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Neural competition plays an essential role in active selection processes of noisy and ambiguous input signals, and it is assumed to
underlie emergent properties of brain functioning, such as perceptual organization and decision-making. Despite ample theoretical
research on neural competition, experimental tools to allow neurophysiological investigation of competing neurons have not been
available. We developed a “hybrid” system where real-life neurons and a computer-simulated neural circuit interacted. It enabled us
to construct a mutual inhibition circuit between two real-life pyramidal neurons. We then asked what dynamics this minimal unit of
neural competition exhibits and compared them with the known behavioral-level dynamics of neural competition. We found that the
pair of neurons shows bistability when activated simultaneously by current injections. The addition of modeled synaptic noise and
changes in the activation strength showed that the dynamics of the circuit are strikingly similar to the known properties of bistable
visual perception: The distribution of dominance durations showed a right-skewed shape, and the changes of the activation strengths
caused changes in dominance, dominance durations, and reversal rates as stated in the well-known empirical laws of bistable percep-
tion known as Levelt’s propositions.
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Significance Statement

Visual perception emerges as the result of neural systems actively organizing visual signals that involves selection processes of
competing neurons. While the neural competition, realized by a “mutual inhibition” circuit has been examined in many theo-
retical studies, its properties have not been investigated in real neurons. We have developed a “hybrid” system where two
real-life pyramidal neurons in a mouse brain slice interact through a computer-simulated mutual inhibition circuit. We found
that simultaneous activation of the neurons leads to bistable activity. We investigated the effect of noise and the effect of
changes in the activation strength on the dynamics. We observed that the pair of neurons exhibit dynamics strikingly similar
to the known properties of bistable visual perception.

Introduction
Visual perception is an emergent property resulting from an
active organization of input signals by the brain while being sub-
jected to the underrepresented, noisy, and ambiguous signals
received by the eyes. In other words, the brain makes selections
among neural signals representing the conflicting signals that are
competing with each other. A well-known perceptual phenom-
enon representing signal competition and selection processes is
“bistable perception,” which occurs when visual signals support
two likely perceptual interpretations. Signals that support one of
the percepts are selected coherently at any given time and one
percept becomes dominant. The input signals are eventually
reorganized to establish the alternative percept, leading to rever-
sals between the two percepts every few seconds (Leopold and
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Logothetis, 1999). This repetitive perceptual
reorganization in bistable perception provides
information about how visual signals are proc-
essed, organized, and eventually lead to con-
scious perception. The abundant literature on
bistable perception is an important resource of
information to investigate underlying neural
mechanisms.

Neural competition is often modeled by
“mutual inhibition” between neurons. A possi-
ble neural circuit is shown in Figure 1a, in
which each pyramidal neuron (PN1 or PN2)
activates a partner inhibitory neuron (IN1 and
IN2, respectively), which, in turn, projects an
inhibitory synapse to the competing PN, form-
ing disynaptic inhibitory connections in both
directions.

It has been suggested that the conflicting
signals for local features, such as orientation
(Sillito, 1975; Bonds, 1989), motion direction
(Mikami et al., 1986; Snowden et al., 1991), and
edge assignment (Zhou et al., 2000; Kogo and
van Ee, 2015), compete with each other through such mutual in-
hibition circuits. This circuit has been implemented in computer
models to explain bistable perception (Matsuoka, 1984; Mueller,
1990; Wilson, 1999; Wilson et al., 2000; Laing and Chow, 2002;
Lankheet, 2006; Noest et al., 2007; Shpiro et al., 2009), object rec-
ognition (Masquelier et al., 2009), decision-making (Heuer,
1987; Usher and McClelland, 2001; Machens et al., 2005), and
place cell field generation (Mark et al., 2017). It has also been
suggested that these circuits underlie mechanisms, such as
larger-scale neural interactions and feedback systems (Lee et al.,
1999; Beck and Kastner, 2005; C. T. Wang et al., 2013) that estab-
lish a globally coherent percept. Moreover, disynaptic inhibitory
connections between PNs are found in various layers and areas
of neocortex (Kapfer et al., 2007; Ren et al., 2007; Silberberg and
Markram, 2007; Berger et al., 2009) and hippocampus (Miles,
1990). It is hence possible that mutual inhibition serves as a ca-
nonical element of signal processing circuits in the brain.
However, there have been alternative models for bistability and
decision-making that implemented neural mechanisms different
from mutual inhibition (Said and Heeger, 2013; Hayden and
Moreno-Bote, 2018).

Despite the numerous theoretical models implementing mu-
tual inhibition circuits, experimental tools are missing that allow
thorough neurophysiological analysis of competing cortical neu-
rons at the system-wide level because of the limitations of current
technology. However, with the approach introduced in this pa-
per, it is possible to construct a minimal unit of neural competi-
tion in real life. By investigating the neural dynamics of the
minimal unit, considering it as a building block of the whole sys-
tem, and comparing its dynamics with the ones of the whole sys-
tem, it may be possible to deduce how neural elements are
integrated into a whole system such that known behavioral prop-
erties emerge.

We established a technique where a model mutual inhibition
circuit is implemented between a pair of two real-life PNs in
brain slice preparations of mouse primary visual cortex (Fig. 1).
The two neurons are patch-clamped and connected with each
other via a computer model that allows them to interact in real
time. This hybrid system has the advantage of keeping all physio-
logical properties of the real PNs intact while providing full con-
trol over the computer-simulated connections between them.

Using this hybrid system, we succeeded to evoke bistable activity
in the PNs. We investigated the dynamics of the bistable activity
and compared them with the known dynamics of bistable visual
perception, namely, the effects of noise and the effect of changing
stimulus input intensity.

Materials and Methods
Experiments were performed at the Brain Science Institute (Tamagawa
University) and the Donders Institute for Brain, Cognition and Behavior
(Radboud University). The experimental animal procedures were
approved by the Animal Research Ethics Committee of Tamagawa
University (animal experiment protocol H29/08) and the Animal Ethics
Committee of the Radboud University Nijmegen (DEC application
2018-0016). The procedures are in accordance with the Guidelines for
Animal Experimentation in Neuroscience (Japan Neuroscience Society)
and the Dutch legislation.

Experimental design
Brain slice preparation. Brain slices were prepared from the occipital

part of the mouse brain that includes the visual cortex (strain C57BI6/J,
age p12 to p24, both sexes). Mice were anesthetized deeply using isoflur-
ane in an induction chamber. Following deep anesthesia, mice were
quickly decapitated, and the brain was removed from the skull in a small
container with chilled “cutting solution.” For this process, the solution of
either one of the following compositions was used (in mM): 125 NaCl, 25
NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 1 CaCl2, 2 MgCl2, 25 D-glucose, or 75
sucrose, 87 NaCl, 25 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 0.5 CaCl2,
7 MgCl2, 25 D-glucose, both saturated with 95% O2, 5% CO2. Then, the
brain tissue was glued on to the cutting stage of a vibratome (VT1000S,
Leica Microsystems, or Microm HM 650V, Thermo Fisher Scientific),
submerged in the cutting solution above. Coronal or angled-coronal
(Dong et al., 2004) sections of 300-400 mm thickness were cut and stored
in an incubation chamber in 32°C-34°C for at least 30min, and then
stored at room temperature until use.

Double whole-cell recordings. Slices were transferred to a recording
chamber on a microscope stage and were superfused with ACSF main-
tained at a constant temperature (32°C-34°C). ACSF had the following
composition (in mM): 125 NaCl, 25 NaHCO3, 2.5 KCl, 1.25 NaH2PO4,
2 CaCl2, 1 MgCl2, 25 D-glucose, saturated with 95% O2, 5% CO2. The
location of V1 was identified under the microscope (Olympus) equipped
with differential interference contrast-infrared. Layers of visual cortex
were identified; and the point where layer 5 starts thickening, going
from medial to lateral, was used as a landmark of the border between V1
and LM (lateromedial area) (Q. Wang and Burkhalter, 2007), equivalent

Figure 1. Mutual inhibition circuit and experimental design. a, Neural circuit diagram for a mutual inhibition.
Triangles represent PNs. Disks represent INs. b, The disynaptic mutual inhibition circuit was established between two
real-life PNs by implementing mINs and synapses (dashed lines) in the StdpC dynamic clamp system. c, An image of
the brain slice (right hemisphere) from a differential interference contrast-infrared microscope during recording with
two patch recording pipettes placed in layer 2/3 of V1. 1-6, Six layers; LM, lateromedial area; d, dorsal; v, ventral; l,
lateral; m, medial. Scale bar, 200mm. d, An example of biocytin-filled pair of PNs. Scale bar, 50mm.
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to V2 (Fig. 1c). All recordings were made from the region medial from
the landmark. Under high magnification with �40 objective, PNs in
layer 2/3 were identified by their stereotypical morphology. In some
cases, the recorded neurons were filled with biocytin; and postexperi-
mental process indicated that, in all cases, they were PNs in layer 2/3
(see below). Two neurons separated by at least 150 mm distance were
selected to reduce the probability of choosing connected pairs.
Furthermore, experimental protocols were performed to check for
monosynaptic (paired-pulse injection at 10Hz to one of the neurons
to evoke action potentials) and disynaptic connections (Kapfer et al.,
2007; Silberberg and Markram, 2007) (100Hz 11 pulses injection to
one of the neurons to evoke a train of action potentials). None of the
pairs reported in this paper was connected.

Pipettes for patch-clamp recordings were pulled from borosilicate
thin glass capillaries (TW150-4, WPI) and filled with a filtered intracel-
lular solution with the following composition (mM): 130 K-gluconate,
10 KCl, 4 ATP-Mg, 0.3 Na-GTP, 10 HEPES, and 10 phosphocreatine.
For phosphocreatine, either 10 mM Na2-phosphocreatine or a mixture
of 5 mM Na2-phosphocreatine and 5 mM Tris-phosphocreatine was
used. The osmolarity of the solution was adjusted to 290-300 Osm by
either Osmotron-5 (Orion Riken) or Semi-Micro Osmometer K-7400
(Knauer), and the pH was adjusted to 7.2. The final resistance of the
pipettes was 7-9 MX. In some cases, biocytin was added to the pipette
solution (2.5-5 mg/ml) to visualize the recorded neurons postexperi-
mentally. Recordings were conducted using either two Axopatch 200B
amplifiers or a Multiclamp 700 amplifier (both Molecular Devices).
Data were lowpass filtered at 10 kHz and were digitized at 20 kHz using
a Digidata A/D board model 1440A. Data were captured using the
Clampex program suite (Molecular Devices). Series resistances were
constantly monitored by injecting a �100 pA pulse in current-clamp
configuration. Series resistances were balanced via a bridge circuit.

Cell identification. To visualize the PN pairs that were recorded, they
were filled with biocytin by diffusion (N= 9). After the recording (;30-
60min), the slices were kept in 4% PFA in PB solution, PBS (0.1 M, pH
7.2), and were kept at 4°C. After washing the tissue with PBS, it was
quenched with 1% H2O2 in 10% methanol and 90% PBS for 5min. The
tissue was washed with PBS and permeabilized with 2% Triton X-100 in
PBS for 1 h and then put in ABC solution (ABC Elite Kit, Vector) over-
night at 4°C. After washing the tissue with PBS and then with Tris buffer
(0.05 M), it was processed with DAB solution (0.5 g/l in 0.05 M Tris
buffer), and 1% H2O2 was added to enhance the reaction. After verifying
the visualization of neurons, the tissue was washed by PBS and then
mounted to glass slides with a mounting medium (Aquamount, Vector).

Dynamic clamp. A modified version of the dynamic clamp system
StdpC (spike timing-dependent plasticity clamp) (Nowotny et al., 2006;
Kemenes et al., 2011) was used to establish the connections between
recorded neurons and model neurons with model synapses. The com-
munication between the amplifier and StdpC was mediated by a
National Instruments A/D board, model PCIe-6321. Dynamic clamp is a
method whereby a modeled conductance (e.g., a synaptic or ionic con-
ductance) is computed based on the measured membrane potential of a
neuron, then injected into that neuron in real time with a patch-clamp
electrode. Unlike other dynamic clamp systems which operate at fixed
frequencies, StdpC does not require a real-time operating system, relying
instead on precise measurement of the time elapsed in each measure-
compute-inject cycle to perform the numerical integration of its models.

In addition to numerous improvements to the software interface, the
following major additions were made to the previous version of StdpC
(Nowotny et al., 2006). A passive membrane model was added, which
can be augmented with models of ionic and synaptic conductances to
form completely synthetic neuron models. To stabilize numerical inte-
gration of such models at StdpC’s unpredictable and varying sampling
frequency, the clamp cycle was upgraded from explicit Euler to a Runge-
Kutta integration scheme of order 4/5. A number of performance
enhancements were made to ensure high-frequency, and thus high-fidel-
ity, updates to the injected current. A delay mechanism was added to the
synapse models, allowing the simulation of conduction and synaptic
delays. Finally, a model of synaptic background noise was added, repro-
ducing the synaptic bombardment we would expect to see in vivo with

statistically equivalent, randomly generated inhibitory and excitatory cur-
rents, as described in Effect of noise. The upgraded version of StdpC (ver-
sion 6.1) is available at www.github.com/CompEphys-team/stdpc.

A custom-made summing circuit was used to combine the command
signal from StdpC and the one from Clampex software, and the com-
bined command signal was fed to the amplifier.

Hodgkin-Huxley models of ionic channels (conventional sodium,
delayed rectifier potassium, and Kv3 potassium channels) were given to
the model IN (mIN; membrane capacitance 0.2115 nF, leak conductance
63.462 nS, equilibrium potential for the leak conductance –70 mV)
(Pospischil et al., 2008). A Kv3 channel was added to simulate fast spik-
ing INs (Lien and Jonas, 2003). The models are based on an “a/b for-
malism” as follows (see www.github.com/CompEphys-team/stdpc/tree/
master/manual):

I ¼ gmaxm
phq V � Vrevð Þ

dm
dt

¼ am 1�mð Þ � b mm

am ¼ ka;mFa;m
V � Va;m

sa;m

� �

b m ¼ kb ;mFb ;m
V � Vb ;m

sb ;m

� �

(and analogous for h).
Here,m and h are activation and inactivation variables. gmax is the maxi-

mum conductance of the ion channel, and Vrev is the reversal potential of
the ion. The form of the function F is either one of the three below:

F1 xð Þ ¼ x
exp xð Þ � 1

F2 xð Þ ¼ expðxÞ

F3 xð Þ ¼ 1
11 expðxÞ

For the potassium channels, the formalisms are the same, except that
no inactivation components are included. The form of the function F
and the parameters for a and b for the individual components are as
summarized in Table 1. These parameter values were taken from
Pospischil et al. (2008) for basic membrane properties, from Hodgkin
and Huxley (1952) for sodium and delayed rectifier potassium channels,
and from Lien and Jonas (2003) for the Kv3 channel.

Conductance of excitatory and inhibitory synaptic events was mod-
eled using the ChemSyn model in StdpC, following the equations and
parameters described as follows:

I ¼ gsynSðtÞðVsyn � Vpost tð ÞÞ

Table 1. Parameter sets for modeled ionic channels

gmax (nS)
Vrev
(mV)

Activation/
Inactivation Exponential a/b F k (1/ms) V (mV) s (mV)

Na 25,385 50 Activation 3 a 1 1.0 �40 �10
b 2 4.0 �65 �18

Inactivation 1 a 2 0.07 �65 �20
b 3 1.0 �35 �10

Kd 615 �100 Activation 4 a 1 0.1 �55 �10
b 2 0.125 �65 �80

Kv3 3,000 �100 Activation 1 a 1 �0.12166 4.18371 �6.42606
b 2 0.015857 0 �25.4834
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t syn
dS tð Þ
dt

¼ S1 VpreðtÞ
� �� SðtÞ

1� S1 VpreðtÞ
� �

S1 VpreðtÞ
� � ¼ tanh

Vpre tð Þ � VTH

Vslope

 !
if Vpre tð Þ.VTH

0 otherwise

8><
>:

Parameters for excitatory and inhibitory
synapses are shown in Table 2. gsyn for EPSP
was selected so that it evokes an action potential
in mINs (Fig. 2), and gsyn and t syn for IPSP
were selected to ensure strong enough suppres-
sion of target PN. The synaptic delay was set to
1ms in all cases, and no synaptic plasticity was
included in the model.

Disynaptic mutual inhibition connections.
Establishment of a mutual inhibition circuit
was verified as follows. Injection of a brief
(1ms) depolarization current (1500-2000 pA)
to one of the pairs of PNs evoked an action
potential (Fig. 2a, red and blue triangles), which
triggered an excitatory synaptic conductance in
the mIN. This synaptic event evoked an EPSP
in the IN. As shown in Figure 2a, when gsyn was
set to 10 nS or higher, the EPSP evoked an
action potential (red and blue disks). This
action potential in the IN triggered an inhibi-
tory synaptic conductance, which was fed to the
postsynaptic PN as an injected IPSC via the am-
plifier, giving rise to a corresponding IPSP (blue
and red asterisks). Figure 2a shows that an
action potential was first evoked in the PN 1
(PN1) and the PN 2 (PN2) received an IPSP.
Later, an action potential was evoked in PN2
that resulted in an IPSP given to PN1, illustrat-
ing that the mutual inhibition circuit was estab-
lished between the two PNs by this system. As
shown in Figure 2b, the INs show trains of
action potentials corresponding to the action
potentials of presynaptic PNs during bistable
activity.

Bistable activity. Bistable activity in a pair of
PNs is evoked by the following protocol. First,
before the dynamic clamp-mediated model cir-
cuit is switched on, depolarization currents that
evoke action potentials at ;10Hz in the two neurons are determined
separately. Next, the model circuit is switched on to activate the mutual
inhibitory connection, and the depolarization currents as determined
above are injected. In most cases, this already produces bistable activity
in the pair (unless one of the neurons is 100% dominant). However, ev-
ery neuron has different firing patterns, different degrees of responses to
given synaptic inputs, and different sizes of action potentials (which
influence the strength of postsynaptic events). As a result, the bistable ac-
tivity often does not show equal dominance between the two neurons,
although the firing rates are equivalent between them. Therefore, in the
case that it is necessary to find the current pair where the dominance of
the two neurons is approximately equal (50% dominance point), the cur-
rents are further adjusted by either increasing the current in the weaker
neuron or decreasing the current in the stronger neuron.

Dominance, dominance durations, and reversal rates were calculated
using custom MATLAB (The MathWorks) scripts. Unlike behavioral
studies, in which a dominant percept is indicated as a continuous signal
(by button press), the dominance of a neuron is signaled by sustained re-
petitive firing of action potentials. Hence, we defined the “dominance
duration” of a neuron as follows (illustrated in Fig. 3). First, a continuous
firing of action potentials in one neuron until an action potential occurs
in the other neuron is considered as a tentative dominance duration of
the neuron (Fig. 3b). Hence, at this stage, the dominance durations of

the two neurons are mutually exclusive. There are short dominance
durations (blue asterisks for PN2 and red asterisk for PN1). There are
also a series of alternations of short dominance durations between the
two neurons (green asterisks). Next, dominance durations shorter than
250ms are eliminated (Fig. 3c). This process results in short lags between
the dominance durations (blue and red asterisks). The occurrence of the
short lag is not considered as reversal; hence, the previous dominance is
considered to continue (arrows). These processes result in the final dom-
inance durations without short durations (Fig. 3d). There are also the
intervals that are not assigned to either of the neurons corresponding to
the period marked with green asterisks in Figure 3c. This is because
alternating short durations occur between the two neurons during these
periods (Fig. 3c, green asterisks). These periods are assigned as “both
active” (Fig. 3d, bottom). Dominance and reversal rates were computed
based on this definition of dominance durations. “Dominance” of a neu-
ron is defined as the ratio of total dominance durations of the neuron
(sum of all dominance durations of the neuron) divided by the sum of
the total dominance durations of both neurons. A reversal is defined as
the dominance switching from one neuron to the other, regardless of the
presence or absence of a “both active” phase during the switch. The coef-
ficient of variation of dominance durations was computed according to
Pastukhov and Braun (2011).

Special attention was paid to the recording conditions. If the follow-
ing criteria were not met, the recording was halted: The overshoot of

Table 2. Parameter sets for synaptic conductance

gsyn (nS) Vsyn (mV) t syn (ms) VTH (mV) Vslope (mV) Synaptic delay (ms)

Excitatory 10 0 5 �20 25 1.0
Inhibitory 10 �70 100 �20 25 1.0

Figure 2. Mutual inhibition between a pair of PNs. a, An action potential in PN1 (red triangle) evoked EPSPs in the part-
ner mNI (mIN1). The synaptic events in mIN1 are shown with six different levels of model synaptic conductance. With the
higher synaptic strength, the EPSP evoked an action potential in mIN1 (red disks) causing evoked IPSP in the target PN, PN2
(blue asterisks). When the synaptic strength is in the lower range, it only evoked an EPSP without an action potential in
mIN1 (#) and, hence, without an IPSP in PN2; vice versa from PN2 to mIN2 and PN1. b, The activities of PNs and mINs during
bistable activity.
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action potential should be higher than 10 mV, and changes in the
size of the action potential, in series resistance, and in firing rate to
a given depolarization current should be ,15% during data
collection.

Analysis of adaptation. Interspike intervals and the peaks of action
potentials were estimated with customMATLAB scripts. Upon detection
of action potentials, interspike intervals and the peaks were measured.
These values were plotted against time to visualize the progress of adap-
tation within individual dominance episodes. To pool the data, first, the
time from the onset of the dominance cycle to the end of this cycle was

normalized by dividing it by the cycle’s domi-
nance duration (for the individual cycles of
the individual pairs), resulting in the nor-
malized time ranging from 0 to 1. Second,
interspike intervals and the magnitude of
action potential peaks were normalized by
the first values of the individual cycles.
Third, the normalized values across all pairs
were sorted into bins of size 0.01. Finally,
the mean and SD of all interspike intervals
and action potential peaks in a given bin
were plotted against the normalized time.
As an indicator of the progress of adapta-
tion, interspike intervals (normalized by the
mean of individual pair) were plotted over
time from the onset of each dominance
cycle (Fig. 4a), and linear regression was
applied to the plot (Fig. 4b). This resulted in
slope values that indicated the change of
interspike intervals. To pool the data, the
dominance durations of individual pairs
were normalized by their mean values and
the slopes, normalized by the mean values
of individual neurons, were plotted over the
normalized duration.

Effect of noise. To investigate the effect of
noise on the dynamics of bistable activity,
synaptic background activity was simulated
according to the model by Destexhe et al.
(2001). In their simulation, random walk-
like fluctuations of membrane conductance
were modeled by applying the Ornstein-
Uhlenbeck model of Brownian motion
(Uhlenbeck and Ornstein, 1930). Their for-
malism of synaptic noise was implemented
in the StdpC dynamic clamp system. The
evolution of the simulated synaptic noise
depends on the noise time constant t ,
which controls noise color, as well as the
mean gmean and SD (SDg) of the noise, and
is modeled as follows:

I ¼ gðtÞðVrev � VÞ

g t1Dtð Þ ¼ gmean 1 g tð Þ � gmean

� �
e
�
Dt
t 1Ar

A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt
2

1� e
�
2Dt
t

� �vuut

Here, r is a pseudo-random number drawn
from a normal distribution with mean 0 and SD
1, and the noise diffusion coefficient D is related
to the noise SD as follows:

D ¼ 2 SDg2

t

Excitatory and inhibitory synaptic noise is modeled separately. The
level of noise is expressed as the SDg of the synaptic conductance and sys-
tematically manipulated, whereas the average conductance gmean, which
functions as a constant current offset, remained unchanged. The amount
of noise given to mINs was larger than that given to PNs because PNs al-
ready have intrinsic synaptic noise (see Fig. 7a) from their presynaptic
neurons within the brain slice. The standard parameter set (used as default
unless mentioned otherwise) for the noise is shown in Table 3.

Figure 3. Computation of dominant durations. a, A part of a recording of bistable activity. b, First step computation of
dominance durations. Here, continuous firing of action potentials in one neuron until an action potential occurs in the other
neuron is considered as a tentative dominance duration of the first neuron. Hence, the dominant durations of the two neu-
rons are mutually exclusive. There are short dominant durations (blue asterisks for PN2 and red asterisk for PN1). There are
also series of alternations of short dominant durations between the two neurons (green asterisks). c, Dominance durations af-
ter choosing only long durations (longer than 250 ms). This process results in short lags between the dominance durations
(blue and red asterisks). There are also the intervals that are not assigned to either of the neurons corresponding to the pe-
riod marked with green asterisks in b. The short lags are not considered as reversals; hence, the previous dominance is con-
sidered to continue (arrows). d, These processes result in the final dominance durations without short durations. And the
periods not assigned to neither of the neurons are assigned as “both active” (bottom).

Figure 4. a, Interspike intervals of an example shown in Figure 5a. b, Linear regression (black) of interspike intervals (or-
ange plot) taken from the first cycle of PN1 (orange asterisk in a) plotted over time from the onset of its dominance
duration.
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In the experiments for the effect of noise level and the effect of activa-
tion level (below), the length of each trial was 200 s with 193.5-s-long
depolarization current.

Effect of short-term plasticity. It has been reported that there are
diverse and cell-type-specific short-term plasticity effects in neocortex
and hippocampus (for review, see Markram et al., 2004; Silberberg et al.,
2005; Tremblay et al., 2016; Pelkey et al., 2017). To explore its effect on
bistable activity, short-term depression (STD) was implemented in the
model synaptic conductance in StdpC by introducing a depression fac-
tor, h, defined as follows:

I ¼ gsynS tð ÞhðtÞðVsyn � Vpost tð ÞÞ

t h
dh tð Þ
dt

¼ h1 VpreðtÞ
� �� h tð Þ

h1 Vpreð Þ ¼ 1

11exp
Vpre � VThresh;h

VSlope;h

� �

t h Vpreð Þ ¼ t 0 � tAmpl

11exp
Vpre � VThresh;t

VSlope;t

� �

STD was modeled in both excitatory synapses from PNs to fast spik-
ing neurons and to inhibitory synapses from fast spiking neurons to PNs
with the following parameters.

VThresh;h ¼ �20mV;

VSlope;h ¼ 2mV;

t 0 ¼ 2:5ms;

tAmpl ¼ �0:8;

VThresh;t ¼ �20mV;

VSlope;t ¼ 2mV

Depression of PSPs was verified by generating a train of artificial
spikes within StdpC by means of a spike generator (SG), connected by
model synapses to a model neuron where EPSPs were evoked (see Fig.
11a). The effect of STD was observed with two synaptic strengths (gsyn =
20 nS and gsyn = 50 nS) applied to all synapses in the circuit, chosen to
demonstrate both successful mutual inhibition (gsyn = 50 nS), and failed
mutual inhibition (gsyn = 20 nS) because of insufficient activation of
the INs.

Paradigms equivalent to Levelt’s experiments. For our experiments
associated with the classic behavioral experiments of Levelt (Levelt,
1965; for generalized Levelt’s propositions covering the full-range
of stimulus intensities, see also Brascamp et al., 2006, 2015;
Moreno-Bote et al., 2010), we systematically varied the strength of
the sustained depolarization current into one, or both, of the PNs.
Concerning the generalized Levelt’s proposition I-III, the two cur-
rents were set as follows. First, the currents were set to evoke
10 Hz firing rate in the individual neurons (without mutual con-
nections). Next, the modeled mutual inhibition circuit was acti-
vated while maintaining the static current injections. Then, only

one of the two currents (randomly selected) was altered. The
change of the current was made by steps of 10 or 20 pA.

In the analyses, the current that would evoke 50% dominance (I50%)
was estimated by linear regression of dominance over the changing cur-
rent. The change of the current is reported with reference to this control
current value, defined as follows:

DI50%norm ¼ I � I50%
I50%

Hence, in the plots in Figure 8c–h, the right side from x=0 indicates
that the neuron that received the changing current was more domi-
nant (stronger) than the other neuron, and the left side indicates the
former being weaker than the latter. Before pooling the data
(N = 46) for average durations, average dominance durations of
individual trials were computed and were divided by the maximum
average duration within individual neuron. To pool the data for the
reversal rate, data were normalized by the maximum reversal rate of
the individual pair.

Concerning the generalized Levelt’s proposition IV, both currents
were modified. First, a current pair that evoked a 10Hz firing rate in the
two neurons was found. If necessary, the current was adjusted until the
current pair evoked;50% dominance. This current pair was considered
as a control and is called I10Hz (it is called as such for convenience,
although the current pair did not always evoke 10Hz firing). Next, in
one of the two neurons, the current was changed with 10 or 20pA steps,
and the current for the other neuron was changed proportionally. To
pool the data, the change of the current is reported with reference to
I10Hz, defined as follows:

DI10Hznorm ¼ I � I10Hz
I10Hz

To pool the data for the reversal rate (N=32), data were normalized
by the reversal rate of the individual pair when the control current pair
was used.

To make the bar plots of the pooled data (see Fig. 8f–h, right;
Fig. 10c, bottom), the DI was binned, and the values in the individual
bins were averaged. The order of trials with different current pairs was
pseudo-randomly chosen.

Statistical analysis
For statistical analysis, repeated-measures ANOVA was applied using
SPSS (IBM). Pairs with the standard noise parameter set for the experi-
ment of noise (N=15), pairs with injected current of I50% in Levelt I to
III paradigms (N= 46), and pairs with injected current of I10Hz in Levelt
IV paradigm (N= 32) are collectively called a “control pair,” and statisti-
cal analyses were performed on these 93 pairs to report basic properties
of bistability and adaptation. Error bars in the plots are6 SEM.

All data and MATLAB codes for data analyses are published at
(https://www.dropbox.com/sh/zytf4uzoxtvvqdq/AACulkZECAa4fgfyKtl
fYIpwa?dl=0).

Results
Double patch-clamp recordings were performed from visually
identified PNs in layer 2/3 of mouse primary visual cortex (Fig.
1c). In total, 93 pairs of PNs from 32 mice were recorded. By
using biocytin-filled patch pipettes, some PN pairs were labeled
and visualized after the experiments (N= 9). In all cases, the ster-
eotypical morphology of PNs (with a short apical dendrite and
thin multiple oblique dendrites) was identified, located in layer
2/3 of V1 (Fig. 1d).

Bistable activity
Mutual inhibitory connections between each pair of PNs were
constructed by the StdpC dynamic clamp system (for details, see

Table 3. Parameter sets for synaptic noise

Excitatory/inhibitory gmean (nS) SDg (nS) Vrev (mV) t (ms)

PN Excitatory 0 0.2 0 5
Inhibitory 0 0.4 �70 10

IN Excitatory 2 1.0 0 5
Inhibitory 10 2.0 �70 10
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Materials and Methods). When continuous depolarization cur-
rents were injected into PN1 and PN2 simultaneously, bistable
activity with alternating dominance between the two PNs was
evoked as shown in Figure 5a. Figure 5b shows the details of the
onset of the response to the current injection on a shorter time
scale. Both neurons started to depolarize at the onset, but PN2
reached the action potential threshold before PN1; hence, PN1
received the evoked IPSP before succeeding to generate an action
potential. Thereafter, PN2 showed sustained firing of action
potentials, and it achieved initial dominance. An increase of
interspike intervals in the dominant neuron is visible. Also, there
is a ramp-like slow depolarization of the suppressed neuron (Fig.
5a). The former is a sign of neural adaptation, whereas the latter
indicates both the recovery of the neuron from adaptation as
well as the recovery of the membrane potential from IPSPs
because of the gradual increase of the interspike intervals. Figure
5c shows data from when the reversal of dominance occurred.
With the continuous increase of interspike interval in PN2, PN1
recovered more and more from the received barrage of IPSPs.
The interspike interval of PN2 eventually became long enough
such that the membrane potential of PN1 reached the action

potential threshold before PN2 could gen-
erate an action potential. Consequently,
PN2 received an IPSP evoked by the first
action potential of PN1. From then on,
PN1 became dominant and PN2 became
suppressed.

Adaptation and dominance durations
To investigate the role of adaptation in the
mutual inhibition competition process, we
analyzed neurophysiological properties that
reflect adaptation: interspike intervals and
peaks of action potentials are plotted in
Figure 6a and Figure 6b, respectively, for the
example bistable activity shown in Figure 5a.
Normalized values are pooled for the “con-
trol pairs” (N=93, for the definition of the
“control pairs,” see Materials and Methods)
and plotted over normalized dominance
durations in Figure 6c and Figure 6d, for
interspike intervals and action potential
peaks, respectively. The results indicate
monotonic changes (increase of inter-
spike intervals and decrease of action
potential peaks over time) while a neuron
is dominant. Furthermore, there are clear
correlations between the dominance dura-
tions and the changes of the interspike
intervals. We applied a linear regression to
interspike intervals as a function of time in
the dominance duration (see Fig. 4). The
slope indicates how quickly the adaptation
progresses. As shown in Figure 6e (for the
example shown in Fig. 5a) and Figure 6f
(for the pooled data of the control pairs),
the slopes and the dominance durations
were inversely correlated (repeated-measures
ANOVA for the pooled data F(3,15) = 19.518,
p, 0.0001). Hence, when adaptation pro-
gresses quickly, the dominance duration is
bound to be shorter, indicating a role for ad-
aptation in dominance reversals.

Effect of noise
Because of the stochasticity of dominance durations (Brascamp
et al., 2006; Kim et al., 2006; Moreno-Bote et al., 2007; Huguet et
al., 2014; Pisarchik et al., 2014), it has been argued that noise
plays an important role for the reversal in bistable perception. To
investigate the role of noise on the dynamics of bistability, we
implemented an algorithm in the dynamic clamp system to
introduce simulated noise of the synaptic conductance (Destexhe
et al., 2001; Delgado et al., 2010). The noise was given to both PNs
and mINs in the form of random fluctuations of excitatory and in-
hibitory synaptic conductance (for details, see Materials and
Methods). Figure 7a shows the baseline membrane potential of a
PN, and Figure 7b shows the result of adding the modeled synaptic
noise to it (all at –60 mV). Next, the level of noise was changed sys-
tematically while the two PNs were exhibiting bistable activity as
shown in Figure 7c (the parameter sets for different noise level are
shown in Fig. 7d, table). The results indicate that increased noise
caused an increase of the reversal rate (F(19,171) = 50.868, p, 0.0001).
The pooled data from 15 pairs of PNs are shown in Figure 7d.

Figure 5. Evoked bistable activity in a pair of PNs with mutual inhibition connections. a, Continuous injection of depolari-
zation currents into the two PNs produces bistable activity with alternating dominance between them. MP, Membrane
potential (mV); MC, membrane current (pA). Inset, The response of the same PNs to the same depolarization current injection
without the mutual inhibition circuit, showing sustained continuous firing of action potentials. b, The part of data (orange
rectangle) shown in a. Upon the onset of the current injection, both neurons started to depolarize but fired an action poten-
tial first. As a result, PN1 received an IPSP, causing PN2 to become dominant and PN1 suppressed. c, The part of data (orange
triangle) around the time of reversal. The interspike interval increased during the dominant period of PN2 because of adapta-
tion. Just after the rightmost action potential of PN2, PN1 got a sufficient time to recover from its IPSP, enabling it to reach
its firing threshold before PN2 was able to fire its next action potential. The action potential of PN1 now resulted in an IPSP
in PN2 entailing a reversal of dominance.
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It is known that, in brain slice prepara-
tions, the amount of synaptic noise in indi-
vidual neurons is much less than what is
observed in intact brain preparations
because of the cutoff of axons and lesser
spontaneous activity in slice preparations
(Destexhe et al., 2001). Therefore, to
reproduce the intact brain environment,
we use a parameter set of modeled excita-
tory and inhibitory synaptic noise, which
will be called the “standard noise parame-
ter set” (Fig. 7c, asterisk; Fig. 7d, table)
from here on. For the rest of the experi-
ments, the standard noise parameter set
was used. The histogram of dominance
durations of a 600 s recording of bistable
activity with the standard parameter set is
shown in Figure 7e. It shows a skewed dis-
tribution as stereotypically observed in
bistable perception. The average of domi-
nance durations and reversal rates of the
15 pairs with the standard noise parameter
set were 7.76 5.6 s and 12.06 10.5min�1,
respectively. These values for the control
pairs (N=93) were 8.2 6 7.8 s and 11.5 6
10.8min�1, respectively. The coefficient of
variation of dominance durations of the con-
trol pairs was 0.606 0.21.

Effect of current intensity (“generalized
Levelt paradigms”)
A set of widely replicated empirical laws
from the perceptual competition literature,
known as Levelt’s propositions, describes
the relationship between the strengths of
two competing stimuli and the dynamics of
their bistable perception (Levelt, 1965) in
terms of dominance, dominance duration,
and reversal rate. Furthermore, Brascamp
et al. (2015) and Moreno-Bote et al. (2010)
reported a generally accepted updated ver-
sion of Levelt’s propositions so that the
description of bistable dynamics covers the
full range of stimulus strengths (Levelt’s
original propositions were based on the
range of stimulation where the stimulus strength of one of the two
input signals increased; and hence, the effect of decreasing the
strength was not included). To compare the dynamics of the pairs
of mutually inhibited PNs to the generalized Levelt’s propositions,
we injected sustained depolarization currents and systematically
varied (increased and decreased) the strength of the current into
one, or both, of the PNs (Fig. 8a).

To examine the first three generalized propositions of Levelt,
the current injected into one of the two neurons was varied while
the current injected into the other neuron was kept constant
(Fig. 8b). In total, 46 pairs were recorded with this paradigm. To
pool the data, first, the current that would evoke 50% dominance
(the total period that one neuron is dominant over the other is
equal for both neurons) was estimated (I50%) by linear regression
of dominance over the changed current. The change of the cur-
rent is reported with reference to this control current value (i.e.,
0 in abscissa indicates the current pair that would evoke 50%
dominance). Hence, in the plots shown in Figure 8c–h, the

neurons with the changing injected current are more dominant
(“stronger”) on the right side of the plot from 0, whereas on the
left side, they are less dominant (“weaker”).

We first tested the generalized Levelt’s proposition I:
Increasing stimulus strength for one of the competing stimuli
will increase the perceptual dominance of that stimulus. Figure
8c depicts the change of the dominance ratios of the two PNs
over injected current (with reference to I50% of PN1) for the
example shown in Figure 8b. There is a clear trend of increase of
dominance of PN1 whose current was increased (red) and of
decrease of dominance of PN2 whose current was kept constant
(blue). Figure 8f shows pooled data (N=46) for the dominance ra-
tio, replicating that there is an increasing dominance of the neurons
whose currents were increased (red, F(6,24) = 15.558, p, 0.0001),
and decreasing dominance for their counterparts whose currents
were kept constant (blue, F(6,24) = 15.558, p, 0.0001). This is in line
with the generalized Levelt’s proposition I.

Levelt’s proposition II states: Increasing the difference in
stimulus strength between the two competing stimuli will

Figure 6. Adaptation of dominant neuron and its correlation to dominance duration. a, b, The physiological signatures of
adaptation. Interspike intervals increase (a) and the peaks of action potentials decrease (b) because of adaptation during
dominance episodes. c, d, Average of interspike intervals (c) and the action potential peaks (d) for pooled data of all 93 “con-
trol pairs” (for the definition, see Materials and Methods). e, Slope of interspike interval as a function of dominance dura-
tions, showing the inverse correlation between them. f, Inverse correlation between the slope of interspike interval and
dominance duration in the pooled data. The dominance durations of individual pairs were normalized by their mean values
before pooling. The normalized duration was binned and the pooled data were averaged for the individual bins. Error bars
indicate6 SEM.
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primarily act to increase the average perceptual dominance dura-
tion of the stronger stimulus. Furthermore, the generalized
Levelt’s proposition II states that the change of stimulus intensity
of the nondominant input is less effective. This means that, when
the stimulus intensity changes from nondominant range to dom-
inant range, the effect of the change to average dominant dura-
tions is weak in the nondominant range and strong in the
dominant range. In Figure 8d, the change of the average domi-
nance durations is plotted over the changing current for the
example shown in Figure 8b. PN1 shows weak changes of the
dominance durations on the left half of the plot where PN1 is
weaker than PN2 (see Discussion). It shows, however, a steep
increase on the right half of the plot where it is stronger than
PN2, and vice versa for the other neuron. Hence, in general, the
dominant neuron shows a steep increase of the dominance

durations with current values deviating
further away from I50%. This trend can be
seen in Figure 8g with pooled data for the
neurons whose currents were increased
(red, F(6,24) = 4.371, p, 0.01) and for their
counterparts whose currents were kept
constant (blue, F(6,24) = 7.396, p, 0.0001).
This is in line with the generalized Levelt’s
proposition II.

According to the generalized Levelt’s
proposition III: Increasing the difference
in stimulus strength between the two com-
peting stimuli will reduce the perceptual
alternation rate. Figure 8e plots the num-
ber of reversals for the example shown in
Figure 8b. The pair showed a higher num-
ber of reversals for a current close to I50%.
Deviating further from I50% in either
direction, the values decreased, in line
with the generalized Levelt’s proposi-
tion III. However, the pooled data (Fig.
8h) show that the response is not sym-
metric. Indeed, some pairs showed an
increase of the reversal rate when a
neuron is dominant (Fig. 9, bottom), in
contrast to the example pair of Figure
8b (and Fig. 9, top). Thus, the PN pairs
did not always follow the generalized
Levelt’s proposition III. Because of the
increase in the left half, repeated-meas-
ures ANOVA indicated a significant
effect (F(6,24) = 2.663, p, 0.05).

To examine the generalized fourth
proposition of Levelt, the currents injected
into both neurons were varied. In total, 32
pairs were recorded with this paradigm.
To pool the data, the change of the current
is reported with reference to the current
that would evoke ;10Hz (I10Hz, see
Materials and Methods).

Proposition IV states: Increasing stimu-
lus strength of both competing stimuli will
generally increase the perceptual alternation
rate. In addition, the generalized proposition
IV (Brascamp et al., 2015) noted that this
effect may reverse at near-threshold stimulus
strengths (i.e., the lower range of stimulation
intensity). Figure 10a shows an example of
the effect of increasing the injected currents

into both neurons. In Figure 10b, the number of reversals of this
example are plotted over the injected current. Figure 10c shows
pooled data indicating increasing reversal rates (F(6,30) = 4.051,
p, 0.01). In addition, there is a small decrease of the reversal rate
at the lower range of the stimulation. These results are in line with
the generalized Levelt’s proposition IV.

Effect of short-term plasticity
To explore the role of synaptic plasticity in neural competition
and bistable activity, we implemented STD in the modeled exci-
tatory and inhibitory synapses. Figure 11a shows the depression
of EPSPs evoked by a train of modeled presynaptic spikes (gener-
ated by SG, at 40Hz). Figure 11b shows the results from a circuit
with disynaptic inhibitory connections established between SG,

Figure 7. Effect of adding noise. Model excitatory and inhibitory synaptic noise was applied to the PNs and the INs
through the dynamic clamp system. a, b, Baseline membrane potentials at –60 mV without (a) and with (b) the model
noise. c, Effect of changing the noise level systematically to bistable activity. Increase of the noise resulted in increase of re-
versal rate (from top to bottom). Noise levels are indicated as SDs of gE and gI (excitatory and inhibitory conductance, respec-
tively, in nS). pData with the “standard” noise parameter set. d, Pooled data of the effect of noise (N= 15). The reversal
rates from the individual pair are normalized by the value at the standard noise parameters (iii) before pooling. Orange bar
(i) indicates the data with no model noise. Error bars indicate6 SEM. The noise parameter sets for i (no model noise), ii, iii
(standard noise parameters), iv and v are shown in the table below. The noise level is increased linearly from ii to v.
e, Histogram of dominance durations for PN1 and PN2 from 10min continuous recording (with the “standard” noise
parameters).
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mINs, and real-life PNs as illustrated in the schematic. The mem-
brane potentials of the PNs were set to –60 mV to make IPSPs
visible. Three different conditions were tested: without STD,
with STD with strong synaptic inputs (gsyn = 50 nS), and with
STD with weak synaptic inputs (gsyn = 20 nS), implemented in
both EPSPs and IPSPs. A train of 10 spikes was generated at
20Hz in the SG. EPSPs without STD successfully evoked action
potentials in INs in response to all 10 EPSPs (left column). These
action potentials, in turn, evoked long-lasting IPSPs in PNs (right
column). When STD was implemented, the gradual decrease of
EPSP size caused failures of evoking action potentials (marked
by black asterisks) in INs. Compared with stronger EPSPs (mid-
dle traces), this effect was more pronounced with weaker EPSPs
(bottom traces). The effect of implementing STD in PSPs as
above on bistable activity is shown in Figure 11c. Bistable activity
without STD is shown in the top traces. With STD with strong
PSPs (middle traces), the pair of PNs showed bistability.
However, because of the depression of EPSPs, action potentials
in the dominant PN soon failed to evoke action potentials in the
connected IN, and the reversal of dominance occurred quickly.
As a result, the reversal rate became higher than the without
STD condition. The ratio of reversal rate, with STD to without
STD, was 8.6 6 4.2 (N= 9). In contrast, with STD with weak
PSPs (bottom trances), action potentials in PNs failed to evoke
action potentials in INs most of the time, and neither of the PNs
was able to establish dominance in competition. Instead, both
PNs showed continuous firing of action potentials without an
apparent influence on the competing PNs (N=7).

Discussion
We established a mutual inhibition between two real-life neurons
mediated by dynamic clamp. This system enabled us to evoke
bistable activity in PNs in visual cortex. We analyzed the dynam-
ics of the bistability, a number of physiological properties, and
the effects of manipulating the level of background noise and
activation level. We compared the dynamics of this bistability
with the known dynamics of human bistable perception.
Although our experimental system represents the simplest neural
unit of competition and human behavior represents the highly
complex system, we found that the two systems show striking
similarities in their dynamics.

The analyses of the physiological properties during bistable
activity showed signs of adaptation of the dominant neurons.
Moreover, the variations of interspike intervals and dominance
durations were correlated, indicating a causal link between neu-
ral adaptation and the reversals in bistability. Neural adaptation
has only been assumed as a key element for bistable perception
theoretically (Matsuoka, 1984; Mueller, 1990; Wilson, 1999;
Wilson et al., 2000; Laing and Chow, 2002; Lankheet, 2006;
Noest et al., 2007; Shpiro et al., 2009) or it has been shown indi-
rectly in the form of decreased contrast sensitivity (Alais et al.,
2010). Our data directly show, in physiological terms, a

Figure 8. Schematics of experimental paradigm and the result. a, Schematics of the para-
digms equivalent to Levelt’s experimental paradigms for bistable perception. The level of
injected current to either one or both of the two mutually inhibiting PNs was systematically
changed (analogous to the change of the contrasts in Levelt’s experiments). b, Example data
of the experiment equivalent to the generalized Levelt’s experimental paradigm for proposi-
tion I to III. The level of depolarization current in PN1 was increased (from top to bottom)
while the current to PN2 was kept constant. c–e, Changes in dominance (c), dominance

/

duration (d), and reversal rate (e) for this pair. Red represents PN1. Blue represents PN2.
f–h, Pooled data (N= 46) plotted over the normalized injected current. The dominance
durations are normalized for the maximum values of the individual neurons. Red represents
responses of the neurons that received the changes of the injected current. Blue represents
responses of the neurons whose injected current was kept constant. Left column represents the
data of the individual pairs. Right column represents the normalized current was binned and the
pooled data were averaged for the individual bins. Error bars indicate6 SEM.
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progression of adaptation during bistable activity and its link to
the dominance durations.

We investigated the effect of neural noise on the dynamics of
bistability. The apparent stochasticity in the sequence of reversals

and the skewed distribution of dominance dura-
tions (Levelt, 1967) in bistable perception led to
studies on the role of noise (Brascamp et al., 2006;
Kim et al., 2006; Moreno-Bote et al., 2007; Huguet
et al., 2014; Pisarchik et al., 2014; Baker and
Richard, 2019). To investigate the effect of noise
in our experimental model, we incorporated a
neurocomputational model of synaptic noise into
the dynamic clamp. In this way, we were able to
insert noise into neurons and systematically
changed the level of noise. We found that an
increase of noise caused an increase of reversal
rate. It is known that the synaptic noise in brain
slice preparations is much less than the noise in
intact brains (Destexhe et al., 2001) or in human
brain tissue (Molnár et al., 2008). Hence, we added
noise levels equivalent to the noise level in the
intact brain (Destexhe et al., 2001). We found that
the histogram of dominance durations was right-
skewed as is typically found in bistable perception.

We showed that, when one of the two neurons
is dominant, its adaptation progresses and hence
the interspike interval increases over time. This
allows the suppressed neuron to recover from its
own adaption and to depolarize more during the
ever-increasing interspike intervals of the domi-
nant neuron, consequently showing a slowly
ramping depolarization. When the membrane
potential comes close to the firing threshold, the
noise facilitates the membrane potential to go
above the threshold, generating action potentials.
As a consequence, the dominant neuron now
receives IPSPs and a reversal occurs. Hence, our
data elucidate the dynamic interplay between ad-
aptation, noise, and mutual inhibition in deter-
mining the dynamics of bistable activity.

Our experimental model allowed us to sepa-
rately manipulate the levels of activation of the

competing neurons. Hence, it enabled us to compare the effects
of changing activation levels in neurons to the effects of changes
in stimulus strength on bistable perception, as originally

Figure 10. Results of experimental paradigm equivalent to the generalized Levelt’s paradigm for proposition
IV. a, The effect of increasing the depolarization currents simultaneously in both PNs (from top to bottom). b, The
changes of the reversal rate for this pair. c, Pooled data of reversal rate (N= 32) plotted over the normalized
injected currents.

Figure 9. Examples of responses of average durations and reversal rate (shown in non-normalized absolute values) to the change of the depolarization current to one of the pair of PNs
(red) while the current to the other neurons was kept constant (blue). a-c, The example pairs where the reversal rates decreased when the current either increased or decreased from the con-
trol value (I50%). d-f, The examples where the reversal rates increased when the current increased from the control value (I50%). In the latter case, the increase of the average.
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described in Levelt’s four propositions
(Levelt, 1965). Levelt’s propositions I, II,
and III make predictions about the changes
of dominance, the dominance durations,
and the reversal rate, respectively, in re-
sponse to changes of the stimulation strength
in one of the two inputs. Levelt’s proposition
IV concerns the change in the reversal rate
while the stimulus strengths of both inputs
are changed concurrently. The original propo-
sitions were modified later (Brascamp et al.,
2006, 2015; Moreno-Bote et al., 2010) to cover
the whole range of the stimulus strength
(dominant and nondominant ranges). By run-
ning paradigms equivalent to these experi-
ments, we found that both systems show
striking similarities in their dynamics.

It is quite intriguing that, although the
overall effect of increasing the injected cur-
rent was the increase of the reversal rate in
the paradigm for the generalized Levelt’s
proposition IV, we observed a small decrease
of it in the lower range of the injected cur-
rents. A small deviation of the response from
the original proposition by Levelt has been
reported by several papers (Shpiro et al.,
2007; Curtu et al., 2008; Seely and Chow,
2011; see Brascamp et al., 2015). In our
experiment, when the injection current was
lowered, generation of action potentials by
the dominant neuron became sporadic. As a
result, the spike interval became longer, giv-
ing room to the suppressed neuron to
recover from the inhibition and reach the
threshold of action potentials. On the one
hand, in the higher range of injection cur-
rents, the reversal occurred because spike
intervals of the dominant neuron gradually
increased because of adaptation. On the
other hand, in the lower range of injection
currents, the reversal occurred because of the
lower frequency of evoked action potentials.
The latter may be potentially a mechanism
underlying the small decrease in the lower
range of stimulus reported in bistable
perception.

One exception where our data did not
necessarily match the known dynamics of
bistable perception was the mixed results for
the Levelt III paradigm. In this paradigm,
some neuron pairs showed a decrease of re-
versal rates when the depolarization current
either increased or decreased from the con-
trol value, which is in line with the general-
ized Levelt’s proposition III. However, other
pairs showed no significant change or an
increase of reversal rate when the current
was higher than the control. The mixed
results suggest involvement of multiple fac-
tors. The reversal rate is determined by the
balance between increased dominance dura-
tions of the stronger neuron and decreased
dominance durations of the weaker neuron.

Figure 11. Effect of STD on bistable activity. a, Depression of EPSPs evoked by a train of modeled presynaptic spikes
(by SG, at 40 Hz). gsyn was set to 5 nS to avoid generation of action potentials for illustration purposes. b, A disynaptic in-
hibitory circuit was established between SG, mINs, and real-life PNs as illustrated in the schematic (top). The membrane
potentials of PNs were set to –60 mV to make IPSPs visible. Three different conditions were tested, including no STD
(top), and STD with strong (gsyn = 50 nS, middle) and weak (gsyn = 20 nS, bottom) synapses in both the inhibitory and
excitatory connections. A train of 10 spikes was generated in the SG at 20 Hz. Without STD, all 10 EPSPs successfully
evoked action potentials in INs (left column). These action potentials, in turn, evoked long-lasting IPSPs in PNs (right col-
umn). With STD (strong and weak synaptic strength, middle and bottom traces, respectively), the gradual decrease of
EPSP size caused failures of evoking action potentials in INs (asterisks), resulting in weaker IPSPs in the target PNs. c, An
example of the effect of STD on bistable activity. Without STD (top), with STD with strong synapses (middle) and with
weak synapses (bottom). With STD with strong synapses, action potentials in the dominant PN soon failed to evoke action
potentials in the connected IN because of the depression of EPSPs and reversal of dominance occurred quickly. With STD
with weak synapses, EPSPs evoked by action potentials in PNs failed to evoke action potentials in INs most of the time,
neither of the PNs was able to establish dominance, and both PNs showed continuous firing of action potentials
independently.
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If the former is more significant, the reversal rate will decrease;
and if the latter is more significant, it will increase. The increase
of the firing rate in the stronger neuron may cause a stronger
dominance of the neuron on one hand, and a stronger adapta-
tion of the neuron on the other hand. The latter may prevent the
increase of the dominant durations because of the faster decay of
the firing rate. Hence, depending on the adaptation properties
and the spiking properties of the neurons, the strong activation
of the stronger neuron may have caused a decrease of the reversal
rate in some cases and an increase in other cases. At systems
level, the competition is between populations of neurons rather
than single neurons as tested here. Hence, differences in adapta-
tion and spiking properties among the involved neurons may
collectively have different impacts on the dynamics of bistability.
Furthermore, in the human brain, the input signals go through
multiple steps of normalization before reaching the mutual inhi-
bition processes. It may be possible that the activation level of
neurons in the human visual system is kept within the range
where the fast adaptation occurs in a lesser amount. If this is the
case, the strong stimulation would cause the decrease of the re-
versal rate as reported in the generalized Levelt III. Therefore,
this result may represent an example where emergent properties
of bistable perception at the behavioral level differ from the dy-
namics found in the minimal neural competition unit we
investigated.

Regarding the dominance durations, there are short periods
when the neuron that has been suppressed fires only one or two
action potentials and then becomes suppressed again. Such short
events are not considered as a reversal in our analyses, and the
dominance durations are determined by neglecting these events
(see Fig. 3). Furthermore, there are periods where short events
occurred alternatingly between the two neurons with inter-
mingled action potentials from both neurons. In these periods,
neither of the two neurons is considered to be dominant. These
observations may be linked to known observations in bistable
perception. It has been reported that human subjects experience
short reversal events detected in reflexes (optokinetic nystagmus
and pupil dilations), but they are too short to be reported by the
subjects (Naber et al., 2011). Furthermore, the intermingled fir-
ing of action potentials by the two neurons may be related to the
period in bistable perception where the perception of the subject
is either uncertain or a mixture of the two possible percepts
(“composite” or “mixed” perception). The short and the mixture
events are potentially important because they may elucidate the
neural mechanisms underlying the stochastic properties of bist-
ability and decision-making processes. Hence, this intriguing
property of bistable neural activity during the transition of the
dominances should be investigated further in the future.

Finally, it is important to consider the diversity of neural
properties in neocortex. First, in terms of the location where neu-
ral competition relevant to bistable perception takes place, it is
unknown which layer and which area of visual cortex are
involved. It is also possible that the final decision is the result of
integrating neural competition at multiple levels. In addition to
the issue of location, neurons display a range of firing patterns
even within the same area and the same layer. At the onset of
activation, for example, an early bursting-type PN may have an
advantage over a regular-spiking-type PN to win the onset domi-
nance. Different adaptation properties influence how the reversal
of dominance occurs as well. The differences of these properties
are present not only in PNs but also in INs (e.g., nonadapting
fast spiking neurons or adapting-type regular spiking neurons).
Furthermore, cell-type-specific short-term plasticity has been

shown. Therefore, it is important to diversify the research on
neural competition reported here by applying our approach
to neurons from different layers with different firing pat-
terns, adaptation properties, and synaptic properties. How
details of the dynamics of bistability change depending on
these neurophysiological differences remains to be eluci-
dated by future research.

In conclusion, our experimental model provides a platform
for investigating the dynamics of a theoretically derived neural
circuit in real-life neurons. Our data showed that even the sim-
plest neural competition circuit already reproduces many aspects
of dynamics of bistable perception in human perception. Our
study using the novel approach reported here provides a plat-
form to investigate further how elementary neural competition
units are integrated to execute system-level bistable dynamics.
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