near perceptual threshold. Input layer contains two homogenous pools of identically tuned neurons
that provide evidence for alternate percepts (e.g., leftward motion vs rightward motion) and output neurons encode alter-
nate courses of actions (e.g., saccade left vs saccade right). Layers are fully connected with weights randomized to small val-
ues and adjusted after each trial according to rewards (see above, Materials and Methods). B, Average learning curves for
neural network models in which population signal-to-noise ratio in pools 1 and 2 were fixed, but noise correlations (gray-
scale) were allowed to vary from small (dark) to large (light) values. C, D, Weight differences (left output—right output) for
each input unit (color coded according to pool) after 100 timesteps of learing for low (€) and high (D) noise correlations. E,
Accuracy in the last 20 training trials is plotted as a function of noise correlations for leamned readouts (orange) and optimal
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mean input for a given category (e.g., left or right) to the boundary that would result in misclassification is plotted for the
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Dynamic, task-dependent noise correlations speed learning
by constraining it to relevant feature dimensions

To understand how noise correlations might affect learning in
mixed encoding populations, we extended our perceptual dis-
crimination task to include two directions of motion discrimina-
tion (e.g., up/down and left/right). On each trial, a cue indicated
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rameters used for our simulations.

which of two possible motion discriminations should be per-

formed (Fig. 7A, left; Cohen and Newsome, 2008). We extended
our neural network to include four populations of 100 input
units, each population encoding a conjunction of motion direc-
tions (up-right, up-left, down-right, down-left; Fig. 7A, input
layer). Two additional inputs provided a perfectly reliable cue
regarding the relevant feature for the trial (Fig. 7A, task units).
Four output neurons encoded the four possible responses (up,
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left, down, right) and were fully con-
nected to the input layer (Fig. 7A, output
layer). Task units were hard wired to
eliminate irrelevant task responses, but
weights of input units were learned over
time as in our previous simulations.

Learning performance in the two-fea-
ture discrimination task depended not
only on the level of noise correlations but
also on the type. As in the previous simu-
lation, adding noise correlations to each
individual population of identically tuned
units led to faster learning of the appro-
priate readout [Fig. 7B,C, compare blue
and yellow; Fig. 7D,E, vertical axis; mean
(std) accuracy across training: 0.54(0.05)
and 0.70(0.05) for minimum (0) and max-
imum (0.2) in-pool correlations; ¢ test for
difference in accuracy, t = 226, df =
19,998, p < 10e-50].

However, the more complex task
design also allowed us to test whether
dynamic trial-to-trial correlations might
further facilitate learning. Specifically, cor-
relations that increase shared variability
among units that contribute evidence to
the same response have been observed pre-
viously (Cohen and Newsome, 2008) and
could in principle focus learning on rele-
vant dimensions (Fig. 2C,D), even when
those dimensions change from trial to trial.
Indeed, adding correlations among sepa-
rate pools that share the same encoding of
the relevant feature (e.g., up on a vertical
trial) led to faster learning [Fig. 7B; mean
(std) training accuracy for model with rele-
vant pool correlations: 0.73(0.05); ¢ test for
difference from in-pool correlation only
model, t = 34, df = 19,998, p < 10e-50]
and weights that more closely app-
roached the optimal readout (Fig. 7D,
horizontal axis). In contrast, when posi-
tive noise correlations were introduced
across separate encoding pools that
shared the same tuning for the irrele-
vant dimension on each trial (e.g., up on
a horizontal trial) learning was impaired
dramatically [Fig. 7C; mean(std) train-
ing accuracy for model with irrelevant
pool correlations, 0.51(0.05); t test for
difference from in-pool correlation only
model, t = —278, df = 19,998, p < 10e-
50] and learned weights diverged from
the optimal readout (Fig. 7E, horizontal
axis). Model performance differences
were completely attributable to learning
the readout as all models performed

similarly when using the optimal readout.

To test the idea that noise correlations might focus learning
onto relevant dimensions, we extracted weight updates from
each trial and projected these updates into a two-dimensional
space where the first dimension captured the relative sensitivity
to leftward versus rightward motion, and the second dimension
captured relative sensitivity to upward versus downward motion.
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In the model where input units were only
correlated within their identically tuned
pool, weight updates projected in all
directions more or less uniformly (Fig.
7G) and did not differ systematically
across trial types (vertical vs horizontal).
However, dynamic noise correlations that
shared variability across the relevant
dimension tended to push weight updates
onto the appropriate dimension for a
given trial [Fig. 7F; t test for difference in
the magnitude of updating in up/down
and left/right dimensions across condi-
tions (up/down-left/right); t = 3.4, df =
98, p = 0.001]. In contrast, dynamic noise
correlations that shared variability across
the irrelevant dimension tended to push
weight updates onto the wrong dimen-
sion [Fig. 7H; t test for difference in the
magnitude of updating in up/down and
left/right dimensions across conditions
(up/down-left/right); t = —9.5, df = 98,
p = 10e-14]. Both of these trends were
consistent across simulations, providing
an explanation for the performance
improvements achieved by relevant noise
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ratio. A, Accuracy (ordinate) across trials (abscissa) for models in which signal-to-noise preserving noise correlations (gray-
scale) were produced so that each unit maintains the same variance regardless of noise correlation magnitude (Eq. 25).
Higher noise correlations (lighter colors) produced using this method also yielded faster learing. Orange line indicates accu-
racy of optimal readout. B, Accuracy (ordinate) as a function of trials (abscissa) for a model without noise correlations (red;
equivalent to darkest line in A) and for several models that generate noise correlations (0.2) under different assumptions.
The lightest color reflects a case where signal-to-noise ratio of the population is completely preserved, analogous to A. The
darkest color reflects a case where the variance and signal of individual neurons is fixed, leading to a population signal-to-
noise ratio that varies as a function of noise correlations. Intermediate colors indicate parametric mixtures of these assump-
tions created using Equation 26. Note that leaming advantages depend critically on assumptions about signal-to-noise ratio
and that noise correlations implemented using intermediate assumptions introduce a trade-off between faster learning (gray
lines above red line for early trials) and lower asymptotic performance (gray lines below red line for later trials).

correlations (projection of learning onto

an appropriate dimension) and perform-

ance impairments produced by irrelevant noise correlations
(projection of learning onto an inappropriate dimension).

Discussion

Collectively, our results suggest that in settings where the popula-
tion signal-to-noise ratio is externally limited and relevant task
representations are low-dimensional, noise correlations can facil-
itate faster and more robust learning. We demonstrate this prin-
ciple in a perceptual learning task (Fig. 3), where beneficial noise
correlations emerged through simple Hebbian learning (Fig. 6).
We extended our framework to a contextual learning task to
demonstrate that dynamic noise correlations that bind task-rele-
vant feature representations speed learning (Fig. 7B,D) by push-
ing learning onto task-relevant dimensions (Fig. 7F). Noise
correlations among similarly tuned sensory neurons are perva-
sive (Zohary et al., 1994; Maynard et al., 1999; Bair et al., 2001;
Averbeck and Lee, 2003; Cohen and Maunsell, 2009; Huang and
Lisberger, 2009; Ecker et al., 2010; Gu et al., 2011; Adibi et al,,
2013), and noise correlation dynamics that we show are benefi-
cial for learning are observed in vivo (Cohen and Newsome,
2008). Therefore, we interpret our results as suggesting that noise
correlations between similarly tuned neurons are a feature of
neural coding architectures that ensures efficient readout learn-
ing rather than a bug that limits encoding potential.

This interpretation rests on several assumptions in our model.
Of particular importance, is the assumption that the signal-to-
noise ratio of our populations is fixed, meaning that our manipu-
lation of noise correlations can focus variance on specific dimen-
sions without gaining or losing information. This reflects
conditions in which information is limited at the level of the
inputs, for instance because of noisy peripheral sensors (Beck et
al., 2012; Kanitscheider et al., 2015). In such conditions, even with
optimal encoding, population information saturates at an upper
bound determined by the information available in the inputs.
Therefore, fixing the signal-to-noise ratio enabled us to examine
noise correlation effects on readout learning in the absence of any

influence of noise correlations on the quantity of information con-
tained in the population.

Previous theoretical work exploring the role of noise correla-
tions in encoding has typically assumed that single neurons have
a fixed variance and signal so that tilting the covariance of neural
populations toward or away from the signal dimension would
drastically affect the amount of information that can be encoded
by a population (Fig. 1A; Averbeck et al., 2006; Moreno-Bote et
al., 2014). Such assumptions lead to the idea that positive noise
correlations among similarly tuned neurons limit encoding
potential, raising the question of why they are so common in the
brain (Cohen and Kohn, 2011). In considering the implications
of this framework, one important question is the following: If in-
formation encoded by the population can be increased by chang-
ing the correlation structure among neurons, where does this
additional information come from? In some cases, the neural
population in question may indeed receive sufficient task-rele-
vant information from upstream brain regions to reorganize
encoding in this way, but in other cases information is likely lim-
ited by the inputs (Kanitscheider et al., 2015; Kohn et al., 2016).
In cases where incoming information is limited, further increas-
ing representational capacity is impossible, and formatting infor-
mation for efficient readout is the best that the population code
could do. Here we show that information-limiting noise correla-
tions are exactly the type that format information most efficiently
for readout under alternate assumptions. Between these two
bookends of a fixed signal-to-noise ratio and fixed single-unit
signal and variance, we also simulated intermediate regimes
that do not perfectly preserve the signal-to-noise ratio. In
these intermediate regimes, a trade-off emerges; noise corre-
lations between similarly tuned neurons produce faster
learning in the short term at the cost of lower asymptotic
performance in the long run (Fig. 5B).

Jointly considering these perspectives on noise correlations
provides a more nuanced view of how neural representations are
likely optimized for learning. To optimize an objective function,
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is shared across neurons with similar tuning for the relevant task fea-
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Beyond the form of noise correlations, our modeling included
additional simplifying assu-mptions that are unlikely to hold up in
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tuning (Shamir and Sompolinsky, 2004, 2006; Chelaru and Dragoi,

Reinforcement
Learning

Hebbian
Learning

Hidden Layer
Noise Correlation

Pool 2

Hebbian leaming produces correlations within similarly tuned populations in a perceptual discrimination
task. A, Three-layer neural network architecture. Input layer feeds forward to hidden layer, which is fully connected to
an output layer. Input layer provides uncorrelated inputs to hidden layer through projection weights that are adjusted
according to a Hebbian learning rule. B, (, Noise correlations observed in hidden layer units at the beginning (B) and

J. Neurosci., August 4, 2021 - 41(31):6740-6752 - 6749

2008; Ecker et al,, 2011), and thus the degree to
which the principles we reveal here will general-
ize to more realistic neural populations remains
open. We hope that our results pave the way for
future work employing mixed heterogeneous
populations or more realistic architectures that
go beyond the simple feedforward flow of infor-
mation considered here.

Model predictions

Our work shows that noise correlations can
focus the gradient of learning onto the most
appropriate dimensions. Thus, our model
predicts that the degree to which similarly
tuned neurons are correlated during a per-
ceptual discrimination should be positively
related to performance improvements expe-
rienced on subsequent discriminations. In
contrast, our model predicts that the degree
of correlation between neurons that are simi-
larly tuned to a task-irrelevant feature should
control the degree of learning on irrelevant
dimensions and thus negatively relate to per-
formance improvements on subsequent dis-
criminations. These predictions are strongest
for the earliest stages of learning where
weight adjustments are critical for subse-
quent performance but may also hold for
later stages of learning, when correlations on
irrelevant dimensions, including independ-
ent noise channels, could potentially lead to
systematic deviations from optimal readout
(Figs. 2F, 4D,E). These predictions could be
tested by recording neural responses to a
stimulus set that differs across multiple fea-
tures to characterize both signal-to-noise and
correlated variability for each feature dis-
crimination. A strong prediction of our model is that correlated
variability within neurons tuned to a given feature should be a
predictor of subsequent learning of responses to that feature,
above and beyond feature value discriminability.

One interesting special case involves tasks where the relevant
dimension changes in an unsignaled manner (Birrell and Brown,
2000). In such tasks, noise correlations on the previously relevant
dimension would, after such an extradimensional shift, force gra-
dients into a task-irrelevant dimension and thus impair learning
performance. Interestingly, learning after extradimensional shifts
can be selectively improved by enhancing noradrenergic signal-
ing (Devauges and Sara, 1990; Lapiz and Morilak, 2006), which
leads to increased arousal (Joshi et al., 2016; Reimer et al., 2016)
and decreased pairwise noise correlations in the sensory and
association cortex (Vinck et al.,, 2015; Joshi and Gold, 2020).
Although these observations have been made in different para-
digms, our model suggests that the reduction of noise correla-
tions resulting from increased sustained levels of norepinephrine
after an extradimensional shift (Bouret and Sara, 2005) could
mediate faster learning by expanding the dimensionality of the
learning gradients (compare Fig. 7G with 7F) to consider features
that have not been task relevant in the past.

Origins of useful noise correlations
One important question stemming from our work is how noise
correlations emerge in the brain. This question has been one of
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ilar across trial types (G), but weight updates for a model with relevant-pool correlations indicate more weight updating on the relevant feature (F), whereas the opposite was observed in the
case of irrelevant-pool correlations (H).
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Figure 8.  Information maximization and dimensionality reduction can be useful for learning under different situations

and have opposite effects on noise correlations among similarly tuned units. A, A schematic representation of a three-
layer neural network in which units provide evidence for one of two categorizations (blue/orange). In the left network,
the hidden layer initially has access to information from only one of two independent units in each pool, but weights
are subsequently adjusted to increase task-relevant information represented in the hidden layer (pink). In the right net-
work, the hidden layer initially has access to all task-relevant information, but weights are subsequently adjusted to
share signal and noise across similarly tuned units to provide dimensionality reduction (purple). Note that the informa-
tion maximizing weight adjustments (left, pink) increase signal-to-noise ratio in the hidden layer but preserve the var-
iance in the firing rate of individual neurons, whereas the dimensionality reducing weight adjustments (right, purple)
maintain a fixed signal-to-noise ratio in hidden units but decrease the variance of individual units by averaging across
multiple similarly tuned inputs. Dashed lines to output units reflect weights that need to be learned based on feedback.
B, Task-relevant information (mutual information between unit activations and stimulus category, abscissa) is depicted
for each layer (ordinate). Weight adjustments providing information maximization (left) increase task-relevant informa-
tion in the hidden layer (pink), whereas weight adjustments that provide dimensionality reduction (right) do not affect
task-relevant information in the hidden layer itself but instead increase the rate of leaning in the output layer, thereby
leading to more task-relevant information in the output layer (purple). ¢, Weight adjustments for information maximiza-
tion (pink in A) decrease correlations among hidden units A and B by removing shared input from a single input unit
and instead providing independent sources of input to each unit (pink arrows). In contrast, weight adjustments for
dimensionality reduction increase noise correlations among hidden units A and B by providing them with the same mix-
ture of information from the two identically tuned input units. We propose that both of these processes play a critical
role in learning and that changes in noise correlations across learning will depend ritically on which process dominates.
As shown in B, this will depend critically on whether the neural population in question has already fully represented in-
formation available from its inputs. In principle, these processes could occur serially, with early leaming maximizing in-
formation available in intermediate layers (left) and later learning compressing that information into a format allowing
rapid readout leaming (right).

long-standing debate, largely because there are so many potential
mechanisms through which correlations could emerge
(Kanitscheider et al., 2015; Kohn et al., 2016). Noise correla-
tions could emerge from convergent and divergent feedfor-
ward wiring (Shadlen and Newsome, 1998), local
connectivity patterns within a neural population (Hansen et
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al., 2012; Smith et al., 2013), or top down
inputs provided separately to different
neural populations (Haefner et al., 2016).
Here we show that static noise correla-
tions that are useful for perceptual learn-
ing emerge naturally from Hebbian
learning in a feedforward network. While
this certainly suggests that useful noise
correlations could emerge through feed
forward wiring, it is also possible to con-
sider our Hebbian learning as occurring in
a one-step recurrence of the input units,
and thus the same data support the possi-
bility of noise correlations through local
recurrence. The context dependent noise
correlations that speed learning (Fig. 7),
however, would not arise through simple
Hebbian learning. Such correlations could
potentially be produced through selective
top-down signals from the choice neu-
rons, as has been previously proposed
(Wimmer et al., 2015; Haefner et al., 2016;
Bondy et al, 2018; Lange et al, 2018).
Moreover, top-down input may selectively
target neuronal ensembles produced through
Hebbian learning (Collins and Frank, 2013).
Although previous work has suggested that
such a mechanism could be adaptive for
accumulating information over the course of
a decision (Haefner et al,, 2016), our work
demonstrates that the same mechanism
could effectively be used to tag relevant neu-
rons for weight updating between trials,
making efficient use of top-down circuitry.
Haimerl et al. (2019) made a similar point,
showing that stochastic modulatory signals
shared across task-informative neurons can
serve to tag them for a decoder.

Noise correlations as inductive biases

Artificial intelligence (AI) has undergone a
revolution over the past decade leading to
human-level performance in a wide range of
tasks (Mnih et al., 2015). However, a major
issue for modern AI systems, which build
heavily on neural network architectures, is
that they require far more training examples
than a biological system would (Hassabis et
al., 2017). This biological advantage occurs
despite the fact that the total number of syn-
apses in the human brain, which could be
thought of as the free parameters in our
learning architecture, is much greater than
the number of weights in even the most pa-
rameter-heavy deep learning architectures.
Our work provides some insight into why
this occurs; correlated variability across neu-
rons in the brain constrain learning to spe-

cific dimensions, thereby limiting the effective complexity of the
learning problem (Figs. 4A, 7F,G). We show that for simple tasks,
this can be achieved using Hebbian learning rules (Fig. 6), but that
contextual noise correlations, of the form that might be produced
through top-down signals (Haefner et al., 2016), are critical for
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appropriately focusing learning in more complex circumstances. In
principle, algorithms that effectively learn and implement noise
correlations might reduce the amount of data needed to train Al
systems by limiting degrees of freedom to the most relevant dimen-
sions. Furthermore, our work suggests that large-scale neural
recordings in early stages of learning complex tasks might serve as
indicators of the inductive biases that constrain learning in biologi-
cal systems.

In summary, we show that under external constraints of task-
relevant information, noise correlations that have previously been
called rate limiting can serve an important role in constraining
learning to task-relevant dimensions. In the context of the previ-
ous theory focusing on representation, our work suggests that
neural populations are subject to competing forces when optimiz-
ing covariance structures; on the one hand reducing correlations
between pairs of similarly tuned neurons can be helpful to fully
represent available information, but increasing correlations among
similarly tuned neurons can be helpful for assigning credit to task-
relevant features. We believe that this view of the learning process
not only provides insight to understanding the role of noise corre-
lations in the brain but opens up the door to better understand the
inductive biases that guide learning in biological systems.
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