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Temporal expectation is the ability to construct predictions regarding the timing of events, based on previously experienced
temporal regularities of different types. For example, cue-based expectations are constructed when a cue validly indicates
when a target is expected to occur. However, in the absence of such cues, expectations can be constructed based on contex-
tual temporal information, including the onset distribution of the event and recent prior experiences, both providing implicit
probabilistic information regarding the timing of the event. It was previously suggested that cue-based temporal expecta-
tion is exerted via synchronization of spatially specific neural activity at a predictable time of a target, within receptive
fields corresponding to the expected location of the target. Here, we tested whether the same theoretical model holds
for contextual temporal effects. Participants (n = 40, 25 females) performed a speeded spatial-cuing detection task with
two-thirds valid spatial cues. The hazard-rate function of the target was modulated by varying the foreperiod—the inter-
val between the spatial cue and the target—among trials and was manipulated between groups by changing the interval
distribution. Reaction times were analyzed using both frequentist and Bayesian generalized linear mixed models,
accounting for hazard and sequential effects. Results showed that the effects of contextual temporal structures on reac-
tion times were independent of spatial attention. This suggests that the spatiotemporal mechanisms, thought to account
for cue-based expectation, cannot explain other sources of temporal expectations. We conclude that expectations based
on contextual structures have different characteristics than cue-based temporal expectation, suggesting reliance on dis-
tinct neural mechanisms.

Key words: FP-RT slope; hazard-rate function; reaction time; sequential effect; temporal attention; variable foreperiod
effect

Significance Statement

Temporal expectation is the ability to predict an event onset based on temporal regularities. A neurophysiological model sug-
gested that temporal expectation relies on the synchronization of spatially specific neurons whose receptive fields represent
the attended location. This model predicts that temporal expectation would be evident solely within the locus of spatial atten-
tion. Existing evidence supported this model for expectation based on associations between a temporal cue and a target, but
here we show that it cannot account for temporal expectation that is based on contextual information, that is, the distribution
of intervals and recent priors. These findings reveal the existence of different predictive mechanisms for cued and contextual
temporal predictions, with the former depending on spatial attention and the latter nonspatially specific.

Introduction
Temporal expectation is the ability to construct predictions regard-
ing the timing of events, based on temporal regularities. These regu-
larities come in multiple forms, including contextual information,
when statistical inferences regarding distributions of events and
recent priors are used to predict timings of future events, and cued
associations, when events are preceded by informative temporal
cues (Coull and Nobre, 1998). Expectations of all these sources were
associated with enhanced motor and perceptual performance
(Niemi and Näätänen, 1981; Nobre and van Ede, 2018).
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Despite abundant evidence on behavioral effects of temporal
expectation, relatively little is known regarding its neurophysio-
logical correlates. One framework suggests that temporal expec-
tation results from neural synchronization at expected target
time. It was suggested synchronized neuronal populations are
spatially specific, that their receptive fields correspond to the
expected target location (Rohenkohl et al., 2014; Nobre and van
Ede, 2018). According to this view, temporal and spatial expecta-
tions are tightly linked as temporal expectation is restricted to
the locus of spatial attention; to gain from knowing when a target
will occur, one must know where it would occur. However, evi-
dence for this spatiotemporal framework is limited to studies
that manipulated cue-based temporal expectation (Doherty et al.,
2005; Rohenkohl et al., 2014; Seibold et al., 2020). It remains
unknown whether the same spatiotemporal mechanism accounts
for temporal expectation based on other sources of regularities,
such as those based on the overall distribution of intervals, and
recent previous trials.

The distribution of intervals is linked to a frequently observed
finding—the variable-foreperiod effect (VFE). When participants
are presented with a warning signal (WS) followed by a target af-
ter a varying time interval (foreperiod; FP), and the foreperiods
are randomly sampled from a uniform distribution, performance
for targets appearing after long foreperiods is enhanced relative
to short ones (Niemi and Näätänen, 1981). According to one
interpretation, this effect depends on the conditional probability
of the event, or the likelihood of an event to occur, given that it
has yet to occur (Vallesi and Shallice, 2007; Nobre and van Ede,
2018). Conditional probabilities can be described as a function of
time (hazard-rate function), which monotonically increases
when foreperiods are uniformly distributed; but other distribu-
tions could lead to different hazard-rate functions (Luce, 1986).
Another interpretation explains VFE as the result of memory
activation. The WS acts as a memory retrieval cue, which
activates traces of prior trials and results in reaction time
(RT) modulations based on the frequencies of previous fore-
periods (Los et al., 2017, 2021). Regardless of its interpreta-
tion, VFE reflects how the distribution of prior foreperiods
modulates temporal expectation.

Another source of contextual information are previous trials.
When a target appears following a foreperiod that is shorter than
that of the previous trial, performance is reduced, relative to tri-
als that were preceded by an identical foreperiod. This sequential
effect (SE) is asymmetrical; performance remains unchanged
when a target appears following a foreperiod that is longer than
that of the previous trial (Bertelson, 1961; Possamai et al., 1973).
There are various accounts for the SE, attributing this effect to a
dual process of arousal and controlled monitoring (Vallesi and
Shallice, 2007; Capizzi et al., 2015), to trace conditioning (Los et
al., 2001) or, more recently, to retrieval of memory traces (Los et
al., 2014, 2017, 2021). Regardless of their interpretations, VFE
and SE both demonstrate how manipulating contextual priors
changes the behavioral outcome of temporal expectations.

There is surprisingly little evidence regarding the interaction
of spatial attention and contextual temporal expectation effects.
Only one study examined a related question, focusing on the link
between SE and inhibition of return, an exogenous attention
effect (Los, 2004), but no study to date manipulated endogenous
attention to examine its link with contextual temporal expecta-
tion. Here, we investigated this link by simultaneously manipu-
lating attention and the distribution of foreperiods. In each trial,
participants were presented with a spatial cue that was either
congruent, incongruent, or neutral in respect to the location of

the target that appeared after a varying foreperiod. The distribu-
tion of the foreperiods varied between participants to create two
different hazard-rate functions. Finding that VFE and SE are in-
dependent of spatial attention would indicate that the spatiotem-
poral framework suggested to account for temporal expectation
does not account for these processes; finding otherwise would
support the link between cue-based and contextual temporal
expectations.

Materials and Methods
Participants. A total of 40 participants were included in this study,

20 in the uniform distribution group (12 females, 2 left-handed, mean
age 25.35 6 3.5 SDs) and 20 in the inverse-U-shaped distribution group
(13 females, one left-handed; mean age 24.55 6 4.0 SD). There were no
exclusions of participants. Sample size was determined according to a
pilot study consisting of 20 participants. A power simulation based on
this pilot study showed that with only n = 8, these three effects are
observed with 1� b = 0.84–.91. Because the pilot study used a higher
valid to invalid ratio (75%) and did not include an uninformative condi-
tion, we have decided to opt for a larger sample size of 20 participants, as
we did in previous studies on temporal expectations (Amit et al., 2019;
Abeles et al., 2020; Tal-Perry and Yuval-Greenberg, 2020, 2021). A
description of the pilot study and the power simulation is available from
the Open Science Foundation (OSF; see below, Data availability).
Participants received payment or course credit for their participation.
All participants were healthy, reported normal or corrected-to-normal
vision, and no history of neurologic disorders. The experimental proto-
cols were approved by the ethical committees of Tel Aviv University and
the School of Psychological Sciences. Before participation, participants
signed informed consent forms.

Stimuli. The fixation object consisted of a dot (0.075° radius) within
a ring (0.15° radius), embedded within a diamond shape (0.4 � 0.4°).
The edges of the diamond changed color from black to white, cuing
attention to the left side (two left edges became white) or right side (two
right edges became white) of fixation object, or remaining neutral in
respect to target location (all four edges became white; Fig. 1). The target
was a black asterisk (0.4 � 0.4°) presented at 4° eccentricity to the right
or left of fixation object. A 1000Hz pure tone was sounded for 60ms as
negative feedback following errors. Fixation object and target were pre-
sented on a midgray background.

Experimental design. Participants were seated in a dimly lit room,
with a computer monitor placed 100 cm in front of them (24 inch LCD
ASUS VG248QE, 1920 � 1080 pixels resolution, 120Hz refresh rate,
midgray luminance measured to be 110 cd/m2). During the experi-
ment, participants rested their heads on a chinrest. MATLAB R2015a
(MathWorks) was used to code and control the experiment, with
stimuli displayed using Psychophysics Toolbox version 3 (Brainard,
1997). Gaze position was monitored binocularly using the EyeLink
1000 Plus infrared video-oculographic desktop-mounted system (SR
Research) throughout the experiment, at a sampling rate of 1000Hz.
This system has 0.01° spatial resolution and an average accuracy of
0.25–0.5° when a chinrest is used, according to the manufacturer. A
nine-point calibration of the eye-tracker was performed before each
block and whenever necessary.

Each trial started with a central black fixation object, presented until
an online gaze-contingent procedure verified 1000 ms of stable fixation
(gaze was placed within a radius of 1.5° of screen center). Following this,
the edges of the fixation object changed color for 200ms to represent a
spatial informative or uninformative cue. After a varying foreperiod
(500/900/1300/1700/2100ms) the target was briefly (33ms) presented at
4° to the left or right of center, with target being congruent to a spatially
informative cue direction in 50% of trials (valid condition), incongruent
in 25% of trials (invalid condition), or neutral with respect to a spatially
uninformative cue in the remaining 25% of trials (uninformative condi-
tion). Participants were requested to press a key with their dominant
hand as quickly as possible, and after no longer than 1000ms, on target
detection. Between groups, participants were presented with the five
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foreperiods in either a uniform distribution
(20% probability for each foreperiod) or an
inverse-U-shaped distribution (a ratio of
1:2:3:2:1 among the five foreperiods, leading
to trial percentages of ;11, 22, 33, 22, and
11%, respectively). These prior distributions
resulted in different time-dependent condi-
tional probabilities, that is, different hazard-
rate functions, as depicted in Figure 2. The
manipulation of hazard rate was required to
differentiate its effect from other foreperiod
effects related to the WS, such as arousal
(Steinborn and Langner, 2012; Weinbach and
Henik, 2012). The different distributions were
examined in separate participant groups to
avoid carry-over effects of distribution learn-
ing (Mattiesing et al., 2017). Fixation was
monitored throughout the foreperiod, using
an online gaze-contingent procedure, and tri-
als that included� 1:5� gaze-shift for.10ms
during this period were aborted and repeated
at a later stage of the session. An error feed-
back tone was sounded when participants
responded before target onset or did not
respond within 1000ms following target onset.
These trials were not included in the analysis.
Trials in which participants responded before
target onset were reshuffled into the trial pool
and repeated at a later stage of the block. The
trial procedure is depicted in Figure 1.

Participants of the uniform distribution group performed 10 blocks
of 160 trials each, divided into two sessions of;1.25 h each. Participants
of the inverse-U-shaped distribution group performed 18 blocks of 144
trials each, divided into three sessions of ;1.25 h each. This number of
repetitions guaranteed that we have a minimum of 50 trials in all condi-
tions and for all foreperiods in each of the two distributions, and a large
enough number of trials to conduct a sequential analysis on pairs of con-
secutive trials. A short break was given after each block. Feedback on
performance in each block was provided at the end of each experimental
block and included mean RT and number of error trials (including both
missed trials or premature responses). Starting from the second experi-
mental block, participants were also presented with a message that
encouraged them to perform faster if the mean RT of the current block
fell below their global mean RT of the entire session. A practice block of
10 trials with random conditions was administered at the beginning of
each session.

Statistical analysis. A negligible number of trials with no response
(error trials; ,1% of all trials; mean 0.7% of trials per participant, range
0–2.16% of trials) were discarded from analysis. Additionally, trials with
response time below 150ms were considered unlikely to represent genu-
ine target-related responses (Keele and Posner, 1968; McLeod, 1987) and
were likewise discarded from analysis (,1% of all remaining trials;
mean 0.3% of trials per participant, range 0–2.2% of trials).

The RTs of the remaining trials were modeled using a generalized
linear mixed model (GLMM), assuming a gamma family of responses
with an identity link (see explanation below; Baayen and Milin, 2010; Lo
and Andrews, 2015). Unlike ANOVA, GLMM is suited for non-nor-
mally distributed variables, like the positively skewed RT distribution,
while also allowing to model trial-level covariates, thus increasing the
power of the analysis (Baayen and Milin, 2010). Hierarchical models are
also well suited for unevenly distributed trial numbers among condi-
tions, as is the case with the inverse-U-shaped distribution and the rela-
tion to the previous trial in the current study, by weighting the
population-level mean according to the number of samples included in
the subject-level means for each condition. An assumption of this analy-
sis is that the RTs follow gamma distribution. Gamma distributions are
suited to describe continuous responses that are zero bounded and have
a unimodal and rightward-skewed distribution (e.g., RTs). We further
assumed that the predictors are linearly related to the predicted RT, thus

an identity link was used (i.e., no transformation was made on the value
produced by the predictors; Lo and Andrews, 2015).

The following fixed effects were modeled: (1) linear and quadratic
terms for foreperiod duration to model the VFE; (2) cue (valid/invalid/
uninformative) to model the effect of spatial attention; (3) the FP-distri-
bution (uniform/inverse-U-shaped) to model the effect of the hazard-
rate function; (4) linear and quadratic terms for the relation to previous
trial to model SE, calculated as the difference between the current trial
foreperiod and the previous trial foreperiod, so that positive values indi-
cate the previous trial was shorter than the current trial and vice versa
for negative values; and (5) the interaction terms between foreperiod du-
ration, cue, and FP-distribution and between relation to previous trial,
cue, and FP-distribution. For the purpose of examining the relation
between spatial attention and each of the temporal structures, we
assumed no interaction between the relation to previous trial and fore-
period duration, for example, we assumed that the cost in performance
for a current trial of 500ms and previous trial of 900ms equals the cost
of a 900 and 1300ms pair of trials. It is acknowledged that this assump-
tion is a simplification and does not strictly hold in all cases (Possamai et

Figure 2. Target probability (bars) and hazard rate (conditional probability, dashed line)
for the uniform and inverse-U foreperiod distributions.

Figure 1. Trial progression. Each trial started with the presentation of a fixation stimulus that was presented until online
eye tracking confirmed a continuous 1 s of steady fixation. This was followed by a spatial cue that was invalid in respect to tar-
get location in 25% of trials (as depicted), valid in 50% of trials, and uninformative in 25% of trials. In two groups, foreperiods
were sampled from either a uniform or an inverse-U distribution. Participants were asked to make a single-button speeded
response within 1000 ms of target onset. An error tone was played when participants responded before target onset or failed
to respond within the time limit. For display purposes, stimuli are presented in this figure as larger and more eccentric than
they appeared in the experiment.
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al., 1973). To reduce computational complexity, all continuous factors
were z-scaled. To allow the computation of the relation to previous trial,
the first trial of each session for each participant was discarded from
analysis (total of 100 trials). Treatment contrasts coding scheme was
used for cue, with the uninformative condition set as the reference level,
and sum contrasts coding scheme was used for FP-distribution.
Statistical significance for main effects and interactions was determined
via a likelihood ratio (LR) test against a reduced nested model excluding
the fixed term (i.e., type II sum of squares). Statistical significance for pa-
rameter coefficients was determined according to the Wald z test (Fox,
2016).

In addition to the fixed effects, we considered the z-scaled cur-
rent trial number (i.e., the running trial identifier for the given ses-
sion) as a covariate to capture effects of fatigue and training along
the experiment (Baayen and Milin, 2010). Because the different ex-
perimental groups may have experienced different fatigue or train-
ing effects, we additionally considered the interaction between FP-
Distribution and trial number. Covariates were added to the model
if the extended model converged and was found to significantly
improve fit (p , 0.05) in an LR test against the model without the
covariate (Bates et al., 2015a).

The random effect structure of the model was selected according to
the model that was found to be most parsimonious with the data, that is,
the fullest model that the data permits while still converging with no sin-
gular estimates (Bates et al., 2015a), to balance between type I error and
statistical power (Matuschek et al., 2017). To do this, we followed a pro-
cedure suggested by Bates et al. (2015a). We started with the simplest
model, a random intercept-by-subject-only model, and then added ran-
dom slopes to it, first, random slopes for fixed terms by subject and their
correlation parameters, and then random interaction slopes by subject.
In each iteration, we examined whether the new model converged and
then used likelihood ratio test (using a ¼ :05) between the new and the
old model, to examine whether there is an improved fit over the previous
model and avoid overfitting. Models that failed to converge were
trimmed by the random slope with the least explained variance and were
retested. Finally, we tested whether the model supports random slopes
for the aforementioned covariates, using the same process. The full
model selection process is described in the R markdown file in the pro-
ject OSF repository (see below, Data availability).

To provide support for null results (p , 0.05), we additionally mod-
eled the data using a Bayesian GLMM with weakly informative priors
(Gelman et al., 2017) on the fixed and random effects of the model
(Nð0; 10Þ) and correlation (LKJ(2)) parameters, using the default mean
for the intercept (298), and using informative shape parameters (g (0.02,
12.0)) according to (Lo and Andrews, 2015). Posterior distributions
were constructed using four Markov chain Monte Carlo chains and
20,000 iterations per chain, with the first 2000 samples used as warmup.
The large number of iterations was required to calculate a stable Bayes
Factor (BF). BFs were calculated by comparing the marginal likeli-
hood between the full model and a nested null model, with

marginal likelihood estimated by 100 repeti-
tions of bridge sampling (Gronau et al., 2017).
BFs are reported with the null results in the
nominator (BF01 or logBF01 for BF01.100),
representing how much the data are supported
by the null model relative to the full model,
along with range and the proportional estima-
tion error as in Morey and Rouder (2018).

Analyses were performed in R version 4.0.3
using RStudio version 1.3.959 (https://www.r-
project.org/). Frequentist modeling was performed
using the lme4 (Bates et al., 2015b) package,
Bayesian modeling was performed using the brms
package (Bürkner, 2017), and additional model
diagnostics were performed using the performance
package (Lüdecke et al., 2021). An R markdown
file describing all the model fitting steps and diag-
nostic checks on the final model is available at the
OSF repository for the project (see below, Data
availability).

Data Availability. The datasets generated by this study and an R
markdown file that reproduces all the reported modeling, statistical anal-
yses, and graphs in the article are uploaded to the Open Science
Foundation repository and are available at https://osf.io/25gzj.

Results
RTs were modeled using a GLMM with FP-distribution (uni-
form/inverse-U-shaped) as a between-subject fixed term and FP-
duration (continuous), relation to previous trial (continuous),
and cue (valid/invalid/uninformative) as within-subject fixed
terms, as well as the full interaction terms between FP-duration,
FP-distribution, and cue, and between relation to previous trial,
FP-distribution, and cue. Trial number and the interaction
between trial number and FP-distribution were added as covari-
ates, and we allowed for a random intercept and a random slope
for the linear term of FP-duration and cue by participant.

Effects of foreperiod and spatial attention
Results showed that the VFE, the decrease in RT as foreper-
iod increases, changed with distribution, for each of the
cues (Fig. 3). We observed a significant main effect for FP-
duration (x 2 2ð Þ ¼ 864:59; p,0:001), with negative linear
and positive quadratic terms, consistent with the classic effect of
foreperiod on RT and its expected shape. We additionally observed
a main effect for cue (x 2 2ð Þ ¼ 19:90; p,0:001), indicating the
expected effect of spatial attention on RT. This effect was reflected
by a large benefit in RT for valid versus uninformative cues
(b ¼ �10:146; t ¼ �12:582; p,0:001) as well as a smaller
but significant cost for invalid versus uninformative trials
(b ¼ 2:666; t ¼ 2:530; p ¼ 0:011). Most importantly, for the
purpose of this study, we found no significant interaction
between cue and FP-duration (x 2 4ð Þ ¼ 5:862; p ¼ 0:210),
indicating that the effect for cue did not vary with foreper-
iod and supporting the hypothesis that spatial attention
does not affect the VFE.

Effects of the distribution shape
The between-group variable of FP-distribution (uniform/
inverse-U-shaped) was used to assess the involvement of
expectations based on the prior and posterior foreperiod
distribution on the VFE and the relation of this effect to
spatial attention. Findings showed no main group effect of
FP-distribution on RT (x 2 1ð Þ ¼ 0:601; p ¼ 0:435), indicat-
ing that both groups had similar overall RT. However, there

Figure 3. Effect of hazard-rate function on RTs. Mean RT for the uniform (left) and inverse-U-shaped (right) distribu-
tions. Each graph depicts group-averaged mean reaction time (colored dots) with second degree polynomial fit (colored
lines). Error bars indicate SE 6 1 from the group mean, corrected to within-subject variability (Cousineau and O’Brien,
2014). N = 20 for each group.
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was a significant interaction between FP-distribution
and FP-duration (x 2 2ð Þ ¼ 102:68; p,0:001Þ, indi-
cating that consistently with previous findings
(Trillenberg et al., 2000; Cravo et al., 2011), the effect
of foreperiod on RT was modulated by the prior dis-
tribution from which they originated. Importantly for
the goal of this study, there was no evidence that this
effect of FP-distribution on FP-duration was modu-
lated by the validity of the cue as reflected by an insig-
nificant interaction among cue, FP-distribution, and
FP-duration (x 2 4ð Þ ¼ 4:699; p ¼ 0:320). This sug-
gests that the effect of the FP distribution on the VFE
was independent of spatial attention. As expected, no
significant interaction was found between cue and FP-
distribution (x 2 2ð Þ ¼ 0:050; p ¼ 0:975).

Sequential effects
To test for the existence of SEs, we calculated the
difference between the FP-duration of one trial and
the FP-duration of the previous trial (FPcurrent � FPprevious).
Consistent with previous studies (Alegria and Delhaye-
Rembaux, 1975; Niemi and Näätänen, 1981), results showed an
asymmetrical sequential effect on RTs in that RTs were slower
when the current trial was shorter than the previous trial (Fig. 4,
negative values) but were not affected when the opposite was
true (Fig. 4, positive values), leading to a quadratic relation with
RT (x 2 2ð Þ ¼ 1644:5; p,0:001). The lack of effect when a trial is
longer was explained by dual-process models of temporal prepa-
ration to result from the combined contribution of sequential
and conditional probabilities effects. Sequential effects errone-
ously guide expectations toward an early timing leading to lower
performance, but given that the target has not appeared at the
earlier time, the conditional probability increases and expecta-
tion grows following the hazard-rate function, leading to higher
performance (Vallesi and Shallice, 2007; Vallesi et al., 2013).
Alternatively, this asymmetry could be explained by the aggre-
gated activity of several previous memory traces and the slow
dissipation of this activity over the trials (Los et al., 2014, 2021).
Combined, the result is no enhancement or decrement of per-
formance at late time points. Additionally, results revealed that
this effect was significantly modulated by the FP-distribution
(x 2 2ð Þ ¼ 28:924; p,0:001), with linear component being more
negative for the inverse-U compared with the uniform distribu-
tion. This finding, also consistent with previous findings (Niemi
and Näätänen, 1981), can be interpreted as reflecting the involve-
ment of the hazard-rate function in this effect. Alternatively, it
could be explained as reflecting the combined effect of multiple
preceding trials (Los et al., 2001; Steinborn and Langner, 2012).
Generally, these findings demonstrate that expectations based on
the distribution shape and effects of previous trials each had a
unique contribution to the resulting RTs, along with a synergetic
effect between them.

We next tested whether these effects were modulated by spatial
attention by examining the interaction between them and cue.
Results showed no significant interaction between relation to previ-
ous trial and cue (x 2ð2Þ ¼ 1:177; p ¼ 0:882), nor a significant
three-way interaction among relation to previous trial, FP-distribu-
tion, and cue (x 2ð4Þ ¼ 2:585; p ¼ 0:630). Both results suggest that
as the VFE, sequential effects are independent of the spatial locus of
attention.

Model estimates for all fixed factors described are depicted in
Figure 5. Model estimates for covariates and additional model

information can be found online in the project OSF repository
(see above, Data availability).

Bayesian modeling
Our results indicated that there was no evidence for a three-way
interaction among cue, FP-distribution, and FP-duration, as well
as no three-way interaction among cue, FP-distribution, and
relation to previous trial. To examine whether the evidence sup-
ports these null results, we constructed a Bayesian GLMM using
the same model terms. Model estimates closely resembled the
coefficients found in the frequentists model. We compared the
resulting Bayesian model with two nested models, each lacking
the corresponding three-way interaction term. Results showed
large support for the null model lacking the FP duration three-
way interaction term compared with the full model (mean
logBF01 = 8.483 6 0.002%, range 8.289–8.681), and similarly
large support was observed for the null model lacking the rela-
tion to the previous trial three-way interaction term compared
with the full model (mean logBF01 ¼ 9:9696,0:001%, range
9.731–10.146). Both results support the conclusion that temporal
expectations based on VFE and SE are independent of spatial
attention. Additional modeling information can be found online
(see above, Data availability).

Discussion
In this study we examined whether the spatiotemporal model
that was proposed to account for cue-based temporal expectation
also carries for temporal expectation based on contextual infor-
mation, that is, the VFE and SE. As expected, findings showed
the VFE with RT decreasing as the foreperiod increases. This
VFE changed according to foreperiod distribution. In addition,
we found the expected asymmetrical SE, slower RTs for trials in
which the foreperiod was longer than their previous trial, and no
opposite effect for trials in which the foreperiod was shorter than
the previous trial. Critically, all these effects were unaffected by
spatial attention. Similar modulations of expectations were found
in both attended and unattended spatial locations. This indicates
that temporal expectations based on contextual information—
the VFE and SE—are independent of spatial attention.

The spatiotemporal model of temporal expectation
Doherty et al. (2005) were the first to demonstrate an interaction
between cue-based temporal and spatial attention in early visual
event-related potentials (ERPs) components. They presented

Figure 4. Sequential effect on RTs. Mean RT for the uniform (left) and inverse-U-shaped (right) distributions,
with x-axis depicting the sequential effect (difference between current (FPn) and previous (FPn-1) trial foreper-
iod). Each graph depicts group-averaged mean reaction time (colored dots) with second-degree polynomial fit
(colored lines). Error bars indicate SE 6 1 from the group mean, corrected to within-subject variability
(Cousineau and O’Brien, 2014). N = 20 for each group.
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participants with moving objects that disappeared behind an
occluder and reappeared in an expected or unexpected location
and/or time. Participants were requested to indicate whether a
target was presented on the reappearing object. Findings showed
that when a target appeared at an expected location, the early
visual P1 component was increased relative to an unexpected
location, with enhanced effect when the target also appeared
at the expected time. However, when a target appeared at the
expected time but not the expected location, there was no enhance-
ment relative to a neutral condition, suggesting that early perceptual
benefits of temporal attention depend on the allocation of spatial
attention. This spatiotemporal synergism was not found in later
ERP components, such as the P3, considered to be less affected by
perceptual processes and more by response requirements, and not
in RTs.

In a later study by Rohenkohl et al. (2014), symbolic spatial
and/or temporal cues predicted with 80% validity the time and
location of a grating-patch target, for which participants were
requested to perform a nonspeeded orientation discrimination
task. Findings showed that valid temporal cues improved both
RT and perceptual sensitivity relative to invalid cues but that this
effect was limited to trials where spatial attention was focused at
the location of the target. These findings provided, again, evi-
dence for a strong synergistic interaction between temporal and
spatial expectations in a discrimination task. Consistently, evi-
dence by Seibold et al. (2020) showed that temporal attention
boosts the effect of spatial attention on early ERP components in
a visual search task.

This evidence of a tight link between spatial attention and
cue-based temporal expectation led Nobre and van Ede (2018) to
propose their spatiotemporal neurophysiological model, accord-
ing to which the interaction between spatial and temporal proc-
esses stems from time-specific synchronization of spatially
specific neural populations at the attended retinotopic receptive
fields. These neurons, coding the attended location and relevant
features, acquire a temporal structure from repeated exposure to
the temporal cues, which affects them but not populations out-
side the receptive field (Nobre and van Ede, 2018). This model
was developed based on evidence on cue-based expectation and
was never before examined for other sources of temporal expect-
ations. The present evidence indicates that expectation effects
based on contextual information (VFE and SE) do not depend
on spatial attention, suggesting that these forms of expectation
cannot be explained by this spatiotemporal mechanism.

This further suggests that cue-based temporal expectation
and temporal expectation which are driven by contextual infor-
mation and are often described as two manifestations of the
same expectation process, likely rely on distinct neural mecha-
nisms. This evidence is consistent with studies that dissociated
VFE and cue-based temporal expectation and found that these
two sources of expectations share some, but not all, of their
underlying brain networks (Lima et al., 2011; Coull et al., 2016;
Amit et al., 2019). More generally, this conclusion is compatible
with the increasing recognition that there is no single unified ex-
pectation mechanism but that distinct sources of temporal
expectations facilitate performance via distinct neural mecha-
nisms (van Ede et al., 2020).

Spatiotemporal synergism and cue-based expectations
It is important to note, however, that evidence regarding the de-
pendency, or lack thereof, of cue-based temporal expectation on
spatial attention is ambivalent. In addition to the supporting evi-
dence described above, a few studies provided evidence challeng-
ing this interaction. For example, one study investigated the
combined influence of temporal, spatial, and feature-based atten-
tion and found no synergetic effects between spatial and tempo-
ral attention (Rolke et al., 2016). Another study (MacKay and
Juola, 2007) used a visual search task in a rapid stimulus visual
presentation stream of letters and showed that both spatial and
temporal types of cues were effective on their own and that their
combined effect was additive, indicating there was no interaction
between temporal and spatial attention. In a later study,
Weinbach et al. (2015) used a spatiotemporal cuing paradigm
and showed that temporal cuing improves RT even when
coupled with an invalid spatial cue. Moreover, there was no
interaction between the effect of the temporal and the spatial
cues, indicating that enhancement resulting from temporal atten-
tion was not affected by spatial attention. The authors noted that

Figure 5. Model estimates. Forest plot of fixed factors estimates, modeled using a GLMM,
assuming a gamma response family and identity link function (estimates are given in ms
units) and depicting mean in respect to the reference level (uninformative cue type). All con-
tinuous factors were scaled and centered. Positive values are depicted in blue and negative
values in red. Horizontal lines depict 95% Wald confidence intervals. Dashed vertical line cen-
tered at zero-sized estimate. Valid and invalid terms are relative to uninformative cue condi-
tion. FPL, Linear component of Foreperiod duration; FPQ, quadratic component of Foreperiod
duration; Dist, FP-Distribution; SeqL, linear component of Sequential effect; SeqQ, quadratic
component of Sequential effect. Cov, covariate. Interaction terms denoted by X.
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the discrepancy between their findings and previous findings
may have stemmed from differences in task demands, and
whereas most previous studies used demanding perceptual-dis-
crimination tasks, Weinbach et al. (2015) used a speeded-RT
detection task. In the present study, we have also used a speeded
detection task and therefore cannot rule out the possibility that
the effect we have observed is specific to speeded easy tasks.
However, we note that all previous studies that manipulated the
foreperiod distributions to study VFE have either used very easy
tasks (Trillenberg et al., 2000; Cravo et al., 2011; Mattiesing et al.,
2017; Grabenhorst et al., 2019; Los et al., 2021) or have not
reported accuracy rates (Herbst et al., 2018), with the exception
of one study that has measured the effect of foreperiod distribu-
tion on perceptual speed (Vangkilde et al., 2013). This raises the
hypothesis that the VFE depends on a speeded response to an
easy task. If this is the case, it would constitute another inherent
dissociation between cue-based and contextual temporal expec-
tation. However, with the present data in our hands, we cannot
confirm or rule out this hypothesis or determine the link
between task difficulty and independency of spatial attention.

Temporal attention and temporal expectation
The apparent discrepancies among different findings on spatio-
temporal dependency could be accounted for by the dissociation
between attention and expectation processes. According to one
view, described in Summerfield and Egner (2009), expectation
reflects the narrowing down of the probability space of possibil-
ities constructed according to prior knowledge, whereas atten-
tion is the selection of specific, goal-relevant information that
should be prioritized. Both attention and expectation coexist and
are often entangled; for example, cuing to the left visual field
increases our expectation of encountering a target at that location
and induces a shift of attention that prioritizes information on that
particular visual space. Tailored experimental designs can dissociate
attention and expectation, as was demonstrated in visual spatial
attention and feature attention studies (Summerfield and Egner,
2009, 2016; Kok et al., 2012).

Similar to spatial cues, temporal cuing paradigms often create
a symbolic association between a certain cue and a specific target
onset time. Thus, the onset of the cue induces an attentional shift
that prioritizes information processing around the cued time
interval. In addition, in these designs, the repeated exposure to
target onset after a cue changes the probability space and induces
temporal expectation, which is independent of attention accord-
ing to the definition described above (Summerfield and Egner,
2009). Therefore, according to this view, in these designs, tempo-
ral attention often coincides with temporal expectation, although
specific experimental designs can dissociate these functions
(Denison et al., 2019, 2021). Contextual information narrows
down the probability space and therefore can be viewed as a
source of temporal expectation. This narrowing down of the
probability space can be based on exposure to recent previous
trials or on the activation of a memory trace of prior, even not so
recent experiences (Mattiesing et al., 2017). In a series of studies,
Los et al. (2001, 2014, 2017, 2021) presented the multiple trace
theory of temporal preparation, suggesting that the basis for the
VFE is not conditional probabilities but the activation of mem-
ory traces of previous trials. Furthermore, Los et al. (2021)
showed that different cues can be associated with memory traces
of different temporal distributions, thereby modifying temporal
preparation according to cue identity. Arguably, regardless of
whether the probability space is gathered from very recent expe-
riences or based on a memory trace associated with a cue, both

the VFE and SE could be the result of redefining a probability
space rather than focusing attention on a specific time point.

We hypothesize that this proposed dissociation between ex-
pectation and attention could account for the discrepancies
among previous studies on the spatiotemporal dependency, with
temporal attention being spatially specific and temporal expecta-
tion remaining independent of the spatial locus of attention.
This, in turn, could explain the results observed here, that is,
because the hazard rate and sequential manipulations affect only
temporal expectation and not attention, their manifestations
were free of spatial constraints.

Conclusions
We conclude that the benefits of contextual temporal expectation
are not spatially specific but rather reflect a general nonspecific
enhancement that is not accompanied by shifts of attention.
Furthermore, we suggest that the spatiotemporal neurophysio-
logical model proposed by Nobre and van Ede (2018) to explain
cue-based expectation cannot account for the VFE and SE and
their link with temporal expectation. Future studies are encour-
aged to examine the dissociation between different mechanisms
of temporal expectation and to refine the terminology to reflect
this dissociation.
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