
Behavioral/Cognitive

Cognitive Control Promotes Either Honesty or Dishonesty,
Depending on One’s Moral Default
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Cognitive control is crucially involved in making (dis)honest decisions. However, the precise nature of this role has been
hotly debated. Is honesty an intuitive response, or is will power needed to override an intuitive inclination to cheat? A recon-
ciliation of these conflicting views proposes that cognitive control enables dishonest participants to be honest, whereas it
allows those who are generally honest to cheat. Thus, cognitive control does not promote (dis)honesty per se; it depends on
one’s moral default. In the present study, we tested this proposal using electroencephalograms in humans (males and
females) in combination with an independent localizer (Stroop task) to mitigate the problem of reverse inference. Our analy-
sis revealed that the neural signature evoked by cognitive control demands in the Stroop task can be used to estimate (dis)
honest choices in an independent cheating task, providing converging evidence that cognitive control can indeed help honest
participants to cheat, whereas it facilitates honesty for cheaters.
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Significance Statement

Dishonesty causes enormous economic losses. To target dishonesty with interventions, a rigorous understanding of the under-
lying cognitive mechanisms is required. A recent study found that cognitive control enables honest participants to cheat,
whereas it helps cheaters to be honest. However, it is evident that a single study does not suffice as support for a novel hypoth-
esis. Therefore, we tested the replicability of this finding using a different modality (EEG instead of fMRI) together with an in-
dependent localizer task to avoid reverse inference. We find that the same neural signature evoked by cognitive control
demands in the localizer task can be used to estimate (dis)honesty in an independent cheating task, establishing converging
evidence that the effect of cognitive control indeed depends on a person’s moral default.

Introduction
Dishonesty imposes a lasting social toll by undermining personal
relationships as well as sabotaging trust in social institutions.
Although dishonesty may be ubiquitous, it is clear that not every-
body is a cheater; there are considerable individual differences in
our moral flexibility. When given the opportunity, individuals
differ considerably in how much they cheat (Gino et al., 2012,
2014; Speer et al., 2020; Gerlach et al., 2019).

When tempted to cheat, clearly the prospective gains are an
important determinant of whether someone will succumb
(Becker, 1968; Allingham and Sandmo, 1972; Abe and Greene,
2014; Seuntjens et al., 2019; Speer et al., 2020). However, behaviors
such as altruism, reciprocity, and honesty suggest that most

individuals do not only consider the (financial) rewards when
tempted to cheat. Converging evidence indicates that our self-con-
cept, our perception of ourselves as moral beings (Aronson, 1969;
Bem, 1972; Baumeister, 1998), motivates us to be honest (Mazar
et al., 2008; Speer et al., 2020).

An fMRI study by Speer et al. (2020) investigated how the
brain accomplishes the task of arbitrating between obtaining
rewards and upholding a moral self-concept. The study showed
that brain regions associated with cognitive control helped dis-
honest participants to be honest, whereas they enabled cheating
for more honest participants, suggesting that cognitive control is
not required to be honest or dishonest per se but that it is contin-
gent on an individual’s moral default.

However compelling these and other neuroimaging studies
on dishonesty thus far are, two issues stand out. The first is that
they have relied on reverse inference to infer the neurocognitive
processes underlying (dis)honest decisions, where the cognitive
operations are inferred from activation in an observed region of
the brain. Although informative, reverse inference should be
interpreted with caution depending on how selectively these
areas of interest are activated by a specific cognitive process
(Poldrack, 2006).
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A second issue is that a single finding cannot be taken as suffi-
cient support for any novel theory or hypothesis. The importance
of conducting replications has been highlighted as several
authors have questioned the validity of numerous findings in
neuroscience and psychology (Ioannidis, 2005; Button et al.,
2013; Botvinik-Nezer et al., 2020). The most promising way of
addressing these issues is to attempt to replicate findings as the
probability of a finding being true increases with the number of
replications.

Here, we attempt to replicate previous findings (Speer et al.,
2020) with a different neuroimaging method in combination
with a localizer task to circumvent reverse inference problems.
Using a different modality has the potential to substantially
increase the convergent validity of the previous finding as it
allows us to capture different aspects of the underlying neural
processes because of the higher temporal resolution of electroen-
cephalogram (EEG).

We elicited the neural patterns associated with cognitive con-
trol by means of recording the EEG of participants while they
performed the Stroop task, which is a well-established task
requiring cognitive control. Subsequently, participants engaged
in the Spot-The-Difference task (Gai and Puntoni, 2021; Speer et
al., 2020), which allows participants to cheat repeatedly, deliber-
ately, and voluntarily while their EEG was recorded. If we
observe the same neural patterns in both tasks, we can deduce
with empirical support that the neural patterns we observe in our
cheating task do indeed reflect cognitive control processes relat-
ing to the inhibition of a default response. Our study thus con-
tributes by more rigorously testing the neural mechanisms
underlying dishonest decisions and reducing issues of reverse
inference.

Materials and Methods
Participants
EEG recordings were obtained from 35 participants. One participant
completed the Spot-The-Difference task, but not the Stroop task, so for
the Stroop task there were 34 participants. The data of two participants
had to be discarded because for these participants 27 or more channels
(of 64) were identified as bad channels by the Autoreject algorithm (see
below, EEG acquisition and preprocessing; Jas et al., 2017), which classi-
fied them as outliers (interquartile range rule, 2 SD rule). The reported
analyses are based on the remaining 33 (32 for the Stroop task) partici-
pants (18 female; age, 18–29 years; M = 21, SD = 2.6), recruited from an
online community for university students, where students can sign up
for experiments. An initial screening interview ensured that all partici-
pants were right-handed with normal or corrected-to-normal vision,
spoke English fluently, were not on any psychoactive medication influ-
encing cognitive function, and had no record of neurologic or psychiat-
ric illness. The study was approved by the university’s Internal Review
Board and was conducted in accordance with the Declaration of
Helsinki.

Determination of the appropriate sample size
To determine the appropriate sample size, we focused on previous stud-
ies using the Stroop task because no EEG studies have been conducted
with the Spot-The-Difference task so far. We consulted three previous
studies, Hanslmayr et al. (2008), Tang et al. (2013), and Kovacevic et al.
(2012). The sample sizes in these ranged from 16 to 22 participants, all
reporting significant effects of incongruency on power in the theta range
over midfrontal channels. The effect sizes calculated based on the statis-
tics reported in those studies range from d = 1.28 to 1.62, which corre-
sponds to a recommended sample size (at a = 0.05, two sided) of 8–11
participants to obtain a power of 95% to detect a significant effect
between congruent and incongruent trials in the Stroop task. Previous
neuroimaging studies using voluntary (dis)honest choice paradigms
such as the coin-flip task or the sender receiver game (Ding et al., 2013,

N = 18; Abe and Greene, 2014, N = 28; Hu et al., 2015, N = 26; Shuster
and Levy, 2020, N = 33; Speer et al., 2020, N = 40) ranged in sample size
from 18 to 40 participants. So we reasoned that for this study, 35 partici-
pants should be sufficient to detect the electrophysiological correlates of
(dis)honesty.

Task and stimuli
Spot-The-Difference task. In the Spot-The-Difference task, partici-

pants were presented with pairs of images and told that there were
always three differences between the image pairs. Differences consisted
of objects that were added to or removed from an image or objects that
differed in color between images. However, images could actually con-
tain one, two, or three differences. Participants were instructed to find
three differences between the images. Because reward (see below) was
contingent on participants reporting that they had found all three differ-
ences without having to point them out, this design allowed and encour-
aged cheating behavior (i.e., reporting having found all three, even when
objectively fewer than three differences were present in the images). In
25% of the trials there were only two differences, and in 25% there was
only one difference. All stimuli were standardized in size and were pre-
sented on a white background on a computer screen. The ratio of 50 to
50% (three differences versus less than three differences) was chosen
based on the results of pilot studies that indicated this ratio to be optimal
in reducing suspicion that the pairs did not always contain three
differences.

Trials were further categorized into normal (50%), hard (25%), and
very hard trials (25%), for which participants could receive 5, 20, and 40
cents, respectively. All the trials with three differences (the filler trials)
were categorized as normal trials, whereas trials with fewer than three
differences (the trials of interest) were randomly categorized as hard or
very hard trials. Consequently, the reward was independent of the num-
ber of differences in the image pair for the trials of interest, which is im-
portant to be able to disentangle the effects of reward and cheating
magnitude (the actual number of differences) on cheating behavior. The
different levels of difficulty were added to reduce suspicion about the
real purpose of the task. It was assumed that if trials are labeled hard or
very hard, it would be more credible to the participant if the image pair
actually contained three differences, but they were just too hard to spot.
In addition, levels of difficulty were introduced to eliminate possible
demand effects. We wanted participants to cheat for monetary reward
and not prevent them from seeming incompetent, which may be associ-
ated with different underlying neural mechanisms and consequently
confound the analysis. The maximum amount of money earned in case
a participant cheated on all cheatable trials was ;35 Euros, whereas in
case a participant would not cheat at all he or she would earn ;7.50
Euros. After completion of the full study, participants were debriefed,
and to be fair to all participants, they were all paid the maximum amount
regardless of their actual cheating behavior.

Participants were informed that the purpose of the study was to
investigate the underlying neural mechanisms of a visual search for mar-
keting purposes such as searching for a product in an assortment or in-
formation on a Web page. To increase credibility of this marketing story
a simple visual search task was added at the beginning of the experiment
(Speer et al., 2020). Further, participants were instructed that the neuro-
cognitive effect of motivation, elicited by monetary reward, on speed
and accuracy of the visual search would be investigated. To further
reduce suspicion about the purpose of the study, we added 12 point-
and-click trials in which participants used a mouse to click on the loca-
tion in the images where they spotted the differences. Consequently,
cheating was not possible on the point-and-click trials. Participants
always knew before the start of a trial whether it was a point-and-click
trial, indicated by a screen requesting participants to click on the image.
This ensured that participants would not refrain from cheating on all
other trials while still reducing the suspicion about the real purpose of
the study. Participants were told that only 10% of trials were point-and-
click trials because it would take too much time to point out the differen-
ces for every pair. In sum, there were 144 regular trials (72 of which were
cheatable trials) and 12 point-and-click trials.
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Each trial started with a fixation cross that was presented for a vari-
able amount of time between 1 and 3 s (Fig. 1). Subsequently, the Level
of Difficulty screen was presented for 2 s informing the participants
about the level of difficulty of the upcoming trial. This screen also dis-
played how much money could be earned on that trial. As a result, par-
ticipants were constantly aware of the potential gains of cheating. Next,
an image pair was presented for 6 s, a length determined by behavioral
pilots (Speer et al., 2020), and participants engaged in the visual search.
Afterward, the participants were asked whether they spotted all three dif-
ferences (yes or no response). On this decision phase screen, again the
potential reward for this trial was presented to make the reward more sa-
lient and increase cheating behavior. After 3 s the response phase started
in which participants’ responses were recorded. In the decision phase
and the response phase, the current balance was also shown, which was
done to demonstrate to the participants that if they stated they had
found the three differences, their current balance increased immediately.
It was assumed that this direct noticeable effect of behavior on the
increase of the current balance would further motivate participants to
cheat.

The buttons corresponding to yes and no were switched across trials
to reduce a possible response bias associated with the side where the
response options were presented. Once the participants responded, the
choice was highlighted by a blue box for 500ms to indicate that
the response was recorded, and the trial ended. If no response was made,
the trial ended after 3 s. In addition, there were five practice trials in
which participants became acquainted with the task. Stimulus presenta-
tion and data acquisition were performed using Presentation software
(version 18.0, Neurobehavioral Systems, https://www.neurobs.com).

Stimuli for the Spot-The-Difference task. Stimuli for the task con-
sisted of 144 Spot-The-Difference image pairs that were downloaded
from the Internet. Cartoon images of landscapes containing several
objects were selected to make them engaging and challenging enough
for the participants. Landscapes were chosen as they generally satisfied
the necessary criterion of containing several different objects. The stim-
uli consist of pairs of images that are identical, apart from a certain num-
ber (1–3) of differences that were created using Adobe Photoshop.
Differences included objects added to or removed from the landscape
picture or changed colors of objects. Differences were fully randomized
across all pairs of images, which means that all image pairs could be pre-
sented with either one, two, or three differences. To make sure that par-
ticipants would be able to find the differences between the images in a
reasonable amount of time, we ran a pilot study on Amazon Mechanical
Turk (N = 205) to test the difficulty in spotting the differences between
the images and to determine the optimal duration of the picture presen-
tation (Speer et al., 2020).

Stroop task. The Stroop task was used to localize the neural signature
of cognitive control. The use of a localizer task is a common approach in
fMRI research and is becoming increasingly used in EEG research as
well to reduce issues of reverse inference (Niccolai et al., 2014; van Driel
et al., 2014; Brooks et al., 2017; Dutra et al., 2018; Eijlers, et al., 2020; Lee
and Kang, 2020; Soh and Wessel, 2021). In the Stroop task participants
view names of colors written in different colors of ink and are instructed
to indicate the color of the ink as fast as possible. In incongruent trials,
color names and the color of the ink do not match, whereas in congruent

trials the name of the color and the color of the ink match. On the incon-
gruent trials, participants must inhibit the predominant response of
reading the word and instead focus on the ink color. Thus, the over-
learned response of reading interferes with successful task performance.

The Stroop task was selected over the Stop-Signal or GoNoGo tasks
because we assumed that overriding the default response of reading the
words is more similar to overriding default (im)moral behavior than, for
example, motor inhibition elicited by the Stop-Signal or GoNoGo task
because on top of inhibiting a motor response, the more cognitive pro-
cess of automatically reading needs to be suppressed. Intuitively, this
process seems more similar to the type of control needed to inhibit
default (dis)honest behavior.

To allow conducting the Stroop task without participants speaking,
which would cause artifacts in the EEG signal, we adapted a version
developed by Zysset et al. (2007). Participants were told that they would
see two words vertically arranged (Fig. 2) and would have to decide, by
pressing a button (yes or no), whether the color of the word at the top
corresponds to the name of the color written at the bottom. There were
72 trials in total. Half of the trials were corresponding, meaning that the
color of the top word matched the meaning of the bottom word. There
were 36 congruent and 36 incongruent trials. In congruent trials the
color of the top word matched the meaning of that word. For incongru-
ent trials this was not the case.

Each trial started with a fixation cross with a duration that jittered
between 1 and 2 s. Subsequently, to prevent subjects from focusing on
the bottom word and blurring the top word, the top word was presented
150ms before the word on the bottom. As a result, visual attention
shifted automatically to the top word, and participants were forced to
read the top word, enabling interference. Next, the bottom word and a
white fixation cross were presented. The white fixation cross turned or-
ange as soon as a response was made to signal to the participant that the
response had been recorded. After the words were on the screen for 3 s
the feedback was presented (Fig. 2).

Experimental procedure. Before the experiment started, participants
were told the marketing story and were introduced to the tasks, and they
signed the informed consent form. During the EEG data collection, par-
ticipants were seated in a slightly reclining chair positioned in front of a
19 inch PC monitor in a sound-attenuated, electrically shielded, dimly lit
room. Participants first completed practice trials for both visual search
tasks. Afterward, the participants completed the simple visual search
task (5min) followed by the Spot-The-Difference task, which took
;40min. Subsequently, participants completed practice trials for the
Stroop task and the actual Stroop task, which lasted;7 min. After com-
pleting all tasks, participants left the EEG room and completed a short
questionnaire that included questions about their thoughts on the pur-
pose of the task on a computer in a separate testing room.

EEG acquisition and preprocessing
We recorded EEGs from 64 active scalp electrodes using a Biosemi
Active Two system. Additional flat-type electrodes were placed on the
right and left mastoid and in the eye region to record eye movements or
electro-oculograms (EOGs). Electrodes were placed below and above the
left eye in line with the pupil to record vertical EOGs and at the outer
canthi of both eyes to record horizontal EOGs. The EEG and EOG

Figure 1. One trial of the Spot-The-Differences paradigm. Participants viewed a screen indicating the difficulty and value of the trial, then the image pair appeared for 6 s, and participants
were asked to indicate whether they spotted all three differences.
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signals were sampled at a rate of 512Hz. All
preprocessing was done using MNE-Python
software (Gramfort et al., 2013). EEG data
were filtered with a low cutoff filter of 1Hz
to remove slow drifts and a notch filter of
50Hz to remove line noise.

Subsequently, bad and noisy channels
were detected using several different
approaches as implemented in the PREP
pipeline (Bigdely-Shamlo et al., 2015). First,
by means of correlation, we checked how
well a given channel is correlated with all
other channels (categorized as bad at r ,
0.4); second, we checked by using the robust
z-score deviation aggregates per channel
(categorized as bad at z. 5); third, by using
the robust z-score estimates of high-fre-
quency noise per channel (categorized as bad
at z . 5); and finally, we checked by using
the random sample consensus (RANSAC)
channel correlations, which is the correlation
for each channel with itself across the origi-
nal data versus the RANSAC predicted data
(categorized as bad at r , 0.75) as imple-
mented in the PREP pipeline (Bigdely-
Shamlo et al., 2015). After detection, these
channels were removed from the data and
subsequently interpolated (i.e., estimated
from surrounding channels). Interpolation
was performed using the spherical spline
method (Perrin et al., 1989) as implemented
in MNE-Python, which projects the sensor
locations onto a unit sphere and interpolates
the signal at the channels identified as bad
on the signals for the good channels. The
EEG data were then rereferenced to the aver-
age signal across channels. As a next step, oc-
ular artifacts were removed by performing
an independent component analysis on the
data and then correlating the resulting com-
ponents with the EOG channels to see which
of the components represented the ocular artifacts. The component that
correlated the highest with the EOG channels was then removed from
the EEG data.

Epoching and artifact rejection for the Spot-The-Difference task
The EEG data from the Spot-The-Difference-Task was then segmented
into 3 s epochs, time locked to the onset of the decision phase. The
epochs were baseline corrected using the last second of the fixation
period preceding the presentation of the image pair, which occurred
7–6 s before the decisions phase. The resulting epochs were then sub-
jected to Autoreject, an automated artifact detection algorithm based
on machine-learning classifiers, and cross-validation to estimate the
optimal peak-to-peak threshold (Jas et al., 2017). On average, 3% of
trials (;4 trials of 144 trials, SD = 5%) were rejected. This algorithm
was implemented to remove artifacts not identified by previous pre-
processing steps, and depending on the number of bad sensors for a
given trial, either repairs the trial based on interpolation or excludes
it from further analysis. The preprocessed data were then submitted
to a morlet wavelet analysis to transform the data into the time-fre-
quency domain with 18 log-scaled frequency bins ranging from 4 to
40Hz to have higher sensitivity in lower frequency ranges such as the
theta band. To optimize both spectral and temporal resolution, the
number of cycles to include in the sliding time window were defined
by dividing each individual frequency by two. After transforming the
data to the time-frequency domain, the data were decimated by a fac-
tor of four (sampling every fourth time point) to increase computa-
tional efficiency.

Epoching and artifact rejection for the Stroop
Following the same preprocessing steps as described above, the EEG
data from the Stroop task were segmented into 2 s epochs, time locked
to the presentation of the second word on the screen. The epochs were
baseline corrected in the second preceding the onset of the second word.
The same artifact rejection as described above was applied to the Stroop
task, and in this task on average 2% (SD = 4%) of trials for each subject
was rejected. The same morlet wavelet analysis was used to transform
the data to the time-frequency domain.

Statistical analysis
Contrasting conditions in the Stroop task. To localize the neural cor-

relates of cognitive control related to inhibiting the default response in
the Stroop task, we conducted a multilevel analysis contrasting the EEG
data from the conditions of the Stroop task with the highest behavioral
difference (congruent/corresponding vs congruent/noncorresponding;
see above, Task and stimuli). Previous research has found that the EEG
correlates of cognitive control are typically observed in the theta (4–8
Hz) frequency range on midfrontal channels (Fz, FCz; Wang et al., 2005;
Cohen et al., 2008; Womelsdorf et al., 2010; Cohen and Cavanagh, 2011;
Cavanagh et al., 2012; Nigbur et al., 2012). However, the exact reported
frequencies and channels vary a bit among studies, so we conducted a
relatively broad search on all midfrontal channels (F1, Fz, F2, FC1, FCz,
FC2, C1, Cz, C2), and across the entire frequency spectrum to localize
the EEG correlate of cognitive control in our task.

At the first level (i.e., the participant level), we computed the aver-
aged time-frequency maps for each of the two conditions. We then
tested the resulting averaged maps at the second level for significant
group effects, using a paired sample t test. We used cluster-based

Figure 2. An example trial of the Stroop task. Participants were asked whether the color of the top word corresponds with
the meaning of the bottom word. Top, The four conditions of the Stroop task. Bottom, The sequence of a trial in the Stroop
task.
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permutation testing as a stringent control for multiple comparisons
(Maris and Oostenveld 2007). Specifically, for every sample across the
nine channels, we quantified the experimental effect by a t value. We
selected samples for which the t value was larger than a given threshold
(p, 0.05) for potential inclusion in a cluster. It should be noted that the
threshold used does not affect the false alarm rate of the final statistical
test; it only sets a threshold for considering a sample as a candidate
member of a cluster. We subsequently clustered selected samples in con-
nected sets based on temporal and spectral adjacency, and we computed
cluster-level statistics by taking the sum of the t values within every clus-
ter. Subsequently, we performed permutation testing using the Monte
Carlo method to compute the posterior significance probability of our
observed effect (Maris and Oostenveld, 2007). This analysis results in a
cluster of adjacent data points across time, frequencies, and channels,
which significantly differs in activity between conditions that demand
high versus low levels of cognitive control.

Contrasting cheatable versus noncheatable trials
To test whether the same neural signature of cognitive control found in
the Stroop task could be observed when participants are exposed to the
opportunity to cheat, we first created a mask consisting of the channels
and frequencies as identified by the analysis of the Stroop task. We then
performed a cluster-based permutation test on these channels and fre-
quencies, which reduces the multiple-comparisons problem and thus
increases the sensitivity of the analysis (Maris, 2012). Specifically, we
computed the averaged time-frequency maps of cheatable trials and
noncheatable trials for each subject. We then selected the channels and
frequencies that were significant in the Stroop task (i.e., the spectral
points within the channels found to be significant in the analysis of the
Stroop effect). For group-level analysis we then conducted the cluster-
based permutation testing procedure described above on the masked
contrast maps to test whether there is a significant cluster within the cog-
nitive control mask that distinguishes between cheatable and noncheat-
able trials.

Trial-by-trial analysis
To test whether power in the channels and frequencies that were found
to be significantly different between cheatable and noncheatable trials in
the previous analysis could be used to estimate the ctual decision to cheat

or to be honest, we conducted a trial-by-trial analysis. Based on the find-
ings from the analysis above, we focused particularly on the time win-
dow that most strongly differentiated cheatable and noncheatable trials.
We used this time window to test whether we can estimate (dis)honesty
on each trial. We extracted trial-by-trial power from the channels, time
window, and frequencies of interest by extracting the first factor from an
exploratory factor analysis. A factor analysis (without rotation) was used
to extract the most amount of variance from the time window of interest.
The advantage of using a factor analysis over using the mean is that dif-
ferent items (time points) can be given different weights to maximize the
correlation between time points in this time period (DiStefano et al.,
2009). This resulted in one data frame where the rows represent trials,
and the columns represent the channels of interest.

Figure 3. For the similarity-based analysis, we computed the similarity between the last 500 ms of each participant’s time-frequency data for the difference between congruent/noncorres-
ponding trials and congruent/corresponding trials and the first 500 ms of the time-frequency map for each trial, each channel, and each participant in the Spot-The-Difference task.

Figure 4. Individual differences in the proportion of cheating on the Spot-The-Difference
task (N = 33).
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Given the nested structure of the data (trials
among participants), we then conducted a multi-
level analysis to estimate trial-by-trial cheating.
The dependent variable was the binary response
with a logit link (cheating = 1, honest = 0). The
power in the frequency range of interest within
the time window of interest for each of the chan-
nels of interest served as trial-level regressors. In
addition, the average cheatcount (number of
times a participant cheated) was added as a sub-
ject-level regressor. To reduce multicollinearity
between the regressors and to explore which of
the channels is most important in estimating
cheating on the trial level, we performed variable
selection for generalized linear mixed models by
means of L1-penalized estimation. This was
implemented using the glmmlasso package in R,
which applies a gradient ascent that enables us
to maximize the penalized log likelihood, yield-
ing models with reduced complexity (Groll and
Tutz, 2014). The lasso regression adds a penalty
term to the equation, which shrinks less impor-
tant coefficients in the model to zero and thus
reduces complexity of the model and multicolli-
nearity of regressors (Tibshirani, 1996). In this
way it also selects the most important regressors
in the model.

Similarity analysis
To further establish a link between the patterns of activation in the
Stroop task and patterns of activation related to trial-level cheating, we
conducted a similarity analysis (Fig. 3). For each participant we sub-
tracted the average time-frequency data for congruent/corresponding
trials from the average time-frequency data for congruent/noncorres-
ponding trials for all channels of interest, resulting in a time-frequency
spectrum representing the neural signature of cognitive control as
derived from the Stroop task (Fig. 3). We then computed the Spearman
correlation between this neural signature of cognitive control and the
time-frequency map for each subject on each of the trials and for each
channel in the Spot-The-Difference task. After computing the Spearman
correlations, a Fisher z-transformation was applied to obtain normally
distributed predictors. This resulted in a data frame with a Spearman
correlation on each row for each subject, trial, and channel. We then
entered these data into a multilevel lasso regression model with the bi-
nary response (cheating = 1, honest = 0) as a dependent variable.

Results
Large individual differences in cheating
Substantial individual differences in the total amount of cheating
were observed (mean = 41%, median = 30%, SD = 29%; Fig. 4).
Some participants cheated no more than three times in 72 trials
(6% of participants), whereas others only missed one or two
opportunities to cheat (also 6%).

We investigated how different task characteristics of the Spot-
The-Difference task influenced cheating behavior. Because of the
nested structure of our data (trials with different numbers of dif-
ferences and rewards among participants), we applied a multile-
vel logistic regression analysis on our behavioral data. This
analysis considered cheatable trials only. The dependent variable
was the binary response (cheating vs honest) with a logit link
(cheating = 1, honest = 0). The number of differences, trial num-
ber, and level of reward served as trial-level regressors. The
model allowed for random intercept among participants.
Replicating findings from a previous study (Speer et al., 2020),
this analysis revealed a significant effect of the number of differ-
ences on cheating behavior (b = 1.02, SE = 0.08, z = 12.86, p ,

0.001). This indicates that participants cheated more frequently
when the crime was smaller (i.e., they claimed to have found
three differences more often when there were two differences
compared with only one). As in the previous study (Speer et al.,
2020), no significant effect of reward magnitude (see above,
Materials and Methods) on cheating behavior was found.
Further, no significant effects of reaction time on cheating were
found, which is probably because participants had 3 s to make
up their mind and form a decision before the response options
appeared and a response could be made (see above, Materials
and Methods). Also, the trial number regressor, testing for possi-
ble fatigue or habituation effects, did not have a significant effect.

Effects of congruency and correspondence on reaction time
in the Stroop task
To test whether there were significant differences in cognitive
control demands between the different conditions of the Stroop
task, we tested the effects of the conditions, namely congruency
(whether the color of the top word matched the meaning of the
top word) and correspondence (whether the color of the top
word matched the meaning of the bottom word), and the inter-
action of the conditions with reaction times. Here, the assump-
tion is that longer reaction times reflect higher cognitive control
demands. Because of the nested structure of the data, a multilevel
regression model was used. The analysis revealed that both
Congruency (b = 282.09, SE = 23.55, t = 11.99, p , 0.001) and
Correspondence (b = 306.20, SE = 21.27, t = 14.39, p , 0.001)
had a significant effect on reaction times. In addition, the inter-
action effect between Congruency and Correspondence was
found to be significant (b = �354.98, SE = 25.09, t = �14.15, p,
0.001). The results show that incongruent as well as noncorres-
ponding trials resulted in significantly higher reaction times than
the congruent and corresponding trials. The combination of
incongruent and noncorresponding words also led to signifi-
cantly higher reaction times (Fig. 5). Thus, congruent and corre-
sponding trials had significantly lower cognitive control
demands than any of the other conditions (Fig. 5). For parsi-
mony, from now on we only focus on the difference between

Figure 5. The effect of Congruency and Correspondence on Reaction time in the Stroop task.
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congruent/corresponding and congruent/noncorresponding tri-
als because this is the contrast where the largest difference in
reaction time between conditions was observed. In congruent/
noncorresponding trials, the meaning of the top word is congru-
ent with the ink color of the top word, leaving participants par-
ticularly inclined to categorize this trial as a corresponding trial.
To respond accurately, they must override this intuitive impulse,
which demands a high degree of cognitive control, resulting in
the longest reaction times. We also repeated the neural analysis
for the congruency contrast (incongruent/corresponding trials vs
congruent/corresponding trials) and found similar results.

The neural correlates of cognitive control in the Stroop task
Our time-frequency analysis over the midfrontal channels (F1,
Fz, F2, FC1, FCz, FC2, C1, Cz, C2) revealed there was a signifi-
cant increase in power on congruent/noncorresponding trials on
all midfrontal channels in the theta band (4–8 Hz), starting at
;500ms after the onset of the bottom word (Fig. 6), consistent
with previous findings. The timing of our findings also aligns
well with previous studies using time-frequency analysis, which
found effects of cognitive control appear ;470–1000 ms after
stimulus onset (Hanslmayr et al., 2008; Kovacevic et al., 2012;
Tang et al., 2013). Consequently, it can be assumed that this dif-
ference in power in the theta band reflects cognitive control
processes related to the processing of cognitive conflict. To test
the robustness of these findings, the analysis was repeated for the
congruency effect (contrasting all congruent vs incongruent tri-
als), revealing similar results.

Conflict processing when exposed to the opportunity to
cheat
Using the channels (F1, Fz, F2, FC1, FCz, FC2, C1, Cz, C2) and
frequencies (4–8 Hz) derived from the analysis of the Stroop
task, we then contrasted cheatable with noncheatable trials (see

above, Materials and Methods). The analysis revealed there was a
significant cluster spanning all the channels in the theta band in
the first 500ms of the decision phase (Fig. 7), suggesting that
conflict associated with the temptation to cheat is detected rela-
tively early in the decision phase.

We also more quantitatively tested the similarity
between the Stroop contrast for correspondence (congru-
ent/noncorresponding . congruent/corresponding) and
the contrast between cheatable and noncheatable trials in the
Spot-The-Difference task. Specifically, we computed the
Spearman correlation between the last 500ms of the time-fre-
quency map for the correspondence effect in the Stroop task
and the first 500ms of the time-frequency map for cheatable
versus noncheatable trials in the Spot-The-Difference task
across channels, time, and frequency, resulting in a correlation
of r = 0.56. To estimate the significance of this correlation, we
then repeated this procedure 5000 times, shuffling the values
for one of the maps, to create a null distribution of correla-
tions expected by chance. Comparing the empirical correla-
tion with the null distribution, we observed that the
correlation is significant at p , 0.001. The same holds when
we calculate the correlation for each of the channels individu-
ally (F1: r = 0.49, p , 0.001; Fz: r = 0.62, p , 0.001; F2: r =
0.71, p , 0.001; FC1: r = 0.49, p , 0.001; FCz: r = 0.75, p ,
0.001; FC2: r = 0.71, p, 0.001; C1: r = 0.31, p, 0.001; Cz: r =
0.37, p , 0.001; C2: r = 0.64, p , 0.001). These findings show
that the patterns of activation related to cognitive control in
the Stroop task are indeed similar to the patterns of activation
when one decides whether to cheat.

Power in the theta band is associated with trial-by-trial
cheating
Entering the power in the theta range within the first 500ms for
each of the channels of interest together with participants’

Figure 6. The electrophysiological signature of cognitive control in the Stroop task. Significant clusters in the midfrontal channels can be observed in theta band (4–8 Hz) between 500 and
1000 ms after stimulus onset. The clusters plotted in solid colors are significant at p , 0.05 (corrected for multiple comparisons using a cluster-based permutation test, Nperm = 1000 across
channels). The transparent colors are insignificant. The legend represents t values.
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cheatcount into a multilevel lasso model revealed that the cheat-
count (b =1.61, SE = 0.07, p , 0.001) and the interaction effect
between the cheatcount and theta power on Fz (b = �0.17, SE =
0.06, p , 0.05) were significantly associated with trial-level
cheating. Scrutinizing the plot depicting the interaction effect
(Fig. 8), we see that for participants who cheat a lot (light blue
lines), a higher power on Fz was associated with lower probabil-
ities of cheating, whereas for more honest participants (dark blue
lines), a higher theta power on Fz is associated with a higher
probability of cheating. These findings suggest that the effect of
midfrontal theta on cheating is contingent on whether a partici-
pant is, by default, more inclined to be honest or dishonest. We
also conducted a robustness check for these results in which we
averaged over all channels (F1, Fz, F2, FC1, FCz, FC2, C1, Cz,
C2). This robustness analysis revealed there was a significant
main effect of cheatcount (b =1.60, SE = 0.07, p , 0.001) and a
significant interaction effect between the average of all electrodes
and the cheatcount (b =�0.31, SE = 0.14, p, 0.05).

Similarity to cognitive control signature is associated with
trial-by-trial cheating
To further establish a link between the patterns in the Stroop
task and cheating, we conducted a similarity analysis. We

computed for each participant and for each channel the correla-
tion between the average time-frequency map in the last 500ms
of the difference between congruent/noncorresponding trials
(representing high cognitive control demands) and congruent/
corresponding trials (representing low cognitive control
demands) and the first 500ms of the time-frequency map for
each trial, channel, and participant in the Spot-The-Difference
task. We then entered the resulting correlation, together with
each participant’s cheatcount in a multilevel lasso regression
model to predict trial-by-trial cheating. This analysis revealed
that the cheatcount (b =1.62, SE = 0.07, p, 0.001) and the inter-
action effect between the cheatcount and the similarity between
the Stroop and Spot-The-Difference tasks on FC1 (b = �0.16, SE
= 0.07, p , 0.05) were significantly associated with trial-level
cheating (Fig. 9).

These results indicate that for cheaters the more similar their
brain response is to that of applying cognitive control in the
Stroop task, the less likely it is they will cheat. On the other hand,
the more similar the brain response is to that of cognitive control
in the Stroop task for more honest participants, the more likely it
is they will cheat. These results establish a direct link between the
neural signature of cognitive control identified in the Stroop task
and trial-level cheating in the Spot-The-Difference task,

Figure 7. The electrophysiological signature of conflict processing when tempted to cheat. Top, Significant clusters in the midfrontal channels can be observed in theta band (4–8 Hz) in the
first 0.5 s of the decision period. The clusters plotted in solid colors are significant at p, 0.05 (corrected for multiple comparisons using a cluster-based permutation test, Nperm = 1000, cor-
rected for multiple comparisons across channels using false discovery rate at p, 0.05). The transparent colors are insignificant. Bottom, Topoplots of the first 0.5 s of the Spot-The-Difference
task (left) and the last 250 ms of the Stroop task (right) in the theta band.
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supporting our hypothesis that the role of cognitive control in
cheating behavior depends on one’s moral default.

The fact that in this analysis the FC1 and not the Fz (as in the
previous analysis) was observed to be the most predictive chan-
nel might be because the similarities between Spot-The-
Difference and Stroop data were highly correlated across chan-
nels. The lasso chose the most important predictor; however, the

other channels were also highly correlated (Fig. 10) and, conse-
quently, could have also been selected with a high likelihood.
This suggests that the cluster of midfrontal channels represents
engagement of the same underlying process.

Discussion
In the current study we replicated previous findings (Speer et al.,
2020) that the role of cognitive control in (dis)honest decisions
depends on an individual’s moral default. Specifically, combining
EEG with the Stroop task as a localizer we identified the neural
signature of cognitive control in the theta band (4–8 Hz) on mid-
frontal channels (F1, Fz, F2, FC1, FCz, FC2, C1, Cz, C2).
Subsequently, we observed higher power on these channels and
this frequency range in the first 500ms of the decision-making
phase of the Spot-The-Difference task when participants were
exposed to the opportunity to cheat compared with the ab-
sence of this temptation. In addition, we find that higher theta
power on these channels in the first 500ms is associated with
a higher probability of cheating for honest participants,
whereas it increased honesty for cheaters. Finally, we found
that the similarity between trial-level power in the Spot-The-
Difference task and the subject-level neural signature of cogni-
tive control derived from the Stroop task is associated with
trial-level cheating.

Our findings align well with the literature on the electrophysi-
ological signature of cognitive control, which has consistently
found that cognitive control demands modulate power in the
theta range over the midfrontal cortex (Wang et al., 2005; Cohen
et al., 2008; Womelsdorf et al., 2010; Cohen and Cavanagh, 2011;
Cavanagh et al., 2012; Nigbur et al., 2012). Furthermore, our
findings from the Stroop task are in accordance with previous
research showing that cognitive control demands related to the
Stroop interference can be observed ;470–1000 ms after stimu-
lus onset (i.e., presentation of both words; Hanslmayr et al.,
2008; Kovacevic et al., 2012; Tang et al., 2013).

Previous research has deduced the involvement of cognitive
control in moral decision-making through relating observed acti-
vations to those observed for cognitive control tasks in prior
studies (Greene and Paxton, 2009; Abe and Greene, 2014) or
with the help of meta-analytic evidence (Speer et al., 2020) from

Figure 9. Interaction effect between cheatcount and similarity in the FC1 between trial-
level time-frequency data from the Spot-The-Difference task and subject-level time-frequency
data representing the neural signature of cognitive control in the Stroop task in estimating
the probability of cheating. The lines shown are the fitted values for participants 3 SD (light-
est blue), 2 SD (light blue), and 1 SD (blue) above the mean of the cheatcount, and for par-
ticipants 1 SD (dark blue), 2 SD (darker blue), and 3 SD (darkest blue) below the mean of
the cheatcount.

Figure 8. Interaction effect between cheatcount and theta in Fz in estimating the probability
of cheating. The lines that are shown are the fitted values for participants 3 SD (lightest blue), 2
SD (light blue), and 1 SD (blue) above the mean of the cheatcount, and for participants 1 SD
(dark blue), 2 SD (darker blue), and 3 SD (darkest blue) below the mean of the cheatcount.

Figure 10. Correlation among similarities across channels.
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the Neurosynth platform (Yarkoni et al., 2011). This approach,
which relies on reverse inference, must be used with caution
because any given brain area may be involved in several different
cognitive processes, which makes it difficult to conclude that
activation observed in a particular brain area represents one spe-
cific function (Poldrack, 2006). Here, we extend prior research
by providing more rigorous evidence by means of explicitly elic-
iting cognitive control in a separate localizer task and then dem-
onstrating that this same neural signature can be identified in the
Spot-The-Difference task when participants are exposed to the
opportunity to cheat. Moreover, using similarity analysis we pro-
vide a direct link between the neural signature of cognitive con-
trol, as elicited by the Stroop task, and (dis)honesty by showing
that time-frequency patterns of cognitive control demands in the
Stroop task are indeed similar to those observed when tempted
to cheat in the Spot-The-Difference task. These results provide
strong evidence that cognitive control processes are recruited
when individuals are tempted to cheat.

We observed that the detection of cognitive conflict occurs in
the first 500ms of the decision phase, regardless of whether par-
ticipants were honest or dishonest. This suggests that moral con-
flict is detected relatively early in the decision process. This may
indicate that the decision to cheat or not relies on the immediate
engagement of cognitive control on a given trial, rather than a
later readjustment of an intuitive response to be (dis)honest.
Alternatively, the outcome of the decision may depend on intrin-
sic fluctuations of cognitive control over time (Leber et al., 2008);
when control is high when a particular choice is presented, par-
ticipants are better equipped to go against their default than
when control is relatively low at that point in time. To rule out
the possibility that differences in cognitive control can be attrib-
uted to differences in mental effort exerted during a visual search
rather than moral conflict during choice, we tested whether dif-
ferences in cognitive control between conditions could already
be detected during the visual search phase. No significant differ-
ences between conditions (cheatable vs noncheatable) were
found in the search phase.

Importantly, we replicate the previous results from an fMRI.
Using EEG instead of fMRI, evoking cognitive control by means of
a well-validated localizer and using a different sample, we provide
further evidence that validates the notion that cheaters require cog-
nitive control to be honest, whereas generally honest participants
require cognitive control to cheat. This replication is significant as
the reproducibility of many findings in (cognitive) neuroscience
and psychology have been questioned (Ioannidis, 2005; Button et
al., 2013; Botvinik-Nezer et al., 2020). To avoid building further
research on fragile ground, replications are necessary to validate
novel insights and hypotheses (Barch and Yarkoni, 2013;
Botvinik-Nezer et al., 2020). Importantly, the data and code this
article is based on are publicly available to allow other labs to
reproduce our findings or facilitate replication in new samples and
in different labs.

Data availability
Data and scripts used in the task are available in the following
public repository: https://doi.org/10.25397/eur.15194658.v1.

Some limitations of this study are worth addressing. Here,
we focused mainly on more rigorously investigating the effect
of cognitive control on (dis)honest decisions by applying a lo-
calizer specifically designed to investigate the neural mecha-
nisms underlying conflict detection and the inhibition of a
default response. In a previous study (Speer et al., 2020), it was
revealed that cognitive control helps to reconcile the conflict

between the anticipation of reward and the maintenance of a
positive self-concept. Therefore, future studies may benefit from
also designing localizer tasks to elicit the neural processes under-
lying the anticipation of reward and self-referential thinking to
more rigorously explore the interaction between these processes.

Furthermore, although neuroimaging can provide insights
into which neural processes are associated with (dis)honest deci-
sions, it cannot determine whether there is a causal relationship.
To test the causality of the effect of cognitive control on dishon-
esty, methods such as transcranial direct current stimulation or
transcranial magnetic stimulation could be used to directly
manipulate activity in the cognitive control network in honest
participants and cheaters to test whether the interaction effect
can be causally induced. Similarly, the causal relationship
between moral default, cognitive control, and cheating could be
examined with the help of behavioral interventions to induce
cognitive load or evoke acute stress (Wood et al., 1984), which
have been found to reduce cognitive control capacity (Shiv and
Fedorikhin, 1999; Schwabe andWolf, 2009; Yu, 2016).

To conclude, the current study shows that the role of cogni-
tive control does not enable cheating or honesty per se but is
contingent on one’s moral default. By using a well-established lo-
calizer task for cognitive control, we provide further validation of
the differential effect of cognitive control on (dis)honesty. In
addition, the high temporal resolution provided by EEG allowed
us to show that cognitive control has an impact on decisions
involving dishonesty relatively early in the decision-making pro-
cess, which may indicate that the decision to cheat or not relies on
the immediate engagement of cognitive control on a given trial or,
alternatively, that the outcome of the decision may depend on
probabilistic fluctuations of cognitive control over time so that
when control is high, participants are better equipped to go against
their default than when control is relatively low at that point in
time. Future studies may extend this work by causally manipulat-
ing cognitive control to investigate both the intersubject and intra-
subject variability in cheating behavior.
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