Glycine Release Is Potentiated by cAMP via EPAC2 and Ca\(^{2+}\) Stores in a Retinal Interneuron

Marc A. Meadows,\(^1\) Veeramuthu Balakrishnan,\(^1\) Xiaohan Wang,\(^1\) and Henrique von Gersdorff\(^1,2,3\)

\(^1\)The Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, \(^2\)Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon 97239, and \(^3\)Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239

Neuromodulation via the intracellular second messenger cAMP is ubiquitous at presynaptic nerve terminals. This modulation of synaptic transmission allows exocytosis to adapt to stimulus levels and reliably encode information. The AII amacrine cell (AII-AC) is a central hub for signal processing in the mammalian retina. The main apical dendrite of the AII-AC is connected to several lobular appendages that release glycine onto OFF cone bipolar cells and ganglion cells. However, the influence of cAMP on glycine release is not well understood. Using membrane capacitance measurements from mouse AII-ACs to directly measure exocytosis, we observe that intracellular dialysis of 1 mM cAMP enhances exocytosis without affecting the L-type Ca\(^{2+}\) current. Responses to depolarizing pulses of various durations show that the size of the readily releasable pool of vesicles nearly doubles with cAMP, while paired-pulse depression experiments suggest that release probability does not change. Specific agonists and antagonists for exchange protein activated by cAMP 2 (EPAC2) revealed that the cAMP-induced enhancement of exocytosis requires EPAC2 activation. Furthermore, intact Ca\(^{2+}\) stores were also necessary for the cAMP potentiation of exocytosis. Postsynaptic recordings from OFF cone bipolar cells showed that increasing cAMP with forskolin potentiated the frequency of glycinergic spontaneous IPSCs. We propose that cAMP elevations in the AII-AC lead to a robust enhancement of glycine release through an EPAC2 and Ca\(^{2+}\) store signaling pathway. Our results thus contribute to a better understanding of how AII-AC crossover inhibitory circuits adapt to changes in ambient luminance.

Key words: AII amacrine cell; calcium store; cAMP; EPAC; exocytosis; retina

Significance Statement
The mammalian retina operates over a wide dynamic range of light intensities and contrast levels. To optimize the signal-to-noise ratio of processed visual information, both excitatory and inhibitory synapses within the retina must modulate their gain in synaptic transmission to adapt to different levels of ambient light. Here we show that increases of cAMP concentration within AII amacrine cells produce enhanced exocytosis from these glycineric interneurons. Therefore, we propose that light-sensitive neuromodulators may change the output of glycine release from AII amacrine cells. This novel mechanism may fine-tune the amount of tonic and phasic synaptic inhibition received by bipolar cell terminals and, consequently, the spiking patterns that ganglion cells send to the upstream visual areas of the brain.

Introduction
Light signals are transduced by photoreceptors into graded glutamate release onto bipolar cell (BC) dendrites and then by BC terminals via glutamate release onto retinal ganglion cell (RGC) dendrites in the inner plexiform layer (IPL). Amacrine cells (ACs) form inhibitory synapses in the IPL with BC terminals, with other ACs and with RGC dendrites (Strettoi et al., 1992; Wässle, 2004). AII ACs (AII-ACs) are the most abundant glycineric narrow-field AC in the mammalian retina and are found even in the primate fovea (Vaney et al., 1991; Wässle et al., 2009; Strettoi et al., 2018). Their dendritic arbors are bistratified in the IPL and perform two compartment specific functions that are crucial for night (scotopic) and daytime (photopic) vision. First, glutamate from rod BC terminals activates AMPARs on AII-AC...
distal dendrites, and these excitatory signals are relayed to neighboring AII-ACs and ON-cone BCs (ON-CBCs) through gap junctions (Demb and Singer, 2012). Second, signals from ON rod BCs or ON-CBCs crossover to inhibit OFF-cone BCs (OFF-CBCs) and OFF-RGCs via the AII-AC proximal dendritic lobular appendages. These lobular terminals express L-type Ca2+ channels at active zones for exocytosis and contain a large pool of synaptic vesicles loaded with glycine (Habermann et al., 2003; Marc et al., 2014). This crossover inhibition from ON to OFF channels enhances the signal-to-noise ratio of retinal circuits (Liang and Freed, 2012).

The dynamic range of the rod and cone photoreceptors operates from 1 to >100,000 photons, yet little is known about how crossover inhibition adapts to such a wide range of light intensities. The adaptation of retinal circuits to changes in ambient light is dependent on neuromodulators (Roy and Field, 2019). Light-evoked uncoupling of AII-ACs networks, for example, relies on the elevation of retinal dopamine (Hampson et al., 1992), which in turn induces CAMP-dependent dephosphorylation of connexin 36 (Cx36) hemichannels (Kothmann et al., 2009). This decreases gap-junction conductances between AII-ACs, which relies on CAMP binding and activating protein kinase A (PKA) in the distal dendritic arbors (Kothmann et al., 2009; Field and Sampath, 2017). Although dopaminergic AII-ACs form em passant synapses onto AII-ACs (Voigt and Wässe, 1987), it is still unclear how changes in dopamine and cAMP levels affect crossover inhibition via glycine release.

Changes in the concentration of cAMP can induce changes in presynaptic release probability (P_s) or the size of the readily releasable pool (RRP) of vesicles at different CNS synapses (Vaden et al., 2019). This can be mediated by activating PKA or the effector protein directly activated by cAMP (EpAC) at excitatory and inhibitory synapses (Katsurabayashi et al., 2001; Sakaba and Neher, 2001; Kaneko and Takahashi, 2004; Fernandes et al., 2015). The proximity of the AII-AC lobules to the cell soma makes these release sites electronically accessible for time-resolved membrane capacitance (C_m) recordings (Balakrishnan et al., 2015; Hartveit et al., 2019). The AII-AC contains a large RRP of vesicles, which may account for this interneuron’s ability to provide both phasic and graded modes of synaptic transmission (Graydon et al., 2018). This versatility in neurotransmitter release may allow AII-ACs to reliably encode different temporal frequencies.

Here we used C_m measurements of exocytosis from AII-ACs and recordings of spontaneous IPSCs (sIPSCs) from OFF-CBCs to provide direct evidence that cAMP can enhance inhibitory synaptic transmission. We find that this cAMP-induced potentiation of exocytosis is not PKA-dependent. Instead, this potentiation depends on EpAC2 activation and intact internal Ca2+ stores. Importantly, cAMP elevation did not change significantly the total charge influx of the L-type Ca2+ current, which triggers exocytosis and is localized to the lobular appendages of the AII-ACs (Habermann et al., 2003; Balakrishnan et al., 2015). We propose that EpAC2 activation promotes Ca2+ release from Ca2+ stores that enhances glycine release onto OFF-CBC synaptic terminals. Changes of cAMP levels in AII-ACs thus constitute an important signaling pathway that modulates glycine release in the mammalian retina.

Materials and Methods

Rodents and retinal slices. Procedures were approved by the Institutional Animal Care and Use Committee of Oregon Health & Science University, and were in accordance with National Institutes of Health guidelines. C57BL/6 background mice and Sprague Dawley rats of either sex (postnatal day 25-35) were used in the experiments. Animals were anesthetized with isoflurane (Novaplus) and then after death, the eyes were removed and dissected to extract the retina in carbogenated Ames medium (US Biologicals) at room temperature. Experiments were also performed using connexin-36 knockout mice (Cx36^{-/-}; generated as described by Hormuzdi et al., 2001), and transgenic synaptotagmin2-EGFP mice (Syt2-EGFP, MMRCC).

Retinas were embedded in low melting temperature agarose (or Type VII, 3% in Ames medium), and 250 μm slices were prepared using a vibratome (Leica Microsystems, VT1200S) in carbogenated low-Na+ sucrose-based cutting solution containing the following (in mM): 2.5 KCl, 35 NaHCO\textsubscript{3}, 1.25 Na\textsubscript{2}HPO\textsubscript{4}, 0.5 CaCl\textsubscript{2}, 6 MgCl\textsubscript{2}, 10 glucose, 3 Na-pyruvate, 210 sucrose, and 20 HEPES and buffered to pH 7.4 with NaOH. Retinal slices were stored at room temperature in carbogenated Ames solution before being transferred to the recording chamber. Ames solution was continuously perfused over the retinal slices during recordings and heated to near physiological temperature (32°C-34°C) for all experiments.

Live cell imaging. Retina slices were viewed with a 60× objective (Olympus) on a fixed stage, upright microscope (BX51WI, Olympus). Experiments were also performed with a 40× objective on an Axio Examiner microscope (Carl Zeiss). AII-ACs and OFF-CBCs were identified by the soma shape and position in the inner nuclear layer (INL). Epifluorescence images were taken to determine the AII-AC morphology perfused with Alexa-488 or -594 dye (20 μM; Invitrogen) after whole-cell recordings. Images were captured with a QIClick CCD camera (Q-Imaging). Z stacks and time-series image acquisition was performed using an Orca Flash 4.0LT CMOS camera (Hamamatsu Photonics) controlled with CellSens deconvolution image software (Olympus). Image stacks were also generated using a piezo collar (P_t) on the objective and used to capture both AII-AC and OFF-CBC morphology using epifluorescence and DIC image channels (z = 0.5 μm optical slices; ranging from 50 to 95 slices varying from cell to cell).

Tracking whole-cell dialysis of Alexa-488 was done with a time-lapse (10Hz) video at a single focal plane for 30 s. This was immediately followed by a time-lapse video at 5 Hz using a piezo collar (P_t) on the objective to cycle through 5 focal planes. After these videos were captured and the cell was fully dialyzed, we performed a z-stack image of the entire cell.

Patch-clamp electrophysiology. Single-cell voltage-clamp recordings were performed using a double EPC-9 or EPC-10 patch-clamp amplifier and either Pulse or Patchmaster software (HEKA Elektronik). Thick-walled borosilicate glass pipettes (8-10 μm; 1B150F-4, World Precision Instruments) were pulled using a Narishige puller-PP830 (Tokyo) and coated with dental wax (Cavex) or Parafilm to reduce stray capacitance. Whole-cell voltage-clamp recordings of C_m and Ca2+ currents were performed in mouse AII-ACs. Recordings were performed in photopic conditions. Ames external solution was supplemented with (in mM): 100 KCl, 5 NaCl, 2 MgCl\textsubscript{2}, 10 glucose, 3 Na-pyruvate, 210 sucrose, and 20 HEPES and buffered to pH 7.4 with NaOH. Retinal slices were continuously perfused over the retinal slices during recordings and heated to near physiological temperature (32°C-34°C) for all experiments.

Presynaptic recordings of Ca2+ currents and C_m measurements. Whole-cell voltage-clamp recordings of C_m and Ca2+ currents (I_{Ca}) were performed in mouse AII-ACs. Recordings were performed in photopic conditions. Ames external solution was supplemented with (in μM) as follows: 10 NBQX or 10 CNQX, 50 DL-AP5, 2 3,4,5-trimethoxyphenyl-1-propionic acid (TTPA), 1 tetrodotoxin (TTX) and 100 μM 4-aminopyridine (4-AP). These drugs blocked AMPA, NMDA, glycine, and GABA receptors, as well as Na+ channels during C_m and I_{Ca} recordings. Pipettes were back-filled with a filtered internal solution designed to isolate Ca2+ currents (I_{Ca}) by blocking K+ currents (in mM) as follows: 40 CsCl, 60 Cs-glucurate, 10 tetraethyl ammonium chloride, 28 HEPES, 3 adenosine 5’-triphosphate magnesium salt (ATP-Mg), 1 guanosine 5’-triphosphate disodium salt (GTP-Na\textsubscript{2}), and 2 EGTA; osmolarity was adjusted to 270 mOsM using glucose, and pH to 7.3 with CsOH. Ultrapure salts for internal and external solutions were purchased from Sigma-Aldrich.

Time-resolved C_m measurements were made using the “sine+DC” method (Gillis, 2000; Kushmerick and von Gersdorff, 2003; Balakrishnan et al., 2015; Hartveit et al., 2019). A pair of sinusoidal waves (2 kHz, 60 Hz) was superimposed on C_m measurements.
30 mV peak-to-peak) superimposed on membrane holding potential (−80 mV) were given before and after a square depolarizing pulse from −80 to −10 mV for maximum activation of L-type Ca\(^{2+}\) current (Balakrishnan et al., 2015), which triggered Ca\(^{2+}\)-dependent vesicle fusion (exocytosis). Leak voltage-clamp pulses (to −66 mV) were used to calculate leak-subtracted L-type Ca\(^{2+}\) currents and were resolved using offline P/5 leak subtraction. In addition, Cm, were sometimes isolated by subtraction of the leak current after application of 1 μs iridoxipine. Experiments were not corrected for liquid junction potential, which was measured (−6 mV) post hoc using methods described by Neher (1992). Of the total of 79 All-AC recordings, the average series resistance (Rs) for All-ACs was 29.04 ± 14.8 ± sD and the membrane resistance (Rm) was 1025 ± 193 ± sD.

Online calculations of passive membrane properties (Cm, Rs, Rm) were done by the HEKA software. Traces were imported to IgorPro software (WaveMetrics) for offline analysis. Net exocytosis was determined by the change in the Cm after a depolarization pulse: \(\Delta C_m = C_m\) (after pulse) − \(C_m\) (baseline). This was performed by subtracting averaged \(C_m\) data points after the depolarizing pulse from baseline Cm (indicated by gray bars on figures with Cm). \(\Delta C_m\) response was measured from 300 to 500 ms after the depolarizing pulse, allowing time for all evoked conductances to decay back to baseline.

Postsynaptic recordings from off-CBCs. Whole-cell voltage-clamp recordings of sIPSCs from OFF-CBCs in retina slices from rat and Syt2-EGFP mice; recordings were performed in an external ACSF solution containing the following (in mM): 125 NaCl, 2.5 KCl, 25 NaHCO\(_3\), 1.25 NaH\(_2\)PO\(_4\), 2.5 CaCl\(_2\), 1 MgCl\(_2\), 10 glucose, pH 7.4, and using a Cs-based internal solution containing the following (in mM): 50 CsCl, 60 Cs-glucuronate, 10 HEPES, 6 EGTA, 4 ATP-Mg, 0.4 GTP-Na\(_2\), 0.1 CaCl\(_2\), and 1 MgCl\(_2\). Osmolarity was adjusted to 270 mOsm using glucose, and pH to 7.3 with CsOH. Glycinergic sIPSCs from OFF-CBCs were isolated using the following drugs in the external bath solution (in μM): 10 CNQX, 25 D-AP5, 5 biccuculline, and 3 SR95531. Similar experiments were also performed on OFF-CBCs in slices from Syt2-EGFP mice continuously perfused with Ames medium. The datasets for sIPSCs from rat and mouse OFF-CBCs were similar in amplitude and kinetics and were grouped together. A total of five OFF-CBC recordings from Syt2-EGFP mice used in this study, the mean R, was 21.3 ± 3.952 ± sD, and holding current was −95.4 ± 36.24 pA.

Glycinergic sIPSCs were analyzed using custom procedures in IgorPro software using a sliding scale template method for detecting and isolating events (Clements and Bekkers, 1997). Analysis was performed using a detection threshold of −10 and −15 pA, with no change in event detection. The medians of events for each cell were used for statistical comparisons before and after treatment. Plots of frequency and cumulative distribution were generated by grouping all events for each dataset, which were generated and fitted using Prism software (GraphPad). Using Prism software (GraphPad), we made log-Gaussian fits to frequency distribution histograms of sIPSC events using the following function:

\[
P(x) = \left(\frac{A}{\sigma \sqrt{2\pi}}\right) e^{-\frac{(x - \mu)^2}{2\sigma^2}}
\]

Where μ is the geometric mean and σ is the geometric standard deviation. A is a constant related to the distribution area (P_{area}) and amplitude (P_{max}) as defined by the following equations:

\[
P_{area} = A \ast \ln(\sigma) \ast \sqrt{2\pi}
\]

\[
P_{max} = \frac{A \ast e^{\ln(\sigma)^2}}{\mu}
\]

Drugs and toxins. Stock concentrations of drugs and salts were prepared using purified water (Millipore). The synaptic blockers NBQX, CNQX, SR95531, and DL-AP5 and bicuculline were obtained from Tocris Bioscience. TTX and strychnine were obtained from Sigma. Pipette filling syringes containing internal solutions were kept on ice to avoid thermal degradation of cAMP, GTP, and ATP-Mg.

Experimental design and statistical analysis. Datasets for all experiments were tested for normal distribution using a Shapiro–Wilks test. For most experiments, pairwise comparisons were made between recordings taken within 1 min (30 s to 1 min) and at 4 min after break-in using a two-tailed paired t test or Wilcoxon test, respectively, for datasets with normal and non-normal distribution with an α level of 0.05. For comparisons of independent groups, we performed either a Student’s t test or Mann–Whitney test, respectively, for normal and non-normal distribution. For comparisons between multiple groups, we indicate where we use one-way and two-way ANOVA tests followed by post hoc tests. All statistical tests were performed in Prism 9 software (GraphPad). Grouped data are written as mean ± SEM. Statistical significance is noted by asterisks, while not significant (p > 0.05) is either labeled or not indicated.

Results

Dialysis of cAMP potentiates exocytosis in All-ACs. We performed whole-cell voltage-clamp experiments by patching All-AC somas with a Cs-based internal pipette solution containing 1 mM cAMP (Fig. 1A). All-ACs were targeted by the characteristic location of their somas near the border between the INL and IPL. Dye-filled cells were examined after each recording to morphologically confirm their identity as All-ACs (Fig. 1B). A 100 ms depolarizing pulse from −80 to −10 mV elicits a nonactivating L-type Ca\(^{2+}\) current (ICa; Fig. 1C,D, insets), which was isolated after offline leak subtraction (see Materials and Methods).

After whole-cell break-in, depolarizing pulses were given at <1 min and short after >4 min of whole-cell dialysis with the internal solution. The ICa responses observed in control (without cAMP; Fig. 1C) were similar to ICa recordings performed with 1 mM cAMP (Fig. 1D). The ICa current was integrated over the entire pulse duration to measure the Ca\(^{2+}\) charge transfer (\(Q_{Ca}\)). As shown in Figure 1E, \(Q_{Ca}\) did not change significantly between 1 and 4 min of dialysis with the control solution (1 min: 10.4 ± 1.15 pC; and 4 min: 10.8 ± 0.95 pC; n = 22; p = 0.552; Wilcoxon). The ICa thus remained stable and did not rundown or runup during whole-cell recordings. As shown in Figure 1F, 1 mM cAMP did not affect the Q_{Ca} (1 min: 9.16 ± 0.66 pc; and 4 min: 9.05 ± 0.12 pc; n = 22; p = 0.924; Wilcoxon), which indicates that cAMP has no significant effect on the L-type Ca\(^{2+}\) currents of All-ACs.

Time-resolved Cm measurements can correlate strongly with synaptic vesicle exocytosis and neurotransmitter release at different nerve terminals (Grabner and Zenisek, 2013; Ritzau-Jost et al., 2014). We next measured ΔCm before and after the dialysis with control internal solution. Similar to our previous report (Balakrishnan et al., 2015), we did not observe a significant rundown or change in ΔCm when using our control internal solution within a time window of ~10 min after break-in (Fig. 1E,F; 1 min: 62.6 ± 6.32 fF; and 4 min: 60.7 ± 5.54 fF; n = 22; p = 0.633; Wilcoxon). However, when the pipette solution contained 1 mM cAMP, we observed significantly larger ΔCm jumps after 4 min of whole-cell dialysis (Fig. 1D,F; 1 min: 48.56 ± 4.48 fF; and 4 min: 66.9 ± 7.41 fF; n = 22; p = 0.0006; Wilcoxon), although Q_{Ca} remained the same (Fig. 1F). This suggests that a cAMP-
dependent potentiation of exocytosis is present in AII-ACs, and this enhancement of vesicle fusion occurs without augmenting L-type Ca^{2+} currents. The efficiency of exocytosis (ratio of \(C_{m} \) divided by \(Q_{Ca} \)) did not change in controls (1 min: 7.13 ± 0.89 fF/pC; and 4 min: 6.32 ± 0.65 fF/pC; \(n = 22; p = 0.3248; \) Wilcoxon); however, we observed an increase in exocytosis efficiency with 1 mM cAMP (1 min: 6.40 ± 0.68 fF/pC; and 4 min: 8.50 ± 1.08 fF/pC; \(n = 22; p = 0.0059; \) Wilcoxon).

The passive parameters of \(R_{s} \) (1 min: 28.4 ± 2.87 M\(\Omega \); and 4 min: 24.8 ± 2.45 M\(\Omega \); \(n = 22; p = 0.002 \)) and \(R_{m} \) (1 min: 956 ± 300 M\(\Omega \); and 4 min: 603 ± 127 M\(\Omega \); \(n = 22; p = 0.0738 \)); Wilcoxon) were also recorded in control experiments. These values were similar to those from cells dialyzed with 1 mM cAMP for both \(R_{s} \) (1 min: 25.4 ± 2.54 M\(\Omega \); and 4 min: 27.5 ± 3.62 M\(\Omega \); \(n = 22; p = 0.5879 \)) and \(R_{m} \) (1 min: 1040 ± 247 M\(\Omega \); and 4 min: 742 ± 118 M\(\Omega \); \(n = 22; p = 0.0684 \)); Wilcoxon). As long as \(R_{m} \gg R_{s} \), the \(\Delta C_{m} \), measurements should be a good estimate of exocytosis (Gillis, 2000).

Tracking the diffusion of small molecules within AII-ACs

The AII-AC has been classically modeled as a compact isopotential cell despite its complex morphology (Vardi and Smith, 1996). However, recent electrotonic and morphologic modeling suggests that electrical compartments can filter the spread of voltage between distal and proximal regions of the AII-AC in rat retina (Zandt et al., 2018). Furthermore, the dendritic compartments and the narrow tubes linking lobules with dendrites can act as diffusion barriers, which may complicate our study of cAMP modulation on synaptic vesicle exocytosis.

We thus tracked the fluorescent dye Alexa-488 as it diffused from the pipette solution and mixed with the AII-AC cytosol. Alexa-488 does not permeate across membranes but will dialyze into cells after whole-cell break-in. The perfusion rate of small molecules depends on the molecular weight of the molecule, the cell volume, and the pipette \(R_{s} \) (Neher and Almers, 1986; Oliva et al., 1988). In addition, tortuosity (geometry of the pathway), viscosity of the cytosol, binding or degradation of the molecule, and the diffusion coefficient all influence diffusion rates. We thus measured the dialysis of Alexa-488 after making whole-cell patches of AII-ACs (\(R_{s} \): 28.7 ± 4.59 M\(\Omega \); \(n = 5 \)). Shown in Figure 2A are representative images from a time-lapse video of a single AII-AC being filled with Alexa-488 dye. Time-lapse imaging captured the dialysis time course after whole-cell break-in (Fig. 2Ai,Aii). Proximal dendritic compartments began filling within 1 min of dialysis, and the AII-AC was fully dialyzed with Alexa dye after 3 min. Time-series images were acquired at multiple focal plans to capture the branched distal compartments (Fig. 2Aiii,Aiv). Similar observations were obtained in 5 AII-ACs; however, we were unable to capture distal and fine arbors in 2 of 5 cells.
Specific ROIs were selected for measuring fluorescence intensity: the soma, lobular varicosities, dendritic branches, and distal dendritic arbors (Fig. 2B). Lobular appendages have diverse structures, so multiple lobules were selected from each cell to accommodate for variations in size and distance from the soma’s central axis (Zandt et al., 2018). Changes in absolute fluorescence were observed immediately after the moment of break-in ($t = 0$ min) within the soma and plateaued within 3 min at distal compartments. Because of the wide range in fluorescence intensity among different ROIs (i.e., F_{max} in the soma was 10-fold higher compared with lobules), traces were normalized for comparing diffusion rates (Fig. 2C). By comparing normalized fluorescence intensity traces, we were able to better estimate the time course of diffusion of Alexa dye through complex structures of the AII-AC dendrites (Fig. 2C, left). Mean traces from each ROI plotted in 3D were pseudocolored (Fig. 2D) to show the time course of fluorescence intensity.
The size of the RRP of synaptic vesicles can be determined by estimating the effects of cAMP on the RRP size. We measured \(C_m \) responses to a range of depolarizing pulse durations from 1 to 500 ms. The pulses were spaced 15-30 s apart, and results were quantified at 4 min after break-in across several AII-ACs using either control or 1 mM cAMP internal solutions. We estimated the effects of cAMP on the RRP size by plotting \(\Delta C_m \) as a function of the depolarizing pulse duration for each dataset (Fig. 3). Examples of \(I_{\text{Ca}} \) response to short (1-10 ms) and long pulses (100 ms) illustrate the similar peak amplitudes, total charge, and inactivation kinetics of the L-type Ca\(^{2+}\) currents from AII-ACs recorded with control and 1 mM cAMP internal solutions (Fig. 3A).

The initial RRP was estimated using short pulses ranging from 1 to 100 ms in duration performed 4 min after break-in (Fig. 3B). The initial RRP size was determined by averaging responses from 40 to 100 ms for each dataset, which was significantly larger with 1 mM cAMP (control: 37.3 ± 1.85 fF; and cAMP: 63.4 ± 3.75 fF; \(p < 0.0001 \), Student’s \(t \) test). Time constants from fitting with a single exponential function from 1 to necessary to reach a steady-state level within \(<3\) min after whole-cell break-in.

cAMP increases the initial and secondary vesicle pool size

The size of the RRP of synaptic vesicles can be determined by giving depolarizing pulses of increasing durations to evoke \(\Delta C_m \) jumps until a plateau level is reached. This protocol revealed two kinetically distinct pools of vesicles in AII-ACs (Balakrishnan et al., 2015). We measured \(C_m \) responses to a range of depolarizing pulse durations from 1 to 500 ms. The pulses were spaced 15-30 s apart, and results were quantified at 4 min after break-in across several AII-ACs using either control or 1 mM cAMP internal solutions. We estimated the effects of cAMP on the RRP size by plotting \(\Delta C_m \) as a function of the depolarizing pulse duration for each dataset (Fig. 3). Examples of \(I_{\text{Ca}} \) response to short (1-10 ms) and long pulses (100 ms) illustrate the similar peak amplitudes, total charge, and inactivation kinetics of the L-type Ca\(^{2+}\) currents from AII-ACs recorded with control and 1 mM cAMP internal solutions (Fig. 3A).

The initial RRP was estimated using short pulses ranging from 1 to 100 ms in duration performed 4 min after break-in (Fig. 3B). The initial RRP size was determined by averaging responses from 40 to 100 ms for each dataset, which was significantly larger with 1 mM cAMP (control: 37.3 ± 1.85 fF; and cAMP: 63.4 ± 3.75 fF; \(p < 0.0001 \), Student’s \(t \) test). Time constants from fitting with a single exponential function from 1 to necessary to reach a steady-state level within \(<3\) min after whole-cell break-in.

Individual fluorescent traces were fit with a single exponential function to estimate diffusion time constants. This diffusion time constant was a linear function of the whole-cell \(R_{\text{s}} \) with positive slope (data not shown; Pearson’s test; \(r = 0.9021 \); \(p = 0.036 \); \(n = 5 \)) in agreement with previous studies (Neher and Almers, 1986; Oliva et al., 1988). Plotting the time constant \(\tau \) values (Fig. 2E) shows that diffusion times in proximal compartments (soma and apical dendrite) saturate within seconds after break-in (\(\tau_{\text{soma}} = 0.47 \pm 0.06 \) min; \(\tau_{\text{apical}} = 0.49 \pm 0.06 \) min). Slower \(\tau \) values were seen for lobules and dendritic branch structures (\(\tau_{\text{lobele}} = 0.85 \pm 0.10 \) min; \(\tau_{\text{branch}} = 0.84 \pm 0.11 \) min), although this trend was not significant. However, distal arboral dendrites required significantly more time to reach the same level of fluorescence as the soma (\(\tau_{\text{distal}} = 1.34 \pm 0.35 \) min; \(p < 0.03 \); \(n = 3 \)), suggesting that the thin processes act as a diffusion barrier. After 3 min, even the distal arboral dendrites were fully saturated with dye and reached a steady state. Similar observations were made for five distinct AII-ACs. The dialysis of Alexa-488 was complete within \(<3\) min for all five AII-ACs. Given that the molecular weight of Alexa-488 (547.85 g/mol) is larger than cAMP (329.2 g/mol), these results suggest that the concentration of cAMP in the lobular appendages may also reach a steady-state level within \(<3\) min after whole-cell break-in.
60 ms were similar (control: \(\tau = 3.28 \) ms; and cAMP: \(\tau = 4.82 \) ms), as well as the initial rate of exocytosis (control: 11.4 fF/ms; and cAMP: 13.2 fF/ms). Together, these results suggest cAMP is enhancing the size of the initial RRP of vesicles without altering the initial kinetics of exocytosis.

Longer depolarizing pulse durations (from 200 to 500 ms) revealed that \(\Delta C_m \) continued to rise for both the control and cAMP datasets (Fig. 3B). The entire dataset was well fit by a double exponential function. Both control and cAMP datasets have a fast initial RRP with similar time constants (\(\tau_1 \); control: 2.02 ms; and cAMP: 3.16 ms), which accounted for 28% of the total pool size. The remaining secondary pool had a much slower kinetics (control: \(\tau_2 = 330 \) ms; and cAMP: \(\tau_2 = 285 \) ms). The kinetics of the overall RRP were thus not greatly affected by cAMP. However, the overall RRP size was significantly larger with cAMP, which nearly doubled the size of the overall RRP (estimated using \(\Delta C_m \) averaged from 200 to 500 ms for control: 67.5 ± 3.65 fF; and cAMP: 108 ± 4.46 fF; \(p < 0.0001 \)). Results and statistical tests are summarized in Table 1.

Effects of 1 mM cAMP on paired-pulse depression

Like retinal ribbon synapses (Rabl et al., 2006; Cho and von Gersdorff, 2012), the synapses of AII-ACs exhibit strong paired pulse depression that takes several seconds to fully recover (Li et al., 2007; Vickers et al., 2012). To study short-term depression and test the effects of 1 mM cAMP on P1 and RRP size, we performed double-pulse \(\Delta C_m \) recordings. Paired-pulse depression was tested by measuring \(\Delta C_m \) responses for two depolarizing pulses (20 ms; from −80 to −10 mV) interleaved between sinewaves (2 kHz) and with an interpulse duration of 500 ms. This produced marked paired-pulse \(\Delta C_m \) depression (Fig. 4). Recordings were performed in AII-ACs within 1 min after whole-cell break-in and just after 4 min of break-in using a control internal solution (Fig. 4A) and an internal solution containing 1 mM cAMP (Fig. 4B). The \(\Delta C_m \) responses to the first pulse (\(\Delta C_1 \)) for control experiments did not change after 4 min (1 min: 38.4 ± 4.26 fF; and 4 min: 38.1 ± 5.33 fF; \(n = 8; \ p = 0.8998 \), paired \(t \) test), but increased significantly with 1 mM cAMP (Fig. 4C: 1 min: 36.6 ± 4.05 fF; and 4 min: 54.7 ± 6.35 fF; \(n = 11; \ p = 0.0017 \), paired \(t \) test). The QCa values after 4 min were significantly reduced for both control (1 min: 1.92 ± 0.19 pC; and 4 min: 1.59 ± 0.23 pC; \(n = 8; \ p = 0.0369 \), paired \(t \) test) and 1 mM cAMP (1 min: 1.84 ± 0.21; and 4 min: 1.56 ± 0.19; \(n = 11; \ p = 0.0387 \), paired \(t \) test). However, the values of QCa at 1 min for control and cAMP, and at 4 min for control and cAMP, were not significantly different.

In both conditions, the \(\Delta C_m \) to the second pulse (\(\Delta C_2 \)) was smaller than the first pulse (\(\Delta C_1 \)), whereas ICa responses to both pulses were the same (Fig. 4A,B). The paired pulse ratio (PPR; \(\Delta C_2/\Delta C_1 \); Fig. 4D) did not change for control (1 min: 0.39 ± 0.06; and 4 min: 0.39 ± 0.03; \(n = 8; \ p = 0.9434 \), paired \(t \) test). The PPR for experiments with 1 mM cAMP exhibited a slight increase, but this was not significant (1 min: 0.37 ± 0.05; and 4 min: 0.47 ± 0.03; \(n = 11; \ p = 0.0841 \), paired \(t \) test). Paired-pulse depression cannot be explained by changes in ICa charge because \(Q_{\text{Ca}} \) (\(Q_2/Q_1 \)) was ~1.0 (Fig. 4D) and did not change significantly for control (1 min: 1.04 ± 0.06; and 4 min: 1.058 ± 0.05; \(n = 8; \ p = 0.8742 \), paired \(t \) test) or with cAMP (1 min: 1.02 ± 0.05; and 4 min: 1.08 ± 0.05; \(n = 11; \ p = 0.3613 \), paired \(t \) test). Estimates for the maximum overall pool size (\(B_{\text{max}} \); Fig. 4E) were calculated by using the following formula:

\[
B_{\text{max}} = \frac{\Delta C_1 + \Delta C_2}{1 - (\Delta C_2/\Delta C_1)^2}
\]

This formula assumes that the same fraction of the pool is released with each pulse (Gillis et al., 1996; M. Chen and von Gersdorff, 2019). If there is a larger fraction of release during the second pulse (e.g., because of residual Ca\(^{2+}\) from the first pulse) or significant vesicle recruitment during the second pulse, then \(B_{\text{max}} \) will overestimate the actual initial pool size. Therefore, the actual pool size lies between \(\Delta C_1 \) and \(B_{\text{max}} \). There was no change in \(B_{\text{max}} \) after 4 min for controls (1 min: 72.2 ± 14.8 fF; and 4 min: 63.05 ± 9.28 fF; \(n = 8; \ p = 0.4809 \), paired \(t \) test), but a significant increase for experiments with 1 mM cAMP (1 min: 64.5 ± 11.9 fF; and 4 min: 103 ± 10.9 fF; \(n = 11; \ p = 0.0143 \), paired \(t \) test). The PPR we measured varied from 0.4 to 0.5, which suggests a high \(P_r \), reflecting the strength of our depolarizing pulse from −80 to −10 mV. We found that PPR did not change significantly with 1 mM cAMP; however, \(B_{\text{max}} \) did increase significantly. This further supports our findings in Figure 3, suggesting that 1 mM cAMP increases the RRP size, without changing the release kinetics or the initial \(P_r \).

cAMP enhances the exocytosis of AII-ACs from Cx36\(^{-/-}\) mice

Electrical synapses are formed between AII-ACs through Cx36 gap junctions located at the distal arboreal dendrites, forming a vast AII-ACs coupled network (Hartveit and Veruki, 2012; Marc et al., 2014). We considered the possibility that cAMP may introduce artifacts by altering the coupling state between AII-ACs, which could change the input resistance (Vardi and Smith, 1996;
We thus performed DCm recordings using standard solutions and with cAMP in the transgenic Cx36 KO (Cx36/−/−) mouse (Hormuzdi et al., 2001; Christie, et al., 2005; Balakrishnan et al., 2015). This addresses the issue of whether cAMP-dependent modulation of gap junctions may influence an increase in the DCm jump size. Recordings from Cx36/−/− AII-ACs produced normal ICa currents before 1 min and 4 min after break-in (Fig. 5A, inset). We observed no changes in Qca resulting from 100 ms pulses (1 min: 11.2 ± 1.54 pC; and 4 min: 12.0 ± 1.45 pC; n = 5; p = 0.5356, paired t test). DCm recordings were also performed before and after 1 mM cAMP dialysis (Fig. 5B). After 4 min of dialysis with cAMP, DCm increased significantly.
(1 min: $33.8 \pm 5.83 \text{fF}$; and 4 min: $60.4 \pm 7.84 \text{fF}$; $n = 5$; $p = 0.0004$, paired t test). These results are very similar to the WT mice and rule out the possibility that cAMP modulation of gap junctions are augmenting ΔC_m jumps. We conclude that cAMP is enhancing vesicle fusion independently of gap junctions. Dialysis of 1 mM cAMP did not change R_m (1 min: $41.1 \pm 9.69 \text{m}\Omega$; and 4 min: $45.3 \pm 20.3 \text{m}\Omega$; $n = 5$; $p = 0.8125$, Wilcoxon) or R_p (1 min: $2100 \pm 945 \text{m}\Omega$; and 4 min: $1203 \pm 235.3 \text{m}\Omega$; $n = 5$; $p = 0.0625$, Wilcoxon). Compared with AII-ACs from WT C57 mice, 1 mM cAMP experiments with Cx36/–/– did have significantly higher R_p ($p = 0.035$, Mann–Whitney) and R_m ($p = 0.003$, Mann–Whitney). We observed a higher average R_p in mutant Cx36/–/– mice ($2100 \pm 945 \text{m}\Omega$ at 1 min) than in WT C57 (1040 ± 247 m\text{m}\Omega at 1 min), as expected from the lack of gap junction coupling between AII-ACs in the Cx36/–/– mouse retina.

Forskolin enhances the exocytosis from AII-ACs

We have shown that vesicle exocytosis is enhanced by directly applying 1 mM cAMP through the patch pipette. Forskolin is a membrane-permeable activator of adenylyl cyclase that can enhance synaptic transmission by increasing endogenous levels of cAMP (C. Chen and Regehr, 1997; Tzounopoulos et al., 1998; Kamiya et al., 2002; Kaneko and Takahashi, 2004; Choi et al., 2009; Alasbahi and Melzig, 2012). We thus superfused retinal slices with 25 mM forskolin for 30 min before whole-cell recordings. Forskolin was also continuously perfused during C_m and I_{Ca} recordings, whereas in separate control experiments cells within retinal slices were perfused with control Ames medium without forskolin (Fig. 6A). Figure 6B shows that, in AII-ACs treated with 25 mM forskolin, the I_{Ca} jumps evoked by 100 ms pulses were nearly twofold larger than in controls (control: $58.6 \pm 7.95 \text{fA}$, $n = 11$; and forskolin: $86.9 \pm 9.92 \text{fA}$, $n = 13$; $p = 0.0408$, Mann–Whitney). The Q_{Ca} in cells with forskolin application was slightly larger than controls, although this was not significant (control: $10.9 \pm 1.82 \text{pC}$, $n = 11$; and forskolin: $13.5 \pm 1.80 \text{pC}$, $n = 13$; $p = 0.2066$, Mann–Whitney). Our results indicate that forskolin increases the ΔC_m independent of the L-type Ca^{2+} channel and may be mediated by an increase in intracellular cAMP levels. Recorded R_p values (control: $24.4 \pm 3.79 \text{M}\Omega$, $n = 11$; and forskolin: $21.9 \pm 3.46 \text{M}\Omega$, $n = 13$; $p = 0.6234$, t test) and R_m (control: $509 \pm 180 \text{M}\Omega$, $n = 11$; and forskolin: $237 \pm 48.1 \text{M}\Omega$, $n = 13$; $p = 0.1297$, t test) did not change significantly.

Forskolin increases glycinergic inhibition to OFF-CBCs

OFF-CBC terminals receive glycinergic inhibition from AII-ACs (Wässle et al., 2009). We used whole-cell voltage-clamp recordings from OFF-CBCs to record glycinergic sIPSCs as a measure of spontaneous glycine release from AII-ACs, which are the most abundant AC in the mammalian retina (Fig. 7A). ON- and OFF-type BCs can be targeted by their soma position in the INL using infrared DIC optics and distinguished by their morphology when filled with fluorescent dyes (Fig. 7B). Figure 7B shows examples of ON-CBCs and OFF-CBCs. ON-CBC axon terminates in the ON-sublamina of the IPL (Fig. 7B1), whereas OFF-CBCs terminate near the AII-AC lobules in the OFF-sublamina (Fig. 7Bii). Whole-cell voltage-clamp recordings from rat and/or mouse OFF-CBCs resulted in large inward sIPSCs when held at −70 mV. Subtypes of primate OFF-CBCs exhibit similar glycinergic sIPSCs (McLaughlin et al., 2021). Rat retina OFF-CBCs were used because they are larger and easier to identify and patch clamp. These sIPSCs were all sensitive to 2 μM strychnine, which blocked sIPSCs in 6 of 6 recordings in rat retina (Fig. 7C).

We next tested the effects of bath application of 25 mM forskolin during sIPSCs recordings. Figure 7D shows example traces from an OFF-CBC recording that illustrates sIPSCs before drug treatment (controls; top trace) and the subsequent increase in frequency occurring after 25 mM forskolin application (bottom trace). We quantified sIPSCs using custom mini analysis procedures (see Materials and Methods) for rat OFF-BCs ($n = 7$) and sIPSCs recorded in retinal slices from transgenic Syt2-EGFP mice ($n = 3$). Analysis from mouse and rat OFF-CBCs were grouped together ($n = 10$). Events measured 30 s before drug application (control; 4347 events) were compared with the last 60 s of recording during forskolin application (12,452 events). Figure 7E shows cumulative probability distributions of the interevent intervals between sIPSC events. The cumulative histogram shows that the interevent interval after the application of 25 mM forskolin significantly shifts to the left ($p < 0.0001$; Kolmogorov–Smirnov test). The shift to shorter interevent intervals can be better visualized in plots on a log time-scale (Fig. 7F). The absolute frequency was measured before and after 25 mM forskolin treatment for each OFF-CBC (Fig. 7G). The application of forskolin significantly increased the sIPSC frequency (pretreatment: $3.42 \pm 0.96 \text{Hz}$; and forskolin: $4.88 \pm 1.12 \text{Hz}$; $p = 0.002$, paired t test). These results indicate that forskolin is producing presynaptic changes that increase the frequency of spontaneous glycine release.

We also examined whether forskolin changes sIPSC amplitudes. Figure 7H shows the grand average waveform for all sIPSCs recorded before and after drug application. A distribution histogram comparing sIPSC amplitudes (Fig. 7I) suggests that sIPSC amplitude is not affected by forskolin. The centers of log-Gaussian fits (DF = 58) did not shift after forskolin treatment (control: 23.6pA; $R^2 = 0.99$, and forskolin: 24.6pA; $R^2 = 0.97$).
Median sIPSC amplitudes from individual cells (Fig. 7J) also did not change significantly after forskolin treatment (control: 36.4 ± 6.44 pA; and forskolin: 41.8 ± 10.4 pA; p = 0.43; Wilcoxon). This suggests that forskolin does not cause changes to postsynaptic glycine receptors in OFF-CBCs or the quantal content of sIPSCs. However, the average sIPSC traces took slightly longer to decay after forskolin application. We speculate that higher release rates may produce excess glycine in the synaptic cleft, thereby increasing the open probability of glycine receptors, and perhaps causing significantly longer decay time constants (control: τ = 1.82 ± 0.43 ms; and forskolin: τ = 2.05 ± 0.42 ms; p = 0.03; Wilcoxon).

These results suggest that the forskolin is activating adenyl cyclase and thus producing cAMP-induced changes that enhance the presynaptic release of glycine. We next determined the onset of potentiation by continuously recording sIPSCs during 25 μM forskolin application. OFF-CBCs were targeted in Syt2-EGFP mice that we backcrossed onto a C57 background (Fig. 7K). Figure 7L shows a diary plot of sIPSC frequency (15 s bins) across the duration of recording in a single OFF-CBC. The basal sIPSC frequency remained stable during the first 5 min of recording before forskolin reached the batch chamber. We observed an increase in frequency by 4 min of 25 μM forskolin treatment. Diary plots of average sIPSC frequency (15 s bins) are shown in Figure 7M. Bath application of 25 μM forskolin was given to OFF-BCs from mice (n = 3) and rats (n = 3). Separate control experiments were performed in OFF-CBCs that did not receive drug application (n = 5). By 6.5 to 7.0 min after forskolin application, the frequency of IPSCs was significantly higher than controls (p < 0.001; except at 6.75 min, p = 0.003), and by 7.25 min the frequency doubled (p < 0.0001; degrees of freedom = 91; two-way ANOVA and Sidak test).

cAMP potentiates exocytosis by an EPAC-dependent and PKA-independent mechanism

PKA is a kinase activated by cAMP and implicated in the uncoupling of All-AIIC electrical synapses by mediating the dephosphorylation of Cx36 gap junctions (Urschel et al., 2006; Kothmann et al., 2009). We then tested whether PKA enhances glycineric release at the All-AIC to OFF-BC synapse using an internal solution containing 1 mM cAMP and 2 μM H89, a competitive antagonist, highly specific for PKA (Hidaka et al., 1991). Example traces for experiments with 2 μM H89 (Fig. 8A1) illustrate that the antagonist did not suppress cAMP-induced potentiation in All-AICs. Potentiation was consistently observed across several All-ACs, resulting in a significant increase ΔCm even with 2 μM H89 (1 min: 60.2 ± 7.35 fF; and 4 min: 76.3 ± 8.17 fF; n = 9; p = 0.002, paired t test) with no changes in L-type QCa (1 min: 8.02 ± 0.91 pC; and 4 min: 7.95 ± 1.19 pC; n = 9; p = 0.874, paired t test; Fig. 8A2). Building on our finding that 1 mM cAMP enhances exocytosis in All-ACs (Fig. 1), the result from this experiment suggests that cAMP-induced potentiation requires a PKA-independent pathway. Furthermore, we observed no changes in Rm values with 2 μM H89 (1 min: 20.7 ± 1.01 MΩ; and 4 min: 22.8 ± 2.17 MΩ; n = 9; p = 0.6523, Wilcoxon), and Rm (1 min: 529 ± 269 MΩ; and 4 min: 471 ± 332 MΩ; n = 9; p = 0.097, Wilcoxon).

We next tested the potential role of EPAC2 at this synapse by adding 1 μM HJC0350, a specific inhibitor of EPAC2 (H. Chen et al., 2013), to our internal solution containing 1 mM cAMP. Figure 8B1 shows representative ICa and Cm traces as All-ACs were dialyzed with the internal solution. ΔCm did not increase after 4 min with 1 μM HJC0350 even with cAMP in the patch pipette (1 min: 57.0 ± 9.17 fF; and 4 min: 59.6 ± 8.69 fF; n = 10; p = 0.59, paired t test; Fig. 8B2). These results suggest that cAMP-induced potentiation of exocytosis relies on an EPAC2-dependent mechanism. Furthermore, there were no significant changes in QCa (1 min: 9.05 ± 0.77 pC; and 4 min: 9.71 ± 0.71 pC; n = 10; p = 0.112, paired t test). The mean Rm from recordings with 2 μM HJC0350 was as follows: 1 min: 25.4 ± 2.39 MΩ and at 4 min: 24.2 ± 1.26 MΩ (n = 11; p = 0.5771; Wilcoxon); and mean Rm was as follows: 1 min: 1880 ± 1220 MΩ; and at 4 min: 759.8 ± 211 MΩ (n = 10; p = 0.3223, Wilcoxon).

Direct activation of EPAC potentiates exocytosis

EPAC2-mediated potentiation of exocytosis is widespread at synapses and secretory cells (Sakaba and Neher, 2001; Kamiya et al., 2002; Zhong and Zucker, 2005; Komai et al., 2014; Fernandes et al., 2015). We further tested for a role of EPAC mechanisms at All-AICs with the specific EPAC activator 8-pCPT. This EPAC specific analog of cAMP has a threefold higher binding affinity.
Figure 7. Upregulation of adenylyl cyclase leads to an increase in the frequency of spontaneous glycine release. A, Diagram of the crossover inhibition circuit showing that OFF-BCs receive glycinergic inhibition from AII-ACs. Whole-cell voltage-clamp experiments were performed in OFF-BCs, held at −70 mV, using a high chloride internal. B, Micrograph of epifluorescence images of CBCs in rat retinal slices after whole-cell recording with an internal solution containing 20 μM Alexa-488 dye. BC subtypes identified by their axon stratification in the ON (Bi) or OFF (Bii) sublamina of the IPL. OFF-CBCs were also targeted in transgenic Syt2-EGFP mice (K), and pooled with recordings from rats. C, Example OFF-BC recordings of glycinergic sIPSCs performed in Ames medium with synaptic blockers (see Materials and Methods). Recordings were made before (pretreatment; black) and after application of 2 μM strychnine (blue). sIPSCs are completely abolished with 2 μM strychnine. D, Example traces show sIPSCs before (pretreatment; black) and during 25 μM forskolin wash (red), which caused an increase in glycinergic sIPSCs. E, Histogram represents normalized cumulative distribution of interevent interval times between sIPSCs. Labeled on graph is the number of events detected (pretreatment: 567 events; and after 25 μM forskolin treatment: 2015 events; n = 7 cells). The application of forskolin shifted the distribution to left. F, Histogram represents the cumulative distribution (E) plotted on a log axis to illustrate the increase in events with small interevent interval. G, Plot of the sIPSC frequency showing the sIPSC rate recorded from OFF-BCs before (black) and during 25 μM forskolin wash (red). There is significantly larger sIPSC frequency with 25 μM forskolin. Also shown as percent change
Figure 8. The mechanism for cAMP-induced potentiation is EPAC2-dependent. Whole-cell voltage-clamp recordings were performed in AII-ACs using an internal solution containing 1 mM cAMP. Internal solutions also contained either 2 μM H89 (PKA inhibitor) or 1 μM HJC0350 (EPAC2 inhibitor).

A1. B1. Average Cm and Ica responses to a 100 ms depolarizing pulse. Shown are recordings made before 1 min (blue) and 4 min (red) after break-in. Gray bar represents the region where Cm values were averaged. A1. Cm and Ica responses from AII-ACs recorded with 1 μM H89. B1. Cm and Ica responses from AII-ACs recorded with 1 μM HJC0350. A2, B2. Summary plots of ΔCm and Qca showing pairwise comparisons for each time after break-in. Closed circles represent data from individual ACs. Open circles with error bars represent mean ± SEM. **p < 0.01; ***p < 0.001.

Exocytosis and cAMP at AII Amacrine Cells

Figure 9A shows the detailed morphology of an AII-AC dialedyzed with Alexa-488 after iterative image deconvolution. Figure 9B shows representative Cm and Ica traces recorded with 10 μM 8-pCPT in the patch pipette. Using 8-pCPT, we again did not see a significant change in Qca (1 min: 16.1 ± 2.46 pC; and 4 min: 15.2 ± 2.54 pC; n = 7; p = 0.565, paired t test). However, dialysis with 8-pCPT increased the ΔCm jumps significantly after 4 min from break-in (Fig. 9C; 1 min: 56.2 ± 10.9 fF; and 4 min: 93.3 ± 15.35 fF; n = 7; p = 0.021, paired t test). The efficiency of exocytosis also increased with 8-pCPT (1 min: 4.49 ± 1.21 fF/pC; and 4 min: 7.39 ± 1.48 fF/pC; n = 7; p = 0.0066, paired t test). Our concentration of 8-pCPT (10 μM) was 10-fold lower than what we used for cAMP (1 mM). Nevertheless, ΔCm jumps increased almost twofold with 8-pCPT. This supports our findings in Figure 8 that cAMP increases exocytosis via an EPAC2 pathway.
$	ext{Ca}^{2+}$ release from ER stores may be because of Ca$^{2+}$-dependent exocytosis at synapses (Padamsey et al., 2019). ACs use sarcoplasmic-endoplasmic reticulum (ER) Ca$^{2+}$ pumps to regulate internal Ca$^{2+}$ levels (Krizaj, 2005). EPAC2 has been shown to enhance CICR from the ER in a cAMP-dependent manner by modulating Ca$^{2+}$ release from ryanodine and inositol 1,4,5-trisphosphate (IP$_3$) receptors (Holz et al., 2006). CICR can trigger exocytosis at AC synapses (Warrier et al., 2005) and ribbon-type synapses of photoreceptors and hair cells (Babić et al., 2010; Castellano-Munoz et al., 2016). By contrast, short-term plasticity at several CNS synapses is not affected by CICR (Carter et al., 2002). EPAC2 is involved in CICR during β-cell insulin secretion (Rorsman et al., 2012; Støzøer et al., 2021). However, EPAC2-dependent exocytosis enhancement and EPAC2-dependent CICR have not been observed previously in the retina. We used 2-APB (50 μM) as a competitive IP$_3$ receptor antagonist and store-operated Ca$^{2+}$ entry channel antagonist, which should deplete ER Ca$^{2+}$ stores (Bootman et al., 2002; Majewski and Kuznicki, 2015). Importantly, 2-APB (50 μM) has been shown to significantly reduce CICR from depolarized GABAergic AC dendrites (Warrier et al., 2005). We incubated retina slices with 50 μM 2-APB for 10-15 min and then whole-cell voltage-clamped the AII-AC with an internal solution containing 1 mM cAMP while 50 μM 2-APB was continuously perfused (Fig. 10A1). ΔC$_m$ responses from AII-ACs pretreated with 2-APB slightly increased after 4 min, but this was not statistically significant (1 min: 44.1 ± 5.67 fF; and 4 min: 59.8 ± 12.3 fF; n = 10; p = 0.1197, paired t test; Fig. 10A2). The Q$_{Ca}$ slightly decreased after 4 min with the 2-APB pretreatment (1 min: 7.63 ± 0.487 pC and 4 min: 6.27 ± 0.57 pC; n = 10; p = 0.0306, paired t test).

To study CICR from ryanodine receptors (RyRs), we incubated retina slices with 10 μM ryanodine for 10-15 min before whole-cell voltage-clamp recordings with 1 mM cAMP in the internal solution (Fig. 10B1). Ryanodine at 10 μM can lock RyR in a low conductance state and thus cause a slow and tonic leak of Ca$^{2+}$ from ER stores, thereby depleting them (Ehrlich et al., 1994; Kang et al., 2005; Ster et al., 2007). Slow Ca$^{2+}$ release from ER stores triggered by 10 μM ryanodine can produce nonribbon Ca$^{2+}$-dependent exocytosis in rod photoreceptors (M. Chen et al., 2014). Therefore, we also used a higher concentration (25 μM) to block Ca$^{2+}$ release from RyR, as shown by Warrier et al. (2005) using caffeine to induce Ca$^{2+}$ release from stores in AC dendrites (see also Sosa et al., 2002; Vigh and Lasater, 2003; Vigh et al., 2005; Chávez et al., 2010). Resulting ΔC$_m$ responses with a 1 mM cAMP internal did not potentiate 4 min after break-in when pretreated with 10 or 25 μM ryanodine (1 min: 51.3 ± 5.91 fF; and 4 min: 52.8 ± 4.15 fF; n = 11; p = 0.7863, paired t test; Fig. 10B2). Q$_{Ca}$ did not significantly decrease when 10 μM ryanodine was used (n = 7), although Q$_{Ca}$ did decrease significantly when we combined the datasets for 10 and 25 μM ryanodine (1 min: 10.3 ± 0.92 pC; and 4 min: 8.32 ± 0.81 pC; n = 11; p = 0.0104, paired t test). The reduction in Q$_{Ca}$ when Ca$^{2+}$ stores were emptied may be because of Ca$^{2+}$-dependent inactivation of the L-type Ca$^{2+}$ current (von Gersdorff and Matthews, 1996). These results suggest that intact ER stores loaded with Ca$^{2+}$ and thus capable of CICR are necessary for the cAMP-induced potentiation of exocytosis.

Discussion

This study used presynaptic capacitance measurements and postsynaptic recordings of sIPSCs to uncover mechanisms of cAMP-induced potentiation of glycine release from AII-ACs. We propose that cAMP plays dual roles in AII-ACs through two distinct morphologic compartments and signaling pathways: a PKA-dependent pathway uncouples electrical...
synapses at the distal tips of dendrites in layers S3-5 of the IPL (Kothmann et al., 2009), while cAMP binding to EPAC2 potentiates the exocytosis of synaptic vesicle fusion, enhancing crossover inhibition to OFF-CBCs at the lobular appendages in layers S1-2 of the IPL (Fig. 7A).

Elevation of cAMP concentration increases RRP size at AII-ACs

The lobular appendages of the AII-AC contain a large pool of glycine loaded vesicles in their cytoplasm and multiple extensive active zones with several docked vesicles (Strettoi et al., 1992; Marc et al., 2014). Here we show that both the initial RRP with a high release rate and the secondary RRP with slower rate were potentiated in size nearly twofold by intracellular 1 mM cAMP (Fig. 3). In the calyx of Held, nerve terminal cAMP changes the Ca²⁺ sensitivity of synaptotagmin, potentiating only the initial fast releasing pool of vesicles (Yao and Sakaba, 2010). Our results also contrast with results from hippocampal mossy fiber boutons, where cAMP only increases the initial release rate without changing the overall RRP size (Midorikawa and Sakaba, 2017).

Recent computer modeling of the AII-AC morphology in adult Sprague Dawley rats suggests that the thin dendrites may filter global Cm measurements when high-frequency sine waves are used (Zandt et al., 2018). Our measurements of total RRP size using a 2 kHz sinusoidal wave may therefore underestimate the total RRP of the AII-AC by 10%-20% (Hartveit et al., 2019).

However, we have shown previously that reducing the sinusoidal frequency does not change the ΔCm jump size in our juvenile C57 mouse (postnatal days 16-28) AII-ACs, which we presume are more electrotonically compact (Balakrishnan et al., 2015),
suggesting that the lobules are not electrotonically distant from the soma in mouse AII-ACs.

EPAC2 and Ca$^{2+}$ store signaling pathways for exocytosis potentiation

The molecular pathways for cAMP-dependent potentiation differ across synapses (Seino and Shibasaki, 2005). PKA is a classic substrate for cAMP that promotes potentiation in hippocampal (Trudeau et al., 1996; Castillo et al., 1997) and cerebellar synapses (C. Chen and Regehr, 1997). PKA can enhance Ca$^{2+}$ entry by directly phosphorylating L-type Ca$^{2+}$ channels (Nanou and Catterall, 2018). However, enhancement of the Ca$^{2+}$ current cannot explain cAMP-induced potentiation of exocytosis in AII-ACs because Ca$^{2+}$ current peak amplitudes, charge, and inactivation kinetics did not change (Figs. 1, 3A, 5-9). Indeed, we observed a slight but significant reduction of Q$_{\text{Ca}}$ in some instances (Figs. 4 and 10). PKA-dependent increases in RRP can occur without changes in P$_{\text{f}}$, via a shift in release mode from univesicular to coordinated multivesicular release (Vaden et al., 2019). However, our results show that cAMP potentiation of exocytosis in AII-ACs is mediated by EPAC2 (Figs. 8 and 9).

Presynaptic EPAC2-dependent potentiation appears to be an evolutionary ancient modulatory pathway that has also been observed at the crayfish neuromuscular junction (Zhong and Zucker, 2005), as well as at spinal cord glycinergic interneurons (Katsurabayashi et al., 2001; Choi et al., 2009). Recently, an increase in RRP via EPAC2 has been shown at hippocampal mossy fiber synapses (Fernandes et al., 2015) and parallel fiber synapses to Purkinje cells (Martin et al., 2020). Hippocampal synapses may have a fast and slow mode of potentiation regulated by EPAC and PKA, respectively (Gekel and Neher, 2008). In pancreatic β cells, both PKA and EPAC2 potentiate Ca$^{2+}$-dependent exocytosis, modulating the release of insulin large dense-core vesicles and small GABA vesicles (Eliassson et al., 2003; Hatakeyama et al., 2007; Hengquin and Nenquin, 2014). Our findings show that cAMP enhancement of exocytosis is PKA-independent in AII-ACs. We confirmed this by (1) showing that H-89 does not block potentiation, (2) directly activating EPAC using the 8-pCPT analog, which has a 100-fold higher binding preference for EPACs over PKA (Enserink et al., 2005), and (3) directly blocking potentiation with a specific EPAC2 antagonist (HJC0350; 130-fold higher binding efficiency than 8-pCPT). 8-pCPT may partially activate PKA (only 5%-7% at 50 μM) (Christensen et al., 2003). Direct activation of HCN channels by cAMP can also cause presynaptic potentiation (Zhong et al., 2004); however, Ih currents have not been reported in AII-ACs (Firill et al., 2015) and our experiments were performed in voltage-clamp. In summary, our results suggest that cAMP potentiation of exocytosis is solely driven by EPAC2 by increasing in RRP and without changing P$_{\text{f}}$, as shown in PPR experiments (Fig. 4).

What are potential EPAC2-dependent molecular mechanisms that directly "superprime" the initial RRP and contribute to nearly doubling its size? Key proteins involved in vesicle priming are RIM, RBP, Rab3, and Munc13, and they are necessary for cAMP potentiation (Lonart et al., 1998; Castillo et al., 2002; Yang and Calakos, 2011). RIM proteins anchor Munc13 and Rab3 at active zones, and EPAC2 also binds to the scaffold proteins piccolo and RIM1/2 (Ozaki et al., 2000; Kashima et al., 2001; Schoch et al., 2002). RIM1/2 can also bind to the α-subunit of L-type Ca$^{2+}$ channels via RBP to modulate exocytosis (Hibino et al., 2002; Grabner et al., 2015; Krinner et al., 2017) or directly to the β-subunit of Cav1.3 to modulate Ca$^{2+}$ current inactivation (Gandini et al., 2011). These are all potential downstream targets of EPAC2 and need further characterization.

Additionally, we also found that inhibiting CICR from internal Ca$^{2+}$ stores reduced cAMP-induced potentiation (Fig. 10). Our results with H89 (Fig. 8) suggest that PKA does not alter CICR. EPAC2 can trigger CICR by enhancing RyR and IP$_3$ receptors (Holz et al., 2006). EPAC2 mediates RyR phosphorylation via CaMKII (Pereira et al., 2013). Cerebellar neurons also exhibit EPAC2-dependent modulation of CICR through Rap and p38 MAPK activation (Ster et al., 2007). Spontaneous release can also be regulated by CICR (M. Chen et al., 2014; Williams and Smith, 2018; Chanaday et al., 2021), which may explain the increase in sIPSCs seen in Figure 7. In summary, our results suggest that the cAMP-induced potentiation of exocytosis in AII-ACs requires both EPAC2 and CICR from intact Ca$^{2+}$ stores; however, more work is necessary to determine in detail how EPAC2 and Ca$^{2+}$ stores interact to promote exocytosis.

Neuromodulators can increase cAMP levels

The second messenger cAMP plays multiple roles in visual processing by tuning retinal circuits during development and sharpening local receptive fields (Stellwagen et al., 1999; Dunn et al., 2009). Fluorescent imaging of cAMP levels has shown that forskolin and several neuromodulators can increase cAMP levels in CNS nerve terminals (Vincent et al., 2008; Muntean et al., 2018). Among neuromodulators, dopamine, in particular, is responsible for long-lasting changes in retinal circuitry (Roy and Field, 2019). Dopamine also promotes the release of the antioxidant ascorbate from retinal neurons via EPAC2 (Encarnação et al., 2018). Dopamine and forskolin can potentiate exocytosis from BCs (Heidelberger and Matthews, 1994), and modulate AII-AC networks by closing gap junctions (Hampson et al., 1992). Dopaminergic ACs form en passant synapses around the root dendrite of AII-ACs (Voigt and Wässle, 1987), and there is evidence that AII-ACs exhibit D$_1$-like receptor activity (Witkovsky et al., 2007). However, antibody localization of D$_1$-like receptors in AII-ACs still remains uncertain (Veruki and Wässle, 1996). Interestingly, D$_1$-like receptor activation reduces glycnergic inhibition to OFF-BCs and changes the spike output of ganglion cells during photopic conditions (Jensen, 1989; Mazade et al., 2019; Mazade and Eggers, 2020). It is possible that D$_1$-like activity can increase cAMP in AII-ACs while reducing inhibition through global changes in retinal networks. Further studies are clearly needed to better understand the complex effects of light-evoked neuromodulator release on the local cAMP levels of AII-ACs.

Chemical compartmentalization, adenylyl cyclases, and microdomains of cAMP

The AII-AC is a bistratified neuron with well-separated cellular compartments (Figs. 1B and 9A). Indeed, changes in Ca$^{2+}$ levels within a particular lobular appendage do not spread to nearby lobules or dendrites (Balakrishnan et al., 2015; Kim and von Gersdorff, 2016). Likewise, physiological changes in cAMP levels at different lobules or in the distal dendritic arbors may all occur locally and independently of each other.

Our recordings of sIPSCs from the OFF-BCs show a significant increase in the frequency of sIPSC after forskolin application (Fig. 7). This continuous and robust release of glycine is presumably potentiated by elevations of cAMP via stimulation of adenylyl cyclases by forskolin. Changes in cAMP levels may also be regulated by Ca$^{2+}$-dependent adenylyl cyclases near L-type
Ca2+ channels (Halls and Cooper, 2011). Local clustering of adenyl cyclases may elevate cAMP to the higher levels needed to activate EPAC2 and translocate it to docked vesicles (Alenkvist et al., 2017), whereas cytoplasmic phosphodiesterases may confine high cAMP levels to local microdomains near the plasma membrane (Rich et al., 2001; Kuhn and Nadler, 2020). The lobular appendage geometry (small bubble-like structures, densely packed with vesicles and mitochondria, and connected by thin and short tubes to the apical dendrite) seems ideally suited to form diffusion barriers that restrict Ca2+ and cAMP microdomains near the membrane where synaptic vesicles are docked.

In conclusion, our findings show that elevations of cAMP in the AII-ACs can increase both phasic and tonic inhibition to OFF-CBC terminals and OFF ganglion cells (Balakrishnan et al., 2015; Graydon et al., 2018). We propose that these changes in glycine release may help to reduce synaptic noise contamination between the OFF and ON pathways of the retina. This may help to sharpen contrast gain at different ambient light levels (Freed and Liang, 2014).

References

Boothing DM, Collins TJ, Mackenzie L, Roderick HL, Berridge MJ, Pippa CM (2002) 2-Aminophenylphosphonate (2-APP) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP\textsubscript{3}-induced Ca2+ release. FASEB J 16:1145–1150.

Rab3A is essential for mossy fibre long-term potentiation in the hippocampus. Nature 388:590–593.

Chávez AE, Grimes WN, Diamond JS (2010) Mechanisms underlying lateral glycine release may help to reduce synaptic noise contamination between the OFF and ON pathways of the retina. This may help to sharpen contrast gain at different ambient light levels (Freed and Liang, 2014).

Dunn TA, Storm DR, Feller MB (2009) Calcium-dependent increases in protein kinase-A activity in mouse retinal ganglion cells are mediated by multiple adenylate cyclases. PLOs One 4:e7877.

