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Network analyses inform complex systems such as human brain connectivity, but this approach is seldom applied to gold-standard his-
topathology. Here, we use two complimentary computational approaches to model microscopic progression of the main subtypes of tau-
opathy versus TDP-43 proteinopathy in the human brain. Digital histopathology measures were obtained in up to 13 gray matter (GM)
and adjacent white matter (WM) cortical brain regions sampled from 53 tauopathy and 66 TDP-43 proteinopathy autopsy patients.
First, we constructed a weighted non-directed graph for each group, where nodes are defined as GM and WM regions sampled and
edges in the graph are weighted using the group-level Pearson’s correlation coefficient for each pairwise node comparison. Additionally,
we performed mediation analyses to test mediation effects of WM pathology between anterior frontotemporal and posterior parietal GM
nodes. We find greater correlation (i.e., edges) between GM and WM node pairs in tauopathies compared with TDP-43 proteinopathies.
Moreover, WM pathology strongly correlated with a graph metric of pathology spread (i.e., node-strength) in tauopathies (r=0.60,
p, 0.03) but not in TDP-43 proteinopathies (r=0.03, p=0.9). Finally, we found mediation effects for WM pathology on the association
between anterior and posterior GM pathology in FTLD-Tau but not in FTLD-TDP. These data suggest distinct tau and TDP-43 proteino-
pathies may have divergent patterns of cellular propagation in GM and WM. More specifically, axonal spread may be more influential
in FTLD-Tau progression. Network analyses of digital histopathological measurements can inform models of disease progression of cellu-
lar degeneration in the human brain.
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Significance Statement

In this study, we uniquely perform two complimentary computational approaches to model and contrast microscopic disease pro-
gression between common frontotemporal lobar degeneration (FTLD) proteinopathy subtypes with similar clinical syndromes dur-
ing life. Our models suggest white matter (WM) pathology influences cortical spread of disease in tauopathies that is less evident in
TDP-43 proteinopathies. These data support the hypothesis that there are neuropathologic signatures of cellular degeneration
within neurocognitive networks for specific protienopathies. These distinctive patterns of cellular pathology can guide future efforts
to develop tissue-sensitive imaging and biological markers with diagnostic and prognostic utility for FTLD. Moreover, our novel
computational approach can be used in future work to model various neurodegenerative disorders with mixed proteinopathy within
the human brain connectome.
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Introduction
Graph theoretical analyses provide a reliable method using statis-
tical measures (i.e., “network features”) to quantify the topology
of brain connections (i.e., “edges”) between regions (i.e., “nodes”)
that are useful to study structure, function and model disease in
the human brain connectome (Bullmore and Sporns, 2009;
Stam, 2014). These approaches are commonly applied to whole
brain in vivo structural or functional imaging data in neurodege-
nerative disease research to uncover complex relationships
between human brain connectivity and cortical atrophy. While
important, this approach is somewhat limited as the gold-stand-
ard for diagnosis in neurodegenerative disease is autopsy.
Moreover, in vivo imaging measures of neurodegeneration are
on a macroscopic scale that may not fully reflect the complex cel-
lular processes found in histopathological sampling. Thus, novel
analytical tools and approaches are needed to apply network
analyses to gold-standard histopathology data directly. This is
particularly of importance in frontotemporal lobar degeneration
(FTLD) spectrum disorders, which are a common cause of
young-onset dementia, and there is limited autopsy data to
model disease progression (Irwin et al., 2015).

FTLD is classified neuropathologically into two main protei-
nopathies that include tauopathies (FTLD-Tau) and TDP-43
proteinopathies (FTLD-TDP; Mackenzie et al., 2010, 2011).
While there are group-level associations of specific proteinopa-
thies with some frontotemporal dementia (FTD) clinical syn-
dromes, there is considerable clinical overlap and often difficulty
implementing clinical criteria to predict pathology (Murley et al.,
2020). Moreover, there is no current neuroimaging or biofluid
biomarker able to detect FTLD-Tau or FTLD-TDP pathology in
vivo. Thus, accurate antemortem diagnosis on an individual
patient level is currently not possible, posing a significant obsta-
cle to the implementation of clinical trials for disease-modifying
therapies. Detailed postmortem study of human brain histopa-
thology provides an important foundation for biomarker devel-
opment but these data are traditionally studied using subjective
ordinal scales, limiting the ability to perform more advanced sta-
tistical modeling.

Here, we address these limitations using novel application of
two complimentary computational methods to model micro-
scopic patterns of pathologic accumulation across regions of the
human brain using validated digital histopathological measure-
ments (Irwin et al., 2016a; Giannini et al., 2019b) in our large-
scale FTLD autopsy cohort. Moreover, we previously found
prominent accumulation of tau pathology in juxtacortical white
matter (WM) in FTLD-Tau that is relatively distinct from
FTLD-TDP across clinical syndromes and proteinopathy sub-
types (McMillan et al., 2012; Irwin et al., 2018; Giannini et al.,
2021). Therefore, we hypothesize this prominent WM pathology
in FTLD-Tau is influential in the cortical spread of pathology in
a manner distinct from FTLD-TDP.

First, we apply graph theoretical analyses to our digital pa-
thology data, where nodes are defined as regions sampled and
the edges are defined by the correlation strength of the patho-
logic burden between each possible node pair. This approach is
analogous to structural covariance approaches to in vivo MRI,
where brain regions highly correlated in thickness and morpho-
logic features are inferred to be highly connected (Alexander-
Bloch et al., 2013), and here we infer pathologic spread by the
strength of an edge (i.e., correlation of pathologic burden)
between nodes. Next, we perform mediation analyses, which test
zero-order causal-chain relationships between a predictor vari-
able (X), a dependent variable (Y), and the mediation of the X-Y

relationship by a third variable (M; Baron and Kenny, 1986). In
this analysis, we define X as gray matter (GM) nodes in fronto-
temporal areas implicated to accumulate pathology relatively
early in the disease and Y as a GM node in the posterior parietal
cortex thought to accumulate pathology at a later stage of disease

Table 1. Patient demographics

FTLD-Tau FTLD-TDP

N (%female) 53 (47.2%) 66 (47%)
Pathologic
subtype

PiD = 13
PSP = 22
CBD = 13
Tau-U = 5

A = 25
B = 22
C = 14
E = 5

Pathogenic
mutations

MAPT = 6 GRN= 15
C9orf72= 19
TBK= 2

Clinical syndrome bvFTD = 24
CBS = 5
PPA = 15
PSPS = 9

bvFTD = 54
CBS = 1
PPA = 11

Brain weight (g) 1130.9 (144.3) 1109.1 (186.0)
Postmortem interval (h) 11.3 (7.3) 12.7 (6.5)
Hemisphere sampled Left = 35

Right = 18
Left = 35
Right = 31

Age at autopsy 68.2 (11.0) 66.0 (9.8)
Disease duration (years) 7.9 (4.1) 6.7 (3.9)
ADNC stage No ADNC = 33

� A0B0C0 = 10
� A0B1C0 = 12
� A0B2C0 = 4
� A1B0C0 = 3
� A1B0C1 = 1
� A2B0C0 = 2
� A3B0C1 = 1

Low level ADNC = 18
� A1B1C0 = 7
� A1B1C1 = 5
� A1B1C2 = 1
� A1B2C0 = 2
� A2B1C1 = 2
� A3B1C3 = 1

Int. level ADNC = 2
� A2B2C1 = 1
� A2B2C2 = 1

No ADNC = 43
� A0B0C0 = 14
� A0B1C0 = 16
� A0B2C0 = 4
� A1B0C0 = 4
� A1B0C1 = 2
� A2B0C0 = 1
� A2B0C1 = 1
� A2B0C2 = 1

Low level ADNC = 19
� A1B1C0 = 9
� A1B1C1 = 3
� A1B2C0 = 1
� A1B2C1 = 1
� A2B1C1 = 1
� A2B1C2 = 2
� A3B1C2 = 1
� A3B1C3 = 1

Int. level ADNC = 4
� A2B2C2 = 2
� A2B3C2 = 1
� A3B2C0 = 1

Copathologies Hippocampal sclerosis = 1
LBD brainstem = 5
LBD transitional = 1
LBD neocortical = 1
ARTAG = 23
AGD = 1

Hippocampal sclerosis = 6
LBD amygdala = 3
LBD brainstem = 5
LBD transitional = 1
LBD neocortical = 1
ARTAG = 9
AGD = 3

Cells denote frequency of patients per category or mean (SD) for continuous variables. Independent
Student’s t tests or nonparametric Mann–Whitney U were used for continuous data and x 2 analysis for cat-
egorical data.
N = number, %F = percentage of patients with female sex, AD stage = stage of Alzheimer’s disease neuro-
pathologic change (ANDC) co-pathology according to current neuropathological criteria (A = Thal amyloid
phase, B = Braak tau stage, C = Consortium to Establish a Registry for Alzheimer's disease CERAD senile pla-
que score), Co-pathology = frequency of comorbid neuropathological diagnoses, FTLD-Tau = tauopathies,
FTLD-TDP = TDP-43 proteinopathies, PiD = Pick’s disease, PSP = progressive supranuclear palsy, CBD = cor-
ticobasal degeneration, Tau-U = unclassifiable tauopathy, A–E = FTLD-TDP subtypes, MAPT = microtubule-
associated protein Tau, GRN = progranulin, C9orf72 = hexanucleotide expansion mutation in C9orf72 gene,
TBK = TANK-binding kinase 1, bvFTD = behavioral variant frontotemporal dementia, CBS = corticobasal syn-
drome, PPA = primary progressive aphasia, PSPS = PSP syndrome, ARTAG = aging-related Tau astrogliop-
athy, AGD = argyrophilic grain disease, LBD = Lewy body disease stage.
MAPT includes one patient each with p.G389R, p.L266V and p301L and three patients with c.9151 16C.T.
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in FTLD (Brettschneider et al., 2014; Irwin et al., 2016b). By test-
ing mediation effects of WM pathology averaged between these
anterior and posterior regions to approximate long-range tracts,
we can model the relative spread of pathology across the brain,
where mediation by WM implies greater spread of pathology via
long-range WM tracts. Our data suggest tauopathies may propa-
gate via WM axons and glia in a manner distinct from FTLD-
TDP.

Materials and Methods
Patients
Patients were evaluated clinically at the Penn Frontotemporal
Degeneration Center (FTDC) or Penn Alzheimer’s Disease Research
Center (ADRC) with prospective clinical criteria consensus review by
experienced cognitive neurologists and followed in ongoing clinical
research programs to autopsy at the Penn Center for Neurodegenerative
disease research using standardized methods (Toledo et al., 2014) and
criteria (Mackenzie et al., 2010, 2011; Montine et al., 2012) for neuro-
pathological diagnosis.

Patients selected for study all had an FTD dementia syndrome [i.e.,
behavioral variant FTD (bvFTD), primary progressive aphasia (PPA),
amyotrophic lateral sclerosis with FTD (ALS-FTD), corticobasal syn-
drome (CBS), or progressive supranuclear palsy syndrome (PSPS)] and
autopsy confirmation of a primary neuropathological diagnosis of either
the most common subtypes of FTLD-Tau [Pick’s disease (PiD), cortico-
basal degeneration (CBD), PSP, tauopathy unclassifiable (Tau-U)] or
most common subtypes of FTLD-TDP (subtypes A, B, C, or E). All
patients were genotyped for hereditary FTLD based on genetic risk from
structured pedigree analysis using repeat-primed PCR for C9orf72
primed PCR and a multiplexed targeted exome sequencing panel includ-
ing FTLD-associated genes as described (McCarty Wood et al., 2013).
Using modern neuropathologic criteria (Montine et al., 2012), patients
with high-level Alzheimer’s disease (AD) neuropathologic change
(ADNC; i.e., Braak stage B3 with amyloid A3 and C2/3) or

cerebrovascular disease co-pathology (i.e., gross infarcts or�2 micro-
scopic infarct) were excluded. Our final cohort included 53 FTLD-Tau
and 66 FTLD-TDP. Individual patient data are listed in Table 1.

Digital histopathology
Paraffin embedded tissue samples analyzed for digital histology were
obtained fresh at autopsy and cut into 6-mm sections and stained for
phosphorylated-tau (AT8; Thermo Scientific; 1:1000 dilution without
antigen retrieval) in FTLD-Tau and phosphorylated-TDP-43 (p409/410;
Millipore; 1:1000 dilution with citric acid antigen retrieval at 99° for
20min) in FTLD-TDP using previously described methods in the Penn
Digital Pathology Lab (Irwin et al., 2016a). Brain sampling included core
regions in the anterior frontotemporal regions [orbitofrontal cortex
(OFC), Brodmann area (BA)11, midfrontal cortex (MFC), BA46, supe-
rior temporal cortex (STC), BA22, anterior cingulate gyrus (ACG),
BA24] and a more posterior relatively spared region (angular, ANG,
BA39) from within a single hemisphere. In more recent autopsies,
extended sampling from other cortical regions implicated in FTD was
performed (Giannini et al., 2019a) and used in analysis. Any ripped or
damaged tissue that precluded digital measurement was excluded. All
available data are reported in Table 2. We added entorhinal cortex
(BA28) in those patients with available tissue (FTLD-Tau n=47 GM,
n=48WM; FTLD-TDP n=35 GM, n=39WM) for an exploratory anal-
ysis of hippocampal spread because of the unique connectivity of this
limbic region and importance of hippocampal pathology on FTD symp-
toms (Scarioni et al., 2022).

Whole slide images were acquired in the Penn Digital Pathology Lab
on a digital slide scanner (Aperio AT2, Leica Biosystem) at 20�magnifi-
cation. Images were digitally analyzed using QuPath software (version
v0.2.0) to calculate the percentage of area occupied (%AO) of pixels with
pathologic tau or TDP-43 in random sampling of representative GM
and adjacent relative deep WM as published previously (Giannini et al.,
2019a, 2021). To account for staining batch effects, we stained all tissue
in close temporal proximity and employed a custom digital image analy-
sis algorithm optimized for each staining run as previously validated
(Giannini et al., 2019b).

Table 2. Regional digital pathologic measurements

Region Node type FTLD-Tau N= 53 FTLD-TDP N= 66

Anterior ventral frontal Anterior insula (BA13) GM 0.96 (1.75) N= 11 �2.15 (1.18) N= 17
WM 1.04 (1.84) N= 11 �3.71 (1.25) N= 18

Orbitofrontal cortex (BA11) GM 0.01 (1.28) N= 34 �2.54 (1.66) N= 60
WM �0.37 (1.13) N= 34 �4.74 (1.69) N= 62

Anterior dorsolateral/medial frontal Dorsolateral prefrontal cortex (BA9) GM 1.96 (2.51) N= 10 �3.29 (1.50) N= 12
WM 1.19 (2.36) N= 11 �4.42 (1.69) N= 13

Inferior frontal cortex (BA44) GM 2.26 (2.37) N= 10 �2.56 (1.23) N= 7
WM 1.83 (2.48) N= 10 �3.50 (1.15) N= 8

Inferior prefrontal cortex (BA45) GM 0.92 (2.13) N= 6 �2.76 (1.28) N= 13
WM 0.37 (2.33) N= 9 �4.40 (1.70) N= 14

Midfrontal cortex (BA46) GM 0.94 (2.07) N= 42 �2.94 (1.38) N= 52
WM 0.41 (2.94) N= 42 �4.58 (1.96) N= 56

Anterior cingulate cortex (BA24) GM 0.79 (3.03) N= 29 �2.41 (1.50) N= 54
WM �0.11 (3.75) N= 31 �4.74 (1.83) N= 59

Medial prefrontal cortex (BA32) GM 1.48 (3.67) N= 7 �2.55 (0.97) N= 12
WM 0.81 (3.73) N= 9 �4.43 (2.06) N= 13

Anterior-mid temporal Anterior inferior temporal cortex (BA20) GM 1.44 (4.83) N= 7 �2.98 (1.92) N= 17
WM 0.49 (4.66) N= 11 �5.09 (2.05) N= 17

Superior temporal cortex (BA22) GM �0.14 (4.55) N= 36 �2.90 (1.48) N= 54
WM �0.55 (4.37) N= 36 �4.83 (1.98) N= 54

Posterior parietal Angular gyrus (BA39) GM 0.67 (5.01) N= 33 �3.05 (1.76) N= 53
WM �0.15 (5.01) N= 36 �5.14 (1.79) N= 57

Posterior cingulate cortex (BA23) GM 0.82 (5.71) N= 5 �2.49 (1.72) N= 8
WM �0.50 (5.44) N= 3 �4.96 (1.91) N= 8

Superior parietal cortex (BA5) GM 0.68 (5.83) N= 16 �3.28 (1.64) N= 23
WM �0.53 (5.44) N= 15 �4.69 (1.70) N= 22

Cells depict the mean natural log transformed percent area occupied (%AO) digital pathologic measurement of tau (in FTLD-Tau) or TDP-43 (in FTLD-TDP) pathologic inclusions and SD in parenthesis. N = number of available
tissue measurements, BA = Brodmann area, GM = grey matter, WM = white matter. Note, since %AO measurements are dependent on morphologic features of pathology, we do not perform direct comparisons of %AO
data between FTLD-Tau and FTLD-TDP proteinopathy groups.
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Experimental design and statistical analysis
General methods
This is a retrospective autopsy cohort study. Demographics were com-
pared between groups using standard univariate statistics for parametric
(independent Student’s t tests) or non-parametric (Mann–Whitney U)
for continuous data or categorical data (x 2) as appropriate. A normal
distribution was obtained for %AO pathology data using a natural log
transformation. All statistical analyses were performed using R (version
4.0.3) and two-tailed statistics reporting a significance level of p, 0.05
based on the hypothesis-driven nature of our analyses.

Statistical analyses, graph theoretical analysis
We constructed a weighted non-directed graph for each of the FTLD
proteinopathy groups. Nodes in the graph represent the GM or WM
regions where histopathology AO% were sampled (Table 2). The edges
in the graph are weighted using the group-level Pearson’s correlation
coefficient between the %AO measurements for each pairwise node
comparison. We compared graphs between groups using a Fisher’s
transformation of the r coefficient into a z score to test group-level dif-
ferences between individual node pair correlations with a z-test (Fisher,
1915). This approach accounts for potential discrepancies in the number
of pairwise datapoints available for calculating the edge weights in each
group. Since our hypothesis was based on overall patterns of disease
between GM and WM nodes and not at specific regional nodes, we used
a statistical threshold of,0.05 to denote group-level differences in node
pair correlation in the graph.

Correlation matrices do not account for the overall severity of the pa-
thology at a given node (e.g., there can be high correlation between two
nodes with low pathology), thus we calculated group-level weighted-
degree (i.e., node strength) for each node and tested the correlation of
this network feature of node integration with the average %AO pathol-
ogy measurement at each node for FTLD-Tau and FTLD-TDP. Our his-
topathology networks include a single measurement per node [i.e., %AO
from each GM and adjacent WM region of interest (ROI) per slide
image] for each individual, thus we cannot calculate individual patient-
level network metrics and instead use averaged metrics for each group
for comparisons for this analysis; node strength is defined as the sum of
the group-level edge weights at each node. In our network, this is repre-
sented by the sum of the Pearson’s correlation coefficients from all possi-
ble node pair combinations in the graph for a given node. We interpret
node strength as the relative importance of a node in pathologic spread
among the network, where higher node strength implies greater role in
mediating pathologic spread between nodes. This is particularly relevant
for nodes with high pathology burden, where strong correlations with
adjacent nodes can imply potential spread of pathology.

Statistical analyses, mediation analysis
To test the association of WM connectivity on the distribution of GM
pathology we investigated a unique application of causal mediation anal-
yses to our postmortem digital pathology data. Mediation analysis uses
regression modeling to test the association of a mediator variable (M) on
a hypothesized causal interaction between a predictor variable (X) and a
dependent variable (Y; Baron and Kenny, 1986). We refer to the original,
premediated relationship between X and Y as the total effect (c). M is
considered a full mediator for the relationship between X and Y when
the total effect is no longer significant post mediation. However, if
there is still a significant residual relationship (known as the direct
effect, c’) between X and Y after mediation, this results in a partial
mediation effect. In both cases, we also examine the indirect effect
(apb), which is an evaluation of the relationship between X and Y
as a combination of their individual relationship with the mediator
(i.e., X -.M and M -. Y). To evaluate the indirect effect, we use a
bootstrapping approach (bootstrap sample = 1000, confidence
interval = 95%, implemented in R v4.0.3) which has been shown to
be more effective for data with limited sample size (Preacher and
Hayes, 2004; Hayes, 2009). When the indirect effect is non-signifi-
cant, then there is an absence of a mediation effect.

We tested the association between %AO of measured pathology in
anterior frontotemporal GM nodes as the X variable and the posterior

parietal GM node as the Y dependent variable. To approximate the WM
tracts that connect these regions as the mediator variable (M) we aver-
aged %AO pathology from corresponding regions of deep WM on each
slide image between the X and Y nodes. Mediation effects and were cal-
culated from the regression coefficients in univariate and multivariate
regression models to predict GM %AO in posterior parietal lobe (Y
variable).

Code accessibility
Data and codes used in analysis are available from corresponding
author.

Results
Patient groups and regional pathology data
Patients included for study included 53 FTLD-TDP and 66
FTLD-Tau patients. Patient groups had similar age, disease
duration, sex distribution and other demographic features
(p. 0.05). The most common clinical presentation was
bvFTD in both groups and the pathologic and genetic sub-
groups comprising each proteinopathy class are listed in
Table 1.

First, we examined the relative density of pathology (i.e., %
AO) across GM and WM regions in both proteinopathy groups

Figure 1. Digital histopathological analysis. Photomicrographs depict representative raw
image and %AO of positive pixel digital quantification (%AO, red overlay) from MFC (BA46)
grey (GM) and white matter (WM) in FTLD-Tau subtypes (CBD; PiD; PSP; Tau-U) and FTLD-
TDP subtypes (TDP A, B, C, E). Scale bar: 50mm.
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(Table 2). Similar to our previous findings (McMillan et al.,
2012; Irwin et al., 2018; Giannini et al., 2021), average WM%AO
was relatively equivalent to adjacent GM in FTLD-Tau, whereas
FTLD-TDP had greater relative pathology in GM compared with
WM (Fig. 1). Areas of highest pathology in FTLD-Tau included
dorsolateral and medial frontal neocortical (i.e., BA9, BA44,
BA45, BA46, BA32) and limbic frontal (i.e., BA24) GM and WM
regions, whereas FTLD-TDP greatest pathology was observed in

ventral neocortical (BA11) and limbic (BA13) frontal GM
regions as well as anterior temporal neocortical regions (BA20,
BA22). There were shared regions of relatively high pathology
for both FTLD-Tau and FTLD-TDP in the anterior insula
(BA13), ACG (BA24), and some dorsolateral frontal regions. Not
surprisingly, more posterior parietal regions had relatively mild
pathology in both groups except for limbic posterior cingulate
cortex in FTLD-TDP.

Figure 2. Correlation matrices of digital histopathological measurements across grey matter (GM) and white matter (WM) nodes in FTLD-Tau and FTLD-TDP. Heat map depicts the Pearson’s
correlation coefficient between nodes according to sidebar scale in (a) FTLD-Tau and (b) FTLD-TDP proteinopathy groups. We depict the lower half of the map only to avoid redundancy. Node
pairs with insufficient sample sizes to evaluate a correlation coefficient are excluded from the analysis and shown as black.

Figure 3. Digital histopathology graphs for FTLD-Tau and FTLD-TDP. Graphs depict (a) grey matter (GM), (b) white matter (WM), and (c) GM1WM nodes in each proteinopathy group.
Node size is depicted as total amount of relative pathology measured at each node (larger node = higher percentage of area occupied (%AO) positive pixels of pathology). Edges between
nodes are represented by the strength of the Pearson correlation between nodes according to the edge weight heat map. Differences between groups are depicted as edges surviving 0.05 sta-
tistical threshold in a one-tailed comparison between the correlations.

3872 • J. Neurosci., May 4, 2022 • 42(18):3868–3877 Chen et al. · FTLD Path Networks



Graph theoretical analyses
We first performed a correlation matrix
to examine associations of pathologic
burden between GM andWMnode pairs
in each group (Fig. 2). Overall, FTLD-
Tau pathology was strongly correlated
between and within most GM and
WM regions while in FTLD-TDP
there was strong correlation among
GM and among WM nodes but weak
correlation between GM and WM
node pairs (Fig. 2).

Next, we constructed a weighted non-
directed graph for each proteinopathy
group where each region sampled was
designated as a node and the correlation
coefficient from Figure 1 between each
node pair is interpreted as the edge. This
approach allows us to visualize micro-
scopic patterns of disease within the
macroscopic topology of the human
brain (Fig. 3) to compare anatomic
distribution of node pair correlation
(i.e., hypothesized spread of disease)
between groups. Analyses of in vivo
brain connectivity traditionally use
structural measure of WM tracts or
functional co-activation as a measure
of edges between GM nodes (Rubinov
and Sporns, 2010); however, in our
analysis here we do not measure brain
connectivity directly as this approach
is limited in human postmortem brain
samples. Instead, we examine the dis-
tribution of pathology as a measure of
spread throughout the network of GM
and WM regions. Therefore, we desig-
nate both GM and WM regional %AO
data as individual nodes. To examine
differential associations of GM and
WM pathology to overall patterns in
the brain, we first analyzed graphs of
GM and WM pathology independently
and then examined a combined graph
integrating data from both regional
GM and WM nodes. Comparison of
GM graphs finds overall greater num-
ber of significantly stronger edges in
FTLD-TDP versus FTLD-Tau, which
were most prominent between ventral
and dorsolateral frontal regions and poste-
rior parietal lobe, whereas GM associations
in FTLD-Tau were strongest among dorso-
lateral frontal GM nodes with high tau
pathology in FTLD-Tau (Fig. 3A). WM
nodes were similarly interrelated in both
groups (Fig. 3B), whereas the graphs incor-
porating both GM and WM nodes had
much more robust edges (i.e., associations)
between GM and WM node pairs
across both anterior and posterior
nodes in FTLD-Tau versus FTLD-TDP
(Fig. 3C). Next, we performed cross-

Figure 4. Sensitivity analysis of pathologic subtypes in FTLD-Tau compared with subtypes of FTLD-TDP. Graphs depict
GM1WM nodes for cross-validations where we repeated the FTLD-Tau and FTLD-TDP GM1WM histopathology network com-
parisons while excluding a different subgroup from each analysis: (a) FTLD-Tau group excluding CBD subtype versus FTLD-TDP
total group; (b) FTLD-Tau group excluding PiD subtype versus FTLD-TDP total group; (c) FTLD-Tau group excluding PSP subtype
versus FTLD-TDP total group; (d) FTLD-Tau total group versus FTLD-TDP group excluding TDP subtype A; (e) FTLD-Tau total
group versus FTLD-TDP group excluding TDP subtype B; (f) FTLD-Tau total group versus FTLD-TDP group excluding TDP subtype
C. Node size is depicted as total amount of relative pathology measured at each node (larger node = higher percentage of pos-
itive pixels of pathology, %AO). Differences between groups are depicted as edges surviving 0.05 statistical threshold in a one-
tailed comparison between the correlations.

Figure 5. Exploratory analysis of hippocampal connectivity. Graphs depict GM1WM associations of hippocampus entorhinal
cortex (BA28; green node) with the cortical regions sampled. Node size is depicted as total amount of relative pathology meas-
ured at each node (larger node = higher percentage of positive pixels of pathology, %AO). Edges between nodes are repre-
sented by the strength of the Pearson correlation between nodes according to the edge weight scale. Differences between
groups are depicted as edges surviving 0.05 statistical threshold in a one-tailed comparison between the correlations.
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validation sensitivity analyses where we
repeated the FTLD-Tau and FTLD-TDP
GM1WM histopathology network com-
parisons while excluding each main pro-
teinopathy subgroup; we found similar
results of overall greater correlation of
GM-WM node pairs (i.e., greater num-
ber of significant GM-WM edges) in
each FTLD-Tau versus FTLD-TDP sub-
group comparison (Fig. 4). Finally, we
performed an exploratory analysis test-
ing disease spread from the entorhinal
cortex (BA28) GM to other cortical
regions and found similar greater corre-
lation of BA28 GM with WM of other
cortical regions in FTLD-Tau compared
with FTLD-TDP (Fig. 5).

These edges, which are based on the
adjacency matrix of Pearson correlations
between nodes, do not account for overall
disease severity. Therefore, pathologic
spread between nodes could be falsely
inferred from a high correlation between
two nodes with low or negligible patho-
logic burden. As such, we calculated the
graph metric, node strength, as the sum of
all edges at each node in the pathology
graphs for each proteinopathy group
(please see methods) to quantify overall
node integration within the graphs and
tested their association with GM and WM
%AO. We find WM %AO for tau is
strongly correlated with node strength in
FTLD-Tau (r = 0.60, p, 0.03), whereas in
FTLD-TDP WM %AO was not associated
with node strength (r = 0.03, p = 0.9). In
contrast, FTLD-TDP GM %AO had a stronger graphical asso-
ciation with node strength than FTLD-Tau although this did
not reach statistical significance (Fig. 6).

Mediation analyses
Next, we performed a focused mediation analysis to test the spe-
cific influence of WM pathology between the density of pathol-
ogy in anterior frontotemporal GM nodes in our core regions
sampled, where disease is likely an earlier event, and the more
posterior ANG parietal region, where pathology is likely to accu-
mulate later in disease progression (Brettschneider et al., 2014;
Irwin et al., 2016b). In these analyses, we used the average %AO
between juxtacortical WM measurements between nodes as an
approximation of the WM tracts connecting GM nodes as our
mediator variable (M). We found evidence for full or partial
mediation by WM pathology on the association of all three ante-
rior frontotemporal regions with ANG GM in FTLD-Tau, while
we did not observe mediation effects for WM in FTLD-TDP
(Fig. 7). This suggests accumulation of tau pathology in long-
range association tracts is influential in the relationship between
the accumulation of pathology in anterior frontotemporal
regions and more posterior parietal lobe.

Discussion
Here, we employ complimentary computational approaches of
graph theoretical and mediation analyses to model FTLD

proteinopathy disease spread in the human brain. This novel
approach was facilitated by our validated objective digital meas-
urements of gold-standard histopathology, as traditional univari-
ate approaches with subjective ordinal ratings commonly used in
autopsy studies may not capture complex interactions in the
human brain that can be more easily interrogated using a net-
work science approach. First, graph theoretic analyses found net-
work feature of node integration (i.e., node-strength) associated
more strongly with disease burden in WM for FTLD-Tau but
not for FTLD-TDP. Moreover, there was overall greater correla-
tion of GM-WM node pairs in FTLD-Tau compared with
FTLD-TDP, suggesting greater influence of WM pathology in
spread of tauopathy than TDP-43 proteinopathy. Next, media-
tion analyses found mediation effects of WM pathology on the
association between pathology in anterior and posterior GM
nodes in FTLD-Tau, but not in FTLD-TDP. These data suggest
divergent microscopic patterns of propagation via WM in tauo-
pathies compared with FTLD-TDP.

Regional measurements of microscopic pathology in our
dataset (Table 2) find greater overall relative WM pathologic
burden in FTLD-Tau. Moreover, our pathologic measurements
reflect known gross patterns of disease in FTLD (Broe et al.,
2003) but highlight different general proclivities for microscopic
regional pathology between groups, particularly in the frontal
lobe where dorsolateral and medial frontal neocortical and lim-
bic regions were more affected in FTLD-Tau compared with
more prominent ventral frontal neocortical and limbic regions in
FTLD-TDP. These data recapitulate previous findings from our

Figure 6. Comparison of node strength with grey matter (GM) and white matter (WM) node pathologic burden in
FTLD-Tau and FTLD-TDP. Scatterplots depict group level average digital pathology measurement (i.e. natural log of positive
percentage of pixels for pathology, ln(%AO)) plotted by average node strength for GM and WM cortical nodes. Node
strength graphically correlates with GM disease burden in FTLD-TDP. FTLD-Tau but does not reach statistical significance,
while FTLD-Tau WM pathologic burden has positive correlate with node strength. These data suggest differential contribu-
tions of GM and WM pathology to distribution of pathology in the brain for FTLD proteinopathies.
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group (Irwin et al., 2018; Giannini et al., 2021) and others (Kim
et al., 2020; Mackenzie and Neumann, 2020), highlighting the
reproducibility of our digital methods. There was also partial
overlap in regional burden between FTLD-Tau and FTLD-TDP,
where anterior insula and cingulate gyrus both had relatively
severe pathology in both groups. These regions have been impli-
cated in behavioral manifestations of FTD associated with selec-
tive loss of specialized neurons for emotional processing (Seeley
et al., 2006). Therefore, tau and TDP-43 proteinopathies may
converge in specific cellular populations in large-scale neurocog-
nitive networks but also have different patterns of progression
within these networks to result in similar clinical symptomatol-
ogy (Seeley, 2017). We test this hypothesis directly using graph
theoretical analyses in our digital dataset.

We are unaware of a previous work using graph theory
applied directly to gold-standard postmortem human brain his-
tology data in FTLD or related neurodegenerative disorders.
Here, we constructed an adjacency matrix from the Pearson
correlation between brain regions sampled to construct a group-
level graph for each proteinopathy. Using %AO data for accumu-
lation of pathology, we infer spread of pathology based on the
strength of correlation between regions. With this approach we
find moderate to high correlation among GM and among WM

nodes within both groups, but FTLD-Tau was distinguished by
greater correlation between WM-GM node pairs (Figs. 2, 3).
This pattern was evident in our subgroup analyses (Fig. 4) and
exploratory analysis of hippocampal connectivity (Fig. 5).
Interestingly, both groups had similar number of edges (i.e., cor-
relations of disease burden) in the WM graph (Fig. 3), and we
hypothesized that WM tau but not WM TDP-43 pathology
would associate with a network metric of node integration. To
test this hypothesis, we defined nodal strength as the sum of all
edges in our proteinopathy-group graphs to test relationships
between the severity of pathology at a given node and its partici-
pation in the spread of pathology across the network. Our novel
findings suggest WM tau burden may contribute to spread of pa-
thology, as it was associated with overall stronger integration of
WM nodes in the graph in FTLD-Tau, while in FTLD-TDP this
relationship was not apparent, suggesting the correlation
observed between nodes with relative low burden of TDP-43
WM burden (Figs. 2, 3) is less likely biologically relevant.
Unsurprisingly, node strength was also graphically associated
with pathologic burden in GM nodes for both groups, suggesting
accumulation of pathology in GM is associated with spread of
disease among the graph. Moreover, this relationship appeared
stronger in FTLD-TDP compared with FTLD-Tau (Fig. 6) but

Figure 7. Mediation analysis of WM pathology on associations between anterior frontotemporal and posterior parietal cortex in FTLD-Tau and FTLD-TDP. Schematic in a depicts the mediation
analysis for testing the association of anterior frontotemporal GM nodes (orbitofrontal cortex = OFC, midfrontal cortex = MFC, superior temporal cortex = STC) and posterior parietal grey matter
(GM) node (ANG = angular gyrus). The mediation analysis tests the mediation of average white matter (WM) measurement (designated as M) between anterior frontotemporal GM regions (des-
ignated as X) compared with distal parietal GM (designated as Y). Diagrams in b show the mediation effect (or lack of) for each of these tests in FTLD-Tau (left) and FTLD-TDP (right).
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did not reach statistical significance in the relative sparse sam-
pling of cortical regions (13 total nodes) available in this unique
high-density sampling autopsy dataset. Moreover, since we only
had a single measurement of pathology at each node per patient,
we were limited in our ability to calculate individual-patient level
network features to test hypotheses at specific nodes. Thus, we
investigated a region-driven hypothesis by using causal media-
tion analysis to directly test GM-WM relationships between spe-
cific brain regions with known anatomic links to progressive
disease in FTLD for converging evidence.

Mediation analyses are commonly used in neuroscience to
test hypothesized causal chain relationships between imaging or
cognitive features (Wager et al., 2008; Poppenk and Moscovitch,
2011). Here, we designated anterior frontotemporal regions
(MFC, OFC, STC), generally implicated to be involved in early
disease, as predictor variable (X) and the posterior parietal region
(ANG) as a dependent variable (Y). By using mean WM pathol-
ogy %AO as the mediator variable (M) we could test the relative
influence of pathology accumulating in WM on the inferred
spread of disease from anterior GM regions to the distal parietal
lobe GM. As expected, the total pathway of GM in anterior early
regions was associated with disease burden in later-affected
ANG GM in both groups; however, these associations were
uniquely mediated in full or part in each region by WM burden
in FTLD-Tau and not FTLD-TDP (Fig. 7). These data align with
our graph theoretical approach and suggest that the distinctive
high burden of WM pathology in tau may reflect a disease pro-
cess distinct from FTLD-TDP.

It is interesting to speculate on the cellular mechanisms
underlying these findings. Experimental models of tau pathology
highlight distinct patterns of cell-to-cell transmission of patho-
logic forms of tau (Clavaguera et al., 2009). These include strain-
like properties of human-brain derived homogenates of various
tauopathies injected into mouse brains (Iba et al., 2013; Boluda
et al., 2015), often with prominent glial accumulation of tau, par-
ticularly across long range WM tracts (Narasimhan et al., 2020).
This glial pathology appears in addition to axonal threads, mir-
roring postmortem findings in human brain (Dickson et al.,
2011). In the context of these experimental data, we can hypothe-
size our current analyses reflect a complex process of tau propa-
gation in the human cortex that may be heavily mediated by glia
and WM pathology. Transmission models of TDP-43 are emerg-
ing (Nonaka et al., 2013; Feiler et al., 2015; Porta et al., 2018), but
thus far suggest a similar cell-to-cell transmission of pathogenic
seeds of misfolded TDP-43. In these model systems TDP-43
does accumulate in WM oligodendrocytes but appears to be a
later occurring event (Porta et al., 2018). This aligns with post-
mortem human work, where TDP-43 is most densely accumu-
lated in WM tracts closely associated with GM disease, as
exemplified in descending motor pathways in ALS (Braak et al.,
2013). Thus, we cannot rule out a contribution of oligodendro-
cytes in the propagation of TDP-43 pathology in FTLD-TDP,
but based on our data here, this may be less influential for corti-
cal spread.

Our analysis is not without limitations. While digital meas-
ures of histopathology were carefully performed with an open-
source validated approach (Irwin et al., 2016a), there is relatively
limited depth of view in 6-mm sections. However, our high-
throughput methods facilitated the analysis of over 1,300 data-
points from over 119 autopsy-confirmed FTLD which would not
be feasible with traditional stereological methods. Because of the
extreme rarity of some subtypes of FTLD, we were unable to
examine the full pathologic spectrum of each proteinopathy

group. Wemeasured pathologic burden, but other digital metrics
of neurodegeneration may inform future models of disease
spread as these are developed and validated. Moreover, while our
cortical sampling was extensive, we did have missing data for
several regions (Table 2) in our older legacy samples. Our statisti-
cal methods did account for missing data and the mediation
analyses focused on core regions available for most subjects in
the study, which provided converging evidence to support our
graph theoretical analyses. We focused on cortical regions, but
future work can model connectivity with subcortical regions,
as digital methods to analyze these complex structures are
developed and validated. Finally, we focused on monopro-
teinopathies in the FTLD spectrum, but our approach can
be applied to more complex neurodegenerative disorders
with common-co-occurring pathologies, such as AD, to test
associations of mixed proteinopathies in aging and demen-
tia (Schneider et al., 2009; Robinson et al., 2018).

Our data support a greater overall influence of WM pathology
on the cortical distribution of pathology in tauopathies com-
pared with TDP-43 proteinopathies, which may inform future in
vivomodels of predictive disease and highlight divergent cellular
patterns of disease progression between these two clinically-simi-
lar but biologically distinct proteinopathies. Moreover, our
unique approach opens future opportunities to apply network
analyses to gold-standard histopathology data to model micro-
scopic cellular processes in the context of the human brain con-
nectome which can be used to develop and validate in vivo
imaging metrics sensitive directly to tau and TDP-43 pathology.
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