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Stimuli that evoke the same feelings can nevertheless look different and have different semantic meanings. Although we
know much about the neural representation of emotion, the neural underpinnings of emotional similarity are unknown. One
possibility is that the same brain regions represent similarity between emotional and neutral stimuli, perhaps with different
strengths. Alternatively, emotional similarity could be coded in separate regions, possibly those sensitive to emotional valence
and arousal. In behavior, the extent to which people consider similarity along emotional dimensions when they evaluate the
overall similarity between stimuli has never been investigated. Although the emotional features of stimuli may dominate
explicit ratings of similarity, it is also possible that people neglect emotional dimensions as irrelevant to that judgment. We
contrasted these hypotheses in (male and female) healthy controls using two measures of similarity and two picture databases
of complex negative and neutral scenes, the second of which provided exquisite control over semantic and visual attributes.
The similarity between emotional stimuli was greater than between neutral stimuli in the inferior temporal cortex, the fusi-
form face area, and the precuneus. Additionally, only the similarity between emotional stimuli was significantly represented
in early visual cortex, anterior insula and dorsal anterior cingulate cortex. Intriguingly, despite the stronger neural similarity
between emotional stimuli, the same participants did not rate them as more similar to each other than neutral stimuli. These
results contribute to our understanding of how emotion is represented within a general conceptual workspace and of the
overgeneralization bias in anxiety disorders.
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Significance Statement

We tested differences in similarity between emotional and neutral scenes. Arousal and negative valence did not increase simi-
larity ratings. When conditions were equated on semantic similarity, participants rated emotional stimuli as similar to each
other as neutral ones. Despite this equivalence, the similarity among the neural representations of emotional compared with
neutral stimuli was higher in regions, which also expressed similarity between neutral stimuli and in unique regions. We
report a striking difference between behavioral and neural similarity; strong neural similarity between emotional pictures did
not influence similarity judgements in the same participants in the behavioral rating task after the scan. These findings may
have an impact on research about the neural representations of emotional categories and the overgeneralization bias in anxi-
ety disorders.

Introduction
We may judge an image of a homeless person and of a car acci-
dent as different because of their different meanings or as similar
because both evoke negative feelings. Emotional similarity refers
to the tendency to group stimuli because they evoke the same feel-
ings (Riberto et al., 2019). The extent to which similarity along
emotional dimensions influences perceived similarity between
complex experiences is unknown. It is important to understand
the effect of emotion on similarity because aberrant similarity per-
ception influences psychological well-being (Puccetti et al., 2021)
and is clinically relevant in anxiety and post-traumatic stress disor-
ders (Laufer et al., 2016). For example, after a traumatic event,
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patients may consider later experiences to be similar to the original
fearful one, not because of their ostensible meaning but because of
their emotional similarity.

All stimuli can be described according to their location on or-
thogonal dimensions, valence, and arousal, with their proximities
reflecting aspects of their relationship (Russell, 1980). This per-
spective suggests that entirely neutral stimuli, at the origin of the
axes, may be perceived to be just as similar as stimuli at the
extremes. Yet, similarity inferred from single-stimulus judge-
ments on single attributes (e.g., shape, valence) rarely explains
more than half the variance in explicit ratings of similarity
(Iordan et al., 2017). Indeed, highly arousing negative stimuli
may be perceived less similar to each other than neutral ones if
they evoke qualitatively different emotions (e.g., fear, anger).
Previous comparisons reveal increased ratings of similarity
among negative pictures than among randomly selected neutral
pictures (Talmi, 2013) and among positive than negative stimuli
(Koch et al., 2016). Unfortunately, previous rating studies used
semantically related emotional stimuli, thereby confounding
emotion and semantic similarity. Nevertheless, in conditioning
paradigms, where semantic similarity is not a confound, wider
generalization of aversively conditioned stimuli has been
observed (Laufer and Paz, 2012). Therefore, we hypothesized
that negative emotional stimuli will be perceived as more similar
than neutral stimuli.

Neuroimaging studies observed low specificity for discrete
emotions and provided evidence against a locationist perspective
to the study of emotions (Hoemann et al., 2019). Instead, emo-
tional stimuli are likely represented in distributed networks of
cortical and subcortical regions, which are not functionally spe-
cific to affect (Chang et al., 2015) but carry out emotion-relevant
computations, for example, the occipitotemporal regions, visual-
semantic processing of emotional and neutral categories (Kragel
et al., 2019); the insula and the anterior cingulate cortex (ACC),
awareness of bodily sensations and visceral regulation necessary
for a core affective state representation; and the ventral prefron-
tal cortex, positive valence (Lindquist et al., 2012). No previous
work has directly compared the neural underpinnings of emo-
tional and neutral similarity for complex, realistic stimuli, but a
handful of studies used simple stimuli. Representational similar-
ity analysis (RSA) maps similarity perception in the brain by cor-
relating neural and behavioral data (Kriegeskorte et al.,
2008a). This technique revealed increased neural similarity
between conditioned stimuli in the amygdala (Visser et al.,
2013), the occipitotemporal cortex (Dunsmoor et al., 2014),
and the superior frontal gyrus (Visser et al., 2011), and
increased similarity between stimuli that predict reward
(Zeithamova et al., 2018) and pain (Wagner et al., 2020) in
the hippocampus. In following with this theoretical and em-
pirical work, we hypothesized that neural similarity will dif-
fer as a function of stimulus emotionality. Specifically, we
hypothesized that the neural similarity among emotional
stimuli will be greater than among neutral stimuli express-
ing the predicted pattern of behavioral ratings. Emotion
may increase neural similarity in any regions that encode
participants’ self-reported similarity space but may do so
more strongly in regions that serve emotion-relevant
operations.

We tested these hypotheses in a series of experiments that
present several strengths compared with the state of the art. We
used different similarity judgement tasks and picture databases,
one of which permitted for the first time control over taxonomic
and thematic similarity and narrowed our search volume
through innovative searchlight approaches.

Materials and Methods
Participants
A total of 90 participants were recruited from the University of
Manchester in the United Kingdom and from the Weizmann Institute of
Science in Israel to take part in the study (age range, 20 –54 years; mean
age, 30.14 years; SD, 7.17; experiment 1; 20 participants, 10 females;
experiment 2: 40 participants, 20 females; experiment 3: 29 participants,
12 females; one participant was excluded for not following the instruc-
tions of the task). The sample size was selected according to previous
publications in this research field (Charest et al., 2014; Chikazoe et al.,
2014; Giordano et al., 2021). All participants had normal or corrected-
to-normal vision and were over the age of 18. They gave informed con-
sent before the experiment and have been reimbursed for their participa-
tion (5£ for the behavioral experiments, 22£ for the MRI experiment).
The exclusion criteria were the following: a history of neurologic (e.g.,
head injury or concussion) or psychiatric conditions (e.g., depression,
anxiety), drug or alcohol abuse, or regular medication that could influ-
ence emotional processing. The study was approved by the ethics board
of the University of Manchester and of the Weizmann Institute of
Science (protocol number 0287–09-TLV).

Materials
First database of complex pictures
In experiment 1, we selected 20 images taken from the Nencki Affective
Picture System (NAPS) database (Marchewka et al., 2014). Picture IDs
that we selected in experiment 1 are reported in Extended Data Figure 2-
1. NAPS has been validated for use in emotional research (Wierzba et
al., 2015; Riegel et al., 2016) and consists of 1356 realistic, high-quality
photographs divided into five categories (people, faces, animals, objects,
and landscapes). To control for visual similarity, we matched the pic-
tures for low-level visual features, which unlike subjective ratings of vis-
ual complexity, are not affected by the arousal complexity bias (Madan
et al., 2018) and by the vividness bias (Todd et al., 2013). These measures
included the luminance (the average pixel value of the greyscale image)
and the contrast (the SD across all the pixels of the greyscale image; Bex
and Makous, 2002). To quantify the colors within each image, we com-
puted the quantity of red (R), green (G), and blue (B), according to the
RGB color model. Finally, the JPEG size and the entropy of each grey-
scale image were used as indices of the overall visual complexity of each
image (Donderi, 2006). The JPEG size was determined with a compres-
sion quality setting of 80 (on a scale from 1 to 100). Perceptually simple
images are highly compressible and therefore result in smaller file sizes.
The entropy, H, is computed from the histogram distribution of the 8-
bit gray-level intensity values x, H = –Rp(x)log p(10), where p represents
the probability of an intensity value x. H varies with the randomness of
an image. High-entropy images are noisier and have a high degree of
contrast from one pixel to the next, whereas low-entropy images have
rather large uniform areas with limited contrast. The sample of images
included 10 emotional and 10 neutral images. The designation of images
to this category was based on the NAPS ratings of valence and arousal
on a 9-point scale provided by 204 European participants. We consid-
ered emotional pictures as rated ,4 in the valence scale (negative va-
lence) and .6 in the arousal scale (high arousal), whereas the neutral
images ranged from 4 to 6 in both dimensions. To validate the NAPS
norms, we also asked our participants to rate the valence and the arousal
of the picture before the main task. Extended Data Figure 2-1 shows the
picture IDs from the NAPS database (people category), divided into
emotional and neutrals. Table 1 shows the mean and the SD of the dif-
ferent visual and emotional measures for emotional and neutral pictures,
as well as the differences between them. We controlled to some extent
for semantic similarity, namely, the similarity both in the theme (e.g., vi-
olence) each picture depicts, other categories it belongs to (e.g., outdoor
scene), and its specific meaning. With this aim, we choose images that
included more than one person in an outdoor scene from the same cate-
gory—the people category. These images contain a lot of information
beyond the people themselves, placing them in a rich and realistic con-
text. The matching we achieved between emotional and neutral condi-
tions exceeds that in most published studies and represents the current
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state of the art in controlling emotional and neutral stimuli in research.
However, the range of emotional themes was reduced compared with
that in the neutral set. Therefore, emotional pictures might be rated as
more similar because of the higher thematic similarity compared with
neutrals.

Second database of complex pictures
In experiments 2–3, to control the emotional and neutral pictures for
thematic similarity, we selected natural scenes in a way that all the cate-
gories depicted realistic events that do not co-occur in the environment.
In particular, we chose 72 real-world color photographs using Google
images that represented one or more people in outdoor situations. We
divided them into four categories according to the scene that was
depicted, resulting in 18 images per category. Two of the categories were
neutral, and two were emotionally arousing and negatively valenced.
These latter categories represented either poverty scenes [emotional cat-
egory 1 (E1)] or car accidents [emotional category 2, (E2)]. The neutral
categories portrayed either people hanging laundry to dry [neutral cate-
gory 1 (N1)] or talking on the phone [neutral category 2 (N2)]. The full
set of pictures can be found at in Extended Data Figure 3-1. We mini-
mized the thematic similarity between emotional categories by selecting
for each of the emotional categories action-context combinations that do
not normally occur in a common theme or scenario. The same was true
for the two neutral categories. To control for taxonomic similarity to
some extent, all the pictures we selected shared two semantic features,
they depicted people outdoors. Second, we controlled the pictures for
affordance, namely the action that a scene can afford, by selecting pic-
tures that depicted only one type of action—and therefore affordances—
in each category. Specifically, in E1, people sit on the ground while beg-
ging; in E2, accident victim(s) lie either on a surface (the ground or a
crashed car); in N1, people stand hanging and drying clothes; and in N2,
they stand or walk in the street talking on the phone. Although these
actions and affordances differed across the four categories, the design
ensures that these differences did not influence comparisons across the
two neutral and two emotional categories. Finally, we controlled the
stimuli for visual properties, as in experiment 1. An independent sample

of 10 healthy participants rated the valence and the arousal of the stim-
uli, and another independent sample of 20 participants judged the simi-
larity of the pictures. Table 2 shows the mean and SD of visual and
emotional measures for each category as well as the differences among
them. Table 3 shows the mean and SD of similarity measures within and
between categories, as well as the differences among them.

Experimental design
A graphical representation of the general experimental design is shown
in Figure 1. In all the experiments, we asked participants to judge the
similarity of a set of complex pictures to test our main hypothesis for the
behavioral data, that the perceived similarity between emotional com-
pared with between neutral pictures will be higher. As shown at the top
of Figure 1, in the first two experiments participants performed a pair-
wise similarity rating task. In experiment 1, after rating the valence and
arousal of each picture from the first dataset, participants rated all the
possible combinations among the stimuli. In experiment 2 we focused
on the ratings of interest (Fig. 1, bottom, red circles), and therefore par-
ticipants only rated the similarity between emotional categories (E12)
and between neutral categories (N12) of pictures from the second data-
set, as well as between emotional and neutral categories (EN), with the
latter pairs serving as catch trials. Experiments 1–2 ended after;20 min.
In experiment 3, after an fMRI scan, participants performed a surprise
multiarrangements (MA) task to judge the similarity of the 72 pictures
on a bidimensional space, as depicted at the top right of Figure 1 (dura-
tion;1 h).

Valence and arousal rating task
The two dimensions of valence and arousal are considered to be key to
the conceptual representation of semantic concepts as well as emotional
stimuli. Therefore, we used these for stimulus selection so that those
selected for the emotional condition differed from those selected for the
neutral condition along both valence and arousal dimensions. To vali-
date the designation of pictures from the two datasets to emotional and
neutral conditions, participants completed a valence and arousal rating
task, following the procedure suggested by Lang et al. (2008). Each trial

Table 2. Differences in visual and emotional measures among categories

Categories Statistics

E1 E2 N1 N2 F p h p
2

Luminance 105.39 6 21.37 95.68 6 26.27 106.45 6 29.79 106.22 6 25.11 0.73 0.54 0.31
Contrast 58.63 6 10.80 62.52 6 6.09 64.99 6 11.12 63.54 6 12.69 1.22 0.31 0.05
R 115.07 6 20.73 98.84 6 26.71 114.15 6 31.11 109.28 6 26.30 1.47 0.23 0.06
G 102.18 6 21.99 94.14 6 26.23 104.88 6 30.71 105.40 6 26.07 0.70 0.55 0.03
B 96.50 6 23.29 95.35 6 28.25 94.32 6 28.11 102.96 6 28.94 0.37 0.77 0.02
JPEG 66701.89 6 11078.33 63614.83 6 11967.82 59643.05 6 12220.83 67011.28 6 28005.71 0.70 0.55 0.03
Entropy 7.58 6 0.25 7.56 6 0.26 7.54 6 0.29 7.52 6 0.22 0.20 0.90 0.00
Valence 2.91 6 1.42 1.97 6 1.02 4.91 6 0.26 5.13 6 0.30 46.93 0.00 0.84
Arousal 6.64 6 1.40 7.74 6 1.34 4.72 6 1.37 4.53 6 1.26 27.37 0.00 0.75

The mean and SD of each measure are shown, as well as the F and p values and the partial h squared for each difference. E1, emotional category 1 (poverty scenes, n = 18); E2, emotional category 2 (car accidents, n =
18); N1, neutral category 1 (laundry scenes, n = 18); N2, neutral category 2 (telephone scenes, n = 18; experiments 2–3).

Table 1. Differences in visual and emotional measures between emotional (n = 10) and neutral (n = 10) pictures (experiment 1)

Categories Statistics

Emotional Neutral t p d

Visual measures Luminance 89.42 6 27.31 110.13 6 36.06 �1.45 0.16 �3.68
Contrast 61.97 6 1.16 62.19 6 1.14 -0.49 0.96 �0.07
R 93.24 6 26.06 111.62 6 26.67 �1.48 0.17 �3.48
G 88.99 6 27.92 110.12 6 37.84 �1.41 0.19 �3.69
B 82.58 6 26.54 105.95 6 41.24 �1.56 0.15 �4.04
JPEG 337121.90 6 90579.45 27707.50 6 69785.15 1.66 0.11 3.86
Entropy 7.50 6 0.28 7.49 6 0.24 0.11 0.91 0.02

Emotional measures Valence 1.985 6 0.743 4.840 6 0.976 �10.22 0.000** �3.09
Arousal 7.170 6 1.389 4.840 6 1.219 8.93 0.000** 2.04

The mean and SD of each measure are shown, as well as the t and p values and Cohen’s d as effect size measure for each difference; **pFWE , 0.001.
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started with a central fixation cross for 500ms. Then, participants viewed
one of the images presented in the center of the screen and rated each
pictures on two 9-point scales (valence scale: 1, negative emotions; 9,
positive emotions; 5, neutrals; arousal scale: 1, relaxed; 9, aroused; 5 neu-
tral). We instructed participants to respond as quickly as possible by
clicking the appropriate number key and informed them that there was
no right or wrong answer. Pictures from the first dataset were rated by

participants in experiment 1 before commencing that experiment, and
the ratings of pictures from the second dataset were completed by a sepa-
rate group of participants.

Behavioral measures of similarity
The data from the behavioral experiments were used as measures of per-
ceived similarity, that is, similarity ratings in experiments 1–2 and

Table 3. Differences in dissimilarity among categories (validation study)

Dissimilarity
within category

Dissimilarity
between categories

E1 E2 N1 N2 E12 N12 EN

0.004 6 0.002 0.003 6 0.003 0.004 6 0.003 0.004 6 �0.003 0.017 6 0.003 0.019 6 0.002 0.0246 0.001
Statistics
Manipulation check

Statistics
Main HP

F p h p
2 F p h p

2

292.56 ,0.001 0.94 4.11 0.06 0.18

The mean and SD of each condition of interest are shown, as well as the F and p values and the partial h squared for each difference. Dissimilarity within, E1, emotional category 1 (poverty scenes, n = 18); E2, emotional
category 2 (car accidents, n = 18); N1, neutral category 1 (laundry scenes, n = 18); N2, neutral category 2 (telephone scenes, n = 18). Dissimilarity between, E12, emotional categories; N12, neutral categories; EN, emotional
and neutral categories.

Figure 1. Graphical representation of the experimental procedure. In experiments 1 and 2, participants performed the same behavioral task. They were presented with a pair of pictures and
rated their similarity on a 7-point scale (low to high similarity). In experiment 1, participants judged all the possible combinations from the first database, which consisted of 20 complex pic-
tures (10 emotional and 10 neutral) selected from the NAPS. We expected as the main finding lower dissimilarity (higher similarity) between EE and NN pictures. In experiment 2, participants
judged the similarity between emotional and neutral pictures from the second database. It consisted of 72 pictures from four semantic categories (18 pictures in each category), two emotional
(E1 and E2) and two neutral (N1 and N2). Participants only rated E12, N12, and a few EN pairs only; E12 represented the similarity between E1 and E2, N12 between N1 and N2, and EN
between emotional and neutral pictures. We expected lower dissimilarity (higher similarity) in the former. In both experiments 1 and 2, EN comparisons served as manipulation checks. The
same database was used in experiment 3, wherein participants first judged the subjective visual complexity of each picture during an fMRI) scan and then judged the similarity among all the
pictures by arranging them in a circular arena. We tested the same hypothesis as in experiment 2, and extended it also to the neural data. The violet square in the dissimilarity matrix repre-
sents the emotional similarity space and the green one the neutral similarity space.
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Euclidean distance in experiment 3. To make sure that the behavioral
findings were independent of the specific instructions participants were
given we used two separate task instructions (pairwise ratings in experi-
ment 2, multiarrangement in experiment 3).

Pairwise similarity rating task
In experiments 1–2, participants rated the similarity of paired pictures
on a 7-point scale (1 = low similarity, 7 = high similarity). In experiment
1, they rated all possible pairwise combinations (190 pairs), resulting
from the database of 20 complex pictures. In experiment 2, because of
the time constraint, we divided the 72 pictures into two subsets (even
and odd, n = 36 within each subset); in addition, we focused on pairs in
E12 and N12 as well as some in EN as catch trials (total pairs = 170; 81
in both E12 and N12, and 8 in EN). We chose the pairwise presentation
because each pair is independently rated, and also small differences in
similarity judgements can be detected, compared with a triad forced-
choice similarity task, wherein only binary responses are provided
(Miller, 1994; Goldstone et al., 1997). We instructed participants to base
their judgment on the overall meaning of the picture, without consider-
ing any visual details (e.g., the background color, the number of people).
We also informed them that there was no right or wrong answer. We
purposefully did not bias them by instructing them to emphasize any
dimension because we wanted our laboratory measure of behavioral
similarity perception to quantify, as closely as possible, natural, holistic
similarity perception outside the lab. Finally, to make sure that the be-
havioral findings were independent of the specific instructions, partici-
pants followed two separate task instructions (pairwise ratings in
experiment 2, multiarrangement in experiment 3).

Multiarrangements task
In the validation study of the second database and in experiment 3, par-
ticipants judged the similarity among all the pictures by using the MA
task. We chose it because it is a quick and efficient task for acquiring
similarity judgements in experiments with a relatively large number of
stimuli. Kriegeskorte and Mur (2012) established the MA test-retest reli-
ability (r = 0.81) as well as external validity. The task comprised different
trials. In each trial, a subset of 16 stimuli was presented along the perim-
eter of a circle, or arena, on a computer screen. Participants had unlim-
ited time to drag and drop the stimuli in the arena according to their
similarity, so similar stimuli were placed close to each other and dissimi-
lar stimuli apart. In other words, the distance among stimuli in the arena
reflected their dissimilarity. We instructed participants to focus on the
content of the pictures and to ignore visual details (e.g., the color of the
background, the number of people in the scene). A trial ended when par-
ticipants arranged all the stimuli in the arena. Subsequent trials started
with another subset of stimuli to be arranged, selected by using the lift-
the-weakest algorithm for adaptive design of item subsets. This method
optimizes trial efficiency by adaptively selecting item subsets whose dis-
similarity estimates presented the weakest evidence. The task ended after
;1 h, when participants judged all the possible combinations among
stimuli.

MRI procedure
In experiment 3, images were acquired on a whole-body MRI scanner
(MagnetomTrio, TIM, Siemens) with a 12-channel head coil. Functional
images were acquired with a susceptibility weighted EPI sequence (TR/
TE = 2000/30ms, flip angle = 75°, voxel dimensions = 3 x 3 x 3.5 mm,
192 slices) in four separate scanning sessions (up to 2 min between ses-
sions). Anatomical T1-weighted images were acquired after the func-
tional scans (MPRAGE, TR/TI/TE = 2500/900/2.32ms, flip angle = 8°,
voxel dimensions = 1 mm isotropic, 32 slices).

As shown in Figure 1, during the fMRI scan, participants viewed the
72 complex pictures on a blank screen (size 800 � 800 pixels); we asked
them to rate the visual complexity of the pictures to make them focus on
the stimuli by pressing the right or the left button of the response box.
Images were presented in a random order for 3 s, during which partici-
pants had to make their ratings, interleaved with a black fixation cross
(mean jitter 3 s). The task was divided into four runs, during which every
picture was presented once, thus resulting in four repetitions for each

picture with a total duration of;50min. We instructed participants that
there was no right or wrong answer in the task; rather, they had to focus
on their subjective perception during the ratings. To guide participants
in the ratings, we suggested to them that a picture of few objects, colors,
or structures would be less complex than a very colorful picture of many
objects composed of several components according to Madan et al.
(2018). Behavioral and fMRI tasks instructions differed, as it is not
possible to measure both neural representational similarity and be-
havioral similarity using the same instructions. Similar procedures
were also adopted in previously published papers in this research
field (Kriegeskorte et al., 2008b; Chikazoe et al., 2014; Chavez and
Heatherton, 2015). This is because to compute the neural represen-
tation of each picture (and then feed it into the RSA), in the MRI
session we need participants to focus on one picture at a time; but
behavioral measures of similarity perception requires participants
to consider picture pairs.

Statistical data analysis
In the similarity judgements tasks, we expected higher similarity (lower
dissimilarity) within category than between categories. We also expected
higher similarity (lower dissimilarity) between emotional than between
neutral conditions, as showed at the bottom of Figure 1. The first predic-
tion serves as manipulation check because a good category boundary
simultaneously maximizes the within-category similarity and minimizes
the between categories similarity; the second prediction represents our
main hypothesis and applies also for the neural data. In experiment 1,
EN was calculated by averaging the dissimilarity between emotional and
neutral pictures and the dissimilarity within emotional (EE) and within
neutral (NN) categories by averaging the dissimilarity between emo-
tional and between neutral pictures, respectively, for each participant. In
experiment 3, EE represented the averaged dissimilarity within E1 and
within E2, NN the averaged dissimilarity within N1 and within N2, and
EN across both E1 and E2, and N1 and N2 for each participant. Finally,
in experiments 2–3, E12 was measured by averaging the dissimilarity
between the two emotional categories and N12 between the two neutral
categories. The conditions of experiment 3 are the same in the validation
study. Additional details about the statistical analyses are reported in the
following sections.

Behavioral data analysis
We analyzed these data by using RSA. Specifically, in experiment 1, the
similarity ratings were entered as input in a 20� 20 similarity matrix for
each participant. The rows and the columns represented the experimen-
tal stimuli, and each cell reflected the similarity rating for each pair.
Then for each subject, an RDM was computed. We first standardized the
similarity ratings by subtracting 1 (the lowest similarity rating) from
each rating x, and then dividing by 6 (highest similarity rating minus
lowest similarity rating). Second, we transformed them into correlational
distances by subtracting the ratings from 1. The correlational distance
ranges from 0 to 2 (0 for perfect correlation, and thus high similarity; 1
for no correlation; 2 for perfect anticorrelation) and was entered as input
in each cell of the RDM. As a consequence, the RDM is symmetric about
a diagonal of zeros. Next, we extracted from the single-subject RDM the
mean dissimilarity and the SD of the conditions of interest as mentioned
in the key hypotheses. These were entered as dependent variables in a
repeated-measures ANOVA, with the conditions as grouping factor
(experiment 1: EE, NN, and EN; experiment 2: E12, N12, EN). In the val-
idation study and in experiment 3 (MA task), similarity was measured as
Euclidean distance between stimuli in the arena. Specifically, at the end
of each trial, a partial RDM is estimated showing the Euclidean distance
between stimuli within each trial. At the end of the task, a global 72 �
72 RDM is estimated by averaging the partial RDMs with an iterative
rescaling. This scaling procedure takes into account that in each trial,
participants focused on a specific subset, and, therefore, there is not a
permanent relationship between screen distance and dissimilarities
across trials (Kriegeskorte and Mur, 2012). Then, we extracted from
each participant’s global RDM the mean and the SD of the conditions of
interest as mentioned in the key hypotheses. These were entered as de-
pendent variables in a repeated-measures ANOVA, which served to test
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lower dissimilarity in EE and NN than in E12, N12, and EN and the
main hypothesis (lower dissimilarity in E12 than N12). Bonferroni post
hoc corrections for multiple comparisons (p , 0.05) were used to
explore the nature of the effect. The results of the validation study are
shown in Table 3.

We conducted additional analyses to test differences in the variance
across participants in the judgments of similarity between emotional
than neutral stimuli. With this aim, we conducted two-sample F tests for
variance, one for each contrast of interest (experiment 1: EE vs NN;
experiment 2: E12 vs N12; experiment 3: EE vs NN and E12 vs N12).

Multidimensional scaling. We performed the multidimensional scal-
ing (MDS) to visualize the structure of the similarity space, wherein
proximities reflect similarities among stimuli and are measured on an
ordinal scale. The rank order of proximities determines the dimensional-
ity of the space and the metric configuration of the points representing
the stimuli (Shinkareva et al., 2013). As reported in previous studies in
this research field, we assumed this space to be bidimensional, with va-
lence and arousal as orthogonal dimensions (Russell and Bullock, 1985).
The goodness of fit of the MDS representation is estimated with the
Stress measure.

Analysis of emotional (valence and arousal) and visual complexity
ratings. Valence and arousal ratings were entered as dependent variables
in two repeated-measures ANOVAs, with picture type (emotional vs
neutral) as a within-group factor in experiment 1, and category as a
within-group factor in experiments 2–3. Moreover, we analyzed the vis-
ual complexity ratings from the fMRI task by transforming them into a
continuous variable. Specifically, for each subject we calculated the pro-
portion of high complexity responses by dividing the number of high
complexity responses within each category by 18 (the number of pictures
within each category) and then averaged them across sessions. These
were entered as dependent variables in a repeated-measures ANOVA,
with category (i.e., E1, E2, N1, and N2) as grouping factor. The results
from the valence and arousal ratings of experiment 1 are reported in
Table 1, those from experiments 2–3 in Table 2. The results of the visual
complexity rating task are shown in Table 4. Data analyses were con-
ducted in MATLAB R2018a (MathWorks), and IBM SPSS Statistics for
Windows, version 25.0.

Neuroimaging data analysis
Preprocessing. Neuroimaging data were preprocessed and analyzed

using Statistical Parametric Mapping (SPM12; http://store.elsevier.com/
product.jsp?isbn=9780123725608) and MATLAB R2018a (MathWorks).
Functional images were slice-time corrected to reduce the mismatching
between acquisition timing of different slices and realigned to a reference
(mean) image to minimize the variance because of head movements.
These were then coregistered to the high-resolution T1-weighted struc-
tural image, which was coregistered and normalized to Montreal
Neurological Institute (MNI) space. Finally, functional images were nor-
malized to a standard template volume based on the MNI reference
brain to achieve a more precise comparison across individuals. Spatial
smoothing was performed only on functional data analyzed with a con-
ventional univariate approach using a 6 mm full-width at half-maximum
isotropic Gaussian kernel. No spatial smoothing was carried over on the
multivariate functional data, according to the standard practices for mul-
tivariate pattern analysis studies (Haxby et al., 2001; Kriegeskorte et al.,
2008b). The preprocessing for the univariate tests was identical to the

one for the RSA with the exception of using a 6 mm FWHM Gaussian
smoothing kernel (Kriegeskorte et al., 2006).

Individual-level model for RSA analysis
After preprocessing, functional data from each voxel were analyzed
using the general linear model (GLM). Each stimulus was modeled as a
separate event beginning with picture presentation onset, using the ca-
nonical function in SPM12 and included in the model as regressor of in-
terest (72 regressors per session). Six motion correction parameters were
also modeled within each session and included in the model as regressor
of no interest. From this GLM analysis, we obtained a single b image for
each stimulus. Contrast images for each stimulus against the implicit
baseline were generated based on the fitted responses and averaged
across sessions. The resulting 72 T-contrast images were used as inputs
for RSA.

Individual-level models for univariate analyses
Although our hypotheses were specific to the multivariate representa-
tions, we also performed three conventional univariate analyses, referred
to as GLM1, 2, and 3. GLM1 was performed as a manipulation check to
evaluate the probability that any differences in the RSA analysis were
because of differences in the average univariate activations among condi-
tions. For this reason, GLM1 used individual-level models that were
almost identical to those used for the RSA, the only difference being that
instead of modeling 72 stimuli, here each category (i.e., E1, E2, N1, N2)
was modeled as a separate condition (four regressors per session) begin-
ning with each picture presentation onset, using the canonical function
in SPM12.

GLMs 2–3 were performed as a second manipulation check to test
whether our study replicated previous findings showing higher recruit-
ment of emotional regions during the processing of emotional than neu-
tral stimuli across the 4 sessions (GLM 2) and within session 1 only
(GLM 3). For this reason, individual-level models were altered to be
maximally sensitive to the difference between emotional and neutral
stimuli. Specifically, in GLM 2–3 we included the temporal derivative to
take into account temporal differences in the BOLD signal between emo-
tional and neutral conditions (Friston et al., 1998; Calhoun et al., 2004;
Heinzel et al., 2005).

Region of Interests definition
We defined the regions of interest (ROIs) by using the Automated
Anatomical Labeling (AAL) template in theWake Forest University (WFU)
PickAtlas toolbox (https://www.nitrc.org/projects/wfu_pickatlas)
and Anatomy toolbox (https://www.fil.ion.ucl.ac.uk/spm/ext/#AAL), and
constructed with MarsBaR 0.43 (http://marsbar.sourceforge.net). We used
the WFU_PickAtlas toolbox to define the bilateral early visual cortex (EVC)
as Broadmann (Ba) 17, the dorsomedial prefrontal cortex corresponded to
the Ba 8 and 9, the ventromedial prefrontal cortex to the Ba 10, and the dor-
sal and ventral ACCs to the Ba 32 and 24. The retrosplenial cortex (RSC),
the occipital place area (OPA), and the parahippocampal place area (PPA)
were respectively defined as follows: the bilateral RSC as Ba 29 and Ba 30,
the OPA as an 8 mm sphere around the coordinates reported by Julian et
al. (2016; left OPA: �34, �77, 21; right OPA: 34, �77, 21), and the PPA as
an 8 mm sphere around the coordinates reported by Henson and
Mouchlianitis (2007; left PPA: �27, �45, �12; right PPA 30, �42, �9).
The face fusiform area (FFA) was defined as an 8 mm sphere around the
coordinates reported by Henson and Mouchlianitis (2007; left FFA: �42,

Table 4. Differences in visual complexity ratings among categories

Categories Statistics

E1 E2 N1 N2 F p h p
2

0.308 6 0.163 0.728 6 0.211 0.297 6 0.187 0.267 6 0.170 5.34 ,0.001** 0.63
Post hoc
E1 vs E2 E1 vs N1 E1 vs N2 E2 vs N1 E2 vs N2 N1 vs N2
�0.42, 0.000** 0.01, 1.00 0.04, 1.00 0.43, 0.000** 0.46, 0.000** 0.03, 1.00

The proportion of high complexity ratings within each category (total number of high complexity responses divided by 18) was averaged across sessions. Mean and SD of each category and the statistics of the difference
among them are reported at the top of the table. Bonferroni post hoc corrections for multiple comparisons (p , 0.05) are summarized at the bottom; *pFWE , 0.05, **pFWE , 0.001.
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�51, �18; right FFA: 42, �45, �21). The medial temporal lobe comprised
the entorhinal cortex defined with the Anatomy toolbox, and the bilateral
hippocampus, the perirhinal cortex, and the parahippocampal cortex
defined with AAL. The same toolbox was used for the bilateral inferior tem-
poral cortex (ITC), the anterior temporal lobe, the amygdala, the thalamus,
the insula, the precuneus (Prec), and the bilateral orbitofrontal cortex (OFC;
superior, middle, inferior, and medial). We combined these ROIs into one
ROIs mask, which was used in the searchlight RSA.

Univariate group analyses
From each individual-level GLM, we obtained a single b image for each
condition. We then compared emotional and neutral conditions (emo-
tional greater than neutral), thereby producing one contrasted image for
each subject. The contrasted image from each subject was then entered
as a dependent variable in a one-sample t test. Both the univariate and
the multivariate results were inclusively masked to only include our
ROIs involved in the visual, semantic, and emotional processing of com-
plex pictures, as defined above in the ROIs definition.

RSA group analyses: quantifying neural similarity
Brain–behavior correlations. To test our main hypothesis (i.e., higher

neural similarity between the two emotional than the two neutral catego-
ries), we first conducted a very precise localization technique, the search-
light RSA, to investigate which brain regions (within the ROIs mask)
represented the participants’ similarity space. This was conducted by
computing the Spearman’s correlation between brain activation-pattern
RDMs and behavioral RDMs (second order isomorphism). The behav-
ioral RDM represented the participants’ similarity space resulted from
the MA task, created as explained in the paragraph about the behavioral
data analysis. Three separate analyses were conducted. The first used the
entire RDM (with all the 72 stimuli, all RDM); the second focused exclu-
sively on the emotional stimuli (36 stimuli, emotional RDM), and the
third on the neutral stimuli (36 stimuli, neutral RDM), depicted as violet
and green squares at the bottom of Figure 1, respectively. We conducted
these latter two analyses to explore whether any brain region was
involved in the representation of either the emotional or the neutral cate-
gories. For the purpose of these three analyses, three brain activation-
pattern RDMs were constructed for each participant in the same way.
The participant’s brain activation-pattern RDMs were computed by
entering the T-contrast images into a matrix with all the voxels in the

rows and the experimental stimuli in the columns. Then, for each subject
and each of the three analyses, a 3 � 3 � 3 voxels spherical cluster was
moved throughout the brain, and at each location in the ROIs mask a
correlational distance (among t values) was assigned to the center voxel
of the sphere, resulting in a (x, y, z, number of pairs) brain activation-
pattern RDM for each subject. This measure quantified the dissimilarity
across voxels in a given searchlight sphere for each specific pair. The
number of pairs represented all the possible combinations between ex-
perimental stimuli (2556 pairs with 72 stimuli, 630 with 36 stimuli).
Next, for each stimulus, the similarity between brain and behavioral
RDMs was estimated using a pairwise Spearman’s correlation. This pro-
vides a correlational map between the behavioral and the brain RDMs
for each subject, which reveals where the similarity space is best repre-
sented in the brain (highest correlation), and an n map, wherein the
number of voxels that contributes to each correlational value is reported
in each entry. The correlational coefficients were Fisher’s z transformed,
and inference was performed at each voxel by performing a one-side
signed-rank test across subjects, testing the null hypothesis of no correla-
tion between brain and behavior RDMs. The resulting p values (uncor-
rected) were thresholded to control the false-discovery rate (FDR). We
performed two different FDR correction procedures to yield a more con-
servative as well as a more lenient set of results. In the conservative pro-
cedure, we divided the p values by the total number of voxels in the
ROIs mask. In the more lenient procedure, we divided the p values by
the number of voxels that contribute to each correlational value
(between brain and model RDM). The number of voxels was extracted
from the nmap associated with the correlational map.

Differences in neural dissimilarity between emotional and neutral
categories. We conducted a second set of analyses to test our main hy-
pothesis, that is, a higher neural similarity (lower dissimilarity) between
the two emotional compared with the two neutrals categories (similarity
E12 . N12). We tested this effect in the brain clusters that we observed
to be involved in representing both the entire (72 stimuli) and partial (36
stimuli) participants’ similarity space. With this aim, we created different
masks, one for each significant cluster. In the case of ROIs that were sig-
nificantly correlated with both the emotional and the neutral similarity
space, we selected the clusters correlated with the neutral similarity
space. Then, for each subject and each mask, we computed a brain acti-
vation-pattern RDM, where each entry represented the correlational dis-
tance (1 minus Spearman’s correlation) between brain activations across

Figure 2. A, The RDM of 20 complex pictures (10 emotional, 10 neutral), averaged across participants. It is symmetric about a diagonal of zeros, the rows and the columns represent the
stimuli, and each cell the dissimilarity, measured as 1 standardized similarity rating between stimuli within each specific pair. Yellow colors denote high dissimilarity, blue colors low dissimilar-
ity. B, The average dissimilarity within emotional pictures (EE), within neutral pictures (NN), and between emotional and neutral pictures (EN, gray). Error bars represent 62 SEM; **p ,
0.001. C, The MDS plot of the 20 pictures in a bidimensional space. Additional information supporting Figure 2 can be found in Extended Data Figure 2-1.
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voxels within that mask, and the rows and the columns represented the
experimental stimuli. We refer to this as ROI RDM. It is symmetric
about a diagonal of zeros and resulted in 2556 cells in the lower triangu-
lar part, which reflected the pairwise dissimilarity of the response pat-
terns associated with the stimuli for each ROI. Then, within each
participant ROI RDM, we calculated the mean of the conditions of inter-
est (E12 and N12) and entered them as dependent variables in paired t
tests, one for each cluster (p , 0.05). The RSA was performed using the
MRC–CBU (Medical Research Center–Cognition and Brain Sciences)
RSA toolbox for MATLAB (http://www.mrc-cbu.cam.ac.uk/methods-
and-resources/toolboxes).

As in the behavioral experiments, we tested any differences in the
variance across participants in the neural dissimilarity between E12 and
N12. We explored this effect in brain clusters wherein we observed sig-
nificant differences in neural dissimilarity between E12 and N12. We
conducted different two-sample F tests for variance, one for each cluster.

Results
In a series of experiments with different datasets of real-world
pictures, we explored whether emotions are associated with
increased perceived similarity, both subjective (ratings) and
objective (neural) similarity. We hypothesized that for both de-
pendent measures, perceived similarity will be higher (dissimilar-
ity lower), that is, (1) within category compared with between
categories and (2) between the emotional categories compared
with the neutral categories.

Behavioral evidence for increased similarity between
emotional stimuli
Experiment 1 confirmed our hypotheses. We observed a signifi-
cant main effect of our conditions (F(2,18) = 91.00, p, 0.001, hp

2

= 0.83), with lower dissimilarity within (i.e., EE and NN) than
between (i.e., EN) categories (p , 0.001) and in EE than in NN
(p, 0.001). When represented in the similarity space, emotional
pictures were displaced closer to each other than neutral pictures.
This resulted in a Stress value of 0.05, indicating a good fit of this
model. These findings are shown in Figure 2.

In experiment 2, with the second dataset, which controlled for
the higher thematic similarity between emotional pictures, we
observed different results. Specifically, we found lower dissimilarity
in E12 and N12 compared with EN (F(2,38) = 27.40, p , 0.001,
hp

2 = 0.41) but no differences in similarity ratings between the two
emotional and the two neutral categories. The same results were
replicated using the MA task in experiment 3. Our manipulation
check revealed lower dissimilarity within category (i.e., EE and NN)
than between categories (i.e., E12, N12, EN; F(4,26) = 214.76, p ,
0.001, hp

2 = 0.88) but no difference because of emotion in the criti-
cal comparison between E12 and N12. In the bidimensional space,
the proximities between the two emotional and between the two
neutral categories do not differ. The Stress value was 0.10, indicating
a fair fit of this model. This reduction in the goodness of fit com-
pared with experiment 1 might suggest that the weight of the
semantic dimension in subjective similarity may have been higher
in experiments 2–3, where four categories were included, compared
with experiment 1, where stimuli were not grouped by semantic cat-
egory. These findings are shown in Figure 3.

Figure 3. A, The RDM of 72 complex pictures (emotional categories: E1, poverty (1–18); E2, car accidents (19–36); neutral categories: N1, laundry (37–54); N2, phone call (55–72), averaged
across participants. It is symmetric about a diagonal of zeros, the rows and the columns represent the stimuli, and each cell the dissimilarity (measured as Euclidean distance) between stimuli
within each specific pair. Yellow colors denote high dissimilarity, blue colors low dissimilarity. B, The average dissimilarity within emotional pictures (averaged across E1 and E2), within neutral
pictures (averaged across N1 and N2), between emotional pictures (E12), between neutral pictures (N12), and between emotional and neutral pictures (EN). Error bars indicate 62 SEM; *,
pFWE, 0.05; **, pFWE, 0.001. C, The MDS plot of the 72 pictures in a bidimensional space. Additional information supporting Figure 3 can be found in Extended Data Figure 3-1.

Table 5. Differences in the variance in similarity judgements between emo-
tional and neutral stimuli

Behavioral experiments Conditions F value F critical p value

Experiment 1 EE
0.04

NN
0.03

1.28 2.53 0.36

Experiment 2 E12
0.05

N12
0.07

0.72 1.89 0.16

Experiment 3 EE
0.000

NN
0.000

0.79 2.13 1.00

E12
0.000

N12
0.000

1.34 2.13 0.44

The variance averaged across participants for each conditions, and the statistics of each difference between
conditions are reported. In experiment 1, EE and NN represent the variance within emotional, and within
neutral stimuli, respectively, averaged across participants. In Experiments 2–3, E12 and N12 signify the var-
iance between the two emotional and the two neutral categories, respectively, averaged across participants.
Finally, in experiment 3, EE and NN represent the variance within E1 and E2 and within N1 and N2, aver-
aged across participants.
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Finally, in all the experiments, we did not observe any significant
differences in the variance across participants between emotional
and neutral conditions. This allows us to exclude an alternative ex-
planation of the behavioral results; that is, that the similarity
between emotional pictures can be affected by individuals’ emo-
tional granularity (Barrett et al., 2001). High-granular individuals
would be more aware of the differences of their emotional experien-
ces when viewing pictures from the two emotional categories and
may rate them as less similar, whereas low-granular individuals may
rate them as more similar, ultimately masking the difference
between emotional and neutral categories. However, if this explana-
tion was correct, we would expect increased variance in ratings of
emotional pictures. Instead, there were no significant differences in
rating variance between emotional and neutral categories. These
results are reported in Table 5.

Manipulation check: Univariate differences between the
emotional and neutral conditions
In GLM 1, no clusters (number of voxels. 10) survived the cor-
rection for multiple comparisons, suggesting that RSA results are
unlikely to be contaminated by mean signal differences.
Conversely, we replicated previous findings in GLM 2–3; these
results are reported in Table 6 and Figure 4.

Brain–behavior correlations
We conducted a searchlight RSA to investigate the brain regions
within the ROIs mask that represented the participants’ self-
reported similarity space. First, we tested whether the neural-pat-
tern similarity within the ROIs mask was significantly correlated
with the entire (72 � 72) similarity space, composed of neutral
and emotional categories. These data only survived our more
lenient correction for multiple comparisons (pFDR , 0.05; see
above, Materials and Methods). We observed that clusters in the
bilateral ITC, the right FFA, and the right precuneus represented
the participants’ similarity space. These findings are reported in
in Table 7 and Figure 5A.

Second, we performed the same analysis separately for the
emotional and neutral pictures to explore whether any brain
region was involved in the representation of either the emotional
or the neutral categories (Fig. 1, violet and green squares). The
results from these analyses survived the more conservative cor-
rection for multiple comparisons (pFDR , 0.05; see above,
Materials and Methods). We found that participants’ emotional
similarity space was significantly correlated with clusters in lower
and higher level visual processing regions, as well as regions
involved in emotional processing. These included the bilateral
EVC, bilateral OPA, bilateral PPA, bilateral FFA, bilateral precu-
neus, bilateral dorsal ACC, and in the left anterior insula (aIns).

By contrast, participants’ neutral similarity space was signifi-
cantly correlated with clusters in higher level visual regions only,
including the bilateral OPA, the bilateral PPA, and left FFA.
These findings are reported in Table 7 and Figures 6A and 7A.

Neural evidence for increased similarity between emotional
stimuli
We performed the ROIs RSA to explore whether the neural rep-
resentations of emotional categories are more similar than those
associated with neutral categories. This analysis was conducted
in brain clusters from the above analysis, namely, those that sig-
nificantly correlated with the whole participants’ similarity space
(Fig. 5B), as well as with its emotional (Fig. 6B), and neutral (Fig.
7B) similarity spaces. As predicted, the neural pattern dissimilar-
ity of emotional categories was lower than the one of neutral
stimuli in all the previously reported clusters (p , 0.05), apart
for the right PPA. In addition, we observed trends toward signifi-
cance in support of our hypothesis in the right EVC (p = 0.11)
and in one cluster in the left PPA (p = 0.06). These findings are
reported in Table 8 and in Figures 5B, 6B, and 7B.

Finally, we did not observe any significant differences in the
variance across participants between E12 and N12 in any brain
clusters. These results are reported in Table 9.

Discussion
We investigated behavioral and neural similarity measures
between complex emotional and neutral stimuli using two simi-
larity judgment tasks and two stimulus databases, the second of
which was very tightly controlled. We report two novel findings.
First, the similarity between neural representations of stimuli
from two negatively valenced, emotionally arousing categories
was greater than the neural similarity between stimuli from two
neutral categories. This increase was observed while participants
were processing individual stimuli rather than interstimulus rela-
tionships. Some, but not all, of the clusters expressing similarity
among emotional stimuli preferentially also expressed similarity
among neutral stimuli. Second, once semantic similarity was con-
trolled, participants rated the similarity of stimuli from two emo-
tional categories to be equivalent to that of stimuli from two neutral
categories. Thus, the greater neural similarity between emotional
pictures did not influence perceived similarity in the same partici-
pants. We discuss the implications of these results below.

Increased neural similarity between emotional than neutral
realistic events
In experiment 3, we observed increased neural similarity
between emotional than neutral categories, in that in brain

Table 6. Differences in BOLD signal change between emotional and neutral categories

Analysis pFWE K p uncorrected t x y z Label

GLM 2
Emotional . Neurtal, all sessions

0.001 197 ,0.001 8.33 36 �46 �19 FFA R
0.023 114 0.002 8.16 �39 �46 �19 FFA L
0.039 100 0.003 6.72 �39 �82 11 OPA L
0.003 178 ,0.001 5.49 33 26 �4 Insula R

,0.001 107 ,0.001 4.89 �27 23 �4 Insula L
GLM 3
Emotional . Neutral Session 1

0.014 104 0.001 6.92 6 �13 �1 Thalamus R
0.029 88 0.002 6.24 �39 �46 �19 FFA L
0.003 138 ,0.001 5.65 39 �64 �10 Temporal inferior R/FFA R
0.002 146 ,0.001 5.58 �36 20 2 Insula L
0.038 82 0.002 5.26 �39 �82 11 OPA L
0.026 90 0.002 4.59 48 35 �10 OFC R

Only regions that survive correction for multiple comparisons using pFWE , 0.05 are reported. Small volume correction using the ROI mask was applied in both analyses. R, Right; L, left.
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clusters involved in encoding participants’ entire similarity space,
the neural similarity between emotional categories was stronger
than between neutral categories. These clusters were located in the
ventral visual stream, which underpins semantic categorization
(Clarke and Tyler, 2014), and in regions involved in affect represen-
tations (e.g., precuneus; Kim et al., 2017) and modulation [e.g., dor-
sal anterior cingulate cortex (dACC); Saarimäki et al., 2018]. To our
knowledge, this is the first report of the neural underpinnings of
perceived similarity between complex emotional stimuli, while
using a pictures set controlled for visual and semantic attributes.

This finding has implications for research about the neuro-
biological correlates of categorization and generalization.

Previous studies (Visser et al., 2011;
Dunsmoor et al., 2014) observed increased
neural similarity among exemplars that
predicted threat. They proposed that this
mechanism was adaptive, enabling indi-
viduals to differentiate emotionally salient
stimuli from others, and supporting broad
generalization between items that predict
fitness-relevant outcomes. Although our
work differed from these studies, where
the emotional response was induced
though pavlovian conditioning, we found
the same effect here. This converging evi-
dence suggests that it is evolutionarily
more important to integrate emotional in-
formation into neural representations to
increase the relevance and generalizability
of stimuli that predict a negative outcome.
These findings concur with the conclu-
sions that emotion serves as a fundamental

feature of cognition, in that any representation of the world is an
integrated product among emotion, perception, and thought (e.
g., “That is a good thing.”) rather than discrete and isolated psy-
chological events (e.g., “That is a thing. I feel good.”; Todd et al.,
2020).

We extended previous findings about brain regions
involved in representing emotional categories and dimen-
sions by exploring, for the first time, differences in the neu-
ral representations of the relationships between emotional
and neutral stimuli. The bilateral ITC, right FFA, and right
precuneus represented the entire similarity space and
exhibited greater neural similarity between the two emo-
tional than the two neutral categories. As part of the hierarchical
network in the ventral visual stream, the ITC integrates relevant
low- and high-level features, resulting in an emergent category
structure (Prince and Konkle, 2020). Accumulating research
agrees on the inferior occipitotemporal regions as the potential
neurobiological underpinnings of semantic categorization of
objects (Iordan et al., 2015), faces (Guntupalli et al., 2017), and
places (Epstein and Baker, 2019). Other regions in the ITC
involved in action observation and in representing acting bodies,
including FFA, take part to scenes encoding (Groen et al., 2018).
Accordingly, Brooks et al. (2019) demonstrated that subjects’ con-
ceptual space predicts the neural pattern activation in the right
FFA (Brooks et al., 2019). We may have observed stronger neural
similarity between emotional categories in these regions because
of the influence of the precuneus, which is involved in valence rep-
resentation and structurally connected with the ITC (Lin et al.,
2020).

When we investigated the emotional and the neutral parts of
participants’ similarity space, we observed higher emotional sim-
ilarity in the EVC, OPA, and PPA, as well as in the dACC and
anterior insula. OPA and PPA relate low-level visual features
encoded in the EVC with the high-level aspects of the scene
(Epstein and Baker, 2019) and may be modulated by regions that
are sensitive to salience (anterior insula, dACC; Lindquist et al.,
2012), resulting in higher similarity. Interestingly, our finding
that the insula represented the emotional, but not neutral, simi-
larity space replicate those of Levine et al. (2018), who reported
that it represented similarity ratings among emotional stimuli,
although they were not controlled for semantic similarity, and
the ratings were of emotional rather than overall similarity. It
would be worth exploring whether we would replicate the same

Table 7. Brain–behavior correlations

Analysis Regions x y z n voxels t pFDR d

All RDM
(72 � 72)

ITC L 11 �61 �9 154 38.81 ,0.001** 3
ITC R 46 �63 �9 21 40.5 ,0.001** 10
FFA R 42 �47 �19 69 29.64 ,0.001** 4
Prec R 3 �57 20 32 13.11 ,0.001** 3

Emotional RDM
(36 � 36)

EVC L �13 �86 4 72 15.1 ,0.001** 1.82
EVC R 6 �93 �1 21 16.17 ,0.001** 4.28
OPA L �34 �80 18 103 117.25 ,0.001** 11.43
OPA R 34 �80 18 103 74.97 ,0.001** 7
PPA L �21 �43 �10 32 58.57 ,0.001** 11.25
PPA R 24 �43 �16 29 89.19 ,0.001** 16
FFA L �36 �49 �22 41 25.38 ,0.001** 5
FFA R 39 �49 �22 34 26.18 ,0.001** 4
Prec �2 �60 40 1249 109.58 ,0.001** 4
dACC L �3 27 1 18 27.79 ,0.001** 2.5
dACC R 3 15 42 20 29.18 ,0.001** 7.5
aINS L �35 27 1 18 27.79 ,0.001** 7.5

Neutral RDM
(36 � 36)

OPA L �29 �78 20 11 20.44 ,0.001** 6.67
OPA R 36 �79 16 43 57.2 ,0.001** 10
PPA L �30 �49 �10 17 18.7 ,0.001** 4
PPA R 25 �46 �13 10 7.19 ,0.001** 4.28
FFA L �42 �52 �13 10 7.19 ,0.001** 2.25

Top, correlations between the entire (72 � 72) stimulus space (i.e., all RDM) and the brain. Significant cor-
relations were observed in the bilateral ITC, right FFA, and the right prec. Middle, correlations between the
emotional (36 � 36) similarity space (i.e., emotional RDM) and the brain. Significant correlations were
observed in the bilateral EVC, OPA, PPA, FFA, Prec, dACC, and left aINS. Bottom, correlations between the
neutral (36 � 36) similarity space (i.e., neutral RDM) and the brain. Significant correlations were observed
in the bilateral OPA, PPA, and left FFA. In all these analyses, correlational coefficients were Fisher’s z trans-
formed and entered as dependent variables in a one-side t test (separately for each brain region), testing
the null hypothesis of no correlation between the participants’ similarity space and the neural activation pat-
terns. The resulting p values were thresholded to control for the FDR; **pFDR , 0.001. R, Right; L, left.

Figure 4. Differences in BOLD signal change between emotional and neutral categories, across four sessions (GLM 2, left)
and in session 1 only (GLM 3, right). Only regions that survive correction for multiple comparisons using pFWE , 0.05 are
reported. Small volume correction using the ROI mask was applied in both analyses.
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results using Levine et al. (2018) instructions (Riberto et al.,
2020).

Finally, the same effect was observed in the EVC, which relies
on more fine-grained representations of the stimuli (Coutanche
et al., 2016) and encodes low-level visual features of the stimuli
that afford the decoding of a broad range of emotion categories
(Barrett and Bar, 2009). Specific combinations of low-level fea-
tures (e.g., luminance) along with high-level information (e.g.,
presence of faces or scenes) can act as cues and afford specific
categories of emotional response (Kragel et al., 2019). This might
be paralleled by neural synchronization, which connects the dif-
ferent neuronal populations involved in the processing of each
feature (e.g., low- and high-level visual, emotional features) with
the distant brain networks involved in each feature during the
emotional experience (Sander et al., 2018).

We also expected that the orbitofrontal, ventral, and dorso-
medial prefrontal cortices were involved in representing the sim-
ilarity space or just the emotional part. However, we did not find
significant correlations with the behavioral data there, perhaps
because of the implicit processing of affect in experiment 3. Nor

did we observe correlations with the amygdala, perhaps because
it habituates quickly to repeated stimuli (Plichta et al., 2014).

No differences in perceived similarity between emotional
and neutral pictures of realistic events
In experiment 1, when thematic similarity was not controlled, we
found higher similarity between emotional than neutral stimuli.
In a valence-arousal space, emotional stimuli were placed closer
to each other than neutral ones. The goodness of fit suggested
that affective features were the most salient in similarity judg-
ments. This result is in keeping with dimensional perspectives on
emotions (Barrett and Russell, 1999) and recent empirical data
(Cowen and Keltner, 2017), although our data cannot distinguish
between effects based on valence or arousal dimensions.
Strikingly, when we controlled for the higher thematic related-
ness between emotional stimuli by selecting stimuli from sepa-
rate semantic categories, the rated similarity between stimuli
from the two emotional categories was equivalent to that
between those from the two neutral categories. Ratings clustered
according to the four categories and the goodness of fit dropped
to fair, suggesting that the semantic meaning of each picture—
not negative emotion—was the most relevant feature.

Figure 5. A, Correlation between the entire (72 � 72) stimulus space (i.e., all RDM) and
the brain. Significant correlations were observed between the behavioral all RDM and clusters
in the bilateral ITC, right FFA, and the right Prec. Correlational coefficients were Fisher’s z
transformed and entered as dependent variables in a one-side t test (separately for each
brain region), testing the null hypothesis of no correlation between the participants’ similar-
ity space and the neural activation patterns. The resulting p values were thresholded to con-
trol for the FDR; **pFDR , 0.001. B, Differences in neural dissimilarity (measured as
correlational distance) between emotional and neutral stimuli in different brain clusters,
including the bilateral ITC and the right FFA. The dissimilarity between emotional categories
(E12) was calculated by averaging the dissimilarity between E1 and E2 and the dissimilarity
between neutral categories (N12) by averaging the dissimilarity between N1 and N2 for each
participant. These were entered as dependent variables in paired t tests, one for each brain
cluster (p, 0.05); **p, 0.001. L, Left; R, right.

Figure 6. A, Correlation between the emotional (36 � 36) similarity space (i.e., emo-
tional RDM) and the brain. Significant correlations were observed between the behavioral
emotional RDM and clusters in the bilateral OPA, PPA, FFA, EVC, Prec, dACC, and left aIns.
Correlational coefficients were Fisher’s z transformed and entered as dependent variables in
a one-side t test (separately for each brain region). For simplicity, we averaged the left and
the right sides of the clusters wherein both sides were significant. The resulting p values
were thresholded to control the FDR; **pFDR , 0.001. B, Differences in neural dissimilarity
(measured as correlational distance) between emotional and neutral stimuli in different brain
clusters, including the bilateral EVC, Prec, dACC, and left aIns. The dissimilarity between emo-
tional categories (E12) was calculated by averaging the dissimilarity between E1 and E2 and
the dissimilarity between neutral categories (N12) by averaging the dissimilarity between N1
and N2 for each participant. These were entered as dependent variables in paired t tests,
one for each brain cluster (p, 0.05); *p, 0.05. L, left.
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These findings accord with claims that participants’ concep-
tual workspace comprises integrated perceptual, affective, and
semantic dimensions (Prince and Konkle, 2020). The evolved
sensitivity to emotion, evident in the neural data, may be damp-
ened when the context suggests it is less relevant, which is in
keeping with previous literature attesting to the strong context
effects on similarity (Goldstone et al., 1997). The relative contri-
bution of semantic and affective features to overall similarity
could be tested in future by collecting separate ratings of seman-
tic or emotional similarity or by manipulating the weight of the
semantic and emotional dimensions. This opens up a new direc-
tion in semantic cognition research, which so far has not consid-
ered affective dimensions as key to semantic categorization
(Lambon Ralph, 2014).

Limitations
Our study presents several limitations that can be addressed in
future works. First, we studied only negative emotions and only
two categories within each level of affect. Second, stimuli were
presented during a rapid-event-related design. Although this is a
common approach, it might have influenced our results by

increasing across-trial correlations (Visser et al., 2016), decreas-
ing our statistical power. Finally, we cannot infer any causal role
of emotions on neural similarity. Future studies could use trans-
cranial magnetic stimulation to further explore this aspect of the
findings.

Conclusion
Stimuli that evoke negative feelings are perceived as more similar
to each other unless care is taken to eliminate their taxonomic
and thematic links. Once such semantic links are controlled, neg-
ative emotional and neutral stimuli may be judged as equally
similar. A set of brain regions beyond those that are functionally
specific to affect expressed emotional similarity preferentially.
The stronger neural similarity between emotional pictures
did not influence explicitly perceived similarity in the same

Figure 7. A, Correlation between the neutral (36 � 36) similarity space (i.e., neutral
RDM) and the brain. Significant correlations were observed between the behavioral neutral
RDM and clusters in the bilateral OPA, PPA, and left FFA. Correlational coefficients were
Fisher’s z transformed and entered as dependent variables in a one-side t test (separately for
each brain region). For simplicity, we averaged the left and the right sides of the clusters
when both sides were significant. The resulting p values were thresholded to control the
FDR; *pFDR , 0.05, **pFDR , 0.001. B, Differences in neural dissimilarity (measured as cor-
relational distance) between emotional and neutral stimuli in different brain clusters, includ-
ing the bilateral OPA, PPA, and left FFA. The dissimilarity between emotional categories
(E12) was calculated by averaging the dissimilarity between E1 and E2, and the dissimilarity
between neutral categories (N12) by averaging the dissimilarity between N1 and N2 for each
participant. These were entered as dependent variables in paired t tests, one for each brain
cluster (p, 0.05); *p, 0.05, **p, 0.001. L, Left.

Table 9. Differences across participants in the variance in neural dissimilarity
between emotional and neutral stimuli

ROIs E12 N12 F value F critical p value

ITC 0.03 0.03 1.04 2.13 0.45
Precuneus 0.02 0.02 1.09 2.13 0.82
EVC 0.02 0.02 1.27 2.13 0.52
OPA 0.02 0.02 1.02 2.13 0.97
PPA 0.02 0.02 0.99 2.13 1.00
FFA 0.02 0.02 1.07 2.13 0.85
dACC 0.02 0.02 1.28 2.13 0.52
aIns L 0.01 0.01 1.15 2.13 0.71

The variance averaged across participants for each conditions within each cluster and the statistics of each
difference between conditions are shown. E12 and N12 represent the variance between the two emotional
and the two neutral categories, respectively, averaged across participants. For simplicity, we averaged the
left and the right sides of the clusters. L, left.

Table 8. Effect of emotions on neural dissimilarity

Analysis ROIs E12 N12 t p d

All RDM
(72 � 72)

ITC L 0.66 6 0.18 0.75 6 0.17 �7.90 ,0.001** �0.51
ITC R 0.58 6 0.19 0.69 6 0.19 �10.88 ,0.001** �0.58
FFA R 0.56 6 0.17 0.64 6 0.17 �8.89 ,0.001** �0.47
Prec R 0.80 6 0.10 0.83 6 0.09 �3.60 0.001* �0.32

Emotional RDM
(36 � 36)

EVC L 0.57 6 0.19 0.64 6 0.17 �6.20 ,0.001** �0.39
EVC R 0.49 6 0.16 0.53 6 0.14 �1.65 0.110 �0.27
OPA L 0.49 6 0.18 0.55 6 0.17 �4.69 ,0.001** �0.34
OPA R 0.42 6 0.17 0.48 6 0.17 �5.36 ,0.001** �0.35
PPA L 0.83 6 0.09 0.85 6 0.04 �1.93 0.064 �0.31
PPA R 0.64 6 0.14 0.64 6 0.14 �0.64 0.523 0.00
FFA L 0.64 6 0.17 0.74 6 0.15 �11.34 ,0.001** �0.63
FFA R 0.55 6 0.17 0.63 6 0.16 �8.88 ,0.001** �0.48
Prec 0.77 6 0.15 0.80 6 0.14 �3.56 0.001* �0.21
dACC L 0.68 6 0.15 0.71 6 0.14 �3.19 0.003* �0.21
dACC R 0.73 6 0.16 0.76 6 0.14 �2.40 0.023* �0.20
aINS L 0.79 6 0.11 0.82 6 0.10 �2.85 0.008* �0.29

Neutral RDM
(36 � 36)

OPA L 0.47 6 0.17 0.54 6 0.16 �7.25 ,0.001** �0.42
OPA R 0.40 6 0.15 0.46 6 0.16 �5.86 ,0.001** �0.39
PPA L 0.55 6 0.13 0.58 6 0.14 �2.79 0.009* �0.22
PPA R 0.47 6 0.13 0.47 6 0.14 �0.73 0.473 0.00
FFA L 0.64 6 0.17 0.77 6 0.15 �11.34 ,0.001** �0.81

Difference in neural dissimilarity (measured as correlational distance) among conditions. The dissimilarity
between emotional categories (E12) was calculated by averaging the dissimilarity between E1 and E2, and
the dissimilarity between neutral categories (N12) by averaging the dissimilarity between N1 and N2 for
each participant. These measures were first computed in brain clusters significantly involved in the represen-
tation of the whole (72 stimuli) participants’ similarity space (top of the table). Then, we computed E12 and
N12 in brain clusters significantly involved in the representation of the emotional (middle of the table) and
neutral (bottom of the table) participants’ similarity space. We entered them as dependent variables in
paired t tests, one for each brain cluster. Bonferroni post hoc corrections for multiple comparisons (p ,
0.05) are summarized at the bottom; *pFWE , 0.05, **pFWE , 0.001. AI, Anterior insula; R, Right; L, left.
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participants in the immediately proceeding behavioral rating
task, perhaps because the weights of the multiple dimensions of
participants’ conceptual workspace can change dynamically. Our
findings may illuminate the clinically relevant overgeneralization
bias in anxiety disorders. People with anxiety may have increased
propensity to consider later, emotionally similar experiences as
globally similar to the original fearful one and thereby make mal-
adaptive choices.
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