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Animals evolved in complex environments, producing a wide range of behaviors, including navigation, foraging, prey capture,
and conspecific interactions, which vary over timescales ranging from milliseconds to days. Historically, these behaviors have
been the focus of study for ecology and ethology, while systems neuroscience has largely focused on short timescale behaviors
that can be repeated thousands of times and occur in highly artificial environments. Thanks to recent advances in machine
learning, miniaturization, and computation, it is newly possible to study freely moving animals in more natural conditions
while applying systems techniques: performing temporally specific perturbations, modeling behavioral strategies, and record-
ing from large numbers of neurons while animals are freely moving. The authors of this review are a group of scientists with
deep appreciation for the common aims of systems neuroscience, ecology, and ethology. We believe it is an extremely exciting
time to be a neuroscientist, as we have an opportunity to grow as a field, to embrace interdisciplinary, open, collaborative
research to provide new insights and allow researchers to link knowledge across disciplines, species, and scales. Here we dis-
cuss the origins of ethology, ecology, and systems neuroscience in the context of our own work and highlight how combining
approaches across these fields has provided fresh insights into our research. We hope this review facilitates some of these
interactions and alliances and helps us all do even better science, together.
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Introduction
In the 1970s, the nascent field of systems neuroscience was built
on the framework of systems theory, especially cybernetics
(Wiener, 1965) and functional systems theory (Anokhin, 1984).
These approaches were holistic and heavily influenced by mathe-
matics, focusing on hierarchies, dynamics, analytics, and com-
puter simulations (Metzler and Arbib, 1977). To this day, the
heavy interplay between theory, mathematics, and neurophysio-
logical recordings continues to define the field. A common sys-
tems approach to behavior involves designing a task where an
animal is trained to produce a response, such as press a lever or
move their eyes, to a set of stimuli. This is far removed from nat-
urally observed behaviors. How did this become common?

Typically, a task is designed to try to isolate a specific compu-
tation that an animal will repeat many times each day. One com-
mon experimental design is called the two-alternative forced
choice. An animal looks or moves to the left or right after the
stimulus, and they are rewarded based on a learned “rule” (e.g.,
go left if you heard more sounds on the left). Animals will com-
plete tens to thousands of trials per day, and we can then use the
wealth of data acquired from these tasks to model the behavior,

using a mathematical formulation. A model might add together,
for example, effects of sensory adaptation, the individual stimuli
presented, the timing of those stimuli, and the “noisiness” of the
animal’s memory and perception. This allows precise quantifica-
tion of multiple aspects of the computation under study, and can
help identify neurobiological correlates of internal variables,
such as the current “belief” of the animal as it progresses through
each trial and across trials. High trial counts are necessary when
constructing and comparing behavioral models: each model pa-
rameter must be fit to the data, and lots and lots of data points
are required to decrease the error in parameter estimation to
make well-founded comparisons.

The need for large datasets with many repeated trials of the
same type becomes even more important if the end goal is to re-
cord and perturb neural circuits during the task, to identify how
populations of neurons can support the computation under
study, or identify key brain regions that support the response.
Up until quite recently, we could only record from a few neurons
at a time, and even today whole-nervous system imaging is rare,
extremely difficult, and limited to a few species (Ahrens et al.,
2013; Nguyen et al., 2016). Therefore, the ability to average over
lots of stimulus presentations is crucial. Furthermore, many
methods used (e.g., 2-photon imaging and electrophysiology)
have historically required head-fixation of the animals to
decrease movement or to allow use of large technologies that are
too heavy to mount to a freely moving animal’s head (Juczewski
et al., 2020).

Using these techniques, systems neuroscience has made great
progress in identifying neural signatures of task-related activity
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and documenting the effects of perturbations, providing insight
into how neural populations can reflect the internal computa-
tions that animals perform. However, the benefits of careful con-
trol of stimulus delivery, repeated trial types, and large recording
technologies come at a cost. Teaching animals artificial response-
stimulus pairings usually takes weeks or months. Animals are
often extremely restricted in their movement, and other aspects
(e.g., motivational state or body movements) are often ignored.
More and more studies are acknowledging the downsides of
ignoring these aspects: even in head fixed-animals, “spurious”
movements contribute to, and are often necessary for, interpret-
ing neural activity during a task (Gilad et al., 2018; Musall et al.,
2019; Stringer et al., 2019).

Recent advances in technology and analysis have removed
many of the barriers that historically kept systems approaches
largely limited to highly trained, head-restrained behavioral
tasks, and there is a growing interest in more natural behaviors.
Many have called for neuroscientists to draw more inspiration
from ethology and behavioral ecology (Anderson and Perona,
2014; Gomez-Marin et al., 2014; Krakauer et al., 2017; A. E.
Brown and de Bivort, 2018; Juavinett et al., 2018; Mobbs et al.,
2018; Datta et al., 2019; Gomez-Marin, 2019; M. W. Mathis and
Mathis, 2020; Parker et al., 2020). Here, we echo this sentiment
but also note that ethology and behavioral ecology can in turn be
improved by considering systems neuroscience. We will limit
our remaining discussion by focusing on rodents, but we want to
acknowledge similar efforts for other mammals (Ghazanfar and
Hauser, 1999; Ulanovsky and Moss, 2007), birds (Nottebohm,
2005; Carr and Peña, 2016), fish (Krahe and Fortune, 2013;
Mearns et al., 2020), and invertebrates (Hamood and Marder,
2014; Haberkern et al., 2019; López-Cruz et al., 2019; Sakurai
and Katz, 2019).

Ethology needs systems neuroscience
Ethology is the study of natural behaviors. In a foundational
manuscript, Nikolaas Tinbergen laid out four questions central
to the discipline: causation (how does it work?), survival value
(what is it for?), evolution (how did it evolve?), and ontogeny
(how does it develop?) (Tinbergen, 1963). Neuroethology, the
study of the neural basis of natural behavior, has long asked simi-
lar questions. In one of the first neuroethology texts, Ewing lists
the major research areas in neuroethology: signal detection; sig-
nal localization; memory acquisition; storage and recall; motiva-
tion; coordination; and top-down control (Ewing, 1981). These
are all active areas of study in both ethology and systems neuro-
science today, yet the fields tackle these problems in different
ways.

Ethologists have traditionally focused on “champion organ-
isms” (Heiligenberg, 1991). These are animals that have superior
capabilities that are linked to highly specialized neuronal struc-
ture, and animals will readily perform these behaviors in the lab-
oratory (Heiligenberg, 1991).

For example, mosquitoes are champion human smellers
(DeGennaro et al., 2013), and owls are champion auditory hunt-
ers (Konishi, 2003). This approach likely comes partially from
history, as ethology grew out of zoology as a discipline, and from
suitability. For each champion organism, the adaptive value of
their champion behavior is clear: mosquitoes must find a blood
source to reproduce, owls must hunt in the dark to survive. Also,
as champions, they produce these behaviors readily and often,
even in artificial laboratory conditions, allowing ethologists to
tackle Tinbergen’s other three questions in the laboratory. This
has yielded great insights into the mechanisms of sensory

processing (Konishi, 2003) and learning (Nottebohm, 2005) and
the evolution of circuit organization (Sakurai and Katz, 2017).

Yet this approach also has its limits. Restricting ourselves to
champion organisms makes it more difficult to generalize results
and communicate across disciplinary and species boundaries.
Model organisms may have been chosen for ease of use and to
model human pathologies, but they are, arguably, also cham-
pions. Rats and mice are champion generalists, they exhibit a
huge range of behavioral variability and the ability to adapt to
almost any environment, no matter how wild or artificial: from
the sewers of New York City, to grain silos, to the wilds, one can
find rats and mice almost anywhere. Their flexibility makes them
excellent study subjects, and using these organisms comes with a
wealth of chemical, molecular, genetic, and neural tools that can
decrease the time between behavioral observation and decipher-
ing neural mechanisms. Many opportunities for investigation
await: their natural behavioral repertoire is rich (Fig. 1), but
underexplored (J. B. Calhoun, 1963; Crowcroft, 1966; Combs et
al., 2018; Phifer-Rixey and Nachman, 2015).

The ethological approach can also be limited by the questions
asked. Tinbergen himself acknowledged that “hunger, like, anger,
fear, and so forth, is a phenomenon that can be known only by
introspection. When applied to another species, it is merely a
guess about the possible nature of the animal’s subjective state.”
Systems neuroscience allows us to take Tinbergen’s “guess[es]
about . . . subjective state,” which systems neuroscientists would
call internal states or computations, and turn them into testable
hypotheses. Through mathematical models of behavior, we can
open new and exciting research areas for ethological examination.

Behavioral ecology needs systems neuroscience
Historically, behavioral ecology grew out of ethology, but it
focuses more on Tinbergen’s second two questions regarding
the adaptive value and evolutionary history of a trait (J. M.
McNamara and Houston, 2009). In practice, behavioral ecolo-
gists usually study the interaction between individuals and their
environment, and they often assume that animals will behave
optimally or will adapt to maximize fitness in a given environ-
ment (Simmons, 2014). Foraging, parental care, predator-prey
interactions, sexual selection, and social behaviors, such as coop-
eration, are common foci of behavioral ecology research.
Technically, behavioral ecology differs from ethology through its
heavy dependence on mathematical models. Both fields rely on
natural observations and laboratory experiments, but the heavy
use of mathematics, computer simulation, and statistics allows
behavioral ecologists to model behavior and its evolution
(Davidson and Gordon, 2017; Goldshtein et al., 2020; Harpaz
and Schneidman, 2020). This process is reminiscent of systems
neuroscience’s reliance on mathematical models and theory to
drive experiments, which in turn drive more models and theo-
ries. These two fields also draw heavily from Marr (1983), and
the search for algorithmic-level understanding inspires many
within each of these disparate fields.

Behavioral ecology has given us insights into speciation, sex-
ual selection, and mate choice (Lande, 1981); foraging (Charnov,
1976) and diet (Schoener, 1971); and cooperation (Reeve et al.,
1998). However, behavioral ecologists generally do not examine
the cognitive machinery that processes information, leaving
open the question of how neural systems constrain decision-
making under ecological conditions. Circuit-level insights could
further constrain models of optimality, and place realistic
natural bounds on how animals can maximize fitness,
improving predictions and linking ecological models back to
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Tinbergen’s questions of causation and ontogeny, thus
strengthening the bonds between ethology and ecology as
well as systems neuroscience.

New opportunities
Why have these fields remained separate, although they ask simi-
lar questions and came into prominence around the same time?
First, we must acknowledge that they have not remained entirely
separate: Tinbergen himself discussed uniting physiology and
ethology (Tinbergen, 1963), and some of the greatest successes of
each of these fields were interdisciplinary. Mark Konishi was a
paragon of neuroethology, but his auditory processing work
leaned on systems-style modeling to isolate computations of
individual neuron types in barn owls. Conversely, the famous
systems neuroscience discovery of grid cells could not have hap-
pened without freely moving animals. These success stories
required individuals who could speak to multiple audiences

rather than the jargon of their subfield, highlight the similarities
in goals and use tools that cross easily between disciplines.

Thanks to recent advances in machine learning, hardware
miniaturization, and computation, there are new opportunities
to combine systems and ethological approaches, to study and
model complex behaviors in more natural conditions while re-
cording movement, performing temporally specific perturba-
tions, and recording from large numbers of neurons during
freely moving behaviors. In the remainder of this review, we
each provide an example from our own work, highlighting how
combining these approaches can furnish fresh insights into the
neurobiology of natural behaviors in rodents (Fig. 1A).

Identifying the grammar of behavior with machine learning
and machine vision
The Datta laboratory studies how the brain uses naturalistic
behavior to support cognition. But what is a meaningful
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Figure 1. A day in the life of a few wild rodents. A, A diagrammed scene with dotted line “tracks” indicating the paths 2 mice could take throughout an imaginary day. Letters indicate con-
nection to subsequent panels below. B, Animal movements can be broken up into syllables (blue, pink in inset), and the Datta group identified context-dependent neural correlates for subsec-
ond behavioral structure in the dorsolateral striatum. C, At any moment, the local visible world is limited; and cues, like landmarks, can be ambiguous. Voigts identifies “uncertain” path
representations in the mouse retrosplenial cortex. D, El Hady models the difficult choices animals must make when foraging, as they decide when to stay in an area with dwindling resources,
and when to leave for other opportunities. E, Michaiel uses head-mounted cameras to track eye movements during prey capture and uncover principles of visual processing. F, Clemens identi-
fies an organizing principle of the lateral septum by recording and watching rats interact with mom, siblings, and age-matched strangers. G, Tervo identifies neural correlates of postural
changes in behavior when animals interact with dominant or submissive rats during foraging.
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behavioral output, and how do we find behaviors that are rele-
vant to the animal, even if they do not have human-convenient
descriptors? To address this question, the Datta laboratory devel-
oped a novel behavioral characterization technology called
Motion Sequencing (MoSeq) (Fox et al., 2011; Wiltschko et al.,
2015; Johnson et al., 2016; Datta, 2019; Datta et al., 2019). MoSeq
combines three-dimensional machine vision and unsupervised
machine learning approaches to instantiate the central hypothe-
sis of ethology: that behavior is built from an identifiable
sequence of stereotyped modules of action (Tinbergen, 1951;
Simmons and Young, 1999). Here, unsupervised means that
there is no human-annotated training data or ground-truth used
to “teach” the algorithm what to find. Unsupervised learning is
particularly useful here because mice are not humans, and find-
ing regularities in the data that a human could not identify a pri-
ori is a particular strength of this technique. Using MoSeq, Datta
and colleagues demonstrated that mouse behavior can indeed be
segmented into a set of components, called “behavioral syllables.”
Each behavioral syllable is a brief and well-defined motif of 3D
behavior that the brain places into sequences via definable transi-
tion statistics (or behavioral “grammar”) to flexibly create com-
plex patterns of action, either alone in an open field or in social
groups (Fig. 1B).

To know how information from the outside world is encoded
in the brain and transformed into these behaviors, they com-
bined MoSeq with in vivo imaging of neural circuits in behaving
animals using fiber photometry (Gunaydin et al., 2014). This
approach identified context-dependent neural correlates for sub-
second behavioral structure, and identified the dorsolateral stria-
tum as a key node for implementing these behavioral sequences
(Markowitz et al., 2018). Further, they have recently developed a
closed-loop version of MoSeq to pulse optogenetic stimulation of
dopamine during specific subsecond behavioral syllables, reveal-
ing rules that constrain naturalistic learning. These ongoing
experiments demonstrate that MoSeq can serve as a quantitative
prism useful for characterizing relationships between neural cir-
cuit activity and spontaneous behavior.

New technology uncovers neural correlates of naturalistic
navigation
In Mark Hartnett’s laboratory, Jakob Voigts is similarly looking
to uncover how fine-grained behaviors, such as wall-following
(Barnett, 1963), and individual left or right turn decisions
(Dominiak et al., 2019) combine over longer timescales in goal-
directed navigation behaviors, such as the search for rewards
(Jackson et al., 2020). When animals navigate their natural envi-
ronment, they are constantly faced with decisions about which
paths to take. These decisions are part of a multilevel behavior:
large-scale goals, such as finding food, mates, or avoiding preda-
tion, set the context for local pathfinding decisions, which are
then executed by more fine-grained somatosensory and visually
guided locomotion behavior. Understanding these decisions is a
major component in understanding the computations that occur
in natural behavior, yet much of what is known about rodent
navigation in the laboratory context stems from experiments in
which pathfinding decisions are simplified into mazes (Tolman,
1948; Olton et al., 1977; Crawley and Goodwin, 1980; Handley
and Mithani, 1984) or largely featureless arenas with salient distal
landmarks (Hall, 1936; O’Keefe and Dostrovsky, 1971; Morris,
1981) (Fig. 1C).

Voigts takes a hybrid approach: he trains mice to navigate to
reward locations using a static pattern of landmarks that are only
visible one at a time from close distances. This means that, at any

given moment, mice only have access to incomplete local sensory
information, but to successfully find rewards, they must integrate
information as they move through the environment. Mice can
solve such navigation tasks, echoing similar waypoint use in the
wild (Stopka and Macdonald, 2003), and pointing to the exis-
tence of short-term memory processes that hold and update
hypotheses about the animal’s position (Kanitscheider and Fiete,
2017).

This work is newly possible. Recent advances, such as minia-
turized implants, motor behavior tracking, and gaze tracking,
bring a new level of control to freely moving animals while
reducing the impact on their behavior. Conversely, virtual reality
has opened up the behavioral space available for study with
head-fixed methods, such as 2-photon imaging either through
traditional (Dombeck et al., 2007; Dombeck and Reiser, 2012) or
freely head-rotating (Voigts and Harnett, 2020) microscopes.
Voigts developed this head-rotating 2-photon imaging method
specifically to allow for subcellular imaging of dendritic activity
as animals navigate through purpose-built environments.

After imaging retrosplenial cortex using this head-rotating 2-
photon microscope and freely moving electrophysiology, Voigts
looked at events where animals had only seen a small part of the
learned arena, leaving them uncertain of their position. This
incomplete information state had a distinct neural representa-
tion, suggesting that decision-making during navigation is driven
by an intermediate, probabilistic representation of position. This
may include information about food sources, mates, or preda-
tors. In his own laboratory, Voigts plans to further extend this
work to include more complex environments and will consider
the longer time-scales at which environments are explored in
natural settings. This approach could provide a window into the
complex decision-making processes that rodents carry out in the
wild.

Foraging as a window into decision-making
One important goal of navigation is to find food. In the wild, for-
aging engages multiple cognitive computations in addition to
spatial decision-making: animals may plan their routes, learn of
food distributions across spatiotemporal scales, and perform sta-
tistical inference of food availability (A. J. Calhoun and Hayden,
2015; Mobbs et al., 2018). Behavioral ecology examines the mul-
tiple ways by which decision-making occurs in the animal’s
ecological niche and the evolutionary pressures that lead to deci-
sions in natural environments, but generally does not examine
the cognitive machinery that processes information nor the neu-
ral systems that likely constrain decision-making under ecologi-
cal conditions (Hills, 2006; G. J. Stephens et al., 2008). Systems
neuroscience has made great progress in elucidating the neuro-
biological mechanisms of decision-making; but because this is
typically studied by training animals to perform stereotyped
behaviors under laboratory conditions, this does not describe
how such decisions are performed in a natural environment, nor
the ecological and evolutionary forces that shaped these proc-
esses (Fig. 1D).

Patch foraging (Charnov, 1976; J. McNamara, 1982; Kacelnik
and Bernstein, 1988; Olsson, 2006) is a rich and flexible type of
foraging where an animal may enter a patch of food, such as a
berry bush, harvest resources, and then leave to search for
another patch of food (D. W. Stephens, 2008). The animal’s
behavior can be quantified by how long it stays in the patch, how
long it takes to get to another patch, the amount of food it has
consumed, and the movement pattern between patches. The ani-
mal’s reward rate can be computed by its food intake over time,
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and often one assumes the animal wants to maximize its reward
rate. Typically, experimenters use this framework to predict how
and when an animal leaves one patch for another. Patch foraging
is a widely studied and long-standing problem in behavioral
ecology (King, 1986; Marschall et al., 1989; Rodríguez-Gironés
and Vásquez, 1997; Nonacs and Soriano, 1998; Rita and Ranta,
1998; F. Green, 2006; Raine et al., 2006; Zhang and Hui, 2014),
and has implications for studies of decision-making, behavioral
economics, and systems neuroscience (Kolling et al., 2012;
Hayden and Walton, 2014; Shenhav et al., 2014; Constantino
and Daw, 2015; Lottem et al., 2018; Mobbs et al., 2018; Hall-
McMaster and Luyckx, 2019).

El Hady and colleagues have described a theoretical and con-
ceptual framework for studying naturalistic decision-making in
the context of patch foraging, combining methodologies from
systems neuroscience and insights from ecology (Davidson and
El Hady, 2019; Kilpatrick et al., 2020). This provides a quantita-
tive mathematical description, or formalism, for designing natu-
ralistic laboratory experiments to study foraging as it unfolds
over multiple spatial and temporal scales, going beyond trial-
based structures. Moreover, by changing the complexity of the
foraging environment, the formalism can accurately predict the
changes in decision strategies that the animal adopts. The model
proposed by El Hady and Davidson can also be extended to
understand how an animal learns the structure of the foraging
environment, and how the presence of other animals and of
social information changes foraging behavior. This approach
enables studying natural behaviors, such as foraging, in the same
formal manner that trained behaviors are currently studied in
systems neuroscience. In the future, it will be exciting to see how
this work can inform experiments in natural-like environments
while recording from neurons in freely moving animals. This
work blends the ecological and systems neuroscience theoretical
approaches, and uses the common language of modeling to
bridge the interrelated fields of foraging ecology and decision
neuroscience.

Studying prey capture reveals principles of visual processing
Rats and mice are generalist foragers: although they are well
known for eating grain and pantry items, invertebrates make up
a large part of their diet where available (Sage, 1981). Even labo-
ratory-raised animals will, with just a few days of exposure, effi-
ciently stalk, capture, and eat live prey (Hoy et al., 2016). In Cris
Niell’s laboratory, Angie Michaiel took advantage of this strong
drive to attack crickets, and used it to uncover new insights into
a classic systems neuroscience problem: visual control (Fig. 1E).

Across animal species, eye movements are used to sample
and acquire information about the external world. The pattern of
eye movements varies based on the animal’s particular goal
(Yarbus, 1967). In foveate animals, such as humans and several
other primate species, eye movements serve to center the visual
scene over the retinal fovea, granting the viewer high-acuity
vision for complex visual search functions, such as identifying
and tracking behaviorally relevant visual stimuli. Importantly,
however, a majority of vertebrate species lack a specialized fovea,
and it is unclear how eye movements in afoveate animals are
coordinated to actively localize and track moving visual objects.

Previous studies in afoveate animals, such as in freely moving
rodents, have shown that eye movements largely serve to com-
pensate for head movements (Wallace et al., 2013; Payne and
Raymond, 2017; Meyer et al., 2018, 2020), consistent with the
vestibulo-ocular reflex present in nearly all species (Straka et al.,
2016). While such compensation can stabilize the visual scene

during movement, it is not clear how this stabilization is inte-
grated with the potential need to shift the gaze for behavioral
goals during self-motion. In addition, because eye movements
are minimized when the head is held in a fixed position by the
experimenter (Payne and Raymond, 2017; Meyer et al., 2020;
Michaiel et al., 2020), understanding the mechanisms of gaze
control and active visual search benefits from studies in freely
moving behaviors.

To this end, Michaiel and colleagues designed a system to
synchronously record head and bilateral eye movements (similar
to Wallace et al., 2013; Meyer et al., 2018, 2020) during prey cap-
ture. Prey capture is an ethologically relevant behavior that,
importantly, requires the localization of a distinct object in visual
space (Hoy et al., 2016). As previously shown, these studies
revealed that the majority of eye movements compensate for
head movements, thereby acting to stabilize the visual scene.
During head turns, however, periods of stabilization are inter-
spersed by noncompensatory saccades that abruptly shift gaze
position. Analysis of eye movements relative to prey position
shows that the saccades do not preferentially select a specific
point in the visual scene. Rather, orienting movements are driven
by the head, with the eyes following, to stabilize and recenter the
gaze. These findings help relate eye movements in rodents to
other species, and provide a foundation for studying active vision
during ethological behaviors in the mouse. This work builds on
the deep knowledge of visual processing from systems neuro-
science, and applied cutting-edge systems technical approaches
to a natural behavior.

An organizing principle of the septum uncovered by
watching rats interact with mom and siblings
Although mice and rats may be efficient cricket-killers, people
who work closely with them know they can also be incredibly
sweet and can often be seen playing, tickling, and snuggling with
each other (Cox and Rissman, 2011; Ishiyama and Brecht, 2016;
Reinhold et al., 2019). In Michael Brecht’s group, Ann Clemens’
recent work lays a strong foundation for the study of kinship in
neural systems research that she will further explore in her own
laboratory (Clemens et al., 2020) (Fig. 1F).

Early work by Peter Hepper showed that rat pups recognize
and prefer their siblings to nonsiblings at birth, but this changes
to a nonsibling preference later in development (Hepper, 1983).
In humans, affiliative experience toward kin is correlated with
activity in the lateral septum (Moll et al., 2012), Building on these
insights, Clemens found that lesions of the lateral septum, but
not lesion of the cortex, abolished preference behavior in both
young (sibling-preferring) and older (sibling-avoidant) rat pups.

To further probe how sibling preference behavior may be
supported in the lateral septum, Clemens performed juxta-cellu-
lar and whole-cell patch-clamp recordings in the lateral septum
of young, sibling-preferring pups and older, nonsibling prefer-
ring pups while providing kin- and nonkin stimuli. The stimuli
consisted of ultrasonic vocalizations from sibling pups, nonsi-
bling pups, the pup’s mother, and nonmother adults, which were
played during the electrophysiological recording. Neurons of the
lateral septum responded to odor stimuli and vocalizations with
changes in both action potential firing rates and subthreshold
membrane potentials. Finally, when the researchers mapped the
locations of the recorded neurons in the lateral septum, they
found a topographic organization in which sibling- and mother-
responsive neurons were located ventrally and nonsibling and
nonmother odor-responsive neurons were located dorsally. The
authors named this organization based on kinship “nepotopy.”
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This work identifies a brain region necessary for kinship
behavior and describes the topographic organization of this
region. Like other topographies in the brain, including tonotopy
and somatotopy, this work suggests that the brain may organize
social relationships in an ordered fashion to support integration
of sensory cues and select appropriate behavioral outputs.
Complementary evidence comes from studies regarding social
interactions in prairie voles (Williams et al., 1992; Walum and
Young, 2018; Beery 2019) where Ca21 imaging experiments
identify neuronal ensembles with shared activity characteristics
with pair-bonded partners versus unfamiliar vole approach
behavior (Scribner et al., 2020). These and other emerging stud-
ies show how the examination of a natural, ethologically relevant
behavior can uncover novel computations and neural organiza-
tional principles.

Rat social dynamics yield insights into the neural basis of
switching behaviors
Individual rats’ behaviors are constrained and promoted by their
social interactions with their conspecifics (Grant, 1963;
Blanchard et al., 1977). Exactly how the presence and actions of
one or several animals in these social interactions induces or
restricts the behavior of another is a central unanswered question
in animal behavior (Porfiri, 2018). In Alla Karpova’s laboratory,
Gowan Tervo has tracked the movement and classified the
actions of multiple interacting rats of known social ranks. In
these experiments, individual rats’ actions and locations in an
arena depend on the locations and actions of other rats.
Furthermore, these dependencies, as well as the duration and fre-
quency of each rat’s set of postures, are correlated with the rats’
social ranks. These differences in pose frequency are dependent
on the presence of conspecifics. In his own laboratory, Tervo is
now using wireless recording and perturbation technologies to
probe the neural basis of this behavior, with special focus on the
role of the dorsal medial prefrontal cortex to switching in pos-
tural dynamics (Fig. 1G).

In conclusion, although each of the authors of this review
studies a different subset of behavior, we share a strong, behav-
ior-first foundation. We all closely observe our animals, many of
us with careful posture tracking and modeling. Only then do we
move on to designing experiments to uncover neural mecha-
nisms underlying these behaviors, using techniques that allow
our animals to move freely.

“Animal behavior lives by the wits, good will, and agreement
of the scientists creating it. Current interest in animals is high,
and powerful new techniques are available to establish the mech-
anisms, development, evolution, and function of behavior. Yet
the coherence of the discipline is low, its conceptual center
increasingly little more than a weighted average of new interests
and old allegiances” (Timberlake, 1993). These words are just as
true today as they were 27 years ago.

We believe now is a time to forge new alliances, and to grow
as a field. We urge our colleagues to recognize these similarities
in goals across fields, to be open to collaborations, and to freely
share data, hardware designs, and code to facilitate interdiscipli-
nary work and interactions. As others have recently pointed out
(Pfaff et al., 2019), to continue and build on this tradition of
interdisciplinary work will require collaboration and openness.
The popularity of open source tracking (Machado et al., 2015; A.
Mathis et al., 2018; Graving et al., 2019; Pereira et al., 2019;
Ebbesen and Froemke, 2020; Karashchuk et al., 2020), automated
behavioral annotation (Kabra et al., 2013; Wiltschko et al., 2015;
Eyjolfsdottir et al., 2016; Hsu and Yttri, 2019; Graving and

Couzin, 2020), closed-loop behaviorally driven experimentation
(Schweihoff et al., 2019; Forys et al., 2020; Nourizonoz et al.,
2020), electrophysiology and calcium imaging analysis software
(Pachitariu et al., 2016a,b; Chung et al., 2017; Buccino et al.,
2018; Chaure et al., 2018; Giovannucci et al., 2019; Cantu et al.,
2020), open source hardware (Siegle et al., 2017; J. Brown
et al., 2018; Aharoni and Hoogland, 2019; Voigts et al., 2019),
and open data (Kranstauber et al., 2011; Oh et al., 2014;
Yatsenko et al., 2018; Zheng et al., 2018; Ruebel et al., 2019) are
paving the way. These open resources will be crucial to allow
researchers to link knowledge across disciplines, species, and
scales. For example, someone studying a natural behavior with a
working memory component may be able to record neural activ-
ity in a brain region during their natural behavior and compare
it with data from a highly trained behavior, leading to either a
synthesis across tasks or ideas for more experiments to uncover
the source of differences between the results, for instance, by re-
cording more of the behavior during the two-alternative forced
choice task, or by restricting some of the variables in the natural
scene where the adaptive value may be more obvious. One could
build on a model developed from a two-alternative forced choice
task and modify it to fit a more natural behavior, or use it to fit
data across multiple species, improving the understanding of
how a computation may have evolved. These are just a few of the
exciting possibilities ahead.

In 1963, Tinbergen highlighted the need to identify the “fun-
damental identity of aims and methods” to unite fields and that
“co-operation between all these workers is within reach, and the
main obstacle seems to be the lack of appreciation of the fact that
there is a common aim.” Today, we feel the same. Together, we
are a group of scientists with deep appreciation for the common
aims across many disciplines, especially systems neuroscience,
ecology, and ethology. We hope this review and the Mini-
Symposium that will follow facilitate some of these interactions
and alliances and help us all do even better science, together.
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