
Viewpoints

From the Neuroscience of Individual Variability to Climate
Change

Eve Marder and Mara C.P. Rue
Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts 02454

Years of basic neuroscience on the modulation of the small circuits found in the crustacean stomatogastric ganglion
have led us to study the effects of temperature on the motor patterns produced by the stomatogastric ganglion. While
the impetus for this work was the study of individual variability in the parameters determining intrinsic and synaptic
conductances, we are confronting substantial fluctuations in the stability of the networks to extreme temperature;
these may correlate with changes in ocean temperature. Interestingly, when studied under control conditions, these
wild-caught animals appear to be unchanged, but it is only when challenged by extreme temperatures that we reveal
the consequences of warming oceans.

Introduction
Small children learn at an early age to recognize individuals.
Consequently, we all grow up with a knowledge of the world that
somehow combines our understanding of individual differences
in behavior with the implicit assumption that each dog, or each
human, will show predictable and consistent responses to their
environments in most circumstances. Much of the early data col-
lected in neuroscience came from wild-caught animals; therefore,
the diversity in the natural population was reflected in the data
obtained. Nonetheless, because of numerous technical advan-
tages, most animal studies in neuroscience today are conducted
with genetically inbred strains of mice, flies, and worms. This has
led to the implicit expectation, justified or not, that all individuals
of the same genotype will be well represented by their means,
although this is itself a flawed assumption (Golowasch et al.,
2002). Instead, those who study behavior know that genetically
identical animals also display animal-to-animal variability in
behavior.

We now describe the 20 or so year path that the E.M. labora-
tory has taken that started with studies of animal-to-animal vari-
ability and has brought us to the hidden effects of climate change
on the nervous system of the crabs and lobsters, which we have
studied for almost 50 years. We started measuring variability in
circuit parameters and function in the stomatogastric nervous
system (STNS) of crabs and lobsters and their consequences for
robust and reliable circuit function. Because we work with wild-
caught crabs that live in the varying temperatures of the North

Atlantic Ocean, we have found ourselves inadvertently studying
the sequalae of climate change on the nervous systems of the
local crab populations. Indeed, the performance of the stomato-
gastric ganglion (STG) of the crab, C. borealis, has become a win-
dow onto the long-term effects of the ocean’s temperature
changes. Here, we trace the intellectual pathway that has led
from the most basic of basic neuroscience to climate change.

Degenerate, or multiple solutions, in conductance-based
models of neurons and small networks
Neurons typically have many different classes of ion channels
that give them their characteristic intrinsic firing patterns. Before
the advent of molecular techniques to characterize ion channel
genes in single neurons, the identification of the channel comple-
ment present in neurons came from biophysical and pharmaco-
logical analyses of membrane currents. Studies such as these
provided evidence that neurons of the crustacean STG, like many
others, have inward Na1 and Ca21 currents, a hyperpolarization-
activated inward current, (IH) and multiple K1 currents (Golowasch
and Marder, 1992; Turrigiano et al., 1995). Voltage-clamp measure-
ments of these currents were fit with differential equations and then
used to construct conductance-based models of STG neurons that
typically have 5-7 voltage and time-dependent currents (Epstein and
Marder, 1990; Buchholtz et al., 1992; Golowasch and Marder, 1992;
Golowasch et al., 1992; Guckenheimer et al., 1993, 1997; Turrigiano
et al., 1995; Goldman et al., 2001; Prinz et al., 2003).

While early work on developing conductance-based models
focused on fitting the model’s performance to a specific target
activity pattern, and used tedious hand-tuning of the model’s
parameters (Buchholtz et al., 1992; Golowasch et al., 1992), it
quickly became clear that many different sets of model parameters
can produce similar outputs (Liu et al., 1998; Goldman et al., 2001;
Golowasch et al., 2002; Alonso and Marder, 2019). Consequently,
.20years ago, we and others began creating families of models that
capture the variability and range of the biological data (Goldman et
al., 2001; Prinz et al., 2003; Taylor et al., 2006, 2009; Marder and
Taylor, 2011).
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In keeping with the definitions of
Edelman and Gally (2001), we call these
multiple solutions “degenerate,” as their
functional outputs are similar, but the
parameters that give rise to these can be
quite variable. Perhaps one of the most
well-known examples of degenerate solu-
tions to circuit performance was shown
in Astrid Prinz’s models of the pyloric
rhythm of the STG (Prinz et al., 2004).
The core features of the pyloric rhythm
of the STG are shown in Figure 1. Figure
1A shows a schematic of how recordings
from the dissected STNS are obtained.
Intracellular recordings from STG so-
mata are made with glass microelectro-
des. The neurons are identified based on
their firing patterns and their projections
in the motor nerves that exit the STG to
innervate specific stomach muscles
(Marder and Bucher, 2007). The tripha-
sic pyloric rhythm generates movements
that filter food in the animal’s foregut,
and consists of alternating activity in the
pyloric dilator (PD), lateral pyloric (LP),
and pyloric (PY) neurons (Fig. 1B). The
PD neurons are motor neurons that
dilate the pylorus, while the LP and PY
neurons are motor neurons that con-
strict the pylorus. Figure 1C shows a
connectivity diagram for the pyloric
rhythm. In this diagram, the filled
circles represent chemical inhibitory
synapses, and the resistor symbols
denote electrical coupling. In the
presence of descending modulatory
input, the anterior burster (AB) is an
intrinsically bursting neuron, and
strong electrical coupling to the PD
neurons causes them to fire with the
AB neuron (Marder and Bucher,
2007). Together, the AB and PD neu-
rons rhythmically inhibit the LP and
PY neurons, which fire on rebound
from inhibition, accounting for their
alternation with the PD neurons.

Prinz et al. (2004) created and simu-
lated .20 million versions of a three cell
model of the pyloric rhythm, using a
database of 1.7 million neurons whose
excitability had been previously charac-
terized (Prinz et al., 2003). Of these,
;400,000 were reasonable models of the
pyloric rhythm, in that they captured the
range of behaviors of the pyloric rhythms
measured from 99 animals (Prinz et al., 2004). Figure 2 shows
two of these representative models with pyloric activity and dem-
onstrates that similar circuit performance can result from very
different sets of parameters. The top of the figure shows two
model circuits with similar outputs. Below are some of the syn-
aptic and intrinsic conductances in these circuits, which are quite
different. Taken at face value, this is a demonstration that similar
outputs can result from significantly disparate sets of parameters.

This raises a number of important questions, and much of the
work we have done since this paper was published has been to
answer these questions:

• How variable are the parameters in real biological networks?
• How reliably can animals with intrinsic variability respond

to perturbations?
• Do perturbations reveal cryptic animal–animal differences?
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Figure 1. Simplified overview of the STNS and pyloric rhythm in C. borealis. A, Schematic of the preparation showing the
pinned-out STNS. B, The triphasic pyloric rhythm with simultaneous recordings from the LP, PY, and PD neurons and extracellu-
lar lateral ventricular nerve (lvn), which contains axons from all three neuron types. Recordings made by Sonal Kedia.
Horizontal lines indicate –40 mV. Calibration, vertical: 10mV. C, Pyloric circuit connectivity diagram. Filled circles represent
chemical inhibitory synapses. Resistor symbol illustrates electrical coupling.
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Figure 2. Two model pyloric networks generate very similar activity despite widely differing cell-intrinsic and synaptic prop-
erties. Top, Voltage traces from the AB/PD, LP, and PY neurons in two model pyloric networks. Middle, Selected membrane
conductances for the above model networks. Bottom, Selected synaptic conductances from the above model networks. Data
from Prinz et al. (2004).

10214 • J. Neurosci., December 15, 2021 • 41(50):10213–10221 Marder and Rue · Neuroscience of Individual Variability to Climate Change



• Are some sets of parameters associated with higher
resilience?

How variable are the parameters in biological networks?
Experimentalists have always dealt with variance in their meas-
urements. The challenge is to distinguish between the intrinsic
variability in the measured population, whether they be humans,
or synapses, and the variability that is an unwanted consequence
of measurement noise. In most, if not all, experimental measure-
ments, the two components are there. A number of lines of rea-
soning suggest that much of the variability we see is a biological
feature.

Theory studies, such as shown in Figure 2 (Goldman et al.,
2001; Golowasch et al., 2002; Prinz et al., 2004; Alonso and
Marder, 2019, 2020), make it clear that degenerate solutions do
exist. Therefore, biological cell-to-cell or animal-to-animal vari-
ability is consistent with robust performance in the animal or
population. Historically, the theory studies gave us confidence
that the kind of variability we routinely saw in the laboratory
could be dominated by biological variance.

Figure 3A illustrates the variability in mRNA expression of a
number of ion channels in hand-dissected single PD neurons
from the STG (Northcutt et al., 2019). In these recent measure-
ments, as in earlier ones (Schulz et al., 2006, 2007), there is a 2-
to 6-fold variability in the expression of the channel genes in
each cell type. Additionally, but not shown here, there are also
cell type-specific sets of correlations in their expression. The 2-
to 6-fold variance is similar to what is reported in data from
other systems (Amendola et al., 2012; Roffman et al., 2012;
Golowasch, 2014; Goaillard and Marder, 2021). Other studies
show correlations in ion channel expression and physiological
measures (Goaillard et al., 2009; Temporal et al., 2012;
Golowasch, 2014; Tapia et al., 2018; Moubarak et al., 2019;
Goaillard and Marder, 2021). On balance, only a modest amount
of the variance in the data we measure can be attributed to true
measurement “noise,” as measurement error would wash out the
correlation structures seen in these data.

Despite the considerable amount of variance in all measures
of individual conductances, synaptic strengths, or anatomical
form (Goaillard et al., 2009; Otopalik et al., 2017a, b, 2019), the
control pyloric rhythms across animals are nonetheless quite
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Figure 3. Identified neurons in the STNS display similar baseline activity despite underlying individual variability in ion channel expression. A, mRNA copy number for ion channels in single,
hand-dissected PD neurons from the crab, C. borealis. Data were replotted from a dataset published by Northcutt et al. (2019). B, Individual pyloric rhythms are nearly identical across animals.
Simultaneous intracellular voltage traces from the LP and PD neurons, and extracellular voltage trace from the lvn nerve are shown for 4 individual animals (#1-4). Calibration, intracellular volt-
age traces: –40 mV (dashed horizontal), 10 mV scale (vertical). Recordings from M.R.
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similar and reliable (Fig. 3B) (Gorur-Shandilya et al., 2021). This
suggests that recordings from healthy animals that generate ster-
eotyped and reliable motor patterns, such as those seen in Figure
3B, are hiding “cryptic” animal-to-animal variability that is invis-
ible until the networks are perturbed (below) or unless revealed
when individual circuit parameters are specifically measured.

Some homeostatic models that allow neurons to self-assemble
to a target intrinsic activity pattern also result in variable final pa-
rameters (Liu et al., 1998; O’Leary et al., 2013, 2014; O’Leary and
Marder, 2016). We speculate that the measured 2- to 6-fold vari-
ation in parameters across animals, or neurons, or over chrono-
logical time represents a trade-off between the size of the
manifolds that allow similar outputs and the constraints of bio-
logical regulatory processes. It is difficult to imagine that all bio-
logical processes can be perfectly tuned to within a few percent at
all times in long-lived animals, as membrane proteins are con-
stantly replaced. Likewise, it is clear that systems are not infin-
itely robust to changes in parameters. Thus, this 2- to 6-fold
range in cell and circuit parameters may be the approximate size
of the degenerate set of solutions available to a neuron or circuit.
It must be remembered that most random sets of parameters are
not “good solutions” (Caplan et al., 2014); therefore, biological
systems must have mechanisms, such as homeostatic regulation
that allow them to find successful solutions (LeMasson et al.,
1993; Liu et al., 1998; O’Leary et al., 2013, 2014).

How reliably can animals with intrinsic variability respond
to perturbations?
Circuits with similar outputs but different sets of underlying pa-
rameters should be differentially sensitive to perturbations, pre-
cisely because the mechanisms that give rise to the measured
outputs rely more or less heavily on different membrane or syn-
aptic currents. Consequently, we expect that animals or models
with different underlying sets of parameters will not be equally
able to maintain robust behavior to all possible perturbations. At
the same time, we know that genetic deletions of some ion chan-
nel genes show little or no phenotype. Presumably this means, at
least under control conditions, that there are other genes with
sufficiently overlapping functions to allow the output to be main-
tained over some ranges (Alonso and Marder, 2020).

There are three major classes of perturbations that we and
others study to understand circuit dynamics: (1) global perturba-
tions, such as changes in temperature, pH, oxygen levels, and
ionic composition of the saline, that will influence all neurons in
a circuit, and for some, every protein involved in cellular signal-
ing; (2) changes in one or more parameter, as is often done in
sensitivity analyses in models, or occurs as a consequence of
some pharmacological agents or neuromodulation; and (3) tar-
geted neuronal deletions, in which individual neurons or groups
of neurons are removed from functional circuits. Each of these
manipulations is a “perturbation,” but each of these is likely to be
informative in different ways. Most importantly, each is likely to
reveal different aspects of how degeneracy in the population is
related to the individual and the population’s resilience.

To what extent can wild-caught animals, with variable sets of
properties, respond reliably and predictably to the perturbations
that they encounter in their natural environments? And can that
population adapt or acclimate to the environmental changes
introduced by climate change or other challenges? In the past
15 years, we have focused our studies on three global perturba-
tions: temperature (Tang et al., 2010, 2012; Rinberg et al., 2013;
Soofi et al., 2014; Haddad and Marder, 2018), altered pH (Haley
et al., 2018; Ratliff et al., 2021), and high potassium (He et al.,

2020) to study the resilience of STG networks. In each case, we
have characterized the effects of the perturbation until it pro-
duces disruptions, or crashes, in the normal pyloric rhythm.
Changes in temperature and pH are perturbations that crabs
routinely experience in their natural environment, and changes
in extracellular K1 concentration occur in human physiology
and disease. In the first instance, we studied these singly, but we
have also looked at interactions among them (Ratliff et al., 2021).

Temperature compensation is a challenge to the nervous sys-
tem, and it continues to surprise and awe us that biological sys-
tems can deal with large ranges in temperature as well as they do
because all ion channels and signaling proteins are temperature-
sensitive, albeit to a different degree (Tang et al., 2010; Robertson
and Money, 2012). Because neuronal circuit dynamics depend
on the timing of activation and inactivation of many ion chan-
nels, it is easy to understand that, if the temperature dependen-
cies of the activation and inactivation rates of ion channels are
not appropriately matched, neurons and the circuits in which
they are found, will “crash” or become dysfunctional in response
to alterations in temperature (Tang et al., 2010; O’Leary and
Marder, 2016). Indeed, it is nontrivial to find computational
models that are robust to temperature (Caplan et al., 2014). Two
studies have successfully found temperature-robust models, ei-
ther using the correlations that result from a homeostatic model
(O’Leary and Marder, 2016) or by using genetic algorithms to
specifically find temperature-robust solutions (Alonso and
Marder, 2020).

In our first experimental studies on the effects of temperature,
we found normal pyloric rhythms for temperatures between 7°C
and 24°C (Tang et al., 2010, 2012), but disrupted rhythms at
higher temperatures (Fig. 4). Although all animals produce very
similar rhythms under control conditions (Fig. 3B), they crash
with quite different dynamics, and generate noticeably different
patterns as they crash. Figure 5A shows this for four biological
preparations that crashed at temperatures warmer than 23°C.
Although all preparations crashed, each of them crashed at a
different temperature. Similar results are seen in four model
networks in which each model has a different set of parameters
(Fig. 5B, Alonso and Marder, 2020). Thus, we assume that the
diversity of crash dynamics and temperatures shown by the bio-
logical preparations is attributable to their underlying synaptic
and intrinsic conductances, as is also the case for the models.
Importantly, all animals respond reliably and robustly to the
range of temperatures that they typically encounter in the wild.

Thus far, we have focused on the rapid pyloric rhythm of the
STG. The STG also generates a slower, gastric mill rhythm.
While the pyloric rhythm is generated by the activity of a set of
bursting pacemaker neurons, the gastric mill rhythm depends on
the activity of a set of descending modulatory neurons that are
themselves activated by sensory inputs (Beenhakker et al., 2004,
2007; Blitz and Nusbaum, 2012), and reciprocal inhibition is at
the core of this rhythm. Figure 6 shows extracellular recordings
from motor nerves containing elements of the gastric rhythm
(the lgn shows activity of the lateral gastric [LG] neuron, and the
dgn shows activity of the dorsal gastric neuron). The pdn shows
activity of the PD neurons, so comparing the frequency of the
LG activity to the PD activity illustrates the difference in periods
of the two rhythms. Figure 6 uses color to illustrate the effects of
temperature on both rhythms, and demonstrates that the gastric
mill rhythm can also operate over a relatively wide range of tem-
peratures (Powell et al., 2021). Indeed, although the pyloric and
gastric mill rhythms differ in period by about a factor of 10, their
dependence on temperature is similar (Powell et al., 2021).
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The robustness of both rhythms is enhanced by neuromodu-
lation (Städele et al., 2015; Haddad and Marder, 2018; DeMaegd
and Stein, 2021), and it is possible that neuromodulation com-
pensates for the extensive variability revealed when modulatory
inputs are removed (Hamood and Marder, 2014, 2015, Haddad
and Marder, 2018; Hamood et al., 2015).

Do global perturbations such as temperature reveal cryptic
animal–animal differences?
Marine animals that deal with fluctuations in water temperature
have many acclimation mechanisms that allow them to adapt to
changes in environmental temperatures. Conventional wisdom
argues that most acclimation takes place over 3-4weeks. On the
basis of this literature, Tang et al. (2012) acclimated animals in
the laboratory for 3-5weeks, and saw no appreciable changes in
the pyloric rhythm at temperatures between 7°C and 23°C, but
that animals acclimated to 19°C were more robust to high tem-
peratures than animals acclimated at 7°C or 11°C.

Our early work on the effects of temperature was done from
2006 to 2010. The green recordings in Figure 7A show data from
2006 taken by Tang et al. (2010, 2012). This preparation showed
normal activity at 11°C and 21°C but crashed at 31°C. One of the
first indications that the pyloric rhythm crash temperatures may
be similar to the proverbial “canary in the mine” with regard to
ocean warming came with recordings that Haddad made in
2012 (Fig. 7A, blue). These recordings followed a winter during
which the average water temperature was substantially warmer
than usual (Marder et al., 2015). Note the normal rhythms at
31°C and 35°C. In Ratliff’s 2016 recordings (black), the crash
temperature had returned to levels closer to those seen in 2006.

Disconcertingly, in 2021 (purple recordings), Rue and Li
(unpublished data) recorded normal pyloric rhythms at tem-
peratures as high as 39°C-40°C.

Despite the shifts in the crash temperature, at lower tempera-
tures, there is relatively little difference between the frequencies
of the pyloric rhythms (Fig. 7B), as originally reported by Tang
et al. (2012) for laboratory-acclimated animals. Figure 7C plots
the frequencies at crash for animals from the 2016-2017 year and
for 2020-2021, and shows a significant upward shift in the
frequency just before crash for 2020-2021. Likewise, the crash
temperature is shifted up in the later dataset (Fig. 7D). The fre-
quency at crash is plotted against crash temperature (Fig. 7E),
and shows that there appears to be an almost linear relationship
between crash temperature and crash frequency. It is perhaps
not surprising that the long-term acclimation seen over many
months in the ocean appears to be more extensive and long-last-
ing than that achieved with 4weeks in the laboratory under con-
trolled conditions.

The National Oceanic and Atmospheric Administration
(NOAA) monitors ocean temperature continuously with sea
buoys, and publishes these data on their website (https://www.
ndbc.noaa.gov/station_history.php?station=44013). We pulled
NOAA data for a buoy 16 nautical miles from Boston and likely
within the catch area of the C. borealis studied here. Figure 7F,
G shows the average summer and winter water temperatures
from 1985 to 2021, with colored dots corresponding to the
years of the recordings shown in Figure 7A. There is a system-
atic relationship between ocean temperature and the crash tem-
peratures we measured from in vivo preparations made during
those times.
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An unanswered question: are some sets of parameters
associated with higher resilience?
We do not yet know whether there are specific patterns of
mRNA expression levels in individuals that are more robust to
temperature, or to other perturbations. We hope in the future to
use improved molecular analyses and theory studies to answer
this question.

Conclusion
It is disconcerting that we might never have been aware of the
long-term changes in the nervous systems of the crabs we study
had we only studied them under constant, well-defined, standard
conditions. Of course, these standardized conditions were
designed to remove fluctuations because of random changes in
how the experiments were done, and ensured baseline data from
thousands of animals, thus allowing us and others to compare

experiments done many years apart. Nonetheless, there are
always anecdotal conversations among community members
mumbling about changes in this or that response to a modulator
or stimulation.

It is clear that robust baseline data can hide a number of
experience-dependent changes that can influence an animal’s
behavior. That said, a recent analysis of large amounts of data
from multiple investigators and multiple laboratories (Gorur-
Shandilya et al., 2021) showed that control data were independ-
ent of investigator and laboratory origin. Thus, the yearly trends
in differential resilience to temperature extremes reported here
are likely to reflect the state of the wild-caught animals and their
temperature history. After the winter of 2012, there were reports
of animal species who migrated north to Maine from
Massachusetts in search of colder waters. But not all species can,
or do, relocate over large distances to seek their preferred
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Haddad, Lamont Tang, Jacob Ratliff, Janis Li, and M.R. All traces represent extracellular recordings from the lvn nerve at 11°C (control), 21°C, and 31°C. For preparations that were robust at 31°
C, we also show the last temperature step at which the preparation was still robustly triphasic. B, Adapted from Tang et al. (2012). The pyloric network frequency plotted as a function of acute
temperature for warm-acclimated (19°C; N= 12) and cold-acclimated (7°C; N= 11) animals recorded from between 2006 and 2010 compared with nonacclimated animals recorded from in
2020-2021 (N= 13). Error bars indicate SEM. C, D, Analysis from STNS exposed to temperature ramps up to crash performed in either 2016-2017 (N= 12) or 2020-2021 (N= 13). C, Maximum
pyloric frequency before crash was significantly higher in 2020-2021 compared with 2016-2017 (t(24) = 4.38, p= 2.16� 10–4). D, Maximum temperature at crash was significantly higher in
2020-2021 compared with 2016-2017 (t(24) = 3.41 p= 0.0024). E, Maximum frequency before crash plotted against the temperature at crash. F, G, Average summer (June – August) and win-
ter (December – February) sea temperatures 16NM East of Boston from 1985-2021. Winter temperature years correspond to the February date. Colored dots represent the seasons from which
we show example traces and analysis above (A-E). Data were compiled from NOAA (https://www.ndbc.noaa.gov/station_history.php?station=44013). **p, 0.01, ***p, 0.001.
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environments. Instead, it is likely that the population is enriching
for those animals that are more warm water resilient by either
adaptation, attrition, or a combination of both. But a concern is
that this increased tolerance for warmer ocean temperatures may
come at a cost of robustness to other perturbations, and this
potential decrease in resilience to other perturbations may also
be invisible or “cryptic” under control conditions.
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