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Current understanding of the neural processes underlying human grasping suggests that grasp computations involve gradients
of higher to lower level representations and, relatedly, visual to motor processes. However, it is unclear whether these proc-
esses evolve in a strictly canonical manner from higher to intermediate and to lower levels given that this knowledge impor-
tantly relies on functional imaging, which lacks temporal resolution. To examine grasping in fine temporal detail here we
used multivariate EEG analysis. We asked participants to grasp objects while controlling the time at which crucial elements
of grasp programs were specified. We first specified the orientation with which participants should grasp objects, and only af-
ter a delay we instructed participants about which effector to use to grasp, either the right or the left hand. We also asked
participants to grasp with both hands because bimanual and left-hand grasping share intermediate-level grasp representa-
tions. We observed that grasp programs evolved in a canonical manner from visual representations, which were independent
of effectors to motor representations that distinguished between effectors. However, we found that intermediate representa-
tions of effectors that partially distinguished between effectors arose after representations that distinguished among all effec-
tor types. Our results show that grasp computations do not proceed in a strictly hierarchically canonical fashion, highlighting
the importance of the fine temporal resolution of EEG for a comprehensive understanding of human grasp control.
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Significance Statement

A long-standing assumption of the grasp computations is that grasp representations progress from higher to lower level con-
trol in a regular, or canonical, fashion. Here, we combined EEG and multivariate pattern analysis to characterize the temporal
dynamics of grasp representations while participants viewed objects and were subsequently cued to execute an unimanual or
bimanual grasp. Interrogation of the temporal dynamics revealed that lower level effector representations emerged before in-
termediate levels of grasp representations, thereby suggesting a partially noncanonical progression from higher to lower and
then to intermediate level grasp control.

Introduction
The human brain computes sensorimotor representations and
processes in multiple stages of sensorimotor transformations
(Flash and Hogan, 1985) to interact with the world. For example,
to grasp an object, the brain extracts sensory information about
the object and the intended effector to generate motor programs

that then guide the movements of the grasping hand. To this end
the brain relies on lateral and medial pathways within a parieto-
frontal network (Fattori et al., 2009, 2017; Gallivan and Culham,
2015; Janssen and Scherberger, 2015) that computes grasp-rele-
vant visuomotor features (Tunik et al., 2005; Davare et al., 2006;
Baumann et al., 2009; Cavina-Pratesi et al., 2010; Fabbri et al.,
2016; Schaffelhofer and Scherberger, 2016).

Two (partially related) properties of the grasp network are
suggestive of the multistage dynamics of the sensorimotor trans-
formations that they perform—hierarchical organization and vis-
ual-to-motor gradients. The grasp network is hierarchically
organized; at higher (or upstream) levels areas represent grasp
features regardless of effectors, at lower levels areas encode grasp
features for the right or left hand more specifically (Davare et al.,
2006; Gallivan et al., 2013; Turella et al., 2016, 2020; Michaels
and Scherberger 2018). Furthermore, some areas share neural
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resources at intermediate levels, downstream from effector-in-
dependent representations but upstream from the control of
individual effectors. For example, right parietal areas, more spe-
cialized for grasping with the left than the dominant right hand,
also control bimanual grasps (Le et al., 2014, 2017). Other exam-
ples of intermediate-level sensorimotor control can be found in
Kadmon Harpaz et al. (2014) and Turella et al. (2020).

A concept related to hierarchical organization is a visual-to-
motor gradient (Gallivan and Culham, 2015; Janssen and
Scherberger, 2015), which is seen in parietal regions more associ-
ated with representations of visual object properties (upstream of
motor control and effector representations); whereas premotor
and motor regions are more associated with more downstream
motor representations for movement planning and execution
(Fabbri et al., 2016; Schaffelhofer and Scherberger, 2016), operat-
ing in a relatively modular fashion (Michaels et al., 2020).

Because of the hierarchical structure of the frontoparietal
grasp network and sensory-to-motor organization, it appears
obvious to assume that information flows from sensory to motor
stages and from higher to lower levels of planning and executing
grasp movements. Yet, empirical evidence remains limited.
Functional magnetic imaging (fMRI), the dominant method to
study human brain functions, is handicapped by its coarse tem-
poral resolution, although fMRI paradigms slowing down grasp
processes offer some albeit limited insights into timing (Monaco
et al., 2011; Gallivan et al., 2011, 2013; Ariani et al., 2018).

To unravel the time course of the sensorimotor grasp proc-
esses in detail, two studies were begun to use magnetoencepha-
lography (MEG) or electroencephalography (EEG) together with
multivariate decoding techniques. Turella et al. (2016) identified
action planning processes;750ms after object presentation and
upstream from effector-related processes. Guo et al. (2019)
revealed the time course of object shape and grasp orientation
representations during grasp planning and execution.

Here, we used multivariate EEG analysis to test whether sen-
sorimotor processes underlying grasping evolve in a strictly ca-
nonical fashion from higher to lower levels. To tease apart
higher, intermediate, and lower levels of computations, we
mapped neural representations that were effector independent
and partially differentiated between effectors or completely dif-
ferentiated between effectors. Therefore, we extracted represen-
tations of grasp orientation to map grasp programs before and
after effector specification. Participants knew which grasp orien-
tation to perform while viewing objects but learned only later
whether to grasp the object with the left or right hand or whether
to grasp bimanually. We included bimanual grasps to identify in-
termediate-level action planning where bimanual and left-hand
grasping are computationally and physiologically similar but dif-
ferent from right-hand grasping (Le et al., 2014, 2017, 2019). We
found that effector-independent visual representations emerged
before motor representations. Surprisingly however, representa-
tions partially differentiating between effectors emerged after
representations that completely differentiated between effectors,
thereby revealing a noncanonical progression from higher to
lower and then to intermediate-level grasp control.

Materials and Methods
Participants. Fifteen participants (eight females; median age, 20

years; range, 18–35) from the University of Toronto community gave
their written and informed consent to participate in the experiment in
exchange for cash payments. Whereas we were (and are) not aware of a
power analysis for the analysis that we intended to conduct here (i.e.,
representational dissimilarity analysis, see below), we determined our

sample size a pr iori based on similar EEG or MEG studies using multi-
variate methods. First, in the main experiment of a study from our lab
(Guo et al., 2019) we had found that using support vector machines to
analyze 6 h of data for each of 15 participants yielded a significant grasp-
ing effect (Guo et al., 2019), including a significant effect for 15 of 15
individual participants for one of the independent variables. (Nemrodov
et al., 2016, 2018, have similar sample sizes in two support vector machine
studies on face perception.) In addition, a literature search for related
articles that conducted representational dissimilarity analysis on MEG/
EEG data produced an average sample size of 13.1 (standard deviation =
5.2, range = 5–20; Cichy et al., 2014; Cichy and Pantasis, 2017; Kaneshiro
et al., 2015; Kassraian-Fard et al., 2016; Kietzmann et al., 2019;
Mohsenzadeh et al., 2019; Wardle et al., 2016; Sburlea et al., 2021).

The participants included in the present study were all right-handed
(Oldfield, 1971) and had normal or corrected-to-normal vision. All proce-
dures were approved by the Human Participants Review Subcommittee of
the University of Toronto and conformed to the ethical standards in the
Declaration of Helsinki.

Procedures and apparatus. Participants were seated in a light-sealed
room at a table waiting to make visually guided grasp movements.
Before each block of trials an experimenter sitting beside them told them
whether grasps should be clockwise (CW) or counterclockwise (CCW).
Also, the experimenter practiced with them (two or three trials) as they
waited for a high- or low-pitched tone as a signal about which effector to
use. For left-handed and bimanual (LB) blocks, one pitch (high or low in
different blocks) signaled grasps with the left hand using the index finger
and the thumb, and the other pitch signaled grasps with both hands
using the index fingers of both hands and the middle fingers for support;
for right-handed and bimanual (RB) blocks, the pitch of the tone cued
grasps with the right hand or with both hands; and for left-handed and
right-handed (LR) blocks, it cued grasps with the left or right hand. We
tested only two types of grasping in any block to avoid confusion; learn-
ing to associate three different pitches to three grasp types as well as
relearning the association after each block of trials would have been too
difficult for participants. Contingency between pitch and effector ran-
domly changed for participants from block to block to ensure that our
analyses did not falsely include representations of auditory frequencies
when decoding effector representations.

The participants then placed their left and right hand on a button
box so that each index finger blocked a beam of infrared light. Earplugs
and an opaque shutter glass screen (Smart Glass Technologies) ensured
that the participants could not hear or see how the experimenter pre-
pared each trial. To that end, the experimenter turned on a set of LEDs
that illuminated a black-clad grasp space with a slanted platform and a
square-shaped peg in the middle. On the peg the experimenter mounted
objects always with the same position and orientation, 43 cm away from
the participant with the surface of the object tilted toward the partici-
pant’s line of sight.

All objects were made from 2 cm thick wooden blocks and were ei-
ther shaped like a pillow with four concave edges or like a flower with
four convex edges (Fig. 1A). All objects measured 6 cm across opposing
edges, thus with identical grip sizes, and they were painted middle gray
on the sides. The top surfaces were covered either with a grid or checker-
board texture. All combinations of textures and shapes were equally
likely to occur. However, only object shapes were relevant for grasping.
Texture was irrelevant for the task and merely helped create a greater va-
riety of objects to better engage the attention of the participants.

Next, the experimenter pressed a key to start the trial (Fig. 1B). The
LEDs switched off, and the shutter glass screen turned transparent.
Seven-hundred fifty to 1250ms later, the LED lights turned on to illumi-
nate the object for the participant to see for a Preview time of 500–
1000ms. Then the pitch of the auditory Go signal (loud enough to be
heard through the earplugs) instructed participants which hand or hands
to use to grasp the object.

Once participants moved their hand or hands, the infrared beams on
the button box were unblocked, marking the time of movement onset
(note that only at that time the participant’s hand or a hands came into
view through the shutter glass). As the participants reached to grasp the
object, their fingers crossed a curtain of infrared beams created by two
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15-cm-tall pillars located 40 cm apart from one another and directly in
front of the object. The participant’s hand or hands crossing the beam
defined the end of the reach-to-grasp movement (i.e., immediately
before the participant touched the object). The trial ended with the par-
ticipant picking up the object and placing it on the table near the experi-
menter. Trials with incorrect grasps or dropped objects were marked as
invalid before the start of the next trial. In total there were 40 trials in
one block (2 shapes� 2 textures� 2 effectors� 5 repetitions in random
order) for a total of 42 blocks (2 orientations � 2 effector combinations,
i.e., LB/RB/LR � 7 repetitions in random order) across two 3 h sessions
conducted on different days, and there was one practice block at the be-
ginning of the experiment. Breaks were provided in between blocks as
requested by the participants.

Data acquisition and preprocessing. EEG data were recorded using a
64-electrode BioSemi ActiveTwo recording system, digitized at a rate of
512Hz with 24-bit analog-to-digital conversion. The electrodes were
arranged according to the International 10/20 System. The electrode off-
set was kept below 40mV.

EEG preprocessing was performed offline in MATLAB using the
EEGLAB Toolbox (Delorme and Makeig, 2004) and ERPLAB Toolbox
(Lopez-Calderon and Luck, 2014). Signals from each block were band-
pass filtered (noncausal Butterworth impulse response function, 12 dB/
octave roll-off) with half-amplitude cut-offs at 0.1 and 40Hz and down
sampled to 256Hz (to improve statistical power). Noisy electrodes (cor-
relation with nearby electrodes , 0.6) were interpolated (on average
0.78 electrodes per subject), and all electrodes were rereferenced to the
average of all electrodes. Next, independent component analysis (ICA)
was performed, and ICLabel (Pion-Tonachini et al., 2019) was used to
help identify and remove components that were associated with blinks,
eye movements, muscle activity, and channel noise. The ICA-corrected
data were segmented relative to the onset of Preview (�100 to 500ms)
and Go signal (�100 to 800ms). In addition, invalid trials and epochs
containing abnormal reaction times (,100ms or .1000ms) or incor-
rect grasps were removed. As a result, an average of 9.03% of trials from
each subject was removed from further analyses.

As an additional preprocessing procedure, we conducted multivari-
ate noise normalization on EEG patterns separately for Preview and Go.
The procedure is recommended for multivariate pattern analysis of elec-
trophysiological signals to avoid any individual electrode value overly
influencing dissimilarity calculations (Guggenmos et al., 2018). To this
end we computed covariance matrices based on electrode activation pat-
terns of all trials for each condition and time point separately. The

obtained covariance matrices were subsequently averaged across time
points and then across conditions. The averaged covariance matrix was
then inverted and multiplied with EEG patterns at each epoch and time
point.

Next, the preprocessed epochs were averaged into ERP traces to increase
the signal-to-noise ratio of spatiotemporal patterns (Grootswagers et al.,
2017). Specifically, up to five epochs within a given block that corresponded
to the same condition (i.e., shape, texture, effector, and grasp orientation)
were averaged together, resulting in 14 separate ERP traces for each of the
24 conditions (2 orientations� 3 effectors� 4 objects) for Preview and Go,
respectively.

Representational dissimilarity analysis. Multivariate pattern analysis
of ERP traces was conducted using representational dissimilarity analysis
(RDA; Kriegeskorte et al., 2008). RDA captures the representational
structure among conditions based on dissimilarities in EEG patterns.
The obtained structure can then be compared with the expected repre-
sentational structure derived according to the shared characteristics (i.e.,
shape, texture, effector, orientation) among conditions to test for the
presence of certain representations. A benefit of RDA over decoding
approaches (Guo et al., 2019) is the ability to statistically remove influen-
ces of artifacts (e.g., eye movements) from the representational structure
(see below, Main effect RDMmodels).

RDA was performed at each time point using spatial features from
all electrodes to assess the time course of representations. We used a
cross-validated Euclidean distance to index dissimilarity between each
pair of conditions. Here, cross-validation was performed by averaging
the estimated distance (D̂i;j) between spatial features (x; i.e., the 64 elec-
trodes) of two conditions (i,j) across all pairs (m,n) of blocks (B), result-
ing in 91 folds using the following equation:

D̂i;j ¼
XB�1

m¼1

XB

n¼m11

xmi � xmj
� �T xni � xnj

� �

B B� 1ð Þ=2 (1)

Cross validation ensured that the resulting Euclidean distance was
unbiased; that is, the expected value of distance would be zero if two pat-
terns are not statistically different from one another, and less than zero
otherwise (Nili et al., 2014; Walther et al., 2016; Guggenmos et al., 2018).
Note that because of the nature of cross-validation the estimated
Euclidean distance, D̂i;j can be negative.

RDA produced a 24 � 24 representational dissimilarity matrix
(RDM) at each time point during Preview and Go (Fig. 2A, RDMs
obtained at selected time points). Aside from RDMs obtained from
ERPs, we also obtained a set of eye movement RDMs that reflect the
degree to which conditions differed from one another based on eye
movement artifacts. That is, based on the eye movement artifacts as
identified by the independent components analysis during preprocess-
ing, we calculated RDMs applying the same procedure.

Main effect RDM models. To identify the dissimilarity information
contained in the RDMs of the ERPs, they were compared with model
matrices (Fig. 2) designed to test the presence of specific representations.
To test for visual representations, the shape model took into account
that flower and pillow shapes are represented differently regardless of
texture and visuomotor properties, and the texture model assumed that
grid and checkerboard textures are represented differently regardless of
shape and visuomotor properties. To test for visuomotor and motor rep-
resentations, the grip orientation model assumed that CW and CCW
grasps are represented differently regardless of effector and visual proper-
ties, and the hand model assumed that left, right, and bimanual grasps
are represented differently regardless of orientation and visual properties.
The four models, together with the eye movement RDMs, then simulta-
neously entered a multiple regression to serve as predictors of the RDMs
of the ERPs at each time point. This way, we obtained b weights that
reflected the unique contribution of each model while partialing out other
models as well as the artifactual contribution of eye movements. The
resulting b weights were compared against zero using one-sample t tests.

Effector-dependent RDM models. The models above tested for the
presence of single representations independent of other features, analo-
gous to testing for main effects in ANOVAs. Additionally (and similar

Figure 1. Methods. A, Objects used in the experiment. Note that the pillow and flower
shapes provide equal grip sizes. B, Combination of grasp orientation and effector. C, Timeline
of a trial. The auditory Go cue (high- or low-pitched tone) informed participants of the effec-
tor to use for the grasp.
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to linear contrasts of ANOVAs), we tested for effector-dependent proc-
esses using models constructed based on a priori hypotheses.
Specifically, we hypothesized that left-handed and bimanual grasps
might be similarly represented given their similarities in neural (Le et al.,
2014, 2017) and computational processes (Le and Niemeier, 2013a, b; Le
et al., 2019). This hypothesis resulted in a model that assumes that grasp
representations for left-handed and bimanual grasps are the same,
whereas grasp representations for right-hand grasping are different (Fig.
2B). For completeness, we also tested the possibility that other effector
pairs might share similar grasp representations, and so a second model
took into account more similar representations between right-handed
and bimanual grasps, and finally a third model took into account more
similar representations between left- and right-handed grasps.
Significant time courses of these special models would indicate that
some aspects of grasp representations depend on shared neural processes
between effectors. We tested each special model in a separate multiple
regression using the special model together with the effector model as
well as eye movement RDMs as regressors (shape and texture models
were statistically entirely orthogonal and therefore not included).

Electrode informativeness. To assess the informativeness of electro-
des for the RDA of ERP patterns, we performed a searchlight analysis
across electrodes. Specifically, we defined a 50 mm radius neighborhood

around each electrode and conducted separate RDAs on spatiotemporal
features obtained from each electrode neighborhood across 100ms time
bins. The selected radius sufficiently captures the nearest surrounding
electrodes. The cross-validation procedure here followed Equation 1
with the exception that x now reflects spatiotemporal features (;8 elec-
trodes in a neighborhood � 40 time points) rather than entirely spatial
features. The resulting RDMs from this searchlight analysis were com-
pared with all models previously described using the same multiple
regression approach.

Statistics. For all tests conducted on EEG data, statistical significance
was assessed using a nonparametric, cluster-based approach to deter-
mine clusters of time points (or electrodes for searchlight analyses) in
which there was a significant effect at the group level (Nichols and
Holmes, 2002). For time-resolved analyses, we defined clusters as con-
secutive time points that exceeded a statistical threshold (cluster-defin-
ing threshold) defined as the 95th percentile of the distribution of t
values at each time point obtained using sign permutation tests com-
puted 10,000 times (equivalent to p , 0.05, one tailed). Significant tem-
poral clusters were then defined as cluster sizes that are equal to or
greater than the 95th percentile of maximum cluster sizes across all per-
mutations (equivalent to p, 0.05, one tailed). In addition, we calculated
95% confidence intervals for the onset times of the first significant

Figure 2. RDM models. A, Main effect models. B, Similar representation models of effectors (e.g., left = bimanual model, or more precisely, left = bimanual= right model. Note that a
complete similarity model where left = bimanual = right would mean that all cells are similar would not be suitable for RDA. Instead, to identify effector-independent representations, we
used the grasp orientation model as a proxy to map effector independent representations. The diagonal elements in the model RDMs are excluded because the corresponding elements in the
RDMs derived from ERPs are always zero, and so this avoids inflating the b weights from multiple regression.
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cluster of the observed effects. This was accomplished by bootstrapping
across participants (i.e., by selecting datasets randomly with replace-
ment) 10,000 times and conducting the same data analysis including the
permutation tests. For searchlight analyses (conducted across electro-
des), cluster-based correction was conducted on each 100ms time win-
dow separately on spatial clusters defined as nearby electrodes within a
50 mm radius.

Statistical tests for behavioral data (reaction time and movement time)
were performed using four-way repeated-measures ANOVAs (Effector �
Grasp Orientation � Shape � Texture) and adjusted for sphericity viola-
tions using the Greenhouse–Geisser (GHG) correction when needed.
Additional post hoc analyses were conducted using repeated-measures t
tests and corrected for multiple comparisons using the false discovery rate
(Benjamini and Hochberg, 1995).

Results
Behavioral results
Average reaction time (RT; defined as the time between Go onset
and movement onset) was 456ms (SD = 89ms). RTs submitted
to a four-way repeated-measures ANOVA (Effector x Grasp
Orientation x Shape x Texture) yielded a main effect of effector
(F(1.782, 32) = 19.654, p , 0.001, h 2

p ¼ 0:551, GHG corrected) so
that reaction times were longer during bimanual grasps (average
RT = 490 ms) than left-handed (t(16) = 3.607, q = 0.003, d =
0.875, average RT = 470 ms) and right-handed grasps (t(16) =
7.373, q , 0.001, d = 1.788, average RT = 460 ms). In addition,

there was an interaction between Effector and Orientation
(F(1.695, 32) = 10.910, p = 0.007, h 2

p ¼ 0:287, GHG corrected).
Specifically, right-handed grasps were slower when performed in
a counterclockwise orientation (t(16) = 2.729, q = 0.045, d =
0.662, average CW RT = 450 ms, average CCW RT = 470 ms),
whereas other grasps had similar reaction times across orienta-
tions (t values , 1.981, q values. 0.098). No other comparison
was significant (F values, 1.198, p values. 0.313).

Average movement time (MT; defined as the time between
movement onset and movement end) was 249ms (SD = 44ms).
The four-way repeated-measures ANOVA of MTs showed a main
effect of Effector (F(1.968, 32) = 21.230, p, 0.001, h 2

p ¼ 0:570, GHG
corrected), so that bimanual grasps (average MT = 280 ms) were
slower in comparison to left-handed (t(16) = 5.299, q , 0.001, d =
1.285, average MT = 249 ms) and right-handed grasps (t(16) = 5.644,
q, 0.001, d = 1.369, average MT = 245 ms). No other comparison
was significant (F values, 4.450, p values. 0.051).

Time course of visual and visuomotor representations and
electrode informativeness
The middle rows in Figure 3 show the group-averaged 24 � 24
RDMs obtained at four different sample time points relative to
Preview and Go onset, respectively. These RDMs captured dissim-
ilarity information as can be visualized with multidimensional
scaling (MDS; top and bottom rows). MDS was applied to

Figure 3. Group-averaged RDMs (second and third rows) and visualization by MDS (top and bottom rows) from four selected time points aligned to Preview and Go. Note that texture condi-
tions were not graphed in the MDS plots given the weak effect of texture.
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the group-averaged RDMs, and the top three dimensions account-
ing for the most variance in the data are plotted as 3D plots of
abstract representational space. Visual inspection of the plots
shows that data during Preview are organized primarily based on
shape and orientation (the organization based on orientation is
more subtle with filled symbols for clockwise orientation plotted
somewhat higher in the plots than nonfilled symbols for counter-
clockwise orientation), whereas during Go, data are organized
according to orientation and effector.

To quantify the extent to which the obtained RDMs captured
the representation of visual object and of motor features, we con-
ducted multiple regression on the obtained RDMs at each time
point for each participant using the four RDM models (shape,
texture, orientation, and effector). This allowed us to examine
the unique contribution of each model to explaining the

obtained RDMs. Including all four RDMmodels within the same
analysis was not necessary because they were statistically inde-
pendent of one another; the purpose was to obtain the same data
format as in subsequent analyses that included statistically de-
pendent RDMs.

Beta weights for the shape model reached significance
85ms after object onset (Fig. 4A, top row). The weights
peaked at 140ms, dropping to lower levels thereafter. Beta
weights for shape aligned to (shape irrelevant) Go were
around zero (Fig. 4B).

Beta weights for texture did not reach significance (Fig. 4A,B,
second row) as expected (Guo et al., 2019), and so texture models
were not included in any subsequent analyses.

Grasp orientation representations formed during Preview
(80–450ms) and thus before effector specification (Fig. 4A, third

Figure 4. Representations of shape, texture, grasp orientation, and hand. A, B, Time course of representations aligned to the onset of Preview (A) and (B) Go. Shaded envelopes around the
curve indicate 61 SEM. Shaded areas under the curve indicate time points that were significant (cluster-based sign permutation test with cluster-defining and cluster-size thresholds of p,
0.05). Horizontal colored error bars mark 95% bootstrapped confidence intervals of representation onset during Preview for shape (80 ms, 105 ms) and grasp orientation (70 ms, 155 ms), and
during Go for grasp orientation (25 ms and 195 ms), and hand (105 ms, 145 ms). Note that during Go, shape representations reached significance from 550 to 670 ms but were excluded from
the bootstrapping analysis given that the time periods occurred during movement. C, Electrode informativeness for representations. Open circles indicate significant electrodes (cluster-based
sign-permutation test with cluster-defining and cluster-size thresholds of p, 0.05). Note that in A and B b -weight curves are differently scaled along the y-axis.
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row). During Go, b weights for grasp orientation became signifi-
cant after 115ms, with a brief interruption between 265 and
275ms). Note that a small cluster of b weights (;50–100ms)
was slightly too brief to reach significance but contributed to the
wide confidence interval (25–195ms).

Hand representations rose rapidly 115ms after the Go signal
and maintained significance afterward (Fig. 4B, fourth row; hand
representations were absent before effector specification during
Preview, as expected; Fig. 4A).

To explore the spatial profiles of shape, grasp orientation, and
hand representations, we applied RDA to neighborhoods of elec-
trodes (50 mm around each electrode,;8 electrodes) for tempo-
ral bins of 100ms. Shape information during Preview peaked at
posterior electrodes (Fig. 4C, first row) starting early (0–100ms),
then extending to nearly all electrodes for the 100-200 ms bin,
and gradually declining thereafter. During Go, no electrodes
reached significance, consistent with the results from time-
resolved RDA.

Grasp orientation representations during Preview peaked at
posterior and central electrodes and became gradually more
prominent with a maximum at 200-300 ms (Fig. 4C, second
row). By contrast, during Go, grasp orientation information
mostly came from parietal, central, and temporal electrodes with
relatively less involvement of occipital electrodes compared with
Preview during 0-200 ms and 300-500 ms.

Hand representations during Preview showed a small effect at
right frontal electrodes during the 400-500 ms bin, perhaps
reflecting a previous-hand effect (because each block of trials
tested only two effectors there was a 50% chance that the same
hand was used in two consecutive trials). Hand representations
after Go especially involved a peak at central electrodes from
100ms on but also included posterior electrodes (Fig. 4C, third
row). After 200ms they involved nearly all electrodes.

In sum, RDA allowed us to extract information about the
time course and the informativeness of electrodes with regard to
representations of grasp actions. Next we used two strategies to
map in detail how neural programs for grasp actions unfold.
First, to identify abstract or high-level (visual) processes, we
looked for representations of grasp orientation before effec-
tor specification to then show that these representations re-
emerged after effector specification yet earlier than effector
representations. Second, to identify intermediate-level proc-
esses, we searched for action representations that partially
differentiated between effectors. That is, we looked for repre-
sentations shared by left-hand and bimanual effector repre-
sentations, finding them to arise after representations that
distinguished among all effectors.

Effector-independent representations of grasp orientation
before and after effector specification
As illustrated in Figure 5 we conducted a series of analyses to
demonstrate (1) that Preview representations of grasp orienta-
tion reflected effector-independent grasp processes (Fig. 5A–C)
and (2) that these representations re-emerged during Go (Fig.
5D). Regarding the former, we first tested whether Preview grasp
orientation representations were truly effector independent. That
is, even before the Go signal specified the effector, participants
might have generated motor plans based on the effector they had
used during the respective previous trial. Behavioral evidence for
motor priming was reflected in slower reaction times when the
effector did or did not change from one trial to the next (differ-
ent effector, 474ms; same effector, 443ms; t(14) = 5.058; p ,
0.001; d = 1.306). Therefore, we calculated ERPs sorting together

trials that shared the same previous-trial effector condition
(regardless of which effector would be used in the current trial)
and reran RDA. We observed significant representations of the
previous-trial effector from ;400ms to the end of Preview (Fig.
5A). This shows that motor priming did influence brain proc-
esses before effector specification but well after the representa-
tions of grasp orientation had formed. Thus, Preview orientation
representations between 80 and 400ms did not depend on
effectors.

Second, we tested whether Preview orientation representa-
tions emerged 80ms after object onset because they were trig-
gered by the object or because of an artifact that had to do with
our choice of baseline (�100 to 0ms), which would have elimi-
nated any information right before object onset. However, we
found that with an earlier baseline (�200 to �100ms) orienta-
tion representations exhibited essentially the same trajectory
(Fig. 5B). Crucially, this shows that the grasp orientation repre-
sentations as studied here did not form based on the verbal
instructions given at the start of each block to grasp clockwise or
counterclockwise as opposed to visual and visuomotor processes
(participants obviously followed verbal instructions, but the re-
spective representations were invisible to our ERP data analysis).

Third, to further show that orientation representations
reflected visual processes, we tested whether these representa-
tions were sensitive to the precise timing of object onset to illus-
trate how important correct temporal alignment is for RDA of
ERPs; for example, in Fig. 4A Preview shape representations per-
sist after 500ms, but in Fig. 4B, with the same data aligned to
Go, shape representations disappear. Therefore, we added ran-
dom temporal jitter (6250ms) to the time of visual object onset
of individual trials to recalculate ERPs and rerun RDA. We
found that orientation representations were significantly reduced
between 200 and 400ms (Fig. 5C1). Also, occipital electrode
involvement largely disappeared during that time. This suggests
that grasp orientation representations during Preview relied on
processes that were tightly linked to visual object onset.

Curiously, orientation representations during Go showed a
similar sensitivity to the timing of the auditory signal. Orientation
representations as well as electrode involvement during two clus-
ters between 50ms and 200ms were also significantly reduced
(Fig. 5C2). This shows that orientation representations during Go
were triggered by the auditory Go signal without that signal carry-
ing any information relevant for grasp orientation. A possible rea-
son is that the sound served as an impulse that pinged visual
orientation representations reflexively (Wolff et al., 2017).
Alternatively, Go signal specifying effectors might have caused vis-
ual preparatory grasp computations to repeat. If so, orientation
representations during Preview and Go should be similar. Indeed,
this is what we found in the next section.

To demonstrate that Preview orientation representations re-
emerged during Go, we used cross-temporal and cross-event
generalization analysis (King and Dehaene, 2014). That is, we
computed RDMs using ERP patterns from different time points
during Preview and Go and then used multiple regression the
same way as before to test for the presence of grasp orientation
representations. This analysis produced time-by-time matrices in
which the diagonals of the matrices reflect time-specific repre-
sentations same as the results discussed above, and the off diago-
nals of the matrices reflect generalizability of representations
from one time point to another. During Preview (Fig. 5D1) the
analysis revealed a chain of consecutive representations ;70–
110ms (significant weights along the diagonal) followed by a
mix of sustained and reactivating representations (weights form
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a roughly square-shaped cluster with some armlike patterns).
King and Dehaene, 2014 have a discussion of the different activa-
tion patterns. During Go (Fig. 5D2), a first cluster from ;0–
300ms showed a similar mix of sustained activation and reactiva-
tion. A second cluster (;300–800ms) mainly showed sustained
activation coinciding with movement execution. Crucially, com-
paring Preview and Go through cross-event generalization (Fig.
5D3) revealed similarities in orientation representations. That is,
Go representations from 50 to 120ms generalized from ;150 to
500ms during Preview, and Go from;150 to 300ms generalized
from ;150 to 300ms during Preview. Note that these times of
generalization correspond well with times of jitter-sensitive repre-
sentations in Figure 5C1 and 5C2. Hence, Preview orientation

representations sensitive to visual object onset transiently reacti-
vated during Go. Note that these representations preceded motor
representations of the hand (Fig. 4B).

Similar representation models of effectors
Our second strategy to map unfolding grasp actions in detail
sought to identify intermediate-level effector representations that
partially differentiated between effectors. To this end we moved
away from RDAs investigating main effect-like representations
of visual and motor processes (Fig. 2A). Instead, we tested a spe-
cial model (analogous to an ANOVA linear contrast) that
assumed grasp processes to be similar for left-handed and bima-
nual grasps as shown previously (Le et al., 2014, 2017, 2019) but

Figure 5. Effector independence of grasp orientation representations during Preview and Go. A, Representations of the primed hand. Shaded area under the curve indicates significant time
periods. B, Time course of grasp orientation representations during Preview. Red curve shows results baselined for �200 to �100 ms superimposed onto the original data (baseline, �100–
0 ms). C, Representations of grasp orientation before (black lines) and after (colored lines) temporally jittering temporal alignment. Shaded areas between the black and colored lines indicate
time periods of significant differences. Open circles on the scalp plots indicate significant changes in electrode involvement during periods of significant differences. C1, Preview data. C2, Go
data. D, Dynamics of grasp orientation representations during D1 Preview, D2 Go, and D3 across the two events as reflected by temporal generalization of RDA. Representational dissimilarity
matrices were first computed using ERP patterns across two time points (e.g., Preview at 100 ms vs Go at 150 ms) and were subsequently submitted to multiple regression to test for grasp ori-
entation representations. Note that in D1 and D2 significant b weights yield symmetrical patterns because if a representation, say, 300 ms after object onset is similar to a representation
120 ms after object onset or Go, then the reverse must be true too. In contrast, in D2 the pattern of significant b values is asymmetrical because a representation 300 ms after object onset
might be similar to a representation 120 ms after Go, but the reverse is not necessarily true, Preview representations at 120 ms do not necessarily have to be similar to Go representations at
300 ms. Blue dashed lines and brackets illustrate how data in C and D correspond to one another in time. All statistics in A–D were computed using cluster-based sign permutation tests with
cluster-defining and cluster-size thresholds of p, 0.05.
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dissimilar for right-handed grasps (L = B=R model or LB
model for short, Fig. 2B). For completeness we also tested models
that assumed similar grasp representations between right-
handed and bimanual grasps (RB model), as well as left- and
right-handed grasps (LR model; RB and LR models were not pre-
dicted by previous studies, nevertheless their existence was not
ruled out either).

As shown in Figure 6, similar effector representations arose
after the Go signal that specified the effector to be used, as
expected. LB representations rose rapidly and maintained signifi-
cance from 165ms onward (Fig. 6A, top row). Analyzing elec-
trode informativeness showed that mainly central electrodes,
with a bias for the right scalp, were involved starting 100ms after
Go (Fig. 6B). These results are consistent with previous behav-
ioral and transcranial magnetic stimulation studies on bimanual
grasping (Le et al., 2014, 2017, 2019).

Interestingly, RB representations also reached significance,
although with smaller effect sizes (150–290ms; Fig. 6A, second

row; the b weight curve for RB representations is somewhat sim-
ilar to the LB curve probably because both curves reflect visuo-
motor processes unfolding in time in a similar way). Electrode
involvement for RB representations was less pronounced and
mostly came from the left hemisphere with peaks around central
electrodes after 200ms.

Furthermore, LR representations obtained negative b
weights (Fig. 6A, third row, light green curve) because the regres-
sion analysis turned the LR model into a suppressor variable to
filter out irrelevant variability (i.e., a separate regression using
the LR model as the only predictor variable yielded no significant
b values; Fig. 6A, third row, dark green curve).

Finally and crucially, we were interested in the timing of the
LB model relative to the representations of individual effectors
(Fig. 4B, bottom row). If sensorimotor control of grasps evolved
in a strictly canonical fashion from higher to intermediate and
then lower level representations, then LB representations should
be computed before effector representations (Fig. 4B, bottom

Figure 6. Similar effector representations dependent on shared neural processes between LB grasps, RB grasps, and LR grasps. A, Time course of representations aligned to the onset of Preview
and Go. Shaded envelopes around the curve indicate61 SEM. Shaded areas under the curve indicate time points that were significant (cluster-based sign permutation test with cluster-defining
and cluster-size thresholds of p, 0.05). Error bars indicate 95% bootstrapped confidence intervals of representation onset during Go for LB (130ms, 175ms) and RB (95ms, 230ms) representa-
tions of grasp orientation. Inset, The two plots above the LB model in the top row present MDS results to visualize how effector representations separate. The MDS plot on the left (130 ms) shows
that first all effectors separate from one another, right-hand (red), left-hand (green), and bimanual grasping (blue). The MDS plot on the right (350 ms) illustrates that later a similarity of left-
hand and bimanual grasping emerges. Note that evidence for the RB model did not emerge within the first three dimensions of the MDS analysis. The LR model attained negative b weights after
Go (light green) and zero weights when tested as sole predictor (dark green), indicating that it served as a suppressor variable. B, Electrode informativeness for representations. Open circles indicate
significant electrodes (cluster-based sign permutation test with cluster-defining and cluster-size thresholds of p, 0.05). C, Time delay between similar effector representations and hand represen-
tations (Fig. 4B, bottom). Top row, LB model. Bottom row, RB model. Shaded areas mark time delays down to the fifth percentile of the 10,000 bootstrapped comparisons.
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row). Instead, we found that LB representations arose later (Fig.
6A, MDS plots). The median delay of 47ms relative to individual
effector representations was significant (Fig. 6C). To statisti-
cally test this, we subtracted the bootstrapped onset times of
LB representations by the bootstrapped onset times of effector
representations to obtain one-tailed 95% confidence intervals
(CI lower bound, 15ms). Likewise, RB representations arose
with a median delay of 40ms after effector representations (boot-
strapped CI lower bound, 4ms). When we realigned ERPs to
movement onset, we observed similar trends of time differences
(hand vs LB, 82ms; CI lower bound, �65ms; CI lower bound at

a = 0.1, 12ms, p = 0.095; hand vs RB,
110 ms; CI lower bound, 35ms). Finally,
it should be noted that these time differ-
ences are, if at all, conservative estimates
because statistically the hand model for
individual effector representations (Fig.
2A) had a slightly poorer signal-to-noise
ratio than the effector similarity models
(Fig. 2B) because of more uneven num-
bers of similar versus dissimilar cells
(;1/3–2/3 vs ;5/9–4/9). In contrast, a
systematic difference in computation
times (e.g., left-hand grasping might
take longer to compute) had no effect
on time differences because all models
included all effector conditions.

Contribution of eye movement
artifacts
Eye movements can differ systematically
across grasp conditions (Brouwer et al.,
2009) and can contaminate EEG signals
and, thus, contribute to multivariate anal-
yses (Quax et al., 2019). To address this,
we partialed out eye-movement artifacts
captured by ICA in our multiple regres-
sion analyses of RDMs. However, it is still
possible that residual eye movements not
captured by ICA contaminated neural-
based ERPs. To test this possibility, we
ran RDA only using frontal electrodes
(FP1, FPz, FP2, AF7, AF3, AFz, AF4,
AF8). However, b weights only showed
spurious significance for shape during
Preview (Fig. 7, top row), effector repre-
sentations during Go (Fig. 7, fourth row),
and RB representations during Go (Fig.
7, sixth row). These results are also con-
sistent with our observation that frontal
electrodes carried little information in
our main analyses (Figs. 4C, 6B). In sum,
our analyses show that eye movement
artifacts cannot sufficiently account for
the results of our multivariate analyses.

Discussion
We investigated the temporal evolution
of grasp programs using multivariate
analysis of ERPs recorded from human
participants. As a proxy of grasp com-
putations, we used representations of
grasp orientation, relating them in time
to the development of high-level, effec-

tor-independent visual object information and lower level effec-
tor representations. In addition, to identify intermediate levels of
grasp programming we included a bimanual grasping task. The
results provide novel insights into the hierarchical structure
underlying the control of human precision grasps. Notably, they
suggest that grasp programs evolve in a partially noncanonical
manner.

We studied grasp programs during a preview and a move-
ment execution phase. During Preview, grasp programs emerged
despite effectors not being specified yet. This is consistent with

Figure 7. RDA using frontal-most electrodes (Fp1, Fpz, Fp2, AF7, AF3, AFz, AF4, AF8). Shaded envelopes around the curve indi-
cate61 SEM. Shaded areas under the curve indicate time points that were significant (cluster-based sign permutation test with
cluster-defining and cluster-size thresholds of p, 0.05).
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previous findings that effector-independent representations in
posterior parietal and dorsal premotor cortex distinguish
between grasp and reach plans (Gallivan et al., 2013; Turella et
al., 2016, 2020). In extension of these findings here we show that
effector-independent grasp programs already incorporate fine-
grained information about grasp orientation. Of further signifi-
cance, our EEG data allow us to determine that grasp programs
emerge 80ms after object onset, which is similar to when shape
representations arose in the present study. It is also similar to ori-
entation representations in a previous study where the effector
was known ahead of time (Guo et al., 2019). This shows that
grasp programs with or without delayed effector specification
commence immediately after objects become visible, suggesting
that early grasp programs reflect visual processes that are modu-
lated by action intentions. In support of this idea, here we show
that the grasp programs did not reflect the verbal instructions
about grasp orientations that we gave at the start of each experi-
mental block because orientation representations did not form
before object onset. Also, orientation representations during
Preview did not form based on motor priming. Instead, they
were temporally yoked to visual object onset, just like shape
representations, especially at occipital and parietal electrodes.
Our results suggest that early grasp orientation representations
reflect high-level grasp programs that rely on object-based vis-
ual processes, regardless of whether effectors are specified or
not.

The visual nature of orientation representations is consistent
with the fact that visually guided grasping requires vision-based
grasp point computations (Blake, 1992) and causes the atten-
tional spotlight to split into two regions near the grasp points
(Schiegg et al., 2003). Further, occipital and parieto-occipital
electrodes being involved in orientation representations suggest
that the underlying processes recruited occipitotemporal and oc-
cipitoparietal areas, all of which play a role in extracting grasp-
relevant object information and action selection (Astafiev et al.,
2004; Rice et al., 2007; Monaco et al., 2014; Fabbri et al., 2016) or
abstract action representation (Tucciarelli et al., 2015). Further,
visual representations of grasp orientation might reflect sensory
predictions during grasp planning associated with contact points
(Flanagan et al., 2006). In sum, the results highlight the time
course and dynamics of visual grasp-goal representations that
are modulated by action intentions independent of effector-
related processes.

Grasp orientation representations re-emerged after the audi-
tory Go signal announced the hand (or hands) with which to
grasp, warranting two key observations. First, orientation repre-
sentations were temporally yoked to the auditory signal between
50 and 200ms. At about the same time (50–300ms after Go),
orientation representations were like those during Preview (150–
300ms after object onset, Fig. 5D3), possibly because the Go sig-
nal caused visual preparatory responses to repeat. Similar forms
of reactivation of visual processes have been observed in fMRI
studies where delayed grasping in darkness is associated with
reactivation of object area lateral occipital cortex (Singhal et al.,
2013; Monaco et al., 2017). Interestingly however, in the present
study, shape representations, as opposed to vision-based orienta-
tion representations, did not reactivate. This suggests that object-
based visual processes reactivated selectively for object features
that were relevant for grasp planning consistent with the known
selectivity of visuomotor control of grasps (Ganel and Goodale,
2003). Second, effector-independent visual orientation represen-
tations re-emerged during Go before the Go signal was con-
verted into lower level representations of individual effectors, as

expected from a canonical progression from higher to lower level
visuomotor computations.

However, we found that grasp computations did not unfold
in a strictly canonical fashion when we looked at hierarchies in
more detail, mapping intermediate-level grasp control. Here, we
defined intermediate-level computations as grasp representations
that had partially, yet not fully, incorporated effector choices. We
expected partially shared grasp representations because previous
studies have shown that left-hand and bimanual (but not right
hand) grasping overlap in computational and neural resources in
the right hemisphere (Le and Niemeier, 2013a, b; Le et al., 2014,
2017, 2019). Indeed, we found that a model that assumed left-
hand and bimanual grasps to be the same produced significant
representations and that these representations relied on right-lat-
eralized parietal, central, and frontocentral electrodes, indicating
the involvement of the right frontoparietal grasp network as
expected (Le et al., 2014, 2017). Also, the model produced b
weights that were more prominent than those of a model assum-
ing right-hand and bimanual grasping to be similar. These par-
tially effector-dependent grasp representations reflected processes
not entirely abstract from effector choice. For example, effector
choice might have routed grasp point computations for left-hand
and bimanual grasps to shared neural resources in the right hemi-
sphere, such as the right anterior intraparietal sulcus (Le et al.,
2014). In addition, right-hand and bimanual grasps might have
shared neural resources in the left hemisphere. At any rate,
right-hand, left-hand, and bimanual grasping implicate different
patterns of muscle activation and thus partially shared grasp repre-
sentations must have reflected intermediate control processes
upstream from control circuits for arm and finger movements.

Therefore, given that partially shared grasp representations
mark a level of motor control where left-hand grasping is differ-
ent from right-hand grasping but not yet different from bima-
nual grasping, do these intermediate LB model representations
arise before downstream effector representations distinguish
between all three effector choices? Intriguingly, we found that
this was not the case. Partially shared grasp representations
emerged not before but 47ms after effector representations
formed.

Perhaps we found intermediate representations to be delayed
because representations of individual effectors included the proc-
esses necessary to map the pitch of the Go signal onto a given
effector. However, aligning ERPs to movement onset should
have filtered out stimulus-response mapping, only revealing
effector representations related to action preparation. Even so,
downstream effector representations did not arise after shared
representations but earlier.

Perhaps LB model representations did not reflect an interme-
diate stage of processing but a specialized system for planning
atypical or awkward actions. It has been shown that left-hand
grasping is a less common or more awkward action than right-
hand grasping. For example, unlike right-hand grasping, left-
hand and awkward (and, thus, little practiced) right-hand grasps
are susceptible to size-contrast illusions (Gonzalez et al., 2008).
Therefore, do bimanual grasps liken left-hand grasps in being
uncommon or awkward? This appears to be unlikely. Bimanual
actions are not uncommon, they are frequently used in daily life
(Kilbreath and Heard, 2005). Of course, it could be argued that
bimanual precision grasps (as tested here) are less common com-
pared with bimanual grasping with the whole hand. Nevertheless,
previous research suggests that bimanual precision grasps are
about as proficient as right-hand precision grasps, for example,
bimanual grip apertures are as proficiently scaled to object size as
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apertures for right-hand grasping (compare Le and Niemeier,
2013a, with Le and Niemeier, 2014). Furthermore, a recent study
directly showed that shared computations between left-hand and
bimanual grasping were not because of actions being awkward or
unusual (Le et al., 2019).

Perhaps the LB model did not flag an intermediate processing
stage but brain activity that is less lateralized relative to individ-
ual effector representations. However, not all aspects of shared
left-hand and bimanual activity are strictly bilateral. For example,
magnetic stimulation studies have shown that only right parietal
regions disrupted visuomotor transformations for bimanual
grasping just like left-hand grasping (Le et al., 2014, 2017).
Furthermore, not all downstream effector-specific representa-
tions are necessarily lateralized; at least executing bimanual
actions requires activation of primary motor cortex in both
hemispheres.

In conclusion, studying the time course of the neural proc-
esses underlying the visuomotor control of grasping, the present
study offers novel insights into the temporal structure of visual-
to-motor transformations underlying grasp computations. We
show that effector-independent grasp representations start as
object-based visual processes followed by visuomotor and motor
processes. However, partially shared grasp representations and,
thus, intermediate levels of control emerge after lower level effec-
tor-related motor representations. Our results strongly suggest
that grasp control does not necessarily evolve in a canonical fash-
ion, thereby highlighting the need for methods like EEG or MEG
and their fine temporal resolution to attain a comprehensive
understanding of human sensorimotor control.
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