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Endogenous Cholinergic Signaling Modulates Sound-Evoked
Responses of the Medial Nucleus of the Trapezoid Body
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The medial nucleus of trapezoid body (MNTB) is a major source of inhibition in auditory brainstem circuitry. The MNTB
projects well-timed inhibitory output to principal sound-localization nuclei in the superior olive (SOC) as well as other com-
putationally important centers. Acoustic information is conveyed to MNTB neurons through a single calyx of Held excitatory
synapse arising from the cochlear nucleus. The encoding efficacy of this large synapse depends on its activity rate, which is
primarily determined by sound intensity and stimulus frequency. However, MNTB activity rate is additionally influenced by
inhibition and possibly neuromodulatory inputs, albeit their functional role is unclear. Happe and Morley (2004) discovered
prominent expression of a7 nAChRs in rat SOC, suggesting possible engagement of ACh-mediated modulation of neural ac-
tivity in the MNTB. However, the existence and nature of this putative modulation have never been physiologically demon-
strated. We probed nicotinic cholinergic influences on acoustic responses of MNTB neurons from adult gerbils (Meriones
unguiculatus) of either sex. We recorded tone-evoked MNTB single-neuron activity in vivo using extracellular single-unit re-
cording. Piggyback multibarrel electrodes enabled pharmacological manipulation of nAChRs by reversibly applying antago-
nists to two receptor types, a7 and a4f2. We observed that tone-evoked responses are dependent on ACh modulation by
both nAChR subtypes. Spontaneous activity was not affected by antagonist application. Functionally, we demonstrate that
ACh contributes to sustaining high discharge rates and enhances signal encoding efficacy. Additionally, we report anatomic
evidence revealing novel cholinergic projections to MNTB arising from pontine and superior olivary nuclei.
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This study is the first to physiologically probe how acetylcholine, a pervasive neuromodulator in the brain, influences the
encoding of acoustic information by the medial nucleus of trapezoid body, the most prominent source of inhibition in brain-
stem sound-localization circuitry. We demonstrate that this cholinergic input enhances neural discrimination of tones from
noise stimuli, which may contribute to processing important acoustic signals, such as speech. Additionally, we describe novel
anatomic projections providing cholinergic input to the MNTB. Together, these findings shed new light on the contribution
of neuromodulation to fundamental computational processes in auditory brainstem circuitry and to a more holistic under-
standing of modulatory influences in sensory processing. /
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nucleus (SPN) (Sommer et al., 1993). This inhibition is impor-
tant for computing temporal and intensity cues for the auditory
system (Park et al., 1996; Brand et al., 2002; Pecka et al., 2008;
Kopp-Scheinpflug et al., 2011; Altieri et al., 2014; Koka and
Tollin, 2014; Kramer et al., 2014).

Enabling high reliability and temporal precision of MNTB
neurons is its excitatory input via a single large calyx of Held syn-
apse that secures afferent signal transmission between CN and
MNTB. Because the rested calyx typically generates synaptic cur-
rent many times larger than required for threshold (Borst et al.,
1995), it was thought to confer 100% reliability on this synapse
(McLaughlin et al., 2008). However, in mouse and gerbil studies,
failures at this synapse were observed when driven at very high
rates (Kopp-Scheinpflug et al., 2003a, b; Hermann et al., 2007;
Lorteije et al., 2009; Wang et al., 2010). In addition, MNTB reli-
ability may be further challenged in cluttered acoustic environ-
ments, where auditory circuitry must differentiate signal from
noise (Holdstock, 1982; Willmore et al., 2014), although few stud-
ies have tested MNTB responses using noise. Computational sta-
bility in acoustically complex scenarios requires auditory
neurons to adapt to rapid variations in sound level or sig-
nal-to-noise (S/N) ratio (Sollini and Chadderton, 2016;
Teschner et al., 2016). One possible adaptive mechanism is
the contribution of modulatory circuitry that could enhance
computational performance. Modulatory circuits have been
demonstrated to provide rapid feedback to sensory neurons in
accordance with stimulus dynamics (Scheler, 2004; Marder,
2012; Stange et al.,, 2013; Gomez-Nieto et al., 2014; Goyer et al,,
2016; Jacob and Nienborg, 2018; Gleiss et al., 2019). However,
little attention has been directed at probing the potential
involvement of broadly projecting modulatory neurotransmit-
ter systems in the MNTB.

A candidate modulatory system that may be brought to bear
on computations in MNTB derives from cholinergic circuitry.
Happe and Morley (2004) showed that nAChRs are prominently
expressed in rat SOC, which suggests a role for ACh to influence
acoustic responses. nAChRs have been demonstrated to influence
neuron excitability postsynaptically (Oertel and Fujino, 2001) and
affect neurotransmitter release (McGehee et al., 1995; Metherate,
2011). Cholinergic inputs have been shown to modulate process-
ing in many nuclei of the central auditory system, including the
auditory cortex (Metherate et al., 1990; Metherate and Ashe, 1993;
Froemke et al., 2007), medial geniculate body (Woolf and Butcher,
1986; Sottile et al., 2017), inferior colliculus (IC) (Farley et al.,
1983; Oliver and Beckius, 1993), and CN (Oertel and Fujino,
2001; Gillet et al., 2018; Kuenzel, 2019). Remarkably, despite well-
documented cholinergic influences throughout the auditory path-
way, to our knowledge, no physiological investigation has been
conducted on cholinergic modulation in the MNTB.

In the current study, we anatomically identified sources of
cholinergic projections to the MNTB. In addition, we recorded
MNTB neuron responses to acoustic stimuli in the adult gerbil in
vivo while performing pharmacological manipulations of
nAChRs. We show that endogenous nAChR activity differen-
tially modulates responses to tone and noise stimuli. Our data
strongly suggest that cholinergic signaling may function to influ-
ence the ability of MNTB neurons to sustain robust encoding of
tone stimuli in the presence of a noisy background.

Materials and Methods

Surgical procedure. All procedures conducted were in compliance
with Public Health Service and Institutional Animal Care and Use
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Committee guidelines. Adult Mongolian gerbils (Meriones unguiculatus)
aged at least 3 months of either sex were used in all experiments. Initial
anesthesia was administered with an intraperitoneal injection (5 ml/kg
body weight) of a mixture consisting 20% ketamine (100 mg/ml) and
2% xylazine (100 mg/ml) in 0.9% NaCl solution (yielding a final dose
of 100 mg/kg body weight for ketamine and 10 mg/kg body weight for
xylazine). The anesthetic depth was constantly monitored by assessing
muscle tone and respiration rate. To maintain narcosis, supplemental
doses (0.05-0.10 ml) were injected subcutaneously every 30 min or
whenever necessary. Subjects were transferred to a sound-attenuation
booth (Industrial Acoustics) and mounted in a custom-made stereo-
taxic instrument. Body temperature was maintained at 37°C-39°C by a
heating pad through a homeothermic controller. For terminal physio-
logical experiments, a large craniotomy was performed on interparietal
bone and caudal to the transverse sinus. The dura was partially opened
to expose the brain tissue. The underlying cerebellum was partially
removed through aspiration to expose the floor of the fourth ventricle;
0.9% saline was regularly applied to the opening to prevent dehydra-
tion of the brain surface. When the recording was finished, animals
were injected with 0.2 ml/kg body weight Somnasol euthanasia solu-
tion (Henry Schein Medical) intraperitoneally (yielding a final dose of
78 mg/kg body weight for pentobarbital sodium and 10 mg/kg body
weight for phenytoin sodium) and perfused with PBS intracardially fol-
lowed by 4% PFA in PBS. The brains were then postfixed in the latter
solution at 4°C overnight for histologic processing. For survival experi-
ments requiring survival of at least 48 h for anatomic study, the crani-
otomy was restricted to no more than ~5 mm in diameter over the
lateral portion of the interparietal bone. In these cases, the cerebellum
was kept intact. After the retrograde tracers were deposited, the crani-
otomy was covered with aseptic silicone gel and the skin was sutured
with Vetbond glue (3M). The animals then recovered on a heating pad
under frequent monitoring for 24 h. Additional analgesic measures
were applied during this period if necessary. After 48-72 h, the animals
were anesthetized and perfused as described above. The brains were
harvested and maintained in 30% sucrose PBS until processing for
immunostaining.

Immunohistochemistry. After removal of cerebral cortex and cerebel-
lum, the brain was sectioned on a Vibratome or frozen and cut on a slid-
ing microtome into 40-50 um sections in the transverse or sagittal plane.
Sections were treated in 0.4% Triton X-100 in PBS (0.9% NaCl in 0.01 m
PB) for 30 min (all steps at room temperature unless noted). After three
5 min washes in PBS, the tissue was treated with 20% normal rabbit se-
rum with 0.1% Triton X-100 in PBS for 1 h. Goat anti-ChAT polyclonal
antibody (Chemicon AB 144P) was applied with 0.1% Triton X-100 and
1% normal rabbit serum in PBS for 24-72 h at 4°C. The concentration of
primary antibody varied from 1:100 to 1:400. Following three 5 min
washes in PBS, the tissue was incubated for 1 h with a secondary anti-
body (biotinylated rabbit anti-goat IgG, BA-5000, Vector Lab), at a 1:100
concentration with 1% normal rabbit serum in PBS. Following three
additional 5 min washes, tissue was incubated with an AlexaFluor-647-
labeled streptavidin (1:100; Invitrogen, S-21374) for 1 h at room temper-
ature. The sections were rinsed in PBS, then mounted on gelatin-coated
slides and allowed to dry, and then coverslipped with DPX (Sigma
Millipore).

Acoustic stimulation and retrograde tracer deposition in situ at
MNTB. Acoustic stimuli were digitally generated using TDT system III
commanded through SPIKE, a custom-made software used to simulta-
neously collect spike time and analog chart recording data. The stimuli
were attenuated to desired levels before delivery to earphones. A low im-
pedance glass search electrode (<1 m(}) filled with 1 M NaCl was first
advanced using a remotely driven actuator into the brainstem to map
the approximate borders of MNTB. While the animal was given 100 ms
broadband noise burst, MNTB-containing area was identified based on
the presence of sustained contralaterally evoked responses. Once the
location was confirmed, the search electrode was replaced by a low im-
pedance glass pipette loaded with retrograde tracer at the same coordi-
nates. The tracer-containing electrode was first backfilled with mineral
oil and then front filled with 300 nl red or green RetroBeads
(Lumafluor) diluted 1:10 in 0.9% saline. Once the pipette was lowered to
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desired depth, 100-200 nl of tracer was injected using Nanoliter injector
(World Precision Instruments).

Analysis of tract-tracing data. Photomicrographs of RetroBeads and
ChAT-labeled cells were taken with a Carl Zeiss Axiolmager.Z2 micro-
scope with an attached Apotome 2 to provide optical sectioning at
0.5um depth intervals. Low-magnification images were taken using a
5% objective without the Apotome, whereas high-magnification images
were taken using a 63X oil-immersion objective (NA =1.4) with the
Apotome. High-magnification images shown are maximum intensity
projections of image stacks. Adobe Photoshop was used to colorize,
crop, and adjust levels globally.

Plots of RetroBead- and ChAT-labeled cells were created with a
Neurolucida system (MBF Biosciences) attached to a Carl Zeiss
Axiolmager.Z1 microscope. Results from eight tracer deposits were
used for the present analysis. Five cases with the greatest amount of
retrograde transport were used for quantitative analysis. Every third
section through the rostrocaudal extent of each area of interest was
examined for ChAT ™" cells, RetroBead-labeled cells, and cells labeled
with both tracer and immunostain markers. The location of each la-
beled cell was plotted with a symbol indicating the labels present in
the cell. After all sections were plotted, the numbers of labeled cells
were exported using Neurolucida Explorer, and were further analyzed
in Microsoft Excel. Plots to show the distribution of labeled cells were
exported from Neurolucida Explorer, and figures were prepared with
Adobe Tllustrator CC.

In vivo extracellular recording with pharmacological manipulation.
The piggyback multibarrel electrodes were crafted by gluing a high im-
pedance (6-10 M(2) glass electrode to a five-barrel glass pipette with tip
size of 15-25 um (Havey and Caspary, 1980; Klug et al., 1999; Burger
and Pollak, 2001; Dondzillo et al., 2013). The single-barreled recording
electrode protruded ~20-30 pm from the multibarrel tip and was loaded
with 1 M NaCl. The multibarrel pipettes were loaded with solutions of
pharmacological agents or FluoroGold. Parameterized multibarrel con-
trol experiments can be found in Burger and Pollak (2001). When a sin-
gle cell was encountered, its identity was verified by its contralaterally
driven response features and its prepotential containing waveform using
an oscilloscope. We constructed each sound presentation to include a
75 ms delay before tone stimulation period and a 325 ms silent period af-
ter tone offset, followed by an additional 50 ms dead time where no data
were collected in between presentations so that each recording epoch
was long enough to fully encompass the recovery of spontaneous
responses from poststimulation suppression. This arrangement enabled
us to record both spontaneous and tone-evoked activity from the same
sweep. Pure tones ranging from 0 to 90 dB from E.A.R. 3A headphones
were coupled to the external auditory meatus with tubes and calibrated
using a 1/4-inch free field microphone and a microphone preamp
(model 2221, Larson Davis). Stimuli were delivered across a range of fre-
quencies (100Hz to ~10kHz) to determine spontaneous firing rate
(FR), threshold and characteristic frequency (CF). The spontaneous FR
was calculated by averaging the FR before stimulation onset across all
stimulation sweeps. Initially, approximate CF was determined audio-vis-
ually. Then we presented tones over a narrow frequency range (*=10-50
Hz re: center of estimated CF) at a range of intensities to determine CF
empirically. Thresholds were defined as the lowest intensities eliciting at
least a 10% increase in APs over spontaneous firing during the tone
(one-tailed paired Student’s t test, p < 0.05). Once these parameters were
obtained, the rate-level function (RLF) was generated by recording
action potentials during contralateral pure tone stimulation at CF across
a range of intensities sufficient to sample the entire dynamic range in
5-10 steps. The length of stimulation was 50 ms so that at least 5 cycles at
each cell’s CF were included. The broadband noise in S/N experiments
were +10kHz centered at CF presented at 20dB re: noise threshold
(e.g., typically 20-30 dB above tone threshold; see Fig. 6A). For pharma-
cological manipulations, the drugs were administered through iontopho-
resis with current in the 25-100 nA range (Burger and Pollak, 2001;
Coleman et al, 2011). The pharmacological agents used were w432
nAChRs-specific antagonist dihydro- 3-erythroidine hydrobromide
(DHPE, 40 mm, Tocris), and 7 nAChRs-specific antagonist methylly-
caconitine (MLA, 20 mm, Tocris), 150 mm NaCl was used as vehicle with
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pH adjusted to 4.5. When the recording was finished, 2% FluoroGold
(diluted with saline) was injected in situ at the recording site for histologic
confirmation of the identity of neuron recorded. FluoroGold was injected
using an iontophoresis pump (BAB-501, Kation Scientific) with 1.5 uA cur-
rent and 7s on/off pulse cycle.

Data acquisition. The cellular analog signal was amplified (Neuroprobe
amplifier 1600, A-M systems), and bandpass filtered (model 3360, Krohn-
Hite). Spikes were detected in the output waveform with a window discrim-
inator (model 121 window discriminator, World Precision Instruments),
and the filtered analog signal was digitized at ~20kHz by a Tucker Davis
RX-6 processor and delivered to the computer. The acoustic waveform and
action potentials from single cells were visually monitored using a spike-
triggered oscilloscope (Tektronix). The digitized data were fed to SPIKE
software and analyzed offline using custom-made programs in MATLAB
(The MathWorks).

Experimental design and statistical analyses. Forty MNTB neurons
in pharmacological experiments were obtained from 26 adult gerbils,
including 11 females and 15 males. We performed a two-tailed paired ¢
test on the percentage change of peak FR before and after drug applica-
tion between two sexes, and the result showed no significant difference
(p=0.35). The vehicle-only treatments were conducted before any phar-
macological agent were administered. Because the threshold of neurons
varied and the range of sound intensities was fixed, we were able to
obtain neuronal activity at higher intensities (>40dB re: threshold) on
18 MLA-treated (95%) and 18 DHpBE-treated neurons (86%). Among
the 21 DHBE-treated neurons, four neurons were treated with both
MLA and DHPBE in succession to the sole application of DHBE to
investigate the relationship between the two subtypes of nAChRs. The
standard separability (D) was calculated as follows:

|FRi + 1 — FRil

Vali+1) x o)’

where 7 and i + 1 are the numbers of adjacent intensity steps, and o is
the SD of the FR. The relative standard separability of each neuron was
calculated by dividing the standard separability of each intensity by the
maximum separability of the neuron. The vector strength (VS), a mea-
sure of phase-locking, was calculated as follows:

VS = % \/[Z sin(0i)]2+ [Z cos(ﬁi)]z7

where 6 is the phase angle of spike i in reference to the cycle of stimulus,
and # is the total discharge during stimulation window (Goldberg and
Brown, 1969). The Rayleigh statistic was calculated as follows:

Rayleigh statistic = 2nVS’.

To eliminate bias in temporal precision measures by onset responses,
the first 10 ms of responses were excluded from the analysis window for
calculating VS and Rayleigh statistics. Neurons with Rayleigh values
>13.8 met the significance criterion for phase-locking at p < 0.001 (Lu
et al,, 2001). The dynamic range of the RLF was considered the rising
phase of the discharge curve between threshold and peak-activity-elicit-
ing intensity (see Fig. 5A). The intensities at 10dB re: threshold and
—10dB re: peak-activity-eliciting intensity were chosen as boundaries to
assess the slope of dynamic range. The slope was calculated through
dividing the difference of FR by the number of 10 dB steps between these
two boundary intensities (Colburn et al., 2003). The sensitivity index, d
prime (d") was used to assess the ability of MNTB neurons to detect
pure tone signal embedded in noise (Simpson and Fitter, 1973;
Macmillan and Creelman, 2004), which was calculated as follows:

d’ = (FRsignaHnoise) - Z(FRnaiseonly)7

where z (FRgignal + noise) a1d Z (FRyoise-only) Were the mean z scores of the
FR from the middle 50 ms period with both noise and signal present and



Zhangetal. e Cholinergic Signaling Modulates MNTB

MNTB

sssmuEEy
® ",

.
.
.
-
=
"
L]
L]
L]
L]

o)
(@)

900
20

80
70
60
50
40

_g_
:
30} 8
:

1

(APs / sec)

responses (APs / sec)

20

Rate level functions of sound-evoked
Average spontaneous responses

0 10 20 30 40 50 60 70 80 0
Sound intensity (dB SPL) n=33

F

9 3 1

O
m

. T

©
o

N

o

0.8 [

_*

Average FSL at peak FR (ms)
o
Average jitter of FSL at peak FR (ms)
N

)

0.4} L4 o

I
-
oo

s
Vector strength at peak FR
°

w
e
o

1

0.2} o

N
o

0 " N L L " :
0 1000 2000 3000 4000 5000 6000

n=40 n=40 Characteristic Frequency (Hz)

Figure 1.  Precise anatomic targeting and physiological validation of MNTB neurons during in vivo extracellular record-
ing. A, Histologic confirmation of recording sites. Fluoro-Gold deposited at the end of separate recordings from MNTB and
MSO (dotted areas) is clearly separated and localized to target nuclei, confirming precise targeting to recording sites based
on acoustically driven responses. B, RLFs of 40 neurons recorded reveal tone-evoked responses of MNTB neurons. Bold
black line indicates the average RLF. Inset, The averaged waveform of one representative MNTB neuron with a distinct pre-
potential preceding the action potential thus physiologically confirms the identity of the neuron. C, Distribution of sponta-
neous rates from 33 MNTB neurons with spontaneous firing frequency > 5 Hz (average 29 == 4 spikes/s). D, Distribution
of average FSL from 40 MNTB neurons at intensities that elicited peak FR (average 4.97 == 0.21 ms). E, Distribution of aver-
age jitter of FSL from 40 MNTB neurons at intensities that elicited peak FR (average 0.70 == 0.11ms). F, Distribution of VS
from 40 MNTB neurons at intensities that elicited peak FR as a function of CF. Filled circles represent the VS with a
Rayleigh value >13.8, which is the criteria for phase-locked to tone.
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with only noise for each intensity from each cell;
d'" =1 was considered the threshold of signal
detection in noise (Rosen et al., 2010). The popula-
tion average data in FR, slope steepness, separabil-
ity, and d' are described in the text as mean * SE.
The normality of the data distribution was
assessed using the Shapiro-Wilk test. Comparison
of FR, slope steepness among neurons recorded
in control, drug, and recovery conditions, and
neurons recorded in control, single-drug, and
dual-drug conditions was conducted using
repeated-measures ANOVA, followed by Tukey’s
test post hoc for pairwise assessments if distribu-
tion was normal, or the Dunn’s test if non-normal.
Comparisons involving only control and drug con-
ditions were conducted using paired two-tailed
student f test if the distribution was normal.
Parameters with non-normal distributions were
assessed using Wilcoxon paired signed-rank test.
The CI was invariably 95%.

Results

We report on recordings from 40 MNTB
neurons, 19 of which were treated with MLA,
21 with DHBE, and 4 with both drugs. RLFs
of all neurons were obtained by presenting
contralateral pure tones at CF. The recording
sites were confirmed histologically post hoc
by fluorescent dye deposits at recording sites
(Fig. 1A). Physiologic responses to acoustic
stimuli were also used to confirm MNTB
neuron identity, including, in most cases, the
presence of a prepotential waveform, mono-
tonic or mildly nonmonotonic RLFs (Fig.
1B), robust spontaneous firing (29 *4
spikes/s; Fig. 1C), and insensitivity to stimuli
at the ipsilateral ear. Tone thresholds were
typically between 20 and 50 dB SPL.
Population first spike latency (FSL) was nor-
mally distributed (Fig. 1D), and jitter of FSL
assumed a non-normal distribution (Fig.
1E). Most neurons with CF<1500Hz
exhibited phase-locked discharges to input
frequency (Fig. 1F). These response charac-
teristics are consistent with previous studies
of physiological properties of MNTB
(Guinan and Li, 1990; Kopp-Scheinpflug et
al, 2003a, 2008; Kadner and Berrebi, 2008;
Tolnai et al., 2008).

Endogenous cholinergic signaling
modulates sound-evoked responses of
MNTB

In order to assess the contribution of
endogenous nAChR activity to MNTB
responses, we performed in vivo extracellu-
lar recording with piggyback multibarrel
electrodes that allow for iontophoretic
pharmacological manipulation of nAChRs
at the recording site. We tested the effects
of two nAChR antagonists individually or
in combination: MLA, an a7 nAChR spe-
cific antagonist, and DHBE, an a4(2
nAChR specific antagonist. Raster plots in
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Figure 2A show tone-evoked and spontane-
ous responses of a representative MNTB
neuron before, during, and after MLA
treatment. When the a7 nAChRs were
blocked during iontophoresis, tone-evoked
response rates decreased, while spontane-
ous firing (Fig. 2B) was not altered. In this
neuron, the control response rate recovered
within 10 min of cessation of iontophoresis.
This is similarly evident in the RLF, which
showed no effect of the antagonist at sub-
threshold intensities (Fig. 2C). These data
suggest that cholinergic signaling contrib-
utes to the maintenance of FR in response
to tones. To confirm that these prominent
effects were because of cholinergic inputs and
not an artifact of iontophoresis, we tested the
effect of applying iontophoresis current to
drug free vehicle for six MNTB neurons, and
in no case was FR affected. A representative
RLF from a vehicle-only treated neuron is
shown in Figure 2D, and the population aver-
age maximum FR change during vehicle
application was 2.1 * 1.4% (p =0.32, paired ¢
test).

In our sample, we were able to sustain
recordings long enough to document partial
recovery after cessation of iontophoresis on
7 of the MLA-treated neurons (37%) and 10
of the DHBE-treated neurons (48%). For
population analysis, we selected three supra-
threshold intensities in 20dB intervals to
quantify spike count suppression in the
presence of antagonists broadly across the
intensity response function. After applying
MLA (Fig. 3A), the average FR decreased
from 126 = 14 to 96 * 15 spikes/s at 10 dB
re: threshold (p=0.00002, paired ¢ test),
from 340 =31 to 264 * 24 spikes/s (p =
0.0003, paired t test) at 30dB, and from
400 = 40 spikes/s to 327 =29 (p=0.0027,
paired f test) at 50dB. Application of
DHpBE (Fig. 3B) similarly decreased the out-
put rates from 130 = 16 to 98 = 16 spikes/s
at 10dB (p= 0.03, paired ¢ test), from
306 =33 to 240 =27 spikes/s at 30dB
(p=0.0005, paired t test), and from 360 * 44
to 306 = 35 spikes/s at 50dB re: threshold
(p=0.0056, paired t test).

Since similar results were obtained by
blocking either nAChR, we tested the rela-
tionship between the two receptors by
sequentially applying the two antagonists.
Because MLA has been shown to also alter
a432 nAChRs at very high concentration
(Mogg et al., 2002), we first applied DHBE
and monitored the sound-evoked responses
until reaching a steady state, then added
MLA to assess additional effects (Fig. 3C).
Four neurons were tested, all of which
showed a decreased response after DHBE
application (p=0.03, paired t test), fol-
lowed by further decrease after addition of
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Sound-evoked responses of MNTB neurons decreased after pharmacologically blocking &7 nAChRs. A, Raster

plots of a representative MNTB neuron over the range of 50 ms sound stimulation. At CF, responses were significantly
reduced at higher intensities after administration of MLA. This decrease was partially reversed within 10 min following ces-
sation of iontophoresis. Scale bar, 50 ms. B, Spontaneous activity averages in each condition exhibit no differences before,
during, and after MLA application. Scale bar, 200 ms. C, The RLF of the same neuron with response rate in spikes/s shows
MLA-dependent suppression of supra-threshold responses. D, RLF of a different neuron during vehicle-only iontophoresis,
which evoked no changes in response rate consistent with the population (n = 4).
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Cholinergic signaling enhances response rates to tones at supra-threshold sound levels. A, Population comparison of FR before and after administration of MLA. Three intensities

above threshold were chosen. At all three intensities, a7 nAChR antagonist decreased the FR significantly. B, Population comparison of FR before and after administration of DH3 E. The inten-
sity selection was the same as treatment in A. 432 nAChR antagonist treatment showed similar effect to significantly decreased FR. €, Combined 7 and «4 32 nAChRs block additively
suppressed sound-evoked discharges in four MNTB neurons. Neurons were treated with DHBE until steady state was obtained (blue circles). Subsequent MLA addition further decreased FR
(purple circles). Intensity was 30 dB re: threshold. repeated-measures ANOVA: F; 61,312 = 20.109, p = 0.018. D, Cholinergic signaling differentially affects the onset (10 ms window after first
sound-evoked spike) and the sustained firing period after the onset window at 10 dB re: threshold.

MLA (p=0.02, paired ¢ test). These findings suggest that both
nAChR subtypes are expressed in MNTB neurons and are in-
dependently affected by the antagonists.

In most cases, qualitative evaluation of nicotinic antagonist
influences on tone responses suggested that spiking in the sus-
tained portion of the response was preferentially suppressed com-
pared with onset. Therefore, we analyzed the FR change restricted
to the initial 10 ms of the response (re: onset spike latency) as well
as the suppression of sustained responses during the remaining
40ms of the stimulus at 10dB re: threshold (Fig. 3D). In the
onset window, we observed a 6.0 =4.0% change (p=0.15,
n=19, paired ¢ test) with MLA and a 5.3 £ 4.8% (p=0.07, n=21,
paired ¢ test) change with DHBE. In contrast, the sustained
responses decreased by 34.7+9.8% (p=0.002, n=19, paired
t test) after MLA treatment and 33.0 = 9.6% (p=0.002, n=21,
paired ¢ test) after DHB E treatment. This suggests that cholinergic
signaling was active over the course of stimulation, but that sup-
pression of the sustained responses contributes the majority of the
overall decrease. This finding led us to further investigate the
influence of cholinergic components in temporal features of
MNTB tone responses.

Cholinergic modulation of temporal dynamics of the response
The MNTB calyx is known to reliably preserve temporal features
of the acoustic stimulus and input fiber activity. We compared

the FSL, jitter of the FSL, and VS before and after antagonist
application. FSL measures the duration between the first tone-
evoked action potential and the onset of the stimulus, while the
jitter measures the time fluctuation of FSL. VS measures ongoing
synchronization of the tone-evoked response to tone phase.
MLA increased FSL of MNTB neurons from 4.88 = 0.17 ms to
5.32 £ 0.19 ms (Fig. 44; p=0.023, paired t test), suggesting that
the blockade of a7 nAChRs delays the response to stimulus
onset. Interestingly, on the population level, the first spike jitter
was not affected after applying MLA (Fig. 4C; p =0.94, Wilcoxon
paired signed-rank test). Application of DHBE did not affect the
FSL (Fig. 4B), with 5.05 * 0.37 ms before and 5.38 = 0.39 ms af-
ter drug administration (p=0.37, paired t test) nor the average
jitter across the population (Fig. 4D; p =0.20, Wilcoxon paired
signed-rank test). Furthermore, blocking a7 nAChRs did not
affect VS for phase-locked neurons at peak discharge (p=0.69,
Wilcoxon paired signed-rank test), and blocking a4 32 nAChRs
did not influence significant VS either (p = 0.63, Wilcoxon paired
signed-rank test). We also assessed VS of all neurons at 10 dB
re: threshold, and application of neither MLA (p=0.84,
Wilcoxon paired signed-rank test) nor DHBE (p=0.20,
Wilcoxon paired signed-rank test) significantly changed VS.
Since MNTB is the main source of inhibitory projections to
neurons that compute sound localization based on temporal
cues, the timing of first spike elicited at MNTB after
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stimulation onset is intimately related to the timing of inhib-
itory output to target SOC neurons.

Endogenous cholinergic signaling affects encoding efficacy at
the calyx of Held synapse

The RLFs of MNTB neurons are primarily monotonic and there-
fore can be viewed as having subthreshold, dynamic, and saturat-
ing intensity ranges (Fig. 5A). The results presented thus far
suggest that cholinergic signaling to MNTB contributes most to
FR at intensities just above threshold. These intensities, ranging
from ~10 to 30dB re: threshold, typically fall into the dynamic
portion of the function, where the variation in discharge rate is

the most sensitive to changes in input level. We compared the
percentage reduction in FR in three intensity ranges: subthres-
hold, dynamic, and saturating (typically >30dB re: threshold;
Fig. 5B). Cholinergic components contribute more to the output
level in the dynamic range expressed as a percentage of control
response rate, with a 22.4 = 2.7% decrease in MLA-treated neu-
rons and 23.4 = 2.7% decrease in DH B E-treated neurons. After
the saturating discharge rate was reached, @7 nAChRs contribute
to 15.8 = 2.5% and a4B2 nAChRs contribute to 16.4 = 2.7% of
discharges. Since the dynamic range is the monotonic phase of
the RLF with a positive input-output relationship, the steepness
of the linear portion indicates the sensitivity of a neuron to
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sents the noise intensity presented in B, C, E, F. Colored triangles represent the selected tone intensities. B, C, Raster responses to the tone in noise stimuli with increasing S/N. Left, A sche-
matic representation of the stimuli includes embedded 50 ms CF pure tone signal (red) in 150-ms-wide band frozen noise (black) and their corresponding raster plots before (B) and after (C)
MLA administration. B, C, Solid black and red bars along the time axis represent the durations of noise and pure tone stimuli, respectively, where thickness indicates intensity. B, €, The rolling
mean = SE (10 ms window) of discharge counts are shown in E and F with the same time scale. D, Population distribution of mean d" with respect to S/N intensity ratios. MNTB neurons are
more likely to detect signal from noise at higher S/N ratios. G, Population analysis of percentage change at peak FR with noise-only and pure tone-only conditions of pooled MLA- and DH 3 E-
treated MNTB neurons. ACh does not affect the FR when MNTB was only evoked by noise (p = 0.625), whereas pure tone evoked FR decreased significantly (p = 0.003). n.s.: not significant.

intensity differences and determines its capacity to discriminate
neighboring intensities. We therefore assessed the slope of the
dynamic range to evaluate intensity encoding competence. We
observed a significant decrease of the slope following application
of MLA and DHBE (Fig. 5C). The magnitude of decrease was
from 43*5 to 33 =4 Aspikes/s/10dB for MLA treatment
(p=0.0019, Wilcoxon paired signed-rank test), and from 38 = 6
to 29 £5 Aspikes/s/10dB for DHBE treatment (p=0.0031,
Wilcoxon paired signed-rank test).

Intensity discrimination is important for many auditory com-
putations, particularly for detecting signals in noise (Whitmer
and Akeroyd, 2011; Teschner et al., 2016). As the RLF slope in
the dynamic range was significantly decreased by antagonizing
nAChRs, we then asked whether blocking nAChRs affects the
neurons’ ability to discriminate between neighboring stimulus
intensities. We analyzed the influences of ACh on relative stand-
ard separability (D), a measure of discrimination that reflects
statistical discriminability between intensities based on mean re-
sponse rates and variances (Beiderbeck et al.,, 2018). Separability
was decreased between threshold and the minimum level above
threshold after blocking a7 nAChRs (Fig. 5D), and a similar effect
of blocking @482 nAChRs is shown in Figure 5E. Speci-
fically, the administration of MLA caused a 29.1 = 6.5% decrease
in FR at 10dB re: threshold, while the magnitude of decrease was
14.4 = 4.5% at 50 dB re: threshold (p=0.027, paired ¢ test). After
applying DHBE, FR decreased by 25.3 +7.3% at 10dB and
15.0 = 5% at 50dB re: threshold (p=0.046, paired t test). Both

drugs caused the greatest reduction in FR evoked by sounds
near or above threshold. This indicates that cholinergic network
functions to increase the contrast between subthreshold and
suprathreshold intensities by increasing the FR more in the low-
intensity portion of the neuron’s audible range. Such contrast
enhancement is likely to influence the detection of signals in noise.
We therefore examined whether ACh activity influenced tone
encoding in an acoustic signal-in-noise paradigm.

To test this hypothesis, we first examined the responses of
MNTB neurons evoked by pure tones or noise alone. In addition
to the difference in FR, thresholds were higher with noise-only
stimuli (Fig. 6A). In order to investigate whether ACh contrib-
utes to tone detection in noise, we recorded the discharge pat-
terns of MNTB neurons in response to 50 ms pure tones at CF
embedded in a long duration (150 ms) broadband frozen noise
(Fig. 6B). The intensity of noise stimuli was fixed at 20dB re:
noise threshold while a broad intensity range of pure tones was
presented in 10 dB randomized steps, yielding dynamically shift-
ing S/N ratios. Since noise responses are temporally stochastic,
we integrated discharge responses with a 10 ms shifting time bin
moving average throughout the duration of stimulation (Fig.
6E). Figure 6A, B, E reveals one neuron’s firing patterns in
response to three S/N ratios schematically illustrated in Figure
6B. The noise intensity was fixed at 80 dB SPL (black star) while
three different signal intensities were 0, 40, and 70 dB SPL (black,
orange, and purple triangles, respectively). In contrast to noise-
only condition (Fig. 6B,E, black traces), the other two
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nor o432 nAChRs contribute to signifying tone presence. D, F, Both 7 and a4 32 nAChRs contribute to facilitated tone responses that enable significant differentiation of tones from noise

(p < 0.05, asterisks). C-F, Red crosses are outliners exceeding 1.5 the interquartile range.

combinations both exhibited transient FR increases during the
middle 50 ms period that included tone stimuli (Fig. 6B,E, orange
and purple traces). This increase in firing is suggestive of signal
detection. During MLA application, this transient preferential
tone response was substantially degraded (Fig. 6C), rendering
the postdrug discharge patterns of 40 and 70 dB signal similar to
the noise-only response (Fig. 6F). Therefore, the ability of this
neuron to represent the presence of embedded tone in its dis-
charge rate was abolished after pharmacological block of nico-
tinic signaling.

We then investigated the detection ability of MNTB neurons,
as indicated by d’ values > 1, to discriminate the middle 50 ms
tone from noise across the population (Fig. 6D). Not surpris-
ingly, we observed prominent tone discrimination with higher S/
N ratios. We then compared the effect of drug application on d’
values from responses that were either above or below the dis-
crimination criterion in control as indicated by the dashed line
in Figure 6D. With MLA application (Fig. 7A), neural responses
to stimuli that failed detection in control showed no change, and
remained insensitive to tone presentation (mean d'; control:
—0.50, MLA: —0.54, p= 0.797, Student’s t test). However, higher
S/N stimuli that evoked above criterion d' values in control
showed significantly decreased d’ values in the presence of MLA
(mean d'; control: 2.02, MLA: 0.52, p=0.014, Student’s ¢ test).
Similarly, application of DHPE yielded no significant change of
d' for below criterion responses (mean d'; control: —0.31,
DHBE: —0.27, p=0.594, Student’s ¢ test), while the mean d’ for

detected tones in control decreased from 1.93 to 0.27 in the pres-
ence of DHBE (Fig. 7B) (p=0.001, Student’s ¢ test). To visualize
the population change in discharge patterns more clearly, Figure
7CF shows the drug-treated response rates in box-and-whisker
plots normalized to control responses indicated by the black line,
where the stimulus-dependent effects during antagonist applica-
tion can be appreciated. In cases where d’ < 1, the discharge pat-
terns during signal presentation showed no difference before and
after antagonists administration (Fig. 7C,E). In contrast, we
observed that both MLA and DHBE application yielded signifi-
cant discharge suppression, but only to stimuli with detectable
S/N ratios in control. Together, tone detection as indicated by d’
fell below the discrimination threshold during both drug treat-
ments, suggesting that MNTB neurons’ ability to detect signals
in noise was significantly degraded when cholinergic inputs were
blocked.

MNTB receives cholinergic projections from multiple sound-
driven sources

Our physiological data showed strong ACh contributions to
suprathreshold but not subthreshold responses, suggesting that
cholinergic input may be sound driven. To identify sources of
cholinergic input to MNTB, we deposited retrograde tracer
(RetroBeads) in the MNTB and examined the regions of brain
that contain tracer-filled neurons. Injection sites typically
included the MNTB and one or more of the adjacent nuclei of
the medial SOC. One injection was completely restricted to the
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Figure 8. The MNTB receives bilateral cholinergic input from two regions: the SOC and
the PPT. A, A deposit of red RetroBeads (magenta) restricted to the lateral part of the left
MNTB. The section was stained with anti-ChAT to identify cholinergic cells; a few ChAT™ cells
are visible between the MNTB and MSO. The ventral surface of the section was damaged dur-
ing processing, but this section is shown to reveal the maximum dimensions of the tracer de-
posit. Transverse section: D, dorsal; M, medial. Scale bar, 250 pim. B, Retrogradely labeled
neurons from the same case illustrated in A. Each row represents neurons labeled with red
RetroBeads (Red beads, first column) that are also immunostained for ChAT (cyan, second
column). “merged” shows the overlap of the channels. Neurons are pictured from the PPT
and the SOC, both ipsilateral (“ipsi”) and contralateral (“contra”) to the injection site. Scale
bar, 20 um. B, Images were taken with structured illumination.

MNTB (Fig. 84), allowing us to confirm that the results were
not dependent on inclusion of the adjacent nuclei. In all cases,
tracer-filled neurons were prominent in the CN contralateral
to the injected MNTB, as well as within the SOC ipsilateral and
contralateral to the injection. Interestingly, tracer-labeled neu-
rons were also observed bilaterally in the pontomesencephalic
tegmentum (PMT), a midbrain structure that sends cholinergic

J. Neurosci., January 27, 2021 - 41(4):674—688 - 683

axons widely across the brain, including to multiple levels of
the auditory system (Schofield et al., 2011). By immunostaining
the tissue with anti-ChAT antibody to label cholinergic cells, we
could identify tracer-labeled cholinergic cells. ChAT™" tracer-la-
beled neurons were present bilaterally in the PMT and the SOC
(Fig. 8B). Each of these areas contained ChAT-negative tracer-la-
beled cells (not shown). Some of these immunonegative cells were
in close proximity to ChAT™ cells, suggesting that noncholinergic
cells in these nuclei also project to the MNTB.

Very small tracer deposits (e.g., the one confined to the
MNTB, shown in Fig. 8) labeled relatively few cells, so we chose
2 cases with larger deposits and more tracer-labeled cells to assess
relative sizes of the ChAT " projections. The distributions of la-
beled cells in these cases were qualitatively similar to that follow-
ing smaller deposits. Figure 9 shows the distribution of ChAT "
tracer-labeled cells after a tracer deposit that included a large
portion of the MNTB and some of the adjacent SPN (Fig. 9,
green). The PMT contained the majority (80% and 82% in the 2
cases) of the ChAT™ tracer-labeled cells, with the remainder in
the SOC. Within the SOC, ChAT ™" tracer-labeled cells were scat-
tered among the LSO and the periolivary nuclei (Fig. 9, sections
1, 12, and 24). The illustrated case shows a majority of ChAT ™"
tracer-labeled SOC cells on the side contralateral to the injected
SOG; in other cases, the distribution was more evenly spread
across the two SOCs. The PMT comprises a laterodorsal tegmen-
tal nucleus, contained within the borders of the periaqueductal
gray, and a pedunculopontine tegmental nucleus (PPT), outside
the periaqueductal gray. ChAT ™" tracer-labeled cells were present
bilaterally in both nuclei, with more cells on the ipsilateral side
and, on each side, more cells in the PPT than in the laterodorsal
tegmental nucleus.

Discussion

Our data support four broad conclusions regarding cholinergic
modulation of the MNTB. First, we identified two novel cholin-
ergic projections to the MNTB, including a predominant projec-
tion arising bilaterally from the PMT and smaller bilateral
projections from the SOC (Fig. 10). Second, we demonstrated
that ACh contributes to the response magnitude for suprathres-
hold stimuli but does not influence threshold values or spontane-
ous spike rates. Third, ACh enhances level discrimination at near
threshold intensities. Finally, we demonstrated that cholinergic
modulation enhances encoding of tone signals in noise. Here we
discuss the implications of these findings in the context of audi-
tory processing more broadly.

Cholinergic modulation is sound-evoked and improves
reliability of MNTB neurons
We demonstrated that activation of a7 or @482 nAChRs con-
tributes to a 15%-30% increase in response rate to tone stimuli.
While the sound-evoked responses were substantially modulated,
spontaneous firing was not affected by either treatment. These
findings led to at least two possible interpretations that are not
mutually exclusive. First, the data suggest that the source of cho-
linergic input to MNTB was itself driven by sound stimulation
and therefore only acts at higher intensities. Alternatively, tonic
ACh may alter synaptic efficacy or postsynaptic excitability sub-
tly such that its influence is only evident when MNTB neurons
are challenged with a stimulus that evokes repetitive firing.

We identified two cholinergic projections to the MNTB, orig-
inating from the SOC and PMT. SOC neurons are driven by
acoustic stimulation, and at least some provide glycinergic input
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Figure 9. A plot of every 12th section through the brainstem showing the distribution of ChAT™ tracer-labeled cells in the SOC (sections 1-24) and PMT (sections 36-60) in a representative
case with a green RetroBeads deposit in the right SOC. This deposit included portions of the SPN in addition to the MNTB. Large magenta circles represent ChAT™ retrogradely labeled cells.
Cyan circles represent ChAT ™ /tracer-negative cells. Additional tracer-labeled cells were ChAT-negative (data not shown). Right, Full sections indicate the regions (rectangles) shown in the plots.
IV, Fourth ventricle; Aq, cerebral aqueduct; Cb, cerebellum; GB, green RetroBeads; LDT, laterodorsal tegmental nucleus; LNTB, lateral nucleus of the trapezoid body; PAG, periaqueductal gray;

VNTB, ventral nucleus of the trapezoid body.

to MNTB (Albrecht et al., 2014). The SOC also contains cholin-
ergic olivocochlear neurons and a population of cholinergic neu-
rons that project to the CN but not to the cochlea (Sherriff and
Henderson, 1994; Gémez-Nieto et al., 2008). We could not
determine whether the SOC projections to the MNTB arise from
one of these two cholinergic groups, or whether a third popula-
tion exists. Medial olivocochlear cells would seem to be an
unlikely candidate for projections to the MNTB; they have axon
collateral branches that innervate parts of the CN and vestibular
nuclei, but they apparently lack collateral projections to other

regions (Brown et al., 1988). The “non-olivocochlear” cholinergic
SOC cells that project to the CN are likely sources of ACh to
cochlear root neurons, spherical bushy cells, and possibly T stel-
late cells, but we are unaware of any evidence that they project to
targets other than the CN (Fujino and Oertel, 2001; Gémez-
Nieto et al., 2008; Goyer et al, 2016; Gillet et al, 2018).
Projections to the MNTB from cholinergic cells in and around
the LSO raise a question of collateral projections of lateral olivo-
cochlear cells (the only known cholinergic cells in this region).
Ryan et al. (1990) suggested that lateral olivocochlear cells have
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Figure 10.

Schematic illustration of cholinergic inputs to a single MNTB. Arrow thickness indicates relative
size of the projection as indicated by the number of projecting cells in the source nuclei. The largest projections

J. Neurosci., January 27, 2021 - 41(4):674-688 - 685

entrain to tone signals with regular phase-locked
discharges, whereas high-frequency neurons typi-
cally respond with vigorous sustained firing to CF
tones. Noise stimuli evoke temporally dispersed
responses with higher thresholds. We showed that
ACh preferentially influences spiking in the sus-
tained portion of tone responses compared with
onset (Fig. 3D). It is reasonable to speculate that
one function of ACh is that it preserves firing as
the calyx synapse undergoes substantial depression
at high sustained FR (Hermann et al, 2007).
Noise-evoked responses and spontaneous activity
exhibit stochastic interval distributions that may
enable recovery from depression, even at this high
safety-factor synapse and, as such, are less depend-
ent on ACh to preserve response fidelity (Forsythe
et al,, 1998; Oline and Burger, 2014). The maxi-
mum noise-evoked sparse discharge pattern was
comparable in rate to that evoked by pure tones
near threshold (Fig. 6A). If the primary role of
ACh is to enhance transmission at the calyx during
synaptic depression, a steady-state recruitment of
ACh during sparsely distributed noise responses
may simply not be apparent.

originate from the pontomesencephalic tegmental nuclei (PMT), including the pedunculopontine tegmental nu-

cleus and the laterodorsal tegmental nucleus. Smaller cholinergic projections originate from cells in the SOC,

both ipsilateral and contralateral to the targeted MNTB.

collateral projections to the CN that could modulate ascending
circuits (including, perhaps, those that provide input to the
MNTB). However, there is no evidence for collateral projections
of lateral olivocochlear cells to olivary nuclei. It will be interesting
in future studies to determine whether the projections to MNTB
arise as collaterals from cholinergic cells that project to the coch-
lea or CN.

We also identified a prominent input from the PMT. The
PMT participates in a variety of functions, including novelty
detection, sensory gating, reward, arousal, attention, and audi-
tory plasticity (Koyama et al., 1994; Luo and Yan, 2013; Gut and
Winn, 2016; Cisse et al., 2018). Furthermore, it projects broadly
in the auditory pathway, although projections to SOC have not
been reported (Schofield et al., 2011). Studies have shown that a
major target of SOC neurons, the IC, receives cholinergic input
from the PMT. In IC, ACh modulated sound-evoked responses
but did not affect spontaneous activity (Farley et al, 1983;
Habbicht and Vater, 1996). The PMT also projects to the CN,
where it may modulate globular bushy cells that provide input to
the MNTB (Mellott et al., 2011; Gillet et al., 2018). Interestingly,
PMT is activated on acoustic stimulation (Koyama et al., 1994;
Reese et al., 1995a, b), and remains a possible source of sound-
evoked ACh input. The role of the bilateral PMT projection as
well as the apparent input from the SOC in MNTB function urge
future investigation.

Differential cholinergic modulation of pure tone and noise
responses

Interestingly, while tone responses were strongly modulated,
noise responses and spontaneous activity were relatively unaf-
fected by ACh (Figs. 5B, 6G). This stimulus-dependent modula-
tion may be a consequence of the efficacy of each stimulus in
driving sustained responses. Low-frequency MNTB neurons

Convergence of a7 and 242 nAChR-mediated
effects in MN'TB neurons

In this study, we probed the modulatory contribu-
tions of both &7 and @482 nAChRs in MNTB.
Both nAChRs cast similar effects on FR, intensity
encoding efficacy, and signal detection. We showed that calyceal
efficacy was improved by both endogenous «7 and w42
nAChR activity, but it is not clear on the cellular level what the
mechanistic underpinnings of this effect were. Both receptors are
critical to a broad range of functions via presynaptic and postsy-
naptic effects throughout the brain (Levin et al., 2006). In hippo-
campus, activation of @7 nAChRs has been shown to enhance
glutamate release (Cheng and Yakel, 2014, 2015). In the dorsal
raphe nucleus, presynaptic @432 nAChRs have been shown to
increase transmitter release (Garduno et al.,, 2012). Our in vivo
approach does not permit assessment of such mechanisms; how-
ever, sequential antagonist application resulted in additive spike
suppression (Fig. 3C), suggesting that the two receptors may
affect more than one aspect of calyx physiology.

The only functional distinction between receptors detected in
this study was that blocking @7 nAChRs increased the FSL of
MNTB, whereas blocking o452 nAChRs showed no effect.
However, first spike jitter did not change significantly after
blocking @7 nAChRs. a7 nAChRs are endowed with relatively
faster kinetics than o482 nAChRs (Alkondon et al., 1999).
These differences may indicate that blocking a7 nAChRs prefer-
entially influences transient features of the response compared
with @482 (Albuquerque et al., 1997; Stanchev and Sargent,
2011; Corradi and Bouzat, 2016). Unfortunately, dynamics of the
ACh modulation cannot be resolved with the current methods,
so future in vitro studies are needed to reveal differential func-
tions between the receptors.

Implications of cholinergic modulation at MNTB for
auditory processing

MNTB is the major source of contralaterally derived inhibition
to principal neurons in several SOC nuclei. This inhibition is
crucial to their computational reliability and precision. Among
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these nuclei, MSO computes interaural time disparity, whereas
LSO computes interaural intensity disparity (Rayleigh, 1907;
Goldberg and Brown, 1969; Spangler et al.,, 1985; Adams and
Mugnaini, 1990; Yin and Chan, 1990; Park et al., 1996; Tollin,
2003). Both cues are important for determining sound source
location, and both derive their response functions, in part,
because of prominent MNTB input. Thus, the relative strength
of MNTB-derived inhibition plays an important computational
role in sound location computing neurons, and the cholinergic
contribution to MNTB output could be particularly impactful in
shaping sound-evoked responses of these neurons.

In addition to binaural computations, MNTB is known to
dramatically influence SPN responses. SPN responds to gaps in
signals, thus encoding duration and termination of sounds
(Kopp-Scheinpflug et al., 2011). The stereotypical offset response
of SPN neurons arises from the termination of sound-evoked
MNTB inhibition. Our study suggests that the cholinergic sup-
pression of MNTB could directly influence offset encoding in
SPN. Overall, our conclusions regarding cholinergic contribu-
tions to temporal processing are consistent with a recent finding
in 7 nAChR KO mice showing manifestations of loss of acous-
tic temporal acuity (Felix et al., 2019).

Cholinergic effects on the lower-ordered neurons in the
brain

The cholinergic influences on MNTB described here are a novel
manifestation of the classical role of ACh as a neuromodulator
(Schofield and Hurley, 2018). Prevalent in the brain, ACh has
been found to potently affect neurotransmitter release, govern
neuron excitability, and promote synaptic plasticity (Hill et al.,
1993; Klein and Yakel, 2006; McGranahan et al., 2011; Feduccia
et al,, 2012; Yan et al,, 2018). These observations throughout the
brain render ACh a versatile neuromodulator in synaptic trans-
mission physiologically, and functionally a key factor in govern-
ing rewarding, learning, memory, and emotion. Our study sheds
light on ACh’s role in modulating ascending auditory input in
brainstem circuitry and contributes to a more holistic under-
standing of modulatory influences in auditory function specifi-
cally, and sensory processing in general.
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