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Systems/Circuits

Distal CA1 Maintains a More Coherent Spatial
Representation than Proximal CA1 When Local and Global
Cues Conflict

Sachin S. Deshmukh

Centre for Neuroscience, Indian Institute of Science, Bangalore, India 560012

Entorhinal cortical projections show segregation along the transverse axis of CAl, with the medial entorhinal cortex (MEC)
sending denser projections to proximal CA1 (pCAl) and the lateral entorhinal cortex (LEC) sending denser projections to dis-
tal CA1 (dCA1). Previous studies have reported functional segregation along the transverse axis of CAl correlated with the
functional differences in MEC and LEC. pCA1 shows higher spatial selectivity than dCA1 in these studies. We employ a dou-
ble rotation protocol, which creates an explicit conflict between the local and the global cues, to understand the differential
contributions of these reference frames to the spatial code in pCAl and dCA1 in male Long-Evans rats. We show that pCA1
and dCA1 respond differently to this local-global cue conflict. pCA1 representation splits as predicted from the strong con-
flicting inputs it receives from MEC and dCA3. In contrast, dCA1 rotates more in concert with the global cues. In addition,
pCAl and dCA1 display comparable levels of spatial selectivity in this study. This finding differs from the previous studies,
perhaps because of richer sensory information available in our behavior arena. Together, these observations indicate that the
functional segregation along proximodistal axis of CAl is not of the amount of spatial selectivity but that of the nature of
the different inputs used to create and anchor spatial representations.
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Subregions of the hippocampus are thought to play different roles in spatial navigation and episodic memory. It was previ-
ously thought that the distal part of area CA1 of the hippocampus carries lesser information about space than proximal CA1
(pCA1). We report that distal CA1 (dCA1) spatial representation moves more in concert with the global cues than pCA1 when
the local and the global cues conflict. We also show that spatial selectivity is comparable along the proximodistal axis in this
experimental protocol. Thus, different parts of the brain receiving differential outputs from pCA1 and dCA1 receive spatial in-
formation in different spatial reference frames encoded using different sets of inputs, rather than different amounts of spatial
information as thought earlier. /

ignificance Statement

Introduction

The hippocampus is involved in spatial navigation and episodic
memory (O’Keefe and Nadel, 1978; Squire et al., 2004). To under-
stand the computations involved in these processes, it is critical to
understand information transformation in the entorhinal-
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hippocampal network. Cortical information to the hippocampus
gets channeled through the medial entorhinal cortex (MEC) and
the lateral entorhinal cortex (LEC; Burwell, 2000; Witter and
Amaral, 2004). The hippocampus receives path integration
derived spatial information from MEC and nonspatial infor-
mation from LEC (Suzuki et al., 1997; Hafting et al., 2005;
Manns and Eichenbaum, 2009; Deshmukh and Knierim,
2011; Knierim et al., 2014), recent studies have demonstrated
object dependent allocentric (Deshmukh and Knierim, 2011)
and egocentric (Wang et al., 2018) representations of space
in LEC. While LEC and MEC Layer II inputs to the dentate
gyrus and CA3 are not strongly segregated along the trans-
verse axis of the hippocampus, Layer III inputs to CAl are.
MEC projects preferentially to proximal CA1 (pCA1; close to
CA2), while LEC projects preferentially to distal CA1 (dCA1;
close to the subiculum; Steward and Scoville, 1976; Naber et
al., 2001; Witter and Amaral, 2004). CA3 to CA1 projections
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(AT circuitry and experimental protocol. A, Schematic showing anatomic connectivity of CAT along its transverse axis. Bidirectional arrows indicate reciprocal connections between

the two connected areas; unidirectional arrows indicate direction of information flow. B, Recording sessions included two mismatch sessions interleaved between standard sessions. All but one
rat encountered two standard sessions before manipulations began for a total of six sessions each day, while one rat encountered only one standard session before manipulations began for a
total of five sessions each day. Standard sessions had the local as well as the global cues in the configuration the rats were trained on, while mismatch sessions had the local cues rotated CCW
and the global cues rotated CW by equal amounts to get a net cue mismatch of 45°, 90°, 135°, or 180°. €, Examples of tetrodes recording along the transverse axis of CA1 from one rat. The
drive canulae were linearly organized in approximately three rows oriented at 35° to the ML axis to target the entire extent of the transverse axis at the same septotemporal level. D,
Recording locations in all rats. Tetrodes from a single rat are represented with dots of a single color. Modified with permission from Kumar and Deshmukh (2020).

also show segregation along the transverse axis, with pCA3
projecting preferentially to dCA1 and dCA3 projecting pref-
erentially to pCA1 (Fig. 14; Ishizuka et al., 1990; Witter and
Amaral, 2004).

Correlated with these anatomic differences, CA1 shows func-
tional segregation along its transverse axis. pCAl has been
reported to be spatially more selective than dCA1 (Henriksen et
al., 2010; Oliva et al, 2016; Ng et al, 2018). dCAl neurons

respond to objects and rewards (Burke et al., 2011; Xiao et al,,
2020; these studies did not record from pCAl, so we do not
know whether pCA1l showed lesser response to objects and
rewards). Social place cells, encoding location of a conspecific,
are more prevalent in dCA1 than pCAl of bat (Omer et al,
2018). LEC and dCA1 show enhanced oscillatory synchroniza-
tion during olfactory-spatial associative memory, while LEC and
pCAl do not (Igarashi et al, 2014). Immediate early gene
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expression and lesion studies lend further support to spatial ver-
sus nonspatial double dissociation between pCA1 and dCA1 (Ito
and Schuman, 2012; Nakamura et al, 2013; Nakazawa et al,
2016). However, the relative contributions of different inputs to
the neural representations along the transverse axis of CAl are
not well understood.

A “double rotation” protocol (Shapiro et al., 1997; Knierim,
2002) has been used extensively to study the influence of the local
and the global cues on spatial representations in different parts
of the hippocampal formation. Individual spatially selective neu-
rons may respond to such manipulations by either rotating with
one of the set of cues or by remapping. If neurons in the given
region predominantly rotate in concert with either the local or
the global cues and the population vector rotates accordingly, the
region can be said to respond coherently to the cue manipula-
tion. Along the transverse axis of CA3, pCA3 place cells show an
incoherent response while intermediate CA3 (iCA3) and dCA3
place cells show coherent rotation with the local cues (Lee et al.,
2015). In the same experimental protocol, MEC shows coherent
rotation with the global cues. LEC, which shows very weak spa-
tial tuning during the sessions with the standard cue configura-
tion, shows weak (but statistically significant) rotation with the
local cues (Neunuebel et al., 2013). Thus, pCA1 gets strongly
coherent but conflicting inputs from MEC (global) and dCA3
(local), while dCA1 gets incoherent inputs from pCA3 and
weakly local inputs from LEC. Considering these differences in
the entorhinal and CA3 inputs along the transverse axis of CAl,
we asked whether pCA1 and dCA1 respond differently to the
local-global cue conflict. Our results show that pCAl, which
receives strong but conflicting inputs from MEC and dCA3,
shows lower coherence in its response to double rotation com-
pared with dCA1. Unexpectedly, spatial selectivity is comparable
in this experimental protocol, demonstrating that dCA1 is not
necessarily less spatial than pCAl, as claimed in the earlier
reports (Henriksen et al., 2010; Oliva et al., 2016; Ng et al., 2018).

Materials and Methods

Subjects and surgery

Eleven male Long-Evans rats aged five to six months were housed indi-
vidually on a 12/12 h reversed light/dark cycle. All experiments were per-
formed during the night portion of the cycle. Animal care, surgical and
euthanasia procedures were in accordance with the National Institutes
of Health guidelines and protocols approved by the Institutional Animal
Care and Use Committee of the Johns Hopkins University. Custom built
hyperdrives with independently moving 15 tetrodes and two references
were implanted over the right hemisphere. Rats were implanted with
3D-printed hyperdrives with linearly distributed bundle canulae angled
at 35° to the ML axis to target the entire proximodistal extent of CAI at
the same septotemporal level. Data recorded during resting sessions
from 8 of these rats was previously used for studying propagation of rip-
ples in CA1 (Kumar and Deshmukh, 2020).

Behavioral training and experimental protocol

Following recovery for about one week after surgery, rats were main-
tained at 80-90% of their free feeding weight to incentivize them to run
on a circular track for food, during the training and the recording ses-
sions. The circular track (56-cm inner diameter, 76-cm outer diameter)
had four easily distinguishable sections, and was placed in a room with a
2.75-m diameter circular curtain with 6 large, distinct cues either hang-
ing on the curtain or on the floor along the curtain (Knierim, 2002).
Once the rats learned to run in clockwise (CW) direction for food pellets
randomly placed on the track, and the electrodes were deemed to be in
optimal recording locations, the experimental sessions commenced.
Each experimental day had five to six sessions of 15 laps each. The exper-
imental sequence for one rat was STD-MIS-STD-MIS-STD, while that
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for all other rats was STD-STD-MIS-STD-MIS-STD. STD stands for
standard configuration, and MIS stands for mismatch configuration
with one out of the following mismatch angles selected in a pseudoran-
dom order: 45° 90° 135° and 180°. For a given mismatch angle, the
local cues on the track were rotated counterclockwise (CCW) by half
the amount and the global cues along the curtain were rotated CW by
the other half. For example, the local cues were rotated by 22.5° CCW
and the global cues were rotated by 22.5° CW for a 45° MIS session (Fig.
1B). These manipulations were performed for 4d, such that each mis-
match angle was sampled twice.

Recording electronics

Neuronal data were collected using an analog wireless transmitter
(Triangle Biosystems International). Data from the wireless receiver was
processed and stored using cheetah data acquisition system (Neuralynx
Inc.). The signals were amplified 1000- to 10,000-fold, bandpass filtered
between 600 and 6000Hz, and digitized at 32,000 Hz for single-unit
recordings. Any time one of the channels on a tetrode crossed a preset
threshold, data from all four channels on the tetrode were recorded for
1 ms (eight samples before and 24 samples after the threshold). Signals
from one of the channels on each of the tetrodes were also amplified
500- to 2000-fold, bandpass filtered between 1 and 475 Hz, digitized at 1
kHz, and stored continuously for local field potential (LFP) recordings.

Data analysis

Unit isolation

Single units were isolated using WinClust, a custom manual cluster cut-
ting software (J. J. Knierim, Johns Hopkins University). For every
threshold crossing, waveform characteristics such as peak, valley and
energy on all four channels on a tetrode were used for clustering spikes.
Only units with fair or better isolation as estimated by cluster separation,
waveform and clean interspike interval histogram were included in sub-
sequent analysis. Putative interneurons firing at>10-Hz mean firing
rate were excluded.

Firing rate maps

Rat’s position as well as heading direction were tracked using colored
LEDs and a camera recording at 30 frames per second. Off track firing
and intervals during which the rats ran slower than 2 cm/s or ran in the
wrong direction (CCW) were excluded from the analysis to minimize
firing rate variability introduced by non-spatial activity. Linearized rate
maps were created at 1° resolution (which gives 360 bins for the circular
track) by dividing the number of spikes when the rat was in each bin by
the amount of time the rat spent in each bin. Linearized rate maps were
smoothed using adaptive binning for computing spatial information
scores (bits/spike; Skaggs et al., 1996) and Gaussian filtered (o = 3°) for
other quantitative analyses. A shuffling procedure was used to determine
the probability of obtaining the observed spatial information score by
chance. The neuronal spike train was shifted by a random lag (minimum
30 s) with respect to the trajectory of the rat. Spatial information score
was computed from the adaptive binned, linearized rate map created
from this shifted spike train. This procedure was repeated 1000 times to
estimate the chance distribution of spatial information scores and deter-
mine the number of randomly time shifted trials having spatial informa-
tion scores greater than or equal to the observed spatial information
scores. Only putative place cells that fired >20 spikes, and had statisti-
cally significant (p < 0.01) spatial information scores of >0.5 bits/spike
in at least one of the MIS and preceding STD session were used in popu-
lation vector correlation (PVC) analysis and single-unit responses.

Peak firing rate was the maximum firing rate in the Gaussian
smoothed linearized rate map while the mean firing rate was mean of
the firing rates in all bins of the same. For the neurons satisfying spatial
information criteria and peak firing rates above 1 Hz, place fields were
defined as regions with minimum 10 contiguous bins with firing rates
above 15% of the peak firing rate or 0.3 Hz, whichever was higher.
Number of place fields meeting these criteria in each rate map were
counted. Field size was the number of 1° bins in each place field while
fraction of track occupied by the place fields was the total number of 1°
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bins occupied by all the place fields of a neuron normalized by 360 (total
number of bins in the rate map).

Classification of single-unit responses

The angle of rotation giving the highest Pearson correlation between the
STD and MIS sessions was used as an estimate of rotation of the neu-
ron’s place field. We categorized responses of putative place cells as
“appear” (<20 spikes in STD but >20 spikes in MIS), “disappear” (<20
spikes in MIS but >20 spikes in STD), “local” (highest Pearson correla-
tion between STD and MIS after CCW rotation), “global” (highest
Pearson correlation between STD and MIS after CW rotation), or “am-
biguous” (Pearson correlation coefficient between STD and MIS not
crossing a threshold of 0.6 after rotation, or the neuron not meeting the
spatial information criteria in one of the sessions). The spike threshold
was set rather low, at 20 spikes (Neunuebel et al., 2013; Neunuebel and
Knierim, 2014; Lee et al., 2015), to reduce the arbitrariness of neurons
being classified as appearing or disappearing. Although this threshold
was used for all analyses, using a 50-spike threshold did not substantially
alter the results.

PVC analysis

Linearized rate maps were normalized by their peak firing rate before
being used for constructing population vectors. Normalized firing rates
of all cells for each 1° bin in each MIS or STD session constituted the
population vector for that bin for that session. STD versus MIS PVC
matrices were constructed by computing Pearson correlation coefficients
of the 360 population vectors of each STD and MIS session with each
other at all possible relative displacements (0-359°). Similarly, STD ver-
sus STD PVC matrices were constructed from STD sessions before and
after MIS (Lee et al., 2004). The mean PVC at each relative displacement
(0-359°) was computed from each PVC matrix. Peaks [polar (length,
angle) pairs converted to cartesian (x,y) pairs], as well as full width at
half maximum (FWHM) were estimated from the mean PVC.
Normalized bias was defined as the difference between the mean PVCs
for all displacements in the direction of the local cue rotation (1-179°)
and mean PVCs for all displacements in the direction of the global cue
rotation (181-359°) normalized by the mean PVC for all displacements
(0-359°).

Shuffle analysis of PVCs

If a given STD versus MIS comparison had n pCA1 and m dCAI neu-
rons, these n + m neurons were randomly reassigned to shuffled pCA1
and dCA1 groups, with # and m neurons, respectively. Peak PVCs were
obtained from the shuffled data as described above. This shuffling proce-
dure was repeated 1000 times to create a peak PVC distribution of the
shuffled data.

Bootstrap analysis of PVCs

We performed bootstrap analysis by random sampling with replacement
of neurons in the dataset to generate 1000 resampled datasets with the
number of samples matching the number of neurons in the actual data-
set for each region. Peaks of mean PVCs (x,y), FWHM, and normalized
bias were calculated for each of the bootstrap iterations. Because these
different parameters have different units and different magnitudes, they
were normalized by subtracting their minima and dividing by the differ-
ence between their maxima and their minima. This led to all parameters
having a range of 0-1. K-means clustering was used to partition the
bootstrap distributions from pCAl and dCA1 into two to four clusters.
Principal component analysis (PCA) was used to reduce dimensionality
for display purpose.

Statistical analysis

MATLAB (MathWorks) was used to perform statistical analysis. The cir-
cular statistics toolbox was used for statistical analysis of circular data.
Units were tracked through a recording day, which typically had two
MIS sessions with different mismatch angles. Tetrodes with multiple
units were left undisturbed from one day to another, while those without
units were moved ~16-32 um to increase the yield. For tetrodes with
units on multiple days, no attempt was made to track units from one
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recording day to another. Therefore, while a number of units could be
shared between sessions with different mismatch angles, we do not
know the exact number of shared units. This partial overlap in number
of units violates the assumption of independence made while correcting
for multiple comparisons, such as Bonferroni or Holm-Bonferroni cor-
rection (Holm, 1979). Thus, rather than using corrections for multiple
comparisons, patterns of low p values (p < 0.05) across multiple tests
were used to draw conclusions. No conclusions were drawn based on
single comparisons where multiple comparisons were performed
simultaneously.

Histology

On the final day of recording, locations of a small subset of tetrodes were
marked by passing 10-pA current for 10 s. Tetrode tracks were recon-
structed from coronal sections and confirmed by the marker lesions
(Fig. 1C,D; Deshmukh et al., 2010).

Results

Hyperdrives with 15 tetrodes and two references targeting the
entire proximodistal extent of dorsal CA1 were implanted on
11 rats to record the activity of putative pyramidal cells as the
rats ran CW on a circular track with four distinct textures
(local cues) in a circular curtained room with six large global
cues along the curtain. Cue manipulation sessions with the
global cues moving CW and the local cues moving CCW by
equal amounts creating 45°, 90°, 135°, or 180° mismatch
(MIS) between the two were interleaved with sessions with
cues in their standard configuration (STD; Fig. 1B).

Putative interneurons with mean firing rates >10 Hz (Ranck,
1973; Fox and Ranck, 1981; Frank et al,, 2001; Deshmukh and
Knierim, 2013) were excluded from analyses. Based on their
locations, tetrodes were assigned to equally broad pCA1l, inter-
mediate CA1 (iCA1) and dCA1 bands (Henriksen et al., 2010).
Nine rats had putative pyramidal neurons recorded from in each
of the three bands; one rat had units recorded from pCA1l and
iCA1; one rat had units recorded from pCA1l and dCAI. Since
iCA1 is expected to have overlapping entorhinal projections
(Steward and Scoville, 1976; Naber et al., 2001), although data
from all three regions is displayed, quantitative statistical com-
parisons between regions were limited to pCAl and dCA1 by
prior design.

Properties of single units along the proximodistal axis of
CAl

In the first STD session, 156 well-isolated putative pyramidal
cells in pCA1 fired at least 20 spikes while the rat was run-
ning on the track; 131 neurons in iCA1 and 180 neurons in
dCA1 met the same criteria. Mean and peak firing rates in
pCA1l and dCA1l were statistically indistinguishable from
each other (Wilcoxon rank-sum test, mean firing rate: pCA1
median =1.24 Hz, dCA1 median =1.29 Hz, p = 0.37; peak fir-
ing rate: pCA1 median=11.97 Hz, dCA1 median =11.52 Hz,
p=0.34). Spatial correlates of neural activity were estimated
using a variety of measures. Spatial information scores (Skaggs et
al,, 1996) in pCA1 and dCA1 neurons were statistically indistin-
guishable from one another (pCAl median=1.92bits/spike,
dCA1 median = 2.11 bits/spike; Wilcoxon rank-sum test, p =0.15).
Number of place fields/cell of 139 pCA1 and 140 dCA1 place cells
with statistically significant spatial information scores >0.5 bits/
spike were similarly indistinguishable (median=1 for both,
Wilcoxon rank-sum test, p =0.28), and so were the fraction of
place cells with a single place field (y? test, p =0.36). Furthermore,
sizes of 181 pCA1 and 176 dCA1 place fields were statistically indis-
tinguishable (pCA1 median=44°, dCA1 median =47° Wilcoxon
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sizes, and fraction of the track occupied by place fields in pCA1, iCA1, and dCA1 during the first standard session of the day do not differ from one another.

rank-sum test, p=0.13), and so was the fraction of track occupied
by all the place fields of pCAl and dCAIl place cells (pCAl
median=0.17, dCAl median=0.17; Wilcoxon rank-sum test,
p=0.13). This lack of difference in spatial correlates of pCAl and
dCAL1 (Fig. 2) persisted in MIS sessions regardless of MIS angle.
Spatial correlates showed a general decline from STD to MIS session
in both regions (Fig. 3).

Single-unit responses to cue manipulation
Responses to cue manipulation of putative place cells (>20
spikes and spatial information score >0.5 bits/spike in at least
one of the STD or MIS session) were grouped into five classes
(Fig. 4A) as described previously from animals performing the
same behavioral task (Lee et al., 2004; Neunuebel et al., 2013).
This classification provides a useful qualitative description of sin-
gle-unit responses that underlie the quantitative differences in
populations of neurons across the transverse axis of CAl dis-
cussed in the following sections. However, many neurons are
likely to have been recorded in more than one mismatch angle,
and classification of neurons into response classes creates arbi-
trary distinctions. For these two reasons, we did not perform
quantitative statistical analysis on the distributions of neurons in
these classes, and only present below the classification as qualita-
tive description of response patterns along the transverse axis of
CAL

Using visual inspection, a maximum Pearson correlation
coefficient of >0.6 after rotating the rate maps was determined
to be a reliable threshold for distinguishing cells that visibly
appear to rotate with one set of cues from the cells that respond
ambiguously to the cue mismatch (Neunuebel et al, 2013;
Neunuebel and Knierim, 2014; Lee et al,, 2015). Units that
remained spatially selective in both STD and MIS sessions and
showed maximum Pearson correlation after rotating the rate
maps > 0.6 were classified as rotating neurons, those rotating
CW were classified as rotating with the global cues, while those
rotating CCW were classified as rotating with the local cues.
Units that dropped below the 20 spikes threshold in MIS session

were classified as disappearing units, while those that started fir-
ing >20 spikes in MIS after firing less than that in STD were
classified as appearing units. Units that failed to meet the maxi-
mum Pearson correlation coefficient criterion as well as those
which failed the spatial information score criteria in at least one
of the sessions while firing >20 spikes in both sessions were clas-
sified as being ambiguous. After pooling across all mismatch
angles, proportions of appearing, disappearing, and ambiguous
units were similar in pCA1 and dCA1, but pCA1 showed more
units with CCW rotations in the direction of the local cues while
dCA1 showed more units with CW rotations in the direction of
the global cues (Fig. 4B). Table 1 shows the distribution of sin-
gle-unit responses in individual rats. While there is rat to rat var-
iability, seven out of 10 rats with dCA1 units showed more dCA1
neurons rotating with global cues than local cues (the 11th rat
did not have any units in dCA1). In contrast, six out of 11 rats
showed more pCA1 neurons rotating with local cues than global
cues (one rat did not have rotating units in pCA1 but had units
that either appeared or disappeared). Furthermore, regardless of
whether the majority of neurons rotated with local or global
cues, in individual rats, dCA1 often appeared to have a larger
fraction of neurons rotating with the preferred cue than pCAl.
This observation was confirmed with a statistical comparison
using preferred cue indices in individual rats. Preferred cue index
for a given region in a given rat was defined as ratio of number
of neurons rotating with preferred cues to the total number of
rotating neurons. Only rats with at least five rotating neurons in
the given region were used in the statistical comparison to mini-
mize extreme indices because of small sample size. Wilcoxon
rank-sum test comparing preferred cue indices in dCA1 and
pCA1 showed that dCA1 rotated more strongly with preferred
cue than pCAl (pCAl median=0.61, dCAl1 median=0.8,
p=0.046).

Rotating cells showed clustering of rotation angles near the
rotation angles of the local or the global cues in MIS sessions
(Fig. 5). These rotation angles were not distributed uniformly in
0-360° range for any of the mismatch angles for any of the CA1
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Properties of putative pyramidal cells along the transverse axis of CAT at all MIS angles. Violin plots (https://github.com/bastibe/Violinplot-Matlab) showing distributions of mean

firing rates, peak firing rates, spatial information scores, number of place fields per cell, place field sizes, and fraction of the track occupied by place fields in pCA1, iCA1, and dCA1 for all MIS
angles in MIS sessions (M) and the STD sessions preceding them (S). Each black dot represents a neuron for mean firing rates, peak firing rates, and spatial information scores; each black dot
represents a place cell for number of place fields per cell and fraction of the track occupied by place fields; each black dot represents a place field for place field sizes. The numbers in mean fir-
ing rate plots indicate the numbers of neurons in each group; the numbers in number of place fields per cell plots indicate numbers of place cells in each group; the numbers in field sizes plots
indicate the numbers of place fields in each group. White dot indicates the median for each of the plots and the line spans from 25th to 75th percentile. Wilcoxon rank-sum test was performed
to compare STD versus MIS sessions for pCA1, STD versus MIS sessions for dCA1, and MIS sessions for pCA1 versus dCA1, for each of the properties being compared here. Al significant compari-
sons are marked in the plots as: *p << 0.05, **p < 0.01, ***p << 0.001. Notice how most of the statistically significant differences are between standard and mismatch sessions of a given
region; MIS sessions for pCA1 versus dCA1 showed statistically significant difference only for spatial information score and fraction of the track occupied by place fields for 135° MIS session. In
addition, fraction of place cells with one place field per cell was also compared using x* test. None of the STD versus MIS comparisons for pCA1, STD versus MIS comparisons for dCA1, or pCA1

MIS versus dCAT MIS comparisons were significant at p << 0.05.

subregions (Rao’s spacing test, p<<0.001 for all angles for all
regions; pCAl: n = 58, 41, 48, and 35, iCA1 n=49, 41, 41, and
27, and dCA1: n=57, 49, 44, and 55 for 45°, 90°, 135°, and 180°
MIS, respectively), confirming that they were not distributed by
a random process with uniform distribution. Coherence of rota-
tion of the rotating cells was estimated using mean vectors.
pCAL1 single units showed statistically significant coherent rota-
tions at all mismatch angles (Rayleigh test; MIS 45° p <10~
MIS 90°: p=0.0009; MIS 135°: p=0.0486; MIS 180°: p=0.0131).
While the mean vectors (Fig. 5A, blue arrows) were rotated
CCW toward the local cues for 90°, 135°, and 180°, the mean vec-
tor for 45° was rotated CW toward the global cues. In contrast,

mean vectors of dCA1 single units showed CW rotations toward
the global cues for all mismatch angles. The mean vectors were
statistically significant for all mismatch angles except 180°
(Rayleigh test; MIS 45° p <10~ MIS 90° p < 10> MIS 135°:
p=0.0268; MIS 180°: p=0.3085). Mean vector length and
Rayleigh test used to measure its significance are flawed when
the distribution is clearly bimodal, as seen in Figure 5A. A bi-
modal distribution gives shorter mean vector lengths, especially
when the two modes are 180° apart, even when the distribution
is clearly non-random (as confirmed by Rao’s spacing test).
There was no discernible pattern in the angles of rotation of
mean vectors of single units in iCA1, and the mean vectors were
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Single-unit responses to cue manipulation. A, Examples of units showing different types of responses to cue manipulations. Responses were categorized into five types: CW rotation

in the direction of the global cues, CCW rotation in the direction of the local cues, ambiguous rotation, appear in MIS session and disappear in MIS session. Peak firing rates and spatial informa-
tion scores are shown under each rate map. Asterisks mark statistically significant spatial information scores. B, Proportion of different classes of responses in pCA1, iCA1, and dCA1 pooled

across the four mismatch angles.

Table 1. Distribution of single-unit responses to double rotation manipulations
in individual rats

Proximal Intermediate Distal
Rat# L G Am App Dis L G Am App Dis L G Am App Dis
245 1T 0 0 0 0 7 3 3 2 1T 3 11 7 2 6
274 1820 8 4 9 0 0 O O 4 0 0 O o0 O
281 32 0 1 1 0 0 0 0 0 1 7 4 1 2
302 15 22 17 13 9 2122711 3 13 3 2 0 0 2
305 4 2 4 0 1T MM 8 5 4 2 418 2 3
391 12 19 13 1 6 41 2 1 15 0 10 8 2 6
392 301 0 0 5 6 0 0 6 13 6 5 1 4
416 0 0 0 1 2 2 1 1 0 0 2 15 6 1 6
417 32 1221 2 15 6 9 10 6 8 24 43 21 3 22
432 o 0 2 2 8 2 2 4 3 13 1 3 2
441 9 5 3 2 0 52 5 7 410 1312 6 3
Al 97 85 67 24 45 63 95 42 26 59 81 124 82 21 56

Each column shows number of neurons in each rat in each region showing the following responses: L, CCW
rotation in the direction of the local cues; G, CW rotation in the direction of the global cues; Am, ambiguous
rotation; App, appear in MIS session; and Dis, disappear in MIS session.

statistically significant only at 45°and 90°(Rayleigh test; MIS 45°:
p<107% MIS 90% p<10~% MIS 135% p=0.1331; MIS 180°
p=0.5674). Across all mismatch angles, pCA1 showed similar
proportion of units rotating CW toward the global cues (47%)
and CCW toward the local cues (53%). In contrast, both distal
and iCAl showed a preference for CW rotation toward the
global cues (60% vs 40% CCW; Fig. 5B).

Population responses to cue manipulation

While the rotating single units in pCA1 and dCA1 demonstrate
clear differences, single-unit rotation analysis misses out on
contributions of other neurons in the ensemble excluded by the
criteria used for classifying single-unit responses to cue

manipulations as rotating. Similarities of population vectors esti-
mated using PVCs (Lee et al., 2004, 2015; Neunuebel et al., 2013)
between sessions using all neurons meeting inclusion criteria
(statistically significant spatial information scores >0.5bits/
spike, minimum 20 spikes, mean firing rate <10 Hz) in either
MIS or preceding STD session help overcome this limitation.
PVCs between STD sessions preceding and following MIS ses-
sions (labeled STD1 and STD2) were used as control.

Figure 6 shows PVCs for STD1 versus STD2 and STD1 versus
MIS for all MIS angles for pCA1, iCA1, and dCA1. The strength
of correlation between the population vectors as estimated by
Pearson correlation coefficients at all combinations of relative
displacements is represented in pseudocolor, with black corre-
sponding to <= 0 and white corresponding to 1. If the popula-
tion representation is unchanged between the two sessions being
compared (STD1 vs STD2 or STD1 vs MIS), the population vec-
tors are expected to show highest correlation at 0° displacement
from one another. This generates a line of highest correlation at
the diagonal going from bottom left to top right of the PVC
matrix (black line). If, on the other hand, the population repre-
sentation coherently rotates between the two sessions being com-
pared, the line of highest correlation (running at 45° angle,
parallel to the diagonal) in the PVC matrix is expected to get dis-
placed by the corresponding angle. Colored lines in each PVC
matrix show the expected displacement for the given MIS angle
for the local (green dashed line) and the global (green continuous
line) rotation. STD1 versus STD2 PVC matrices for all MIS
angles and CA1 subregions show a strong band of high correla-
tion at the diagonal overlapping with the black line. This indi-
cates that the population representations along the entire extent
of CALl transverse axis remained stable between STD sessions
before and after the intervening MIS session regardless of the
mismatch angle. In the 45° MIS session, all three regions showed
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strong PVC bands, which were slightly displaced to-

ward the green continuous line corresponding to the A
global cue rotation. In 90°, 135° and 180° MIS ses-

sions, pCA1 did not show a single coherent band of

high correlation parallel to the diagonal. Instead, o
patches of high correlations were seen overlapping w0
with the local (green dashed line) as well as the global
(green continuous line) cue rotations. iCA1 showed a
more coherent band of high correlation in the 90°
MIS session, which was biased toward the global cue
rotation (green continuous line) but showed a patchy
distribution of high correlations similar to pCAl in
135° and 180° MIS. In contrast to these two regions,
dCA1 showed a fairly coherent band of high correla-
tion biased toward the global cue rotation (green con-
tinuous line) at all mismatch angles with occasional
patches of high correlation near the local cue rota-
tions (green dashed line).

Each PVC matrix represents Pearson correlation
coefficients between population vectors at each loca-
tion in STD1 with each location in the session being
compared (STD2 or MIS). Thus, the PVC matrix
has information about how strongly the population
vector at any location in STD1 correlates with popu-
lation vectors in STD2/MIS at every relative displace-
ment (0—359°). Averaging across locations for a
given relative displacement gives a reliable estimate
of similarity of population representation at that rela-
tive displacement between the two sessions being
compared regardless of the location along the track.
To obtain this average for all relative displacements, the
mean PVC for each relative displacement (0—359°) was
calculated from 360 correlation bins along a line run-
ning parallel to the bottom left to top right diagonal.
Displacement of the line from the diagonal corre-
sponded to the relative displacement between the two
sessions (STD1 vs STD2 or STD1 vs MIS). If the popu-
lation representation remained stable between the two
sessions being compared, the mean PVCs are expected
to be highest at 0° relative displacement. If, in contrast,
the population representation rotated coherently with a
set of cues, the mean PVCs are expected to be highest at
the corresponding relative displacement.

The mean PVCs (plotted on polar plots below
each PVC matrix in Fig. 6) show a narrow distribu-
tion with large peaks at or near 0° displacement for
STD1 versus STD2 comparisons for all CAl subregions, as
expected when the representations remain stable between ses-
sions being compared. Peaks in the polar plots of all STD1 versus
MIS comparisons were smaller than the corresponding STD1
versus STD2 comparisons for all CA1 subregions. For STD1 ver-
sus MIS comparison for the 45° mismatch angle, the distribution
of mean PVCs widened and showed a bias toward CW rotations
(in the direction of the global cue rotation) in all CA1 subre-
gions. As expected from the PVC matrices, the polar plot for
higher mismatch angles showed different patterns in different
subregions of CAl. pCA1 showed two comparable peaks of sub-
stantially reduced magnitude following the local as well as the
global cue rotations in the 90° and 135° MIS sessions, and a
prominent but small peak rotating CCW (following the local cue
rotation) in the 180° MIS session. iCA1 showed peaks rotating
CW (following the global cue rotation) in the 90° and 180° MIS
sessions, and a two-peaked distribution in the 135° MIS session.

Mismatch angle
90°

135°

180°

All rotating units @

Figure 5.
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Distribution of single cell rotation angles in response to increasing mismatch angles. 4, Angle of
rotation of each rotating unit between STD and MIS sessions is represented by a dot around a circle. Mean
vector computed from the rotation angles of all units for the given MIS angle is represented by a blue arrow
in the center. Angles of rotations of cues between STD and MIS sessions are represented by dotted lines; the
local and the global cue rotations are marked by the letters L and G. B, Pie charts showing proportions of
rotating units summed across all mismatch angles.

dCAl, in contrast to the other two regions, showed consistent
CW rotation with the global cues in the 90°, 135°, and 180° MIS
sessions, although substantially smaller peaks corresponding to
the local cue rotations could also be seen.

dCA1 showed larger peaks than pCAl in the polar plots of
mean PVCs for STD versus MIS comparisons for all MIS angles,
consistent with the visual observation of bands of higher coher-
ence in dCA1 than pCA1 in STD versus MIS PVC matrices. We
tested whether these observed patterns of higher peak PVCs in
dCA1 than in pCA1 were caused by individual rats by generating
STD versus MIS matrices after leaving each individual rat out.
All the 11 pairs of PVC matrices for each MIS angle so generated
showed higher peak PVCs in dCA1 than pCA1 (Fig. 7A), indi-
cating that none of the rats had disproportionate influence on
the peak PVCs leading to the higher peak PVCs observed in
dCA1 than pCAl. Orientations of peak PVCs corroborated this
observation. All 11 dCA1 peak PVCs for the four MIS angles af-
ter dropping each of the rats individually were oriented similar
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Figure 6.  PVCs. PVC matrices for STD1 versus STD2 sessions (STD sessions preceding and following MIS session) and STD1
versus MIS session show magnitude of correlation between population vectors for each 1° position bin on the track as a func-
tion of relative displacement between the two sessions being compared. STD1 versus STD2 matrices show a strong band of
high correlation around 0° displacement (black line) for all mismatch angles and all subregions of CA1. Red and green lines
show the expected displacement of high correlation band corresponding to the local (L) and the global (G) cue rotations in the
different mismatch sessions, respectively. STD1 versus MIS matrices show different responses at different mismatch angles for
different regions. While dCAT STD1 versus MIS matrices show a distinct band of high correlation following the global cue rota-
tion (green line) at all mismatch angles, pCA1 and iCA1 STD1 versus MIS matrices show patchy distribution of high correlation
at multiple mismatch angles. Polar plots below the PVC matrices show mean of PVCs over all positions at each relative dis-
placement (0—359°). All polar plots had negative correlation coefficients at some orientations. In normal polar plots (which
take into consideration both magnitude as well as sign of the correlation coefficients), correlation coefficient of ~—0.2 at
180° in dCA1 STD versus STD plots would appear as a second line at 0.2 below the actual correlation coefficient of ~0.8 at 0°,
creating a confusing double line. In order to avoid confusion because of the negative correlation coefficients appearing as dou-
ble lines in the opposite orientations, magnitudes of positive mean correlations are shown in blue while magnitudes of nega-
tive mean correlations are shown in green (i.e., 0.2 on green line corresponds to a correlation coefficient of —0.2 at the
marked orientation). Black line in the center shows mean vectors computed from the polar plots. Notice the reduced peak cor-
relations at higher mismatch angles for all regions compared with STD1 versus STD2 correlations and STD1 versus MIS correla-
tions at 45°. Contrast the bimodal structure of positive correlations for pCAT at 90° and 135° with the larger peak following the
global cues for dCA1. The outermost circle in the polar plot corresponds to Pearson correlation coefficient of 1 with each con-
centric circle being spaced at an interval of 0.2.
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to the peak PVC for all rats (rotated in
direction of the global cues). As expected
from the bimodal distribution with two
comparable peaks following the local as
well as the global cue rotations in the 90°
and 135° MIS sessions in pCAl polar
plots (Fig. 6), the peak vector orientation
jumped between the two peaks (90° MIS:
peak angle after removing seven rats was
rotated in the direction of the local cues
while that after removing four rats was
rotated in the direction of the global
cues; 135° MIS: peak angle after remov-
ing six rats was rotated in the direction of
the local cues while that after removing
five rats was rotated in the direction of
the global cues; Fig. 7B).

To statistically characterize the PVCs,
we performed two complementary statisti-
cal analyses using resampling techniques
on the pCAI and dCA1 populations. We
performed a shuffle analysis to test whether
the pCA1 and dCALI neurons come from a
common neuronal pool. For this analysis,
the neurons from both regions were
pooled together before being randomly
reassigned to pCA1 or dCA1 to gener-
ate distributions of pCAl and dCAl
neurons under simulated condition of
both the populations coming from the
same common pool. Comparison of the
observed pCAl and dCA1 PVCs with
these simulated distributions were used
to determine whether either of them
rotated more coherently than the com-
mon pool. We also performed a bootstrap
analysis to compare pCAl and dCAl
populations directly with each other. For
this analysis, a bootstrap distribution of
pCA1 neuronal population was generated
by sampling with replacement from the
pCA1 neurons, and a bootstrap distribu-
tion of dCA1 neuronal population was
generated by sampling with replacement
from the dCA1 neurons.

We performed 1000 shuffles to create
shuffled peak PVC distributions for pCA1
and dCALI. A higher peak vector correla-
tion than expected from this distribution
indicates that the given region rotates
more coherently than the common pool.
Figure 8 shows that dCA1l consistently
has higher correlation than the 95th per-
centile of the shuffled distribution across
all MIS angles (45° p=0.019; 90% p=
0.026; 135°% p=0.012; 180° p<<0.001)
while pCA1 does not (45% p=0.953; 90°:
p=0.938; 135% p=0.983; 180° p=0.297).
Thus, dCA1 consistently rotates more
coherently than expected under the
assumption that pCA1l and dCAI neu-
rons come from a common pool, while
pCA1 does not.
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Figure 7.

Test for influence of individual rats on peak PVCs. To test whether individual rats disproportionately influence the peaks in the mean PVC polar plots, STD versus MIS PVC matrices

were generated after leaving each of the rats out in turn, and polar plots of mean PVCs were constructed followed by measurement of peak PVCs as described earlier. A, Each line connects
magnitude of peak PVCs in pCA1 with that in dCA1 after removal of all neurons from a particular rat from the dataset. Removal of a particular rat is represented by the same color across all
MIS angles, and the color code matches that used in Figure 1. B, Polar plots of peak PVCs of pCA1 after removal of individual rats show the angle of the peak PVCs switching between L and G
orientations and 90° and 135° MIS, in line with the bimodal distributions seen in Figure 6. In contrast, peak PVCs of dCA1 continue rotating with global cues after removal of individual rats.

To compare pCA1 and dCA1 STD versus MIS PVCs explic-
itly, repeated sampling with replacement of neurons from each
region was performed 1000 times to generate bootstrapped dis-
tributions for the two regions. Unlike the previous shuffle analy-
sis, the pCA1 and the dCA1 populations were kept segregated
while generating the bootstrapped distributions in this analysis.
The number of samples in each iteration matched the number of
neurons in the real dataset for each subregion. These bootstraps
allow us to estimate sample distribution of the PVC for each
region. For each of the iterations, PVC matrices were generated
and mean PVC polar plots for each relative displacement were
computed from those matrices. The following parameters were
estimated from the polar plots to facilitate comparison between
pCA1l and dCA1: peak vectors (x,y pairs), FWHM, and normal-
ized bias (for definitions of and calculations of these parameters,
see Materials and Methods). PCA was performed on this 4D
space for reducing dimensionality for display purposes. Figure 9
shows the projection of the bootstrapped data for the two regions
on the first two principal components for the different mismatch
angles. pCA1 bootstraps are shown in red and dCA1 bootstraps
are shown in blue. Three clear patterns stand out in all four plots.
First, the two distributions are well segregated along the two
principal components, with the first principal component show-
ing a clear segregation between the two at all mismatch angles
other than 135°. This segregation indicates that pCA1 and dCA1
mean PVC distributions for STD versus MIS comparison are dif-
ferent from one another. Second, the dCA1 bootstrap distribu-
tion is much more compact at all mismatch angles than the

pCA1 bootstrap distribution. This visual observation is sup-
ported by the mean distance of all bootstraps from each CAl
subregion from the centroid of the same region. Across all MIS
angles, dCA1 mean distance from centroid was shorter than
pCA1 mean distance from centroid (mean distance from cent-
roid: 45° pCA1l: 0.238, dCA1: 0.197; 90°: pCAl: 0.317, dCAl:
0.188; 135° pCA1: 0.449, dCA1: 0.153; 180°: pCA1: 0.197, dCAT:
0.127). Third, the pCA1 bootstrap distribution often shows mul-
tiple clusters, while most of the dCA1 bootstraps stay together in
a single compact cluster. The multiple modes in the pCA1 distri-
butions indicate that the underlying population has multiple
competing rotational propensities of comparable magnitudes in
response to cue conflict. In contrast, compact unimodal clusters
in the dCA1 bootstrapped distribution indicate that the dCAl
population responds more coherently to cue conflict. This obser-
vation corroborates the pattern of responses seen in the PVC
matrices in Figure 6.

To test whether these distributions of pCA1 and dCA1 boot-
straps are indeed different from one another in an unbiased
manner, k-means clustering with k=2, 3, and 4 was employed.
Table 2 shows numbers of points from pCAl and dCAl that
were included in each of the 2/3/4 clusters. For k=2, at 135° mis-
match, all the dCA1 points and a group of pCA1 points clustered
together, while the remaining pCA1 points formed the other
cluster. For all other mismatch angles, the clusters include >95%
of the points from one region while including <5% of the points
from the other region, as expected from Figure 9. For k=3 and
k=4, >95% of the dCA1 points remained together in a single
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Shuffle analysis for PVCs. Distributions of 1000 PVCs obtained by pooling together neurons from pCA1 and dCA1, and randomly reassigning neurons to pCAT and dCAT are shown

in each histogram. Vertical black lines mark the PVCs observed in real data, while vertical red lines mark the 95th percentiles of the shuffled distributions. dCAT has higher PVCs than the 95th

percentile of the shuffled distributions for all MIS angles, while pCAT does not.

cluster for all MIS angles except for k=4 at 135°, where >90% of
the dCA1 points remained together in a single cluster. In con-
trast, pCA1 points got distributed in multiple clusters for k=3
and k=4 for all MIS angles. These clustering patterns prove that
pCA1l and dCA1 respond differentially to the double rotation
cue manipulation, and that dCAl population rotates more
coherently than the pCA1 population.

Discussion

Dissociation of responses to double rotation manipulation
between pCA1l and dCA1

pCA1l and dCAL1 are expected to respond differently to local-
global cue conflict, given the differential responses of their EC
and CA3 inputs. dCA1 does not receive a strong, coherently
rotating signal from either CA3 or LEC. pCA3 responds incoher-
ently to double rotation, with sporadic hotspots of high correla-
tion in the PVC matrices of MIS angles >45° (Lee et al., 2015).
These sporadic hotspots sometimes rotate with the local cues
while rotating with the global cues at some other times. LEC neu-
rons show a weak spatial selectivity on the circular track in STD
sessions (Yoganarasimha et al., 2011). Neither the STD1 versus
STD2 nor the STD1 versus MIS PVC matrices for LEC show an
unambiguous band of high correlation, but polar plots of mean
PVCs reveal a weak but statistically significant rotation with the
local cues (Neunuebel et al., 2013). LEC encodes external items
in egocentric coordinates (Wang et al., 2018). However, the rat
typically faces in a certain direction at each position on the circu-
lar track, causing the allocentric and the egocentric reference
frames to be confounded. Hence, we expect the local cues to
weakly dominate over the global cues (Neunuebel et al., 2013)
even in the egocentric reference frame.

These weakly local and incoherent inputs from LEC and
pCA3 predict either incoherent or weakly local response in
dCAL. Surprisingly, dCA1 shows a more coherent rotation than
pCAl in this study, rotating with the global cues at all MIS
angles. Alternative sources of spatial information anchored to
the global cues may explain these results. In the absence of strong
competing inputs, dCA1 may follow the sparse projections from
MEC (Masurkar et al, 2017) to rotate with the global cues.
Nucleus reuniens sends direct projections to CAl (Dolleman-
Van Der Weel and Witter, 1996; Vertes et al., 2006; Dolleman-
van der Weel et al.,, 2019), and shows head direction (HD) cells

(Jankowski et al., 2014), place cells, and border cells (Jankowski
et al., 2015). While nucleus reuniens neurons have not been
recorded in the double rotation task, HD cells recorded in other
thalamic nuclei (ADN, AVN, LDN, VAN, and RT) rotate with
the global cues (Yoganarasimha et al., 2006). HD selectivity
reported in CA1 (Leutgeb et al., 2000) and anecdotal observation
of HD signal in dCA1 by us as well as others (Buzsdki and
Peyrache, 2016; https://www.youtube.com/watch?v=2da6gzF9eo
0&t=24m13s) support the hypothesis that HD inputs may be
involved in rotation of dCA1 with the global cues. Subiculum,
which receives direct projections from the HD system as well as
MEC (Ding, 2013), sends feedback projections to CA1 (Xu et al.,
2016) and rotates coherently with the global cues in the double
rotation task (Sharma et al., 2020). While these inputs from
MEC, nucleus reuniens, and the subiculum to dCA1 may be less
numerous than LEC and pCA3, they may be strong enough to
drive dCA1 to rotate with the global cues in absence of compet-
ing strong inputs rotating with the local cues. While the HD sys-
tem prefers global cues, it is known to occasionally rotate
coherently with local cues (Yoganarasimha et al., 2006). This
occasional rotation of HD system with local cues, together with
statistical noise, could possibly explain the minority of rats show-
ing more neurons rotating with local cues than global cues in
dCAL.

In contrast to dCA1, pCA1l gets strong, conflicting inputs
from dCA3 (Lee et al., 2015) and MEC (Neunuebel et al., 2013)
rotating with the local and the global cues, respectively, during
double rotation. Thus, the incoherent response of pCA1 may be
explained by differential strengths of CA3 and MEC inputs to
individual pCA1 neurons. Neurons with predominant inputs
from either CA3 or MEC may follow that input, while those
without a clearly dominant input from CA3 and MEC may give
ambiguous or remapping responses.

Spatial selectivity in pCA1 and dCA1

In this study, pCA1 and dCA1 show comparable spatial selectiv-
ity as estimated using spatial information score, number of place
fields per cell, field size, and fraction of the track occupied by
fields in STD as well as MIS sessions. This lack of difference in
spatial selectivity along the transverse axis contradicts prior stud-
ies showing higher spatial selectivity in pCA1 compared with
dCA1 (Henriksen et al., 2010; Oliva et al., 2016; Ng et al., 2018).
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Bootstrap analysis for PVCs. Bootstrapped distributions were created for pCA1 and dCAT by resampling, with replacement, neurons within each of the two regions 1000 times.

Number of samples in each iteration matched the number of neurons in the actual dataset. Peak vectors (x,y pairs), FWHM, and normalized bias were measured from the mean PVCs for all iter-
ations. For each mismatch angle, PCA was run on this four-dimensional space, and the first two principal components were plotted to enable visualization of the bootstrapped distribution for
pCA1 (red dots) and dCA1 (blue dots). Notice tighter clustering of dCA1 points compared with pCA1 points, which often form multiple dlusters.

Table 2. K-means clustering of pCA1 and dCA1 bootstraps with k=2, k=3, and k=4

K=2 K=3 K=4
Number Number Number Number Number Number Number Number Number
of points of points of points of points of points of points of points of points of points
MIS angle Region in cluster 1 in cluster 2 in cluster 1 in cluster 2 in cluster 3 in cluster 1 in cluster 2 in cluster 3 in cluster 4
45° pCA1 991 9 481 514 5 404 349 244 3
dCA1 1 999 0 3 997 0 0 14 986
90° pCA1 963 37 517 464 19 419 498 77 6
dcA1 4 996 1 5 994 0 1 n 988
135° pCA1 534 466 309 245 446 310 222 430 38
dcA1 0 1000 0 1 999 0 0 92 908
180° pCA1 995 5 569 429 2 524 48 426 2
dCA1 2 998 0 2 998 0 0 2 998

Number of bootstraps from pCAT and dCA1 in each cluster obtained by k-means clustering with k = 2, k = 3, and k = 4. When >90% of the bootstraps for a given region (pCAT or dCA1) cluster together, they are shown

in bold.
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The behavioral arenas used in the earlier studies had a single
uniform texture, while the circular track in the present study had
four easily discernible sections with distinct textures, visual
appearances, and odors. Thus, the apparent elimination of differ-
ences in spatial selectivity between pCA1 and dCA1 could possi-
bly be caused by richer sensory information available from the
behavioral arena. This study was designed to test how dCA1 and
pCA1l respond to local-global cue conflict. This strategy has
helped understand the control of different components of the
spatial navigation system by local and global cues in a number of
hippocampal regions and subregions (Lee et al., 2004, 2015;
Yoganarasimha et al., 2011; Neunuebel et al., 2013; Neunuebel
and Knierim, 2014; Sharma et al., 2020). To create such a con-
flict, the local cues on track need to be salient and easy to distin-
guish, so that they may compete with the prominent global cues
along the curtains. However, the increased salience of local cues
in this protocol; creates a possible confound. dCA1 may receive
stronger inputs because of higher activation of LEC by the tex-
tures on the track, which may be thought of as nonspatial, sen-
sory inputs, which just happen to be associated with specific
locations on the track. However, LEC shows weak spatial selec-
tivity on the circular track used here, similar to the weak spatial
selectivity displayed by LEC in 2D environments with uniform
textures (Yoganarasimha et al., 2011; Neunuebel et al.,, 2013).
This weak activation of LEC by sensory inputs from the track is
insufficient to account for the apparent increase in spatial selec-
tivity of dCA1 in this protocol. This hypothesis is further bol-
stered by the observation that dCA1 preferentially rotates with
global rather than local cues. Hence, projections from MEC
(Masurkar et al., 2017), nucleus reuniens (Dolleman-Van Der
Weel and Witter, 1996; Vertes et al., 2006; Dolleman-van der
Weel et al., 2019), and the subiculum (Ding, 2013; Xu et al,
2016) to dCA1l, discussed earlier, need to be considered.
However, these inputs would also have been available to dCA1 in
the earlier experiments (Henriksen et al., 2010; Oliva et al., 2016;
Ng et al,, 2018). Therefore, on their own, these inputs cannot
explain why the differences between spatial selectivity in pCA1
and dCA1 observed in those studies disappear in the present
study. The availability of the on-track sensory cues may increase
spatial selectivity of the non-LEC inputs on the circular track
compared with the other environments used in the earlier stud-
ies. Alternatively, increased complexity of the environment may
increase spatial encoding demands on the hippocampal system,
which may respond by recruiting dCA1 in a task dependent
manner. This can be achieved by increasing responsiveness of
dCALl to preexisting spatial inputs with increasing complexity.
Additional experiments are required to test whether one or both
of these mechanisms contribute to increased spatial selectivity in
dCA1 in the present experimental protocol compared with the
previous reports, including the role of LEC as the possible modu-
lator of contributions of non-LEC inputs to the CA1 spatial code
(Lu et al., 2013).

Together with the more coherent rotation of dCA1 compared
with pCA1 during local-global cue conflict, the comparable spa-
tial selectivity between pCA1l and dCALI in this protocol shows
that dCA1 has at least as robust a representation of space as
pCAl, if not more. This challenges the notion that dCA1 is
inherently less spatially selective than pCA1.

Deep versus superficial CA1

Superficial dCA1 receives strongest inputs from LEC and deep
pCALl receives strongest inputs from MEC (Masurkar et al,
2017). This connectivity pattern correlates with superficial versus
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deep segregation of path integration derived and landmark
related representations (Geiller et al., 2017; Fattahi et al,, 2018;
Sharif et al., 2021). Correspondingly, deep versus superficial spa-
tial selectivity differences coexist with proximodistal differences
on a linear track (Oliva et al., 2016). Tetrode recordings used in
this study make it impossible to pinpoint superficial versus deep
location of the neurons reported here, and thus a future study
will have to verify whether there is a superficial versus deep dif-
ference along with the proximodistal functional segregation
reported here.

Reference frames in CA1

The hippocampus was originally proposed to create a unitary
representation of absolute space (O’Keefe and Nadel, 1978). This
unitary representation requires a single reference frame with a
single origin with respect to which every point in space is
encoded. However, several independent reference frames may
coexist, and may generally agree with one another, giving an
appearance of a unitary code for space. Thus, different neurons
firing at a specific location may be encoding that location as dif-
ferent distances and directions from different origins. Some ex-
perimental conditions demonstrate existence of such coexisting
reference frames in CAl. Representations of proximity to bar-
riers (Rivard et al.,, 2004), goal location (Gothard et al., 1996b;
Fyhn et al., 2002), distance and direction to goal (Gothard et al.,
1996a; Sarel et al., 2017; Aoki et al., 2019), distance and direction
to landmarks (McNaughton et al, 1995; Deshmukh and
Knierim, 2013) may coexist with the classic place cells represent-
ing space in allocentric coordinates. These place fields in allocen-
tric coordinates themselves may be formed by combining inputs
from two or more boundary vector cells (O’Keefe and Burgess,
1996; Hartley et al., 2000) or grid cells (Solstad et al., 2006; de
Almeida et al., 2009; Savelli and Knierim, 2010; Monaco et al.,
2011), or a combination of sensory and self-generated inputs
(Deshmukh and Knierim, 2013). Thus, even the classic place cells
may be encoding space in different reference frames.

Creating an explicit conflict between reference frames reveals
their influence on hippocampal representation of space (Gothard
et al., 1996a,b; Zinyuk et al., 2000; Knierim, 2002; Lee et al,
2004). In the double rotation protocol used in this article, some
regions involved in spatial encoding show coherent rotations
while the others show weak to no coherence in rotation (Lee et
al., 2004, 2015; Neunuebel et al., 2013; Neunuebel and Knierim,
2014; Sharma et al., 2020). The dissociation of responses to the
double rotation manipulation along the proximodistal axis of
CA1 shown here demonstrates that the non-unitary representa-
tion of space in the hippocampal output (via CA1) reflects strong
conflict apparent in its inputs (in pCAl) or lack thereof (in
dCA1l). Regions of the brain differentially targeted (directly or
indirectly) by pCA1 and dCA1 (Naber et al.,, 2001; Witter and
Amaral, 2004), thus, receive spatial inputs that have differential
influence of different spatial reference frames. Further studies are
required to elaborate the role of this difference of spatial inputs
in functioning of these target regions.
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