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Dorsolateral Striatal Task-initiation Bursts Represent Past
Experiences More than Future Action Plans
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Philadelphia PA 19104

The dorsolateral striatum (DLS) is involved in learning and executing procedural actions. Cell ensembles in the DLS, but not
the dorsomedial striatum (DMS), exhibit a burst of firing at the start of a well-learned action sequence (“task-bracketing”).
However, it is currently unclear what information is contained in these bursts. Some theories suggest that these bursts should
represent the procedural action sequence itself (that they should be about future action chains), whereas others suggest that
they should contain representations of the current state of the world, taking into account primarily past information. In addi-
tion, the DLS local field potential shows transient bursts of power in the 50 Hz range (y50) around the time a learned action
sequence is initiated. However, it is currently unknown how bursts of activity in DLS cell ensembles and bursts of y50 power
in the DLS local field potential are related to each other. We found that DLS bursts at lap initiation in rats represented
recently experienced reward locations more than future procedural actions, indicating that task-initiation DLS bursts contain
primarily retrospective, rather than prospective, information to guide procedural actions. Furthermore, representations of
past reward locations increased during periods of increased y50 power in the DLS. There was no evidence of task-initiation
bursts, increased y50 power, or retrospective reward location information in the neighboring dorsomedial striatum. These
data support a role for the DLS in model-free theories of procedural decision-making over planned action-chain theories, sug-
gesting that procedural actions derive from representations of the current and recent past.
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While it is well-established that the dorsolateral striatum (DLS) plays a critical role in procedural decision-making, open ques-
tions remain about the kinds of representations contained in DLS ensemble activity that guide procedural actions. We found
that DLS, but not DMS, cell ensembles contained nonlocal representations of past reward locations that appear moments
before task-initiation DLS bursts. These retrospective representations were temporally linked to a rise in y50 power that also
preceded the characteristic DLS burst at task-initiation. These results support models of procedural decision-making based on
associations between available actions and the current state of the world over models based on planning over action-chains. j

o

Introduction al,, 2015). Many theories suggest that procedural actions depend
on Markovian representations of past events, such as previously
experienced rewards, states, or actions, that allow the current sit-
uation to release a well-learned action sequence (Thorndike,
1932; Hull, 1942; Sutton and Barto, 1998; Daw et al., 2005).
Other theories suggest that procedural actions depend on repre-
sentations of a future action plan consisting of a chunked-to-
gether sequence of movements (Lashley, 1951; Bailey and Mair,
2006; Dezfouli and Balleine, 2012). This leads to the open ques-

) ) tion of what information is represented in bursts of DLS activity
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ignificance Statement

The dorsolateral striatum (DLS) plays a critical role in the devel-
opment and maintenance of ballistically executed procedural
actions. Bursts of activity in the DLS occur at the initiation and/
or termination of well-learned action sequences and are believed
to be a characteristic neurophysiological feature of procedural
decision-making (Jog et al., 1999; Barnes et al., 2005; Jin and
Costa, 2010; Smith and Graybiel, 2013; Jin et al., 2014; Regier et
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immediately preceding initiation of a A
rewarded action sequence (termed 7y50)

(Masimore et al., 2005). While both task-

bracketed DLS bursts and y50 events are

most prominent around the time at which

a learned action sequence is initiated, their

temporal relation has never been directly

explored. This leads to the open question of

the degree to which DLS ensemble bursts

and y50 oscillations are related: What is

the precise temporal relationship, if any,

between task-bracketed DLS bursts and B
v50 events on initiation of a procedural
action sequence?

We addressed these questions by explor-
ing the relation between 50 oscillations in
the DLS LFP and nonlocal representations
of behaviorally meaningful events (i.e., rep-
resentations of spatial locations on the
maze when the rat is not at that location)
around the time at which rats initiated a
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well-learned action sequence and DLS
ensembles exhibited their characteristic fir-
ing burst. Our focus was therefore on the
information contained within DLS ensem-

bles specifically around the time they exhib-
ited their “task-bracketed” burst of activity.
We found that y50 power rose and peaked
just before the DLS burst that occurred
around the time a learned action sequence
was initiated. Much like the DLS burst, the
rise in y50 power developed with experi-
ence. Importantly, task-bracketed DLS
bursts at movement initiation contained
representations of recently visited reward
sites (i.e., past-oriented, retrospective infor-
mation), providing support for the model-
free, Markovian hypothesis over the goal-
directed, chunking hypothesis of procedural action sequences.
There was no evidence of ensemble bursts of activity, experience-
dependent changes in y50 power, nor retrospective reward loca-
tion representations in the neighboring but functionally distinct
dorsomedial striatum (DMS). These results suggest that the rela-
tion between ensemble firing bursts at lap initiation, y50 events,
and retrospective reward location representations was likely a fea-
ture of procedural decision-making systems implemented within
the DLS but not the DMS.

Figure 1.

Materials and Methods

This study reanalyzed previously collected data, some of which were
reported by Regier et al. (2015). Additional details regarding, subjects, sur-
gery, and behavioral task can be found in Regier et al. (2015). All behavioral
and neurophysiological analyses reported in this paper are novel.

Subjects and surgery

Subjects. Six male Fisher Brown Norway and Brown Norway (5x
FBNF-1, 1x BN) rats (aged 9-16 months at time of experiment) served
as subjects. All procedures were conducted in accordance with the
National Institutes of Health guidelines for animal care and approved by
the Institutional Animal Care and Use Committee at the University of
Minnesota. Rats were housed individually and maintained on a 12 h
light-dark cycle. Rats were provided with ad libitum water in their home
cages throughout the experiment and received their daily food consump-
tion within each session (Regier et al., 2015).

Hypotheses about the relation between ensemble activity bursts and representations in the DLS. 4, Depiction of
the Hebb-Williams maze used in the present study. Cross represents a hypothetic starting point of a rat’s trajectory. Blue line
indicates a hypothetical trace of a rat’s trajectory through the maze to earn food (in this case, by tuming left at the CP). Our
focus was on 50 oscillations and DLS cell ensemble representations while rats were in the EZ of the maze (red square). B,
Model-free theories of procedural leaming imply retrospective information should guide action selection, predicting represen-
tations of past rewards (or trajectories) around the time rats initiate a well-learned action sequence. Red stars represent
feeder representations. Filled circles represent the correct feeder location for the upcoming lap. €, Chunking and successor-
representation theories of procedural learning imply that prospective information should guide action selection, predicting
representations of future trajectories around the time rats initiate a well-learned action sequence.

Surgery and striatum localization. After pretraining on the behav-
ioral task, rats were implanted with unilateral 14-tetrode hyperdrives
(n=3) or bilateral 28-tetrode hyperdrives (1= 3) in the anterior DLS and
posterior DMS. Following surgery, tetrodes were advanced 40-640 pm
per day until reaching the dorsal striatum, as identified by the presence
of medium spiny neurons (MSNs; i.e., relatively long interspike intervals
[ISIs] and short firing bursts). Additional details regarding the surgical
process and craniotomies can be found in Regier et al. (2015).

Histology. Once the experiment was complete, the location of each
tetrode was identified by administering a 5 pA current for 10 s. Tetrode
location was then confirmed histologically using coronal slices stained
with cresyl violet (for more details, see Regier et al., 2015).

Experimental design and statistical analysis

Behavioral task. Additional details of the task can be found in Regier
etal. (2015). Briefly, 6 rats traversed a Hebb-Williams maze (see Fig. 1A)
to earn their daily food ration during 30min sessions. One of three
reward contingencies were presented to rats. The left contingency
required rats to make repeated left turns to earn food. The right contin-
gency required rats to make repeated right turns. The alternation contin-
gency required rats to alternate between left and right turns across
successive laps. Rats received 2 food pellets at the side feeder (indicated
by circles next to feeder departure locations in Fig. 1A) and at the center
feeder (indicated by a circle next to the end zone [EZ] location in Fig.
1A) for making the correct turn direction at the choice point (CP; see
Fig. 1A). Rats did not receive food for incorrect turns. Approximately
halfway through the session, the reward contingency changed. For
example, the left contingency might be in effect for the first half of a
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Figure 2.

Action sequences became stereotyped across laps. A, An example illustrating relatively low similarity between two lap-adjacent path trajectories through the navigation sequence.

There is relatively little overlap in path trajectories between the fifth and sixth laps. B, An example illustrating relatively high similarity between two lap-adjacent trajectories. Paths through
the navigation sequence for the 38th and 39th laps were relatively similar. C-E, Mean lap;-lap; comparison of path trajectories during the first 30 laps of the pre-switch (C) and post-switch (D)
periods and aligned to the contingency switch (E). The highly consistent path trajectory between adjacent laps following the contingency switch was distinct from what it was before the
switch. Nevertheless, during both pre- and post-switch periods, trajectories between adjacent laps became more similar to each other as laps progressed (n= 32 sessions across rats). F,

Stereotypy across successive laps for each rat (colored lines) and averaged across rats (black line).

session whereas the right contingency would be in effect for the second
half. Rats could freely navigate the maze throughout the session, and
there were no explicit signals or cues indicating the start and end of the
current lap. Rats were first trained to turn either left or right at the CP
using a barrier that prevented them from turning the wrong direction.
Next, rats were trained with only one contingency in effect throughout
the entire session. Finally, rats were given sessions in which the conti-
nency changed approximately halfway through the session with simulta-
neous DLS and DMS recordings.

A total of 35 recording sessions were obtained. Three of these record-
ing sessions from 1 rat (R269) were excluded from analysis because for
each session there were laps for which center feeder fires were not
recorded and timestamped (leaving 32 sessions for analysis). For LFP
analyses, all data from R269 were excluded because of noise in the LFP
signal (leaving 29 sessions for analysis).

Quantification and statistical analysis

Movement velocity. The rat’s location on the maze was monitored at
60 Hz by an overhead camera that detected an LED located on the rat’s
head stage. Velocity was computed using the Janabi-Sharifi et al. (2000)
discrete-time adaptive windowing method, which estimates momentary
speed (dx, dy) based on the rat’s position at time ¢ and the rat’s subse-
quent positions at ¢+ 1 s. This algorithm is well suited to identify the
moment at which velocity changes and can therefore be used to estimate
the time at which an action sequence was initiated.

Behavioral stereotypy. We quantified stereotypy of path trajectories
through the navigation sequence of the maze (identified in Fig. 1A as
navigation start [S] and navigation middle [M]) by comparing path tra-
jectory on lap i to lap j. For each lap, we obtained the position of the rat
along the navigation sequence of the maze and interpolated these posi-
tions using 1000 samples to measure path trajectory for that lap. For lap-
by-lap stereotypy comparisons (see Fig. 2C-F), we found the reciprocal
of the difference in path trajectory between lap i and lap j for each ses-
sion (1) from the first to 30th lap during pre- and post-switch periods,
and (2) during the 60 laps surrounding the contingency switch. Path
stereotypy (i.e., the reciprocal of the difference in path trajectory between
lap; and lap;) was averaged across sessions (1 = 32; sessions over all rats).
To assess experience-dependent changes in stereotypy across rats, we

found the slope describing the change in lap-adjacent path stereotypy
across the first 30 laps during pre- and post-switch periods using a linear
regression. A paired-samples ¢ test was used to determine whether the
mean slope across rats was significantly >0, indicating an increase in
lap-adjacent path stereotypy across laps (n = 6; rats).

Bursts of ensemble activity in the EZ. The maze was broken up into
eight locations (depicted in Fig. 1A). Firing rates during the =1 s period
(500 ms bins) around each maze location were determined for each cell
on each lap. Firing rates for each maze location were normalized relative
to mean firing rate across the maze for that cell (following analyses in
Barnes et al, 2005; Thorn et al, 2010; Smith and Graybiel, 2013).
Specifically, for each cell, we found the mean firing rate across all maze
locations throughout the session. We then normalized firing rates in
each bin corresponding to a given maze location (four bins per location)
relative to the cell’s overall mean firing rate for each lap: Zy;, ; = (Spin i —
Smean)/Ssp (Thorn et al., 2010). The result was a laps x binned-zones x
cells matrix of normalized firing rate, which served as the basis for char-
acterizing DLS and DMS firing patterns across maze locations. We then
found for each lap the time at which mean firing rate was greatest while
rats were in the EZ of the maze for both DLS and DMS cell ensembles.
An “activity burst” was defined as the time at which the normalized fir-
ing rate of DLS or DMS cell ensembles were highest while rats were in
the EZ of the maze for each lap.

To assess the reliability of between-region differences in task-brack-
eting across rats, we compared mean “task-bracketing scores” between
DLS and DMS ensembles for each rat. Task-bracketing scores were
found by subtracting normalized firing rate in the navigation sequence
and CP of the maze from normalized firing rate in the EZ of the maze
(following analyses in Barnes et al., 2005; Thorn et al., 2010; Thorn and
Graybiel, 2014; Smith and Graybiel, 2013). Values >0 indicate relatively
strong firing in the EZ of the maze compared with the subsequent navi-
gation sequence. A paired-samples f test (n=6; rats) was used (1) to
compare mean task-bracketing scores between DLS and DMS across rats
and (2) to determine whether mean task-bracketing scores in DLS or
DMS were significantly >0 across rats. In addition, a Wilcoxon sign
rank test with a Bonferroni correction for multiple comparisons
(n=1061; total laps) was used to compare the magnitude of activity
bursts between DLS and DMS ensembles across laps, and a paired-sam-
ples t test (n=6; rats) was used to compare mean burst size in DLS and
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DMS across rats. Wilcoxon sign rank tests were used for this and subse-
quent comparisons between DLS and DMS because it allowed for
matched-sample comparisons of simultaneously recorded neural activity
without making assumptions about the nature of the distribution of any
given neurophysiological measure (e.g., ensemble burst size).

v50 power at neural ensemble activity bursts. We used a short-time
Fourier transform to assess spectral power across the 1-100 Hz range of
the LFP. For each tetrode in DLS and DMS, we obtained a spectrogram
of power across the entire session, using 0.5 s windows with 50% overlap.
For each lap within a session, we found mean (averaged across tetrodes)
spectral power in the 1-100Hz range during the —5 to 2 s period
(100 ms bins) around ensemble activity bursts in the EZ. Power for each
frequency was normalized relative to mean power at that frequency
across the session. To assess experience dependent changes in Y50
power, we averaged normalized power in the 45-55Hz range (y50)
across 5 lap bins within each session and then averaged normalized
power in the first to fifth 5 lap bin across sessions (n =29 sessions over
all rats). To assess reliability of experience-dependent changes in 50
power in DLS compared with DMS across rats, we found the slope
describing the change in 50 power across 5 lap bins in both DLS and
DMS LEFPs using a linear regression. y50 power during each 5 lap bin
was averaged across the 1 s preceding ensemble burst times. A paired-
samples ¢ test (1 =>5; rats) was used to assess whether the slope relating
y50 power to lap bins was different between DLS and DMS, and
whether the slopes for either region were significantly >0.

Cell categorization. Striatal cell-type categorization was based on
methods described by Schmitzer-Torbert and Redish (2008). Each cell
was determined to be phasic firing or nonphasic firing based on the pro-
portion of time spent in relatively long ISIs. For each cell, we found all
ISIs which exceeded 2 s and summed these ISIs across the entire session.
This sum was then divided by total session time. If the proportion of
time spent in ISIs longer than 2 s was >0.4, then the cell was classified as
phasic firing (ie., if a cell spent >40% of the session in ISIs>2 s).
Phasic firing cells are believed to be MSNs, the principal cell type within
the dorsal striatum. If this proportion was <0.4, then the cell was classi-
fied as nonphasic firing. We further classified nonphasic firing cells into
either high firing or tonic firing cells based on their post-spike suppres-
sion index. The post-spike suppression index quantifies the time it takes
for a cell to return to its mean firing rate following a spike. Cells with a
post-spike suppression index longer than 100 ms were classified as tonic
firing, whereas cells with a post-spike suppression shorter than 100 ms
were classified as high firing. The distinction between high firing and
tonic firing cells was based on previous reports indicating bimodal distri-
butions of post-spike suppression indices in nonphasic firing DLS cells
(Schmitzer-Torbert and Redish, 2004, 2008). TENs are believed to be
tonically active cholinergic interneurons that have a relatively long after-
hyperpolarization compared with HENs, which are putative high firing
interneurons (Kawaguchi, 1993; Schmitzer-Torbert and Redish, 2008;
Thorn and Graybiel, 2014).

Because datasets needed to include both clean LFP and cellular activ-
ity, not all cells from Regier et al. (2015) were included in this analysis.
Of the cells used in this analysis, ~84% of DLS cells were classified as
phasic firing while the remaining 16% were classified as high firing. For
DMS, ~67% of cells were phasic firing while the remaining 33% were
high firing. We only found one tonic firing cell in the DMS, which was
excluded from subsequent analyses.

Entrainment and pairwise phase consistency (PPC) analysis. We
used PPC (Vinck et al., 2010, 2012) to quantify entrainment of cell activ-
ity to oscillations in the LFP. The phase (¢) of a given oscillation at the
time of every spike from each cell was represented as a vector: Uy = (cos
(@1)sin(¢y)), where k refers to the number of spikes from a given cell.
We then computed the dot product of Uy and Uj for each possible spike
pair (kj) for each cell (Vinck et al.,, 2012). The resultant value ranges
from —1 to 1 and reflects the coincidence of ¢ between each spike pair.
¢ at spike times becomes maximally inconsistent as PPC approaches —1
and becomes maximally consistent as PPC approaches 1. Thus, for each
cell, we obtained a single PPC score indicating mean consistency of ¢ at
pairwise spike times for that cell. We then obtained a distribution of
PPC scores at randomly selected points in time (k = # of spikes = # of
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random times) across 100 shuffles. Mean PPC for each cell was normal-
ized relative to the distribution of PPC scores at randomly selected
points in time. A cell was considered to be significantly entrained if its
mean PPC at spike times was >2 SDs above the mean of the distribution
of PPC from randomly selected points in time. A x> test was used to
compare distributions of significantly entrained cells between DLS and
DMS for each frequency analyzed.

Finally, we assessed preferential spiking activity of cells by computing
a tuning curve of spike count as a function of phase (¢) for a given oscil-
lation. ¢ was broke up into 16 bins, and mean spike count for each bin
was obtained for each cell. Tuning curves were averaged across cells for
each session. Tuning curves for each session were normalized by taking
the ratio of spike counts in each bin to mean spike counts across all bins
for that session. This normalization allowed for easier visualization and
comparison of phasic firing and high firing cells and does not affect the
patterns of activity as a function of ¢. A Rayleigh test was used to assess
nonuniformity in normalized firing rate across ¢. The resultant vector
length of obtained data was compared with a distribution of resultant
vector lengths from shuffled spike-phase relations (500 shuffles) to assess
whether normalized firing rate across ¢ was not uniform for a given
frequency.

Bayesian decoding. We used a spatial Bayesian decoding algorithm
that estimates the animal’s position on the maze at time, t, given ensem-
ble spiking activity at that time (Zhang et al., 1998). This Bayesian algo-
rithm leverages spatial tuning curves and overall spike rates across the
session for each cell to construct posterior probability distributions over
maze locations at any given time (i.e., the probability that the rat, at time
t, is located at a given position in the maze given spatial tuning curves
and overall spike rates). Both x and y positions of the maze were broken
up into 64 bins, and for each cell we obtained a tuning curve of firing
rate across the maze. In addition, we obtained firing rate during 100 ms
bins across the entire session for each cell. We applied this decoding
algorithm, assuming a uniform spatial prior, to cell ensemble activity
while rats were in the EZ of the maze during the window covering —5 s
to +2 s (100 ms bins) around the time of DLS/DMS bursts for each lap.
Rats typically remained in the EZ throughout this window for the major-
ity of laps. However, to ensure our reward location decoding estimates
were nonlocal, we excluded from analysis any times for which the rat
was not in the EZ. In this way, we use the term “nonlocal” to refer to rep-
resentations of locations on the maze where the rat was not currently
located (i.e., any maze location outside of the EZ).

Because reward locations were the only nonlocal representations
observed while rats were in the EZ, we focused exclusively on nonlocal
reward location representations for subsequent analyses. We used occu-
pancy (i.e., time spent at any given point in the maze) to determine the
precise locations where left and right rewards were delivered on the
maze and averaged decoding probability across spatial bins within those
localized areas to quantify reward location representations (termed
“pReward”). Reward locations were determined separately for each ses-
sion to ensure an individualized, accurate identification of reward
location.

Reward location representations were collapsed across turn sequen-
ces (ie, LL, LR, RL, RR) and contingencies (i.e., left, right, alternate) to
specify “past” and “future” reward locations. Past representations were
defined by pLeftReward for LL laps for the left contingency and LR laps
for the alternate contingency, combined with pRightReward for RR laps
for the right contingency and RL laps for the alternate contingency. For
future representations, we used pLeftReward for LL (Left) and RL
(Alternate) laps combined with pRightReward for RR (Right) and LR
(Alternate) laps. Thus, past representations reflect the just-visited reward
site, whereas future representations reflect the about-to-be-visited
reward site (regardless of left vs right location). To measure retrospective
bias, we found mean pReward representations during the period of max-
imum 50 power (see section below for how the 50 epoch was
defined) for each lap. [LFP data for R269 were noisy and were therefore
not included in LFP analyses. For this reason, we could not use 50
epochs to average pReward representations. Thus, For R269, we found
mean pReward in the 2 s prior to each DLS ensemble burst to calculate
retrospective bias. Our main results regarding nonlocal reward location
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representations remain when R269 was excluded from analyses.] We
then took the log10 (pRewardPast/pRewardFuture) to measure biases in
past versus future reward location representations for each lap. Values of
0 indicate no bias in reward location representations. Values >0 indicate
a retrospective bias, whereas values <0 indicate a prospective bias in
reward location representations. A Wilcoxon rank-sign test with a
Bonferroni correction for multiple comparisons (n=1061; total laps)
was used to determine whether there was a significant retrospective bias
in reward location representations for either DLS or DMS ensembles
and to compare the degree of retrospective bias between regions. In
addition, for each rat, we found mean retrospective bias in reward loca-
tion representations in DLS and DMS ensembles. A Wilcoxon sign rank
test (n = 6; rats) was used to determine whether between-region differen-
ces in retrospective bias were consistent across rats.

Finally, we found the number of laps for which the bias measure
indicated that past reward location representations were twice as strong
as future reward location representations, which defined laps with a ret-
rospective bias. We also found the number of laps for which the bias
indicated that future reward location representations were twice as
strong as past reward location representations, which defined laps with a
prospective bias. We then compared the proportion of laps with a retro-
spective and prospective bias in DLS and DMS ensembles.

Reward location representations during y50 events. To assess the
relation between reward location representations in DLS cell ensembles
and 50 oscillations in the LFP, we found the temporal epoch during
which y50 power was highest. To this end, for each lap, we found the
time of the first and last burst of y50 power while rats were in the EZ of
the maze. A 50 burst was defined as any point in time for which y50
power was at least 2 SDs greater than the session-wide mean. Thus, for
each lap, we obtained times for the first and last burst of y50 power and
defined three adjacent temporal epochs corresponding to the period
before, during, and after these two times. The “during” epoch for each
lap was defined as the period of time between the first and last y50 burst.
The “before” epoch was defined as the period, of equal duration as the
“during” period for that lap, before the first burst in y50 power. The “af-
ter” epoch was defined as the period (of equal duration as “during”) fol-
lowing the last y50 burst. We compared past and future reward location
representations between these three epochs to explore their relation to
750 events at lap initiation. A Wilcoxon sign rank test with a Bonferroni
correction for multiple comparisons (n=1061; total laps) was used for
each pairwise epoch comparison to assess significant differences in
reward location representations across laps. In addition, for each rat, we
found mean past/future reward location representations during y50
events and subtracted from it past/future reward location representa-
tions averaged across before and after y50 events (ie., “non-vy50”
epochs). This resulted in a single value for each rat indicating the degree
to which past/future reward location representations increased during
50 events, with values >0 indicating stronger representations during
y50 events. A paired-samples t test (n=>5; rats) was used to assess
whether past/future reward location representations were strongest dur-
ing y50 across rats.

Results

Rats navigated a Hebb-Williams maze (Fig. 1A) to earn food
rewards by either turning left, right, or alternating between left-
right turns. The contingency for earning food (i.e., left, right, or
alternate) was randomly selected at the start of each session and
changed approximately halfway through the session. Rats quickly
recognized the correct turn sequence within each session and
adapted that turn sequence following the mid-session contin-
gency switch (Regier et al., 2015). In addition, the proportion of
DLS ensemble activity in the EZ (Fig. 1A) relative to the rest of
the maze increased as rats adopted their behavioral strategy
(Regier et al.,, 2015), replicating the typical DLS task-bracketing
effect (Jog et al., 1999; Barnes et al., 2005; Jin and Costa, 2010;
Thorn et al, 2010; Smith and Graybiel, 2013; Jin et al., 2014).
Here we expand on these findings through novel analyses
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examining DLS representations and y50 oscillations around the
time at which DLS ensembles exhibited their activity bursts in
the EZ of the maze, which corresponded roughly to the point at
which the previous lap ended and the next lap began. As a con-
trol, we applied all neurophysiological analyses to the DMS to
assess whether task-bracketed ensemble bursts, nonlocal repre-
sentations, and y50 oscillations were a feature of the DLS specifi-
cally or the dorsal striatum in general.

Behavioral stereotypy and bursts of DLS ensemble activity in

the maze EZ

Procedural decision-making systems are characterized in part by
the consistent and reliable topography of the behavior they gov-
ern (i.e, stereotypy). Rats developed a stereotyped path trajectory
through the navigation sequence as they adopted the appropriate
behavioral strategy (Fig. 2A-F). Both the pre-switch and post-
switch periods were characterized by an increase in similarity of
path trajectories between adjacent laps (Fig. 2C,D). A paired-
samples ¢ test revealed that the mean slope describing the change
in lap adjacent path similarity across laps for each rat was signifi-
cantly >0 (¢5)=4.58, p=0.003, d = 1.87), indicating an increase
in path stereotypy across laps (Fig. 2F). This stereotyped path
trajectory was disrupted by the contingency switch (Fig. 2E) and
was accompanied by an increase in vicarious trial-and-error
(Regier et al., 2015), a behavioral marker of deliberative decision-
making (Muenzinger and Gentry, 1931; Tolman, 1948; Redish,
2016). Interestingly, once rats adopted their new behavioral strat-
egy to the changed contingency, a new stereotyped path trajec-
tory developed (Fig. 2E). That is, path trajectory for any given
lap during the post-switch period was similar to lap-adjacent
paths but markedly different from path trajectories during the
pre-switch period. Thus, rats adopted stereotyped path trajecto-
ries during both pre-switch and post-switch periods, but the ster-
eotyped paths differed between these periods. These results
suggest that scent following likely did not contribute to the ster-
eotyped path trajectory and are consistent with the notion that
the observed action sequences were governed by a procedural de-
cision-making system.

As animals automate a rewarded action sequence, the DLS
develops a characteristic firing pattern in which cell ensemble fir-
ing rates highlight boundaries of the learned action sequence
(Jog et al., 1999; Barnes et al., 2005; Jin and Costa, 2010; Thorn et
al,, 2010; Smith and Graybiel, 2013; Jin et al., 2014; Regier et al,,
2015). We assessed mean normalized firing rate at each of eight
zones in the maze (Fig. 1A) across laps to assess changes in DLS
and DMS ensemble activity patterns as rats adopted the appro-
priate behavioral strategy to the pre-switch contingency. During
early laps, DLS ensembles fired at a relatively high rate through-
out the maze. As laps progressed and rats adopted the appropri-
ate behavioral strategy, DLS ensembles decreased their firing rate
throughout the maze (evidenced by a significant linear regression
across laps: F=10.25, p=0.004) but continued to exhibit bursts
of firing in the EZ (Fig. 3A,C). This result is consistent with the
notion that DLS ensembles shape their activity to highlight criti-
cal portions of an action sequence (or “task”) rather than each
action within the sequence (Jog et al., 1999; Barnes et al., 2005).
DMS ensembles showed relatively heightened activity through-
out the maze during early laps that disappeared as laps pro-
gressed (Fig. 3D,F; evidenced by a significant linear regression
across laps: F=17.46, p=0.0004). However, DMS ensembles did
not show heightened firing in the EZ that was sustained across
laps in a manner similar to DLS ensembles. Thus, a burst of
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firing at the start/end portion of the maze A
was characteristic only of DLS ensembles.
Between-region differences in firing
patterns across the maze were also
observed during the post-switch period. In
the DLS, firing rate was highest when rats
were in the EZ (as during the pre-switch
period), although the contingency switch
appeared to disrupt the size of these DLS
bursts in the EZ (Fig. 3B). Interestingly, B
the DMS showed a relatively higher firing
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Task-bracketing scores, averaged across
pre- and post-switch periods, were signifi-
cantly >0 in the DLS (Wilcoxon sign-rank
test: p=0.047, d=0.82) but not DMS (o
(Wilcoxon sign-rank test: p=0.281), indi-
cating that activity bursts at the start/end
of a lap were characteristic of DLS, but not
DMS, ensembles. In addition, task-brack-
eting scores across rats revealed greater
task-bracketing in the DLS than DMS
(ts)=1.20, p=0.051, d=0.75) (Fig. 3G).
These characteristic differences in firing
patterns between DLS and DMS ensembles
are similar to that reported by Thorn et al.
(2010). These results are consistent with
the notion that the DLS and DMS partici-
pate in functionally distinct decision-
making systems, with the DLS playing a
role in procedural decision-making sys-
tems and the DMS playing a role in
more deliberative decision-making sys-
tems that activate when contingencies change and behavior
must adapt accordingly.

5

Figure 3.

across rats (black line).

Experience-dependent rise in y50 power precedes DLS bursts
at lap initiation

Bursts of DLS activity are often time-locked to the presentation
of a cue indicating the opportunity to initiate movement (Barnes
et al.,, 2005; Stalnaker et al., 2010) or the time at which a lever
was pressed (Jin and Costa, 2010; Cui et al., 2013; Gremel and
Costa, 2013; Jin et al, 2014). However, the temporal relation
between these external events and the internal decision to initiate
movement is unclear. Because laps in our task were uncued and
self-initiated, we were able to more precisely measure how DLS
bursts relate to self-initiation of a well-learned learned action
sequence. We constructed peri-event averages of movement ve-
locity around the time at which the normalized firing rate was
highest while rats were in the EZ of the maze. As expected, activ-
ity bursts in the EZ were greater in the DLS than in the DMS
(Fig. 4A-C; Wilcoxon sign-rank test: p=1.6 x 10~ '%, d=0.218).
In addition, a paired-samples ¢ test of mean burst size across rats
revealed significantly larger EZ activity bursts in the DLS com-
pared with the DMS (t5=2.07, p=0.046, d=1.20; Fig. 4C).
Interestingly, rats initiated their learned action sequence ~500-
1000 ms before the DLS burst (Fig. 4F). Thus, while bursts of
DLS activity occurred in close temporal proximity to initiation of
a learned action sequence, they did not appear to be causally
related to movement initiation. Instead, this result suggests that
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DLS cell ensemble bursts occurred in the EZ of the maze. A, B, D, E, Normalized firing rates in each of the eight
maze locations averaged across 5 lap bins during the pre-switch period (4,0) and post-switch period (B,E) for the DLS (4,B)
and DMS (D,E). DLS ensembles fired at a relatively high rate across the maze during early laps that decreased as rats adopted
a stereotyped action sequence. However, DLS ensembles continued to show bursts of activity in the EZ of the maze. This fir-
ing pattern was absent in the DMS (n = 32 sessions across rats). ¢, Example DLS cell for a single lap that exhibited a burst of
activity in the EZ of the maze. F, Example DMS cell for a single lap that showed activity during the navigation sequence and
reward location without any activity in the EZ of the maze. G, Task bracketing scores for each rat (colored lines) and averaged

DLS bursts at lap initiation might play a role in movement
kinetics or sequence organization.

Given the temporal correspondence between DLS bursts and
lap initiation, along with previous reports of a rise in y50 power
(45-55Hz) at the time of self-initiated movement (Masimore et
al., 2005), we next explored the relation between y50 power and
activity bursts in both the DLS and DMS. To this end, we
assessed spectrograms ranging from 1 to 100 Hz in both the DLS
and DMS. A transient rise in y50 power was observed in the
DLS but not the DMS (Fig. 4D,E). This rise in y50 power in the
DLS appeared ~500 ms before bursts of DLS ensemble activity
in the EZ. Thus, a rise in y50 power preceding bursts of ensem-
ble activity (Fig. 3A) is a characteristic feature of the DLS and is
largely absent in the DMS. This result is a replication of previous
reports that found heightened y50 power in the DLS when a
rewarded action sequence was initiated (Masimore et al., 2005).
In addition, these results extend this finding and suggest that
heightened 50 power is temporally linked to characteristic
bursts of DLS ensemble activity that also occurs around the time
a well-learned action sequence is initiated. Finally, we found that
movement initiation at the start of a lap was closely aligned the
moment of maximum y50 power in the DLS (Fig. 4G), which is
consistent with Masimore et al. (2005).

There was also a prominent rise in low-frequency power (2-
20 Hz) following EZ activity bursts in both the DLS and DMS
(Fig. 4D,E). This result is consistent with previous reports of
increased 6 power during periods in which rats traverse a maze
to earn food (Berke et al., 2004; DeCoteau et al., 2007). Thorn
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50 power in the DLS LFP peaked near DLS activity bursts. A, B, Violin plots represent the distribution of normalized EZ activity bursts in the DLS and DMS across laps (n = 1067;

total laps). , Firing burst size (normalized firing rate) in DLS and DMS ensembles for each rat (colored lines) and averaged across rats (black line). Activity bursts were stronger in DLS ensem-
bles compared with DMS ensembles. D, E, Normalized power across 1-100 Hz in the DLS (D) and DMS (E). Power at each 100 ms bin of the peri-event average for each frequency was normal-
ized relative to average power at that frequency. Changes determined to be significant by Wilcoxon sign rank tests are outlined with contour lines and decreased transparency. Red contour
lines indicate significant increases in power. Blue contour lines indicate significant decreases in power. Theta oscillations became more prominent following the neural activity bursts (and lap
initiation) in both the DLS and DMS. However, a burst of 50 power around the moment of the activity burst was observed only in the DLS (n=29 sessions across rats). F, Velocity rose
moments before the burst of DLS ensemble activity in the EZ. Error bars indicate SEM. G, Mean velocity around the time of maximum -y50 power. Error bars indicate SEM. Initiation of the
action sequence is more closely linked in time to 50 events (G) than ensemble bursts of activity (F).

and Graybiel (2014) reported more prominent 65 oscillations in
the DLS and more prominent 6, oscillations in the DMS.
However, we did not find any differences in 6 5 versus 6 ;o power
between DLS and DMS. Instead, normalized power for both 65
and 6,, was lower than average before lap initiation and
increased around the time of lap initiation in both structures. It
is possible that between-structure differences in 65 and 6,
power were not observed because DMS recordings in the present
study were more posterior than in Thorn and Graybiel (2014).
Nevertheless, our findings suggest that, while 65 and 6, power
increases following lap initiation in both DLS and DMS, a rise in
50 power accompanying a burst of ensemble activity at lap ini-
tiation was seen only in the DLS.

Bursts of activity in DLS cell ensembles develop over time
(Barnes et al., 2005; Thorn et al., 2010; Smith and Graybiel, 2013;
Jin et al., 2014; Regier et al., 2015). While we found a relation
between y50 power and bursts of activity in the DLS, it is unclear
whether this relation developed with experience. To address this,
we assessed Y50 power averaged across 5 lap bins in both the
DLS and DMS. The rise in y50 power that preceded activity
bursts developed across laps in the DLS (Fig. 5A,C). Normalized
50 power in the DLS not only increased across laps but also
became tightly centered around DLS burst time as rats adopted
their behavioral strategy to the current reward contingency (Fig.
5A). This experience-dependent change in the relation between
50 power and activity bursts was not observed in the DMS (Fig.
5B,D). A repeated-measures ANCOVA revealed a significant inter-
action in the slope of y50 power across lap bins between DLS and
DMS (F(1251)="7.59, p= 0.006). In addition, the mean slope of y50
power across lap bins for each rat was significantly greater in the
DLS than DMS () = 2.74, p = 0.026, d = 0.931; Fig. 5E).

In sum, y50 power in the DLS LFP rose and peaked before
DLS bursts as rats adopted a well-learned, rewarded action

sequence. This rise in DLS y50 power developed with experi-
ence, was tightly linked in time to the initiation of a well-learned
action sequence, and was not observed in the neighboring DMS.
These results suggest that y50 events were a feature of DLS activ-
ity that were closely related to procedural action sequences and
DLS ensemble bursts at lap initiation.

Phasic firing DLS cells were entrained to y50 oscillations
A key facet of functional neuroanatomy is the entrainment of cell
spiking to oscillations in the LFP (Buzsdki and Draguhn, 2004).
Such phase-specific firing allows anatomically segregated brain
regions to communicate information in a manner that allows
adaptive behavior in real time (Gatev et al., 2006). Previous reports
have found DLS cell entrainment to 6 oscillations while rats
earned reward in a navigation task (e.g., DeCoteau et al., 2007;
Tort et al., 2008; Thorn and Graybiel 2014), although it is unclear
whether DLS cells are also entrained to 750 oscillations. To
address this question, we did a PPC analysis to measure how con-
sistently spike-pairs for a given cell fire at a similar phase of 50
(Vinck et al., 2010, 2012; Thorn and Graybiel, 2014) for both pha-
sic firing and high firing cells in the DLS and DMS.
Approximately 15% of DLS cells showed significant entrain-
ment to y50 compared with only 6% of DMS cells (Fig. 64; x* =
13.82, p=10.0002). In addition, there were significantly more pha-
sic firing and high firing cells entrained to y50 in DLS compared
with DMS (Fig. 6B; phasic firing DLS vs DMS, x* = 22.34,
p=2.3x10"% high firing DLS vs DMS, x> = 4.83, p=0.02).
Interestingly, phasic firing DLS cells showed a consistent spike-
phase relation to 50 oscillations (Fig. 6C; Rayleigh test,
P <0.002). Phasic firing cells in the DLS exhibited peak firing
near the trough of y50 oscillations (Fig. 6C,D), whereas high fir-
ing DLS cells showed no systematic preference for the y50 phase
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Rise in 50 power at the DLS burst developed with experience. Normalized y50 power during the —5/2 s surrounding bursts of ensemble activity averaged across 5 lap bins for

DLS (A,C) and DMS (B,D). y50 power at each 100 ms bin was normalized with respect to average y50 power for that session. To obtain mean -y50 power in C and D, normalized 50 power
was averaged during the 1 s preceding activity bursts in the EZ across 5 lap bins. 7y50 power rose more steeply with experience in DLS compared with DMS (n = 29; sessions X rats). In addi-
tion, increased y50 power was concentrated around the time of the DLS burst (n =29 sessions across rats). E, Mean slope of 50 power across lap bins for each rat (colored lines) and aver-

aged across rats (black line).

at which they fired (though high firing DLS cells were not uni-
formly distributed; Rayleigh test, p =0.016). Neither phasic firing
(Rayleigh test, p=0.166) nor high firing (Rayleigh test, p=0.106)
DMS cells showed a systematic spike-phase relation to 50 oscil-
lations (Fig. 6C).

Previous work has found entrainment of DLS and DMS cells
to 65 and 6,y oscillations, respectively (Thorn and Graybiel,
2014). We similarly found stronger entrainment to 65 compared
with 6 in the DLS (Fig. 6A). Nearly half (45%) of all DLS cells
were significantly entrained to s, but only ~14% of DLS cells
were entrained to 6,o. Much like Thorn and Graybiel (2014), we
found a large fraction of both phasic firing and high firing DLS
cells entrained to #s. Both phasic and high firing cells in DLS
showed preferential firing at the peak of 65 oscillations. However,
unlike Thorn and Graybiel (2014), we found that DMS cells were
also more strongly entrained to 65 than 6, (Fig. 6A), with ~31%
of DMS cells significantly entrained to 65 and only ~8%
entrained to 6. Similar to DLS, both phasic and high firing cells
in the DMS showed preferential firing at 65 peak. As noted earlier,
it is possible we did not find differential entrainment of DLS and
DMS cells to 65 and 64 as did Thorn and Graybiel (2014)
because DMS recordings from the present experiment were
located more posterior than in Thorn and Graybiel (2014).

In sum, while both DLS and DMS cells were entrained to 65
oscillations, only DLS phasic firing cells were entrained to y50.
To the extent that phasic firing striatal cells reflect activity of
MSNS, these results suggest that entrainment and preferential fir-
ing of striatal activity to y50 oscillations are specific to MSNs in
more lateral aspects of the dorsal striatum.

Nonlocal, retrospective reward location representations in
the DLS

While there are many reports of heightened DLS activity at
action boundaries and instruction-cue presentation, there have

not been attempts to examine whether nonlocal representations,
either past- or future-oriented, are contained within these activ-
ity bursts. Addressing the question of whether DLS ensembles
contain past- or future-oriented representations bears direct rele-
vance to prominent, existing theories of DLS function as it relates
to procedural decision-making. To address this question, we
used a naive Bayesian spatial decoding algorithm (Zhang et al.,
1998) to assess the extent to which behaviorally meaningful
and potentially nonlocal sections of the maze were represented
around the time at which rats initiated their learned action
sequence and DLS ensembles exhibited their characteristic firing
burst. Aligning decoding to the time of DLS and DMS bursts in
the EZ (including only data while rats were in EZ) revealed non-
local representations in DLS cell ensembles.

DLS cell ensembles represented nonlocal reward locations in
the moments before lap initiation bursts in the EZ (Fig. 7A,B).
This result suggests that nonlocal representations are not about
movement trajectories or CPs but are instead about locations
where rewards were collected. Critically, these reward location
representations were consistently about past experiences more so
than future ones. (Fig. 7A-C). The distinction between past- and
future-reward location representations is best illustrated by the
difference in left versus right reward location representations
for from-left-to-right (LR) versus from-right-to-left (RL) turn
sequences when the alternation contingency was in effect. For
alternation turn sequences, the previously visited and about-to-
be visited rewards are at separate locations, therefore allowing
determination of whether nonlocal representations at DLS bursts
are about the past or future. Left reward location representations
were strongest during from-left-to-right (LR) turn sequences,
whereas right reward location representations were strongest
during from-right-to-left (RL) turn sequences (Fig. 7A,B). Thus,
DLS cell ensembles represented the place where reward was just
collected rather than the place where reward was about to be
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The percent of cells entrained to each frequency was determined for DLS (circles) and DMS (triangles; right). DLS and DMS cells were most strongly entrained to 5. However, a larger percent-
age of cells in the DLS were entrained to <5, compared with DMS. B, Percent of phasic firing and high firing cells entrained to << in the DLS (left) and DMS. C, Mean (SEM) normalized spike
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Only phasic firing cells in the DLS showed phase-dependent firing during -y, oscillations, with peak firing rate near the -y, trough (n =29 sessions across rats). D, Examples of phase-depend-
ent firing of DLS phasic firing and high firing cells for three separate sessions illustrating preferential firing of phasic firing DLS cells at the trough of ys.

collected. Importantly, past-reward location representations
were not decaying remnants of location encoding from when
the rat was at the reward location because the representations
diminished between the previous reward experience and
strengthened as time approached DLS bursts. Representations
of past or future reward locations were largely absent in the
DMS (Fig. 7A).

To further analyze the past- or future-orientation of infor-
mation encoded in ensemble bursts, decoded reward loca-
tions were collapsed across turn sequences and contingencies
based on whether the reward location was from the previous
(past) or subsequent (future) lap. We computed a “retrospec-
tive bias” in reward location representations by taking the
log ratio of mean decoding to past and future reward loca-
tions (logl0 (pPastReward/pFutureReward)) for each lap.
Values of 0 indicate no bias, whereas values >0 and <0 indi-
cate a bias for past or future reward location representations,
respectively. There was a significant retrospective bias in
reward location representations in the DLS (mean =0.08;
SD =0.25; Wilcoxon sign-rank test: p=1.4 X 1073%, d=0.40),
along with a weaker but significant retrospective bias in
DMS (mean=0.04; SD=0.20; Wilcoxon sign-rank test:
p=0.03x 10", d=0.23). The retrospective bias was signifi-
cantly stronger in DLS compared with DMS (Fig. 7C;
Wilcoxon sign-rank test: p=1.4 x 10°%, d=0.241). A retro-
spective bias in DLS representations appeared on 18.2% of
laps, with a prospective bias for only 3.1% of laps. In con-
trast, there was a retrospective bias in DMS representations
on only 8.1% of laps, with 2.0% of laps showing a prospective
bias. Further, past representations were significantly greater
than future representations in the DLS but not DMS
(Wilcoxon sign-rank test: p=0.00001, d=0.135 for DLS;
p=0.13, d=0.065 for DMS). Finally, mean retrospective bias
across rats was significantly stronger in DLS compared with
DMS (Fig. 7D; Wilcoxon sign-rank test: p=0.003, d=0.59),

suggesting that the retrospective bias was consistent across
rats.

Collectively, these results support the hypothesis that DLS
more likely uses Markovian representations of past events rather
than representing future action plans to regulate well-learned
procedural action sequences. In addition, events represented in
DLS ensembles during task-bracketed bursts at lap initiation
were not about past or future action sequences but were instead
about past reward locations. These past-reward representations
in DLS appeared around the time at which an automated action
sequence was initiated and DLS ensembles correspondingly
exhibited a relatively high firing rate. These past-reward location
representations were largely absent in the DMS.

Retrospective reward location representations in the DLS
peaked during y50 event

Given that past-reward location representations and rises in y50
power occur at lap initiation, we assessed the degree to which ret-
rospective representations were related to periods of high 50
power in the DLS. Reward location representations were highest
during the period in which y50 power was also highest (Fig.
8A). Wilcoxon rank sum tests revealed that past and future
reward location representations were significantly higher during
v50 events compared with before and after the period of y50
power (p < 0.0001 for before vs during and during vs after com-
parisons). In addition, a repeated-measures ANOVA (epoch X
past/future) revealed a main effect of epoch (F(3,772)=191.2,
p<<0.0001) but no interaction between epoch and past/future
representations (Fz2772)=0.11, p=0.89). Follow-up paired-sam-
ples ¢ tests revealed that mean past reward location representa-
tions were significantly greater during the y50 event than before
(taro)y = —7.87, p=94x10""% d = —0.107) and after
(t60sy=14.52, p=1.1 1074, d=0.184) epochs. Future reward
location representations were also greatest during the y50 event
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Nonlocal representations of past-reward locations appeared in DLS but not DMS. A, Mean probability of decoding to left and right reward locations around neural activity bursts in

the EZ of the maze for DLS (left) and DMS (right) on correct laps. Turn direction for the previous and subsequent lap for each lap sequence is indicated to the left of each row with the corre-
sponding contingency indicated to the right (e.g., LL, left-past left-future turn sequence for the left contingency; RL, right-past left-future turn sequence for the alternate contingency). Solid
lines indicate mean -y50 power during corresponding lap sequences. Reward location representations increased as time to the DLS burst approached, and the representations were stronger for
past reward locations compared with future reward locations (n = 32 sessions across rats). B, Examples of past-reward location representations in the DLS for each turn sequence taken 100 ms
before the DLS burst. Note the relatively strong representations of current location (bottom of each maze) in addition to the nonlocal representations of the previously visited reward location.
€, Violin plots of retrospective bias in reward location representations for DLS and DMS across all laps (n = 1061; total laps). The retrospective bias in reward location representations was stron-
ger in DLS than it was in DMS. D, Retrospective versus prospective bias in reward location representations in DLS and DMS ensembles for each rat (colored lines) and averaged across rats (black

line).

compared with before (f479) = —8.21, p=7.4 X 10713, d=0.101)
and after (fgos =14.93, p=7.9 x 10~ *, d=0.163). In addition,
mean nonlocal reward location representations were significantly
stronger during y50 events than before or after for both past
(ty=3.75, p=0.01, d=0.633) and future (t4=4.18, p=0.003,
d=0.734) rewards across rats (Fig. 8B,C). These results suggest a
close temporal correspondence between high-y50 power and
nonlocal reward location representations in the DLS around the
time at which rats initiated a learned action sequence.

Discussion

Retrospective versus prospective representations in the DLS
Procedural actions are commonly believed to be governed by an
association between antecedent stimuli and instrumental
responses that develop through a history of reinforcement
(Thorndike, 1932; Hull, 1942; Herrnstein and Prelec, 1991;
Balleine and Dickinson, 1998). This notion is formalized with
“model free” reinforcement learning algorithms, which learn the

value of taking an action in a given context by storing a cached
value for state-action pairs based on previous experience (Sutton
and Barto, 1998; Daw et al., 2005; Niv et al., 2007; Dayan and
Daw, 2008). Model-free reinforcement learning algorithms
therefore select actions based on representations of the current
state. Under this theory, the DLS should represent features of the
current state that have been critical for earning reward, such as
information about past events that allow the current state to trig-
ger previously successful actions (Fig. 1B).

Other perspectives conceptualize procedural actions as
action-chains that have been “chunked” together into a cohesive
sequence that defines a single unit eligible for action selection
(Graybiel, 1998; Barnes et al., 2005; Smith and Graybiel, 2013).
Dezfouli and Balleine (2012) formalized a model in which the de-
cision to initiate a procedural action sequence is governed by a
goal-directed system that deliberates over which chunked action
sequence should be executed (Dezfouli and Balleine, 2013;
Dezfouli et al., 2014). Thus, rather than deliberating over each
constituent action within the sequence, the action-chunking
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for each rat (colored lines) and averaged across rats (black line).

process allows the goal-directed system to deliberate over the
sequence as a whole. This perspective suggests that the DLS
should represent future action plans at the initiation of a proce-
dural action sequence, perhaps by transiently representing the
entire sequence or just the start and end of the to-be-executed
sequence (Fig. 1C).

Similarly, successor representations offer a tractable solution
to the problem of predicting future rewards without the need for
computationally expensive world models. Successor representa-
tions learn a predictive map of the environment using represen-
tations of expected occupancy of the next state within a sequence
of states (Dayan, 1993; Gershman et al., 2012; Momennejad et
al., 2017; Gershman, 2018). Importantly, successor representa-
tions can be used to accurately predict reward when trajectories
through a state space become consistent over time. Because a
defining characteristic of procedural action sequences is their
consistency and stereotypy, successor representations might play
an important role in the computational basis of procedural deci-
sion-making. As animals learn to automate their action sequen-
ces, predictions about the next state (or location) in the form of a
successor representation become more reliable and can therefore
predict future rewards (Gershman, 2018). This perspective also
suggests that the DLS should represent the future path of the ani-
mal in a compact representation.

Our results support a role for task-bracketed DLS bursts in
“model-free” reinforcement learning over the other two theories
(goal-directed action-chains and successor representations). Our
data revealed that DLS representations around lap initiation
encoded recent experiences more than future action sequences.
Previous work has characterized task-bracketing DLS bursts as
representing meaningful boundaries of a well-learned action
sequence (Barnes et al., 2005; Thorn et al, 2010; Smith and
Graybiel, 2013; Jin et al., 2014). However, it was unclear what in-
formation was represented within these task-bracketed bursts of
activity. Our results replicate these findings and further suggest
that the bursts at task-initiation are accompanied by representa-
tions of recently visited locations where reward was obtained
rather than future action sequences, future reward locations, or
successor representations. While it is certainly possible that other
brain structures play roles in planned action-chains or successor
representations, our data do not support a role for task-bracketed
DLS bursts in these cognitive processes.

It is currently unclear what role representations of previous-
visited reward locations play in procedural decision-making.

One possibility is that past-reward location representations
reflect the consequences of a state identification process that
allows animals to recognize the current situation (Redish et al.,
2007) and subsequently execute the appropriate action sequence.
In the current task, the location of previously acquired reward
can serve as a cue informing the rat of the current contingency
and can therefore guide action selection in the EZ of the maze.

Functional distinctions between DLS and DMS

Available evidence suggests that the DLS and DMS participate in
functionally distinct decision-making systems (Featherstone and
McDonald, 2005; Yin et al., 2006; Stalnaker et al., 2010; Thorn et
al,, 2010; Thorn and Graybiel, 2014; Murray et al., 2012; Kim et
al,, 2013; Ito and Doya, 2015; Regier et al., 2015; Vandaele et al.,
2019). The DLS is believed to play a role in procedural decision-
making systems that drive stabilized and automated behavior
(Featherstone and McDonald, 2004; Yin et al., 2004, 2006). In
contrast, the DMS is believed to play a role in more deliberative
decision-making systems that adapt behavior to changing envi-
ronmental contingencies (Featherstone and McDonald, 2005;
Ragozzino, 2007; Ragozzino et al, 2002; Yin et al, 2006).
Previous work has found that DLS and DMS ensembles exhibit
systematic differences in firing patterns across maze locations as
rats learn to traverse a maze to earn reward (Thorn et al., 2010;
Thorn and Graybiel, 2014). While previous reports found these
characteristic patterns across days (and weeks) of training
(Thorn et al,, 2010; Thorn and Graybiel, 2014), we found differ-
ences in activity patterns between DLS and DMS ensembles
across maze locations within a single session, suggesting that
these characteristic activity patterns can adjust to changing cir-
cumstances over relatively short timescales.

Interestingly, we found that task-initiation DLS bursts occurred
moments after a self-initiated action sequence began (see also
Yin et al.,, 2009). Some evidence suggests that the dorsal stria-
tum plays a critical role in initiating a movement sequence
(Neafsey et al., 1978; Hikosaka et al., 2000; Bailey and Mair,
2006; Jin and Costa, 2010; Cui et al., 2013; Jin et al., 2014, Yin
and Knowlton, 2006). However, there is also evidence that the
dorsal striatum plays a critical role in shaping performance-
related parameters and kinematics once movement has been
initiated (Anderson and Horak, 1985; Nowak et al., 2018;
Rueda-Orozco and Robbe, 2015; Dudman and Krakauer,
2016; Markowitz et al., 2018; Crego et al., 2020). While it is
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likely that the dorsal striatum plays a role in both action initia-
tion and execution (e.g., Tecuapetla et al., 2016; Thura and
Cisek, 2017; Klaus et al., 2019), our results suggest that past-
reward location representations contained in bursts of DLS
activity at lap initiation are more likely to contribute to move-
ment parameters and kinematics of a stereotyped action
sequence rather than its initiation per se. Perhaps past-reward
location representations, by providing information about the
current state of the world (e.g., turn direction required to earn
reward), allow a well-learned action sequence to be executed
in a ritualistic manner similar to the way it has been executed
in the past (e.g., the duration, organization, vigor, or trajectory
of the action sequence).

Importantly, while we found a significant bias for retrospec-
tive representations, our results do not preclude the existence of
prospective information within DLS bursts. These occasional
future-oriented representations might suggest a more nuanced
view such that both retrospective and prospective information is
contained in DLS bursts, and that variability in these representa-
tions may play a role in procedural decision-making systems.
Thus, our results do not preclude prospective representations in
the DLS, nor that such prospective representations may be im-
portant for procedural decision-making systems. Instead, our
results show that retrospective representations were more promi-
nent than prospective representations around the time at which
a procedural action sequence was initiated.

Our results reveal the information represented within DLS
bursts at lap initiation, which has implications for the func-
tional role of these bursts in procedural action sequences.
However, our results do not explicitly identify what this
functional role might be. Retrospective representations in
DLS bursts may play a role in regulating the degree to which
the subsequent action sequence is ritualized and stereotyped.
Retrospective representations may contribute to the rat’s de-
cision to turn either left or right at the CP, thereby contribut-
ing to reward-guided action selection. It is also possible that
retrospective representations may not play a direct, func-
tional role in upcoming action sequences and choices but
instead contribute to the learning and development of proce-
dural action sequences over time.

750 and DLS task-initiation bursts

Oscillations visible in the LFP organize spiking activity across
brain regions to govern adaptive behavior (Buzsiki and
Draguhn, 2004; Fries et al., 2007; Buzsaki et al., 2012; Nowak et
al., 2018). Masimore et al. (2005) reported a transient (150 ms)
rise in the power of LFP oscillations in the 45-55 Hz range, which
they identified as 50 events, in the DLS at the time that rats ini-
tiate movement while traversing a maze to earn reward.
Replicating results from Masimore et al. (2005) with a new data-
set from a new task, we also found rises in y50 power at the
moment rats initiated a well-learned action sequence. In addi-
tion, we found that this rise in y50 power corresponded to the
time at which DLS ensembles burst (i.e., “task-bracketed” DLS
bursts) and developed with experience. Thus, our results link
50 events, action sequence initiation, and task-bracketed DLS
bursts. In addition, retrospective representations were strongest
during y50 events in the moments preceding lap initiation DLS
bursts. As with past-reward location representations and task-
bracketed activity bursts, y50 events were largely absent in the
DMS and were unaffected by experience. Thus, to the extent that
the DLS, but not DMS, participates in procedural decision-
making systems, our results suggest that retrospective state
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information that peaks during y50 events and grows with expe-
rience is a neurophysiological facet of procedural decision-mak-
ing systems. Although we were unable to exclude the possible
role of volume conduction in comparisons between DLS and
DMS LEFPs, results presented in Figure 6 found that DLS cells
were phase-locked to the y50 signal, whereas DMS cells were
not.

It is currently unclear how 750 events participate in DLS-
based information processing during procedural decision-mak-
ing. vy oscillations are prominent throughout the cortex and are
believed to play a role in synchronizing information processing
between cortical networks (Buzsaki and Draguhn, 2004; Fries et
al., 2007). Interestingly, high y (>30Hz) oscillations in the
human motor cortex are linked to self-initiated movement in
humans (Cheyne et al., 2008; Huo et al., 2010; Santarnecchi et al.,
2017). Given the dense projections from motor cortex to DLS, it
is possible that 50 oscillations and the temporally coupled past-
reward representations play a role in organizing information
flow between the motor cortex and basal ganglia to learn and/or
execute appropriate action sequences within a given context
(state). If retrospective reward representations in the DLS indeed
reflect the current state, it is possible that these representations
are coupled to y50 oscillations to assist motor circuits in organ-
izing and/or selecting the appropriate action sequence to be
initiated.

Prominent y50 oscillations have also been found in the ven-
tral striatum related to reward-guided behaviors (Berke et al.,
2004; van der Meer and Redish, 2009; Kalenscher et al., 2010;
van der Meer et al., 2010; Howe et al., 2011). Berke et al. (2004)
found 50 oscillations in ventromedial striatum while rats trav-
ersed a maze to earn reward. van der Meer and Redish (2009)
found post-reward bursts of y50 power in ventral striatum that
became more stable with experience. That task-dependent y50
oscillations are found throughout dorsolateral and ventromedial
striatum raises interesting questions about their possible func-
tional role in reward-guided learning and behavior. While
some researchers have suggested that y50 oscillations may
originate outside of the striatum (Carmichael et al., 2017), per-
haps 50 oscillations help regulate information flow across the
striatum to allow dorsal and ventral regions to properly organize
and time their output to downstream motor structures. Indeed,
available evidence suggests that while DLS plays a role in proce-
dural decision-making, ventral striatum plays a role in more delib-
erative, goal-directed decision-making. Perhaps 50 oscillations
help these distinct decision-making systems within the striatum to
communicate effectively to organize reward-guided behavior.
Regardless of the potential relation between 750 oscillations in the
ventral and dorsal striatum, our results suggest that y50 oscilla-
tions play a critical role in procedural decision-making systems
realized in the DLS.

In conclusion, we found that task-bracketed bursts of DLS ac-
tivity at lap initiation contained primarily representations of pre-
viously visited reward locations. This result is inconsistent with
action-chunking theories of procedural decision-making, which
suggest that DLS bursts should represent the to-be-implemented
action sequence. This result is instead consistent with model-free
theories of procedural decision-making that suggest task-brack-
eted DLS bursts should represent certain features of the current
state that allow a procedural action sequence to be implemented
(e.g., the location of previously collected rewards). These retro-
spective representations in DLS ensembles were temporally
linked to y50 events in the DLS LFP and were strongest around
the time rats initiated their well-learned action sequence.
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Collectively, these results offer novel insights into the manner in
which DLS neurophysiology participates in procedural decision-
making systems.
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