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Spinal interneurons are important facilitators and modulators of motor, sensory, and autonomic functions in the intact CNS.
This heterogeneous population of neurons is now widely appreciated to be a key component of plasticity and recovery. This
review highlights our current understanding of spinal interneuron heterogeneity, their contribution to control and modula-
tion of motor and sensory functions, and how this role might change after traumatic spinal cord injury. We also offer a per-
spective for how treatments can optimize the contribution of interneurons to functional improvement.
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Introduction

Some of the earliest documentation of cellular heterogeneity in
the nervous system dates back to the 19th century when the pio-
neering studies by Ramon y Cajal characterized the vast diversity,
complexity, and morphologic heterogeneity of the nervous sys-
tem (Ramon y Cajal et al,, 1995). Building on these data, Sir
Charles Sherrington contributed to the classification of spinal
cellular phenotypes with his work in canines, describing popula-
tions of spinal cells connecting multiple spinal cord segments
that play a role in essential motor reflexes (Sherrington and
Laslett, 1903a,b). These propriospinal neurons were further
characterized via classical electrophysiology experiments,
which provided evidence of long descending projections con-
necting cervical propriospinal neurons to lumbosacral motor
pools (Lloyd, 1942; Lloyd and MclIntyre, 1948). The overall
structural organization and morphologic heterogeneity of the
spinal cord were further elaborated by Rexed (1952, 1954),
who used classical histologic methods to describe the ana-
tomic distribution of spinal neurons classified by their size
and shape and delineated the anatomic structure into
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dorsoventral “laminae” in the cat. With some effort over time,
these laminae were associated with identifiable functions.

The spinal cord is comprised of two main types of neuronal
populations: spinal interneurons (SpINs) and projection neu-
rons. Projection neurons are those with the cell body within the
spinal cord, but projections outside the spinal cord (either to
other parts of CNS or periphery). SpINs are cells within the spi-
nal cord that project to other cells within the spinal cord. SpINs
comprise a vast range of neuronal types with unique properties
and connectivity. These include (1) long and short propriospinal
neurons, with ascending and descending projections; and (2)
local SpINs with projections on the same side (ipsilateral) and/or
that cross the spinal midline (commissural).

While anatomic studies were initially limited to general
histologic or ultrastructural assessment, the development of
transneuronal tracing (e.g., with pseudorabies virus) led to the
identification of vast populations of SpINs integrated with motor,
sensory, and autonomic networks. In addition, these approaches
revealed neuroplastic changes within the connectivity of SpINs,
and identified phenotypic subsets that may contribute to plasticity
after traumatic spinal cord injury (SCI). Transgenic models have
enabled developmental neurobiologists to better define popula-
tions of SpINs and their contribution to network function.

This review focuses on some of the recent discoveries that have
propelled our understanding of the spinal cord as a site of conver-
gence, divergence, and processing of multiple avenues of informa-
tion, as well as revealing the rich anatomic and functional diversity
of SpINs and their neuroplastic and therapeutic potential.

Molecular characterization of SpINs: from development to
function

In the past few decades, developmental neurobiology has offered
unique and important insights into the identity of progenitor cell
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types that contribute to SpIN classification.
Genetic manipulations have enabled scien-
tists to establish “cardinal classes” of spinal
neurons, visualize their migration and
connectivity, and define their specific
roles in motor and sensory networks
(for review, see (Goulding, 2009; Kiehn,
2016; Lai et al., 2016). The use of tran-
scription factors expressed during devel-
opment has helped define spinal neuron
populations, but linking embryonic line-
age with mature progeny has proved
more difficult. Thus, genetic tools are
being combined with other complemen-
tary approaches, including morphology,
electrophysiology, and connectivity, to
define cell phenotype (Fig. 1). These tre-
mendous efforts have increased our
understanding of the general diversity
of interneurons, particularly within the
ventrally (V0-V3) and dorsally (dIs)
derived classes. Detailed overviews of
the interneuronal classes and subclasses
were provided previously (Dougherty
and Kiehn, 2010b; Alaynick et al., 2011;
Lu et al., 2015; Rybak et al.,, 2015; Flynn
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Figure 1. A multivariate approach for interneuronal profiling includes molecular (transcription factor expression), morpho-
logic, electrophysiological, neuroanatomical (connectivity), and neurochemical (receptor phenotype) classification.
Interneurons can be molecularly dlassified as part of dorsal and ventral “cardinal classes” (dI1-6, V0-3; see key), laminae loca-
tion, and efferent innervation. The subclasses depicted here are not exhaustive, and the complexity of SpIN diversity is
beyond the scope of this schematic. LTMR, Low-threshold mechanoreceptors; LTMR-RZ, low-threshold mechanoreceptor re-
cipient zone; I-X, Rexed laminae I-X. Color scheme reflects neuronal classes described in the key.

et al, 2017; Zholudeva et al., 2018a;

Dobrott et al., 2019). Here, we draw on a

few select populations of ventrally

derived neurons to provide examples of heterogeneity and of
the contributions SpINs make to spinal circuit function.

The integration of multidisciplinary approaches has allowed
researchers to divide major classes of interneurons into finer sub-
types and to investigate their roles in disease. For example, the
VO class of interneurons is now divided into at least four subpo-
pulations (Fig. 1) (Lanuza et al., 2004; Zagoraiou et al., 2009;
Talpalar et al, 2013). A recent study demonstrated that large
cholinergic synapses on motoneurons (most likely the VOc
interneurons) (Rozani et al., 2019) could contribute to aberrant
excitation during amyotrophic lateral sclerosis progression
(Konsolaki et al., 2020).

The inhibitory (GABA/glycine) V1 class of SpINs, which
express the homeodomain transcription factor Engrailed-1, com-
prise more than a dozen distinct neuronal subpopulations, cate-
gorized into four major groups based on the expression of 19
transcription factors (Bikoff et al., 2016; Gabitto et al., 2016;
Sweeney et al., 2018). Transcriptionally distinct groups of V1
interneurons diverge in their physiological properties, display
neuronal input specificity (e.g., from sensory vs motor neurons),
and form inhibitory microcircuits that are tailored to individual
limb muscles. V1 subpopulations are also divergent in their ros-
trocaudal positioning along the neural axis, corresponding with
limb and thoracic motor output, and segmentally specified by
their Hox gene expression profile (Sweeney et al., 2018). Studies
by the Goulding research team have used mouse genetics to
explore the role of V1 interneurons in locomotion. In addition to
altering the speed of the step cycle (Gosgnach et al., 2006), de-
letion of V1 interneurons results in prolonged activation
(disinhibition) of motoneurons innervating flexor muscles,
disrupting the stereotypical flexor-extensor phases of con-
traction during locomotion (Britz et al., 2015). In addition, a
recent study using the SOD%?** mouse model of amyotro-
phic lateral sclerosis detailed motoneuron innervation by V1

subtypes and demonstrated the susceptibility of these con-
nections to degeneration over time. The work included an
elaborate model of progressive upregulation (e.g., compensa-
tory plasticity) in V1 synaptic connectivity before breakdown
of interneuronal circuits (Salamatina et al., 2020).

The V2 class of SpINs, located within the intermediate-ven-
tral gray matter, is divided into excitatory (V2a) and inhibitory
(V2b) subclasses. Much like the V1 neurons, V2b interneurons
have been associated with inhibition of motoneuron output, pri-
marily in the context of flexor-extensor coordination during
locomotion. Whereas the loss of V1 interneurons results in pro-
longed flexion, the loss of the V2b subclass results in prolonged
hyperextension (Britz et al., 2015). More recently, the V2b inter-
neurons have been shown to play a role in speed of locomotion
(Callahan et al., 2019). In contrast, the V2a interneurons are an
ipsilaterally projecting, excitatory population of rhythmically
active (Dougherty and Kiehn, 2010a,b; Zhong et al., 2010) pre-
motor cells, implicated in left-right coordination. In addition to
their role in locomotion, the V2a SpINs have recently been
shown to be integrated with spinal respiratory networks, and to
contribute to plasticity in models of SCI (Zholudeva et al., 2017;
Jensen et al., 2019b) and amyotrophic lateral sclerosis (Romer et
al., 2016).

While much of what we have learned about SpINs has come
from studying lumbar spinal networks and locomotor function,
ongoing research is now highlighting roles for interneuronal sub-
types in other motor (e.g., skilled reaching, respiratory) and sen-
sory (e.g., pain, itch) functions. These diverse roles are being
explored in both the intact spinal cord (for review, see Zholudeva
et al, 2018a; Dobrott et al, 2019) and in models of injury
(Zholudeva et al., 2017; Jensen et al., 2019a) and disease (Romer
et al,, 2016). While in general terms, the ventrally derived neurons
can be thought of as premotor, and more dorsally derived cells as
sensory-related, this is an oversimplification, and motor and sen-
sory functions are closely interlinked.
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Figure 2.

The intermediate spinal cord receives convergent information from proprioceptors (innervating muscles) and cutaneous receptors located on the soles of feet and joints (also known

as low-threshold mechanoreceptors [LTMRs]). Current efforts are centered on understanding the functional logic of the spinal cord networks that bridge cutaneous/proprioceptive sensory infor-
mation with motor centers of the spinal cord ventral horn and how these contribute to SCI recovery. RA, rapidly adapting; SA, slowly adapting; I-X, Rexed laminae I-X.

The “cardinal class” description of interneurons has been use-
ful for broadly describing neuronal subtypes. However, identify-
ing the diversity that exists within each class requires a battery of
measures, including genetic marker expression, morphologic
characteristics, electrophysiological signatures, and network con-
nectivity. For example, a combination of morphology, electrophys-
iology, and functional analysis has been used to show that the V1
interneuron population is composed of multiple cell types, includ-
ing Renshaw cells and Ia inhibitory interneurons (Sapir et al., 2004;
Alvarez et al., 2005; J. Zhang et al., 2014). Likewise, the recent study
by Abraira et al. (2017) used genetic tools to label and probe 11
dorsal horn neuronal populations, describing their location, mor-
phology, connectivity, and electrophysiological properties. This
study aligned multiple cellular features, thereby providing an in-
depth understanding of interneuronal diversity within the dorsal
horn.

Spinal interneuron diversity: beyond the cardinal classes

Defining each progenitor domain as a unique entity is organiza-
tionally simplistic, but recent single-cell RNA sequencing studies
have begun to challenge this categorization of cell populations
(Haring et al., 2018; Rosenberg et al., 2018; Sathyamurthy et al.,
2018; Delile et al., 2019). These studies highlighted the difficulty
in limiting classification to the cardinal classes. For instance,
while cardinal classifications may be appropriate for some
dorsal interneurons, the ventral populations of SpINs have
been found to have overlapping gene expression profiles as
the animal matures. Greater attention to SpIN heterogeneity
across the rostrocaudal axis has also shed light on these differ-
ences. For instance, differences have been detected in both the
V1 (Sweeney et al., 2018) and V2a (Hayashi et al., 2018) popu-
lations along the neural axis. At present, the cardinal class cat-
egorization also excludes some of the locomotor rhythm-
generating neurons. Two examples include the Shox2 express-
ing non-V2a SpINs (Dougherty et al., 2013) and the Hb9-
expressing Vx SpINs (Brownstone and Wilson, 2008; Caldeira
et al., 2017). Combining RNA sequencing with a range of
other assessments (e.g., behavioral activity) (Sathyamurthy et

al., 2018) or spinal stimulation (Skinnider et al., 2020) will
continue to provide the most rigorous assessment of inter-
neuronal phenotype classification.

Ongoing research perspectives

Interpreting the functional consequences of SCI (and compro-
mised spinal networks) and the progressive neuroplastic changes
that follow requires a better understanding of how SpINs facili-
tate and modulate function normally, how they adapt to chang-
ing functional requirements (context dependency), and how
networks of interneurons spontaneously adapt to SCI. The fol-
lowing sections highlight work being done by the Goulding,
Abraira, Satkunendrarajah, and Magnuson research teams, then
describe how SpINs have been therapeutically targeted, offering
examples of how the field of spinal cord neurobiology is advanc-
ing to further appreciate the diversity, functional importance,
and therapeutic relevance of SpINs.

Touching on locomotion: an anatomical and functional
analysis of spinal cord neurons that shape the way we move
The spinal cord integrates proprioceptive, touch and nociceptive
input to shape motor output. Our increased understanding of
how spinal cord circuits integrate multiple sensory modalities
has helped to improve rehabilitative therapies for SCIL. Since
Sherrington’s pioneering work on the proprioceptive reflex path-
way (Burke, 2007), great progress has been made in understand-
ing how proprioceptors (i.e., muscle sensory neurons) shape
motor activity, in particular locomotion (Grillner and Rossignol,
1978; Pearson and Rossignol, 1991; Hiebert et al., 1996; Lam and
Pearson, 2001; Akay et al., 2014). Touch receptors in skin that
encode sensory modalities, such as vibration, indentation, and
slip, are also critical for adapting locomotion to changes in our
environment, and they have begun to be recognized as an impor-
tant component for rehabilitation-based recovery after SCI
(Fig. 2) (Stawinska et al., 2012; Bui and Brownstone, 2015; Bui et
al., 2015). How the spinal cord integrates touch information to
sculpt motor activity is poorly understood. Nonetheless, progress
is now being made by drawing on an ever-expanding mouse
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genetic toolbox to visualize, quantify, and
manipulate touch-specific spinal cord cir-
cuits (Li et al., 2011; Abraira and Ginty,
2013; Bourane et al., 2015; Rutlin et al,,
2015; Abraira et al,, 2017; Gatto et al,
2020). Leveraging these powerful genetic
tools with motor assays that use high-
speed cameras, muscle recordings (Mayer
and Akay, 2018), and machine learning
(Wiltschko et al., 2015; Nath et al., 2019)
will enable a deeper understanding of how
specific spinal cord touch networks are
wired to shape movement, and how sen-
sory information sculpts the recovery pro-
cess after injury.

Using these tools, ongoing work by
Abraira, Goulding, and colleagues have
begun to identify touch-specific premo-
tor networks important for sensorimotor
function and recovery from injury. SCI
studies in the cat and epidural stimula-
tion protocols indicate the recruitment of
cutaneous afferent pathways can facilitate
locomotion. Interneurons interposed in
these cutaneous pathways contribute to
corrective motor behaviors (Rossignol et
al., 2006; Bourane et al., 2015; Abraira et
al., 2017; Paixdo et al., 2019; Gatto et al., 2020), in part via net-
works in the intermediate spinal cord that integrate touch and
proprioceptive information to influence specific patterns of
muscle groups that facilitate both corrective movements during
locomotion and motor “switching” during naturalistic behav-
iors (Fig. 2). Current work looking at the role of spinal cord in-
termediate zone interneurons in facilitating recovery from
injury points to this spinal cord region as a critical therapeutic
locus for SCI research. Although most current studies focus on
sensory modalities in isolation, because the process of motor
control and recovery encompasses several sensory modalities,
the long-term goal of this type of work is to understand how
spinal cord circuits process multimodal sensory information to
shape movement. This will lay a foundation for novel ways of
thinking about improving motor function after injury or
disease.

Figure 3.

Cervical interneurons: critical role in movement control
from supraspinal regions

Approaches for restoring motor function after SCI have focused
on either coaxing cortical and subcortical axons across the
lesion to their synaptic partners (Raineteau and Schwab, 2001;
Courtine et al., 2008), or activating cortical neurons using stim-
ulation protocols to reestablish motor commands to spinal
motor circuits below the lesion, either via rewiring or strength-
ening of spared connections. Within the field of SCI, it has long
been appreciated that SpINs may contribute to the plasticity
and functional improvement following injury, either via the
formation of novel neuronal pathways (e.g., “bypass” pathways)
or synapse remodeling (e.g., strengthening of existing path-
ways) (Stelzner, 2008; Zholudeva et al., 2018a) (Fig. 3). Work
by Bareyre et al. (2004) was among the first to anatomically
demonstrate this, showing that, after a partial thoracic SCI, cer-
vical interneurons relayed supraspinal input to otherwise de-
nervated lumbar locomotor networks. Subsequent studies by
the Edgerton group showed that interneurons not only
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A, Plasticity of descending (i) and spinal interneuronal (ii) networks after SCI (iii). Axons from both descending
(iv) and ascending (v) interneuronal pathways can undergo sprouting and form new connections, establishing a new anatomy
after SCI. B, A schematic representation of anatomic reorganization of spinal networks caudal to injury. Black, green, and
blue represent supraspinal, spinal, and sprouting axons, respectively. Colored circles represent diversity of SpIN subtypes.
Adapted from Zholudeva et al. (2018a).

contributed spontaneously to plasticity after injury, but they
could also be therapeutically harnessed to improve outcome af-
ter partial SCI. This was also more recently shown within respi-
ratory networks (Darlot et al, 2012), where chemogenetic
(Satkunendrarajah et al., 2018) or neurochemical (Streeter et
al., 2020) stimulation of SpINs can modulate and even improve
functional output after SCI. Engineering and transplantation of
subsets of SpINs have also been shown to enhance plasticity
and functional recovery after SCI (White et al., 2010; Brock et
al.,, 2018; Dulin et al.,, 2018; Kumamaru et al., 2018; Zholudeva
et al., 2018b). Notably, excitatory interneuron subtypes, partic-
ularly V2a SpINs, have been shown to be crucial for anatomic
and functional plasticity (Satkunendrarajah et al., 2018) of re-
spiratory function (Zholudeva et al., 2017).

Current strategies to restore walking after SCI stem from the
classical view that locomotion is a simple behavior, consisting of
rhythmic alternation of flexor and extensor motor pools on the
left and right sides of the body. The basic rhythm and walking
pattern are generated by a spinal neural network known as the
locomotor central pattern generator (CPG) (Kiehn, 2006, 2016).
While the component neurons of the locomotor CPG are distrib-
uted across numerous spinal cord segments, the SpINs with the
greatest rhythmogenic potential are harbored in the ventral (lam-
inae VII, VIII, X) lower thoracic, and upper lumbar spinal cord
(Kjaerulff and Kiehn, 1996). To execute purposeful locomotion,
however, activity in the locomotor CPG must be initiated based
on internal goals and then modulated based on environmental
signals. Therefore, the production of locomotion requires supra-
spinal and sensory inputs originating outside the spinal cord
(Steeves and Jordan, 1980; Shefchyk et al., 1984; Garcia-Rill and
Skinner, 1987; Drew, 1993; Matsuyama et al., 2004; Hagglund et
al., 2010; Jankowska et al., 2011; Bouvier et al., 2015).

In mammals, lesion and stimulation studies have demon-
strated that the motor cortex is the main area responsible for
volitional movement control (Choi and Bastian, 2007; Rossignol
et al., 2007; Grillner et al., 2008). However, to navigate the com-
plex environment in which we live, the spinal cord’s locomotor
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neural network relies heavily on feedback control from sensory
fibers and feedforward control from higher centers, such as the
visual cortex (Rossignol et al., 2006; Grillner et al., 2008; Drew
and Marigold, 2015). A recent study demonstrated that the pri-
mary somatosensory cortex (SI), which receives and integrates
information about the ever-changing internal and external envi-
ronment, governs voluntary walking (Karadimas et al., 2020).
Electrophysiological evidence suggests that a portion of the neu-
ral activity generated in SI before and during movement is a
motor signal (Karadimas et al., 2020). Anatomical and electro-
physiological investigations demonstrated that this SI motor sig-
nal bypasses the motor cortex and other brain or brainstem
locomotor areas and modulates the lumbar locomotor CPG (L1-
L2) via cervical excitatory interneurons (C4-C5) (SI locomotor
pathway). Furthermore, chemogenetic stimulation of this lum-
bar-projecting cervical pathway leads to enhanced locomotor
speed, whereas chemogenetic silencing impairs ongoing locomo-
tion and speed. However, numerous questions remain about the
functional significance of the cervical SpINs that integrate de-
scending cortical and bulbar signals to modulate spinal locomo-
tor networks.

A critical challenge is to unravel how SpIN networks integrate
descending inputs and sensory feedback to program locomotion.
Long descending propriospinal neurons within the cervical spi-
nal cord are ideally situated to integrate descending and ascend-
ing commands and to play key roles in speed, directionality, and
postural stability of movement (Ruder et al., 2016). Lumbar-
projecting cervical interneurons and lumbar SpINs play a key
role in postural balance and forelimb and hindlimb coordina-
tion during high-speed treadmill locomotion (Ruder et al.,
2016). These lumbar-projecting cervical neurons are mainly
excitatory with unique developmental origin and projection
patterns. Moreover, neurotransmitter-specific monosynaptic
retrograde tracing experiments demonstrated that SI pyramidal
neurons’ efferent connectivity to the lumbar locomotor region
is via cervical excitatory interneurons. These long descending
cervical interneurons receive synaptic inputs from many corti-
cal and bulbar regions involved in the regulation of locomotion,
and thus provide a neuronal substrate for integrating and dis-
seminating supraspinal information throughout the spinal cir-
cuitry to produce locomotion. Further knowledge of SpIN
networks’ function during mammalian locomotion will facili-
tate delineation of the neural mechanisms of locomotion and
the development of novel targeted treatment strategies to
restore walking in SCI patients.

Synaptic silencing of SpINs reveals context-dependent
locomotor hierarchies

Work by McCrea et al. has investigated a phenomenon, known
as “deletions,” which was well known from studies of fictive loco-
motion in the decerebrate cat preparation (Lafreniere-Roula and
McCrea, 2005). During these functional deletions, which occur
when anatomic networks remain intact, the bursting activity of
motoneurons decreases and disappears for a step or two within
an otherwise robust period of fictive locomotion coordinated by
the locomotor CPG. Importantly, when the deletions occur, the
underlying rhythm of the fictive stepping does not change.

A collaborative effort between the McCrea and Rybak
research teams to determine how and why deletions occur
revealed that that the amplitude of motoneuron output during
fictive locomotion is functionally independent of the locomo-
tor rhythm (timing). This suggests that locomotor circuitry
controlling each limb is arranged in levels with a functional
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hierarchy (Rybak et al., 2006; McCrea and Rybak, 2007). Over
the past 15years, this concept has led to the suggestion that
the mammalian locomotor circuitry is arranged with a top
“rhythmogenic module,” or rhythm generator, responsible for
the timing or tempo of movements, overlying a pattern forma-
tion network, that is responsible for intralimb (hip, knee, and
ankle) coordination (Rybak et al., 2006, 2015; McCrea and
Rybak, 2008). Specifically, the most recent computer models
contain a “half-center” rhythm generator consisting of recip-
rocally coupled flexor and extensor related excitatory inter-
neurons controlling each limb, with a pattern formation layer
controlling motor synergies and the output of muscle activity
patterns within the limb. Interlimb coordination is deter-
mined by networks of local commissural interneurons and
long ascending and descending propriospinal neurons that
interconnect the circuits in each quadrant (Rybak et al., 2015;
Danner et al., 2017). Interlimb coordination has been attrib-
uted to SpINs derived from V-class progenitor cells in the
mouse; but, as discussed earlier, their contributions to the
rhythm generator and pattern formation circuits remain
poorly understood.

A recent set of experiments by Magnuson et al. began to
explore the contribution of SpINs within the proposed sites of
rhythm generation, and the long ascending and descending
proprio-SpINs that integrate cervical and lumbar networks,
to locomotion. Using excitotoxic (Magnuson et al., 1999;
Hadi et al., 2000) and contusive (Magnuson et al., 2005) spi-
nal cord injuries revealed that the greatest impact on locomo-
tor function occurs when the L2 spinal segment is targeted,
rather than the L3/4 or T9/10 levels. This result supports the
notion that the rhythm generator circuitry is centered in the
upper lumbar cord. Accordingly, the Magnuson team began
exploring the roles of SpINs with cell bodies at L2 using a
two-virus synaptic silencing system (Kinoshita et al., 2012).
These experiments revealed that, of the L2 neurons that pro-
ject to L5, 50:50 were ipsilateral and contralateral, and most
were excitatory. Based on the simple concept that L2 motor
output is more flexor-related while L5 output is more exten-
sor-related, the researchers hypothesized that silencing these
neurons would disrupt intralimb (flexor-extensor) coordina-
tion. However, when L2-L5 interneurons were silenced, the
right and left hindlimbs were partially decoupled, and could
adopt any right-left phase from pure alternation to synchrony
(hopping) at speeds normally associated with pure alterna-
tion. None of the other fundamental characteristics of loco-
motion were disrupted (Pocratsky et al., 2017). This, together
with other functional studies targeting ventral interneurons
(Lanuza et al., 2004; Y. Zhang et al.,, 2008; Talpalar et al.,
2013; J. Zhang et al., 2014), demonstrates that, for the hin-
dlimbs at least, interlimb coordination circuits can be func-
tionally separated from rhythm generation and intralimb
pattern formation. Ongoing research, some described below,
is focused on further elucidating the specific roles of SpINs
in rhythm generation, interlimb coordination, and pattern
formation.

Subsequent studies focused on long propriospinal neurons
that interconnect the two hindlimb quadrants (containing
rhythm generators for each hindlimb) to the forelimb circuitry
with rhythm generators for both forelimbs. Specific attention
was given to a subpopulation of long-ascending proprio-SpINs
with cell bodies residing in the intermediate gray matter at lum-
bar segments (L1-L3), and with projections to the intermediate
gray matter at C6-C7, regions essential for locomotor pattern
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generation for the hindlimbs and forelimbs, respectively. This
population is composed of ~50:50 ipsilaterally and contralater-
ally projecting interneurons, with decussating axons that cross at
or near the level of the cell bodies. Given their role in inter-
enlargement (lumbar to cervical) connectivity, the expectation
was that silencing long-ascending propriospinal neurons would
lead to disruption in hindlimb-forelimb coordination. Instead,
overt disruptions in right-left coordination were observed in
both forelimbs and hindlimbs. In addition, each limb pair,
normally coupled strongly to maintain strict alternation at
walking and trotting speeds, was partially decoupled. This
disruption affected both limb girdles equally (approximately
the same proportion of disrupted steps), despite the fact that
only ascending information was silenced (L2 to C6). These
disruptions were independent of walking speed, and surpris-
ingly, did not alter intralimb (flexor-extensor) coordination.
Hindlimb-forelimb coordination was only modestly influenced,
and at no time was the 1:1 ratio of limb involvement in stepping
disrupted. These disruptions in interlimb coordination were also
seen to be context-dependent, and occurred only when the ani-
mals were walking from point A to B, nose-up (nonexploratory)
on a surface with good grip. They did not occur on a treadmill,
when the animals were exploring (nose-down) or when the ani-
mals were walking on a slick surface (Pocratsky et al., 2020). A fur-
ther point of interest is that silencing these long-ascending
propriospinal neurons had no influence on another locomotor ac-
tivity, swimming. In rats, swimming is a bipedal activity where
only the hindlimbs are used for propulsion. Animals retained strict
hindlimb alternation during swimming when the long-ascending
propriospinal neurons were silenced arguing that sensory input
modulates or gates the roles played by these interneurons during
different modes of locomotion (Pocratsky et al., 2020).

These observations support the concept that there are quasi-
independent modules comprised of commissural interneurons,
long-ascending and descending propriospinal neurons that
mediate the coordination of each pair of limbs, and that the bal-
ance of their activity defines the locomotor gait, allowing for
great flexibility in interlimb coordination while preserving stabil-
ity (Danner et al., 2016, 2017).

In addition, the results lead to speculation that there exists a
dynamic relationship between spinal autonomy and supraspinal
oversight. When walking on a smooth surface with good grip,
silencing long-ascending proprio-SpINs results in partial decou-
pling of the right and left limbs at each girdle by reducing the ef-
ficacy of the right-left phase module. However, when stepping
on the treadmill, on a slick surface, or during exploratory, nose-
down locomotion, supra-spinal oversight ensures the functional
stability of right-left alternation at each girdle. Thus, it could be
that there is a state-dependent hierarchy where right-left phase
control of both limb pairs is driven by lumbar circuitry in some
contexts and is supraspinally secured in others (Pocratsky et al.,
2017, 2020). While the interconnectivity between long proprio-
SpINs has been explored for many years (Giovanelli and Crotti,
1972; English et al., 1985; Rybak et al., 2015), demonstration of
the functional consequences of disconnection between cervical
and lumbar populations offers a unique insight into flexibility
and how locomotion can persist after SCI, albeit with altered
kinematics.

Therapeutically targeting SpINs

As highlighted here, SpINs play diverse roles in shaping motor
and sensory information. What these roles are normally, and
how they might change following traumatic SCI, becomes
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important in understanding postinjury function (adaptive or
maladaptive plasticity). Indeed, SpINs are now recognized as a
key component of plasticity and function post-SCI, by contribut-
ing to neural circuit remodeling and modulation of motoneuron
excitability (Stelzner and Cullen, 1991; Bareyre et al., 2004;
Courtine et al., 2008; Harkema, 2008; Lane et al., 2008, 2009;
Sandhu et al, 2009; Alilain et al., 2011; Flynn et al, 2011;
Zholudeva et al,, 2017). With a growing appreciation of the neu-
roplastic potential of the injured spinal cord, and of the contribu-
tion of SpINs to this plasticity (Takeoka et al., 2014; Zholudeva et
al,, 2017; Satkunendrarajah et al., 2018; Jensen et al., 2019a), has
come a greater focus on how plasticity can be therapeutically
enhanced.

Exciting spinal networks to promote recovery: targeting
glutamatergic SpINs

Two key areas of development of therapeutics that enhance plas-
ticity and recovery following incomplete SCI are as follows: (1)
activity-based therapies and rehabilitative approaches and (2)
neural interfacing to activate neural networks with exogenous
stimuli (for review, see Houle and Co6té, 2013; Behrman et al,,
2017; Hormigo et al., 2017). With the use of intraspinal electro-
physiology, advanced neuroanatomical methods (viral tracing,
immunohistochemistry) and/or genetic sequencing, the contri-
bution of SpINs to plasticity has become more evident in preclin-
ical models of SCI (Skup et al., 2012; van den Brand et al., 2012;
Gajewska-Wozniak et al.,, 2016; Streeter et al., 2017; Skinnider et
al,, 2020). Although defining similar roles for SpINs within the
injured human spinal cord has been more challenging, there is
some evidence to support their role in patient recovery.

With increasing clinical use of operative neuromodulation
and translational interest in electrical stimulation (e.g., functional
electrical stimulation) (Johnston et al, 2005; Dimarco and
Kowalski, 2013; DiMarco and Kowalski, 2019; Bourbeau et al.,
2020), transmagnetic stimulation (Hou et al, 2020), epidural
stimulation (Edgerton and Harkema, 2011; Sayenko et al., 2014),
and intraspinal stimulation (Kasten et al., 2013; Mondello et al.,
2014; Mercier et al.,, 2017; Toossi et al., 2017), there has been
increased effort to identify the contribution that SpINs make to
functional outcomes. While the substrates affected by stimula-
tion have remained elusive, several studies have now confirmed
that SpIN’s are activated by epidural (van den Brand et al., 2012;
Skinnider et al., 2020) and intraspinal stimulation (Mushahwar
et al., 2004; Sunshine et al,, 2018). Similarly, histologic analyses
of SpINs following activity-based therapies has shown that they
increase their activity with treatment (Houle and Coté, 2013;
Streeter et al., 2017). The phenotype of interneurons targeted by
each treatment strategy, however, and whether different treat-
ments might target different subpopulations, remains unclear.

Another more recent advance in therapeutics that harness
SpINs has been the use of cellular engineering to create popula-
tions of specific interneuronal subtypes for transplantation.
While transplantation of neural precursor cells has long been
shown to improve outcomes following SCI (Fischer et al., 2020),
recent attention has been given to the origin of neuronal progen-
itors and the SpIN component of these transplantable cells
(White et al., 2010; Dulin et al., 2018). As developmental biology
has provided markers for identifying subsets of SpINs, research
has begun to tailor donor cell populations to contain therapeuti-
cally appropriate subpopulations (e.g., engineering SpINs for
transplantation that are known to contribute to plasticity and re-
covery) (Iyer et al.,, 2017; Butts et al., 2019). For instance, the deliv-
ery after cervical SCI of excitatory V2a premotor interneurons,
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which are known to contribute to respiratory plasticity (Romer et
al,, 2016; Zholudeva et al., 2017; Satkunendrarajah et al., 2018;
Jensen et al.,, 2019a), enhances the degree of respiratory recovery
(Zholudeva et al., 2018b). These more refined and tailored trans-
plants will likely improve on prior transplantation methods, pro-
viding greater and more consistent functional recovery. It is hoped
that, as we learn which subtypes of interneurons are involved in
adaptive and/or maladaptive plasticity, more appropriately tar-
geted therapies can be developed.

To inhibit or disinhibit: targeting the complex roles of inhibitory
SpINs

While there has been mounting interest in the contribution of
excitatory SpINs to the restoration of motor function, an essen-
tial consideration is that excessive excitation could exacerbate
maladaptive plasticity, thus, for example, increasing pain, spastic-
ity, or dysreflexia. These functional deficits, which are generally
considered to be a result of overexcitation, can be attenuated by
suppressing overexcitation directly (with glutamatergic antago-
nists) or indirectly (by targeting inhibitory networks, e.g., with
GABA agonists or analogs). As shown with transplantation of
excitatory neuronal progenitors, delivery of inhibitory interneur-
ons may also provide a means for attenuating dysfunctional
overexcitability in spinal networks (Jergova et al., 2012; Fandel et
al.,, 2016).

Although treating pain and spasticity may require attenuation
of excitatory neurons and/or inhibition of overactive excitatory
networks, excessive inhibition is also deleterious for recovery of
motor function (Chen et al., 2018). Indeed, silencing inhibitory
SpINs has been shown to (re)activate dormant/latent spinal
pathways, thus amplifying restorative plasticity and recovery.
This disinhibition or “unsilencing” of spinal networks by target-
ing inhibitory SpINs has been achieved by targeting neurotrans-
mitter receptors pharmacologically. Local delivery of GABAergic
or glycinergic antagonists can even enhance the efficacy of other
treatments (Bezdudnaya et al., 2020). Perhaps more selective
approaches, such as the delivery of a KCC2 agonist, as described
by Chen et al. (2018), will allow efficacious yet targeted treat-
ment. As our understanding of the specific populations involved
in premotor inhibitory spinal networks improves, treatments can
be developed to better target those neurons selectively.

In conclusion, there is a growing effort to identify SpINs that
contribute to motor, sensory, and autonomic functions. Research
in developmental neurobiology and spinal cord biology, neuro-
trauma, and disease is revealing a highly diverse population of
neurons that not only shape many neural functions, but also act
as gatekeepers to many restorative and maladaptive forms of
plasticity. Collaborative efforts among multidisciplinary teams
are providing a wealth of information, and the identity of specific
interneurons associated with spontaneous or therapeutically
driven plasticity can now be more effectively assessed. As
ongoing work continues to identify SpIN subtypes and improve
our understanding of their contribution to function following
injury, treatments can be tailored to minimize maladaptive con-
sequences and better harness their restorative neuroplastic
potential.
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