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Spatial Learning Drives Rapid Goal Representation in
Hippocampal Ripples without Place Field Accumulation or
Goal-Oriented Theta Sequences

Brad E. Pfeiffer
Neuroscience Graduate Program, Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical
Center, Dallas, Texas 75390

The hippocampus is critical for rapid acquisition of many forms of memory, although the circuit-level mechanisms through
which the hippocampus rapidly consolidates novel information are unknown. Here, the activity of large ensembles of hippo-
campal neurons in adult male Long-Evans rats was monitored across a period of rapid spatial learning to assess how the net-
work changes during the initial phases of memory formation and retrieval. In contrast to several reports, the hippocampal
network did not display enhanced representation of the goal location via accumulation of place fields or elevated firing rates
at the goal. Rather, population activity rates increased globally as a function of experience. These alterations in activity were
mirrored in the power of the theta oscillation and in the quality of theta sequences, without preferential encoding of paths to
the learned goal location. In contrast, during brief “offline” pauses in movement, representation of a novel goal location
emerged rapidly in ripples, preceding other changes in network activity. These data demonstrate that the hippocampal net-
work can facilitate active navigation without enhanced goal representation during periods of active movement, and further
indicate that goal representation in hippocampal ripples before movement onset supports subsequent navigation, possibly
through activation of downstream cortical networks.
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Significance Statement

Understanding the mechanisms through which the networks of the brain rapidly assimilate information and use previously
learned knowledge are fundamental areas of focus in neuroscience. In particular, the hippocampal circuit is a critical region
for rapid formation and use of spatial memory. In this study, several circuit-level features of hippocampal function were
quantified while rats performed a spatial navigation task requiring rapid memory formation and use. During periods of active
navigation, a general increase in overall network activity is observed during memory acquisition, which plateaus during mem-
ory retrieval periods, without specific enhanced representation of the goal location. During pauses in navigation, rapid repre-
sentation of the distant goal well emerges before either behavioral improvement or changes in online activity.

Introduction
Rapid acquisition of many forms of sequential memory, includ-
ing spatial information, critically relies on proper hippocampal

function (Morris et al., 1982), but the exact circuit mechanisms
through which the hippocampus contributes to the initial forma-
tion and use of spatial memory remain unclear. Positional infor-
mation is encoded in the hippocampus via the spatially restricted
firing patterns of individual hippocampal pyramidal neurons,
termed place cells (O’Keefe and Dostrovsky, 1971; Moser et al.,
2015). While the activity of place cells is ideal for encoding
an animal’s current location, successful navigation necessarily
requires representation of a nonlocal destination and calculation
of a plausible path to reach that location. Although several stud-
ies have observed that learned goal locations display altered place
cell representation (Hollup et al., 2001; Lee et al., 2006; Hok et
al., 2007; Dupret et al., 2010; Mamad et al., 2017; Kaufman et al.,
2020), it is not evident how changes in ensemble activity exclu-
sively at a goal location are sufficient to facilitate goal-directed
navigation from a distant starting point. During periods of both
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movement and immobility, the hippocampus expresses dis-
tinct internally generated sequences which reflect virtual
paths through the current environment (Wilson and
McNaughton, 1994; Skaggs et al., 1996; Foster and Wilson,
2006, 2007; Diba and Buzsáki, 2007; Johnson and Redish,
2007; Karlsson and Frank, 2009; Gupta et al., 2010; Singer
et al., 2013; Wikenheiser and Redish, 2015). Because inter-
nally generated sequences encode nonlocal spatial informa-
tion, they have been postulated as a network mechanism
which may underlie navigation to distant goals (Carr et al.,
2011; Foster and Knierim, 2012; Redish, 2016).

During active navigation, the hippocampal network is organ-
ized by the ongoing 6-12Hz theta oscillation (Skaggs et al.,
1996). Within each theta wave, sequences of place cells are tem-
porally ordered to encode brief sweeps of spatial information,
starting at the rat’s current location and extending a short dis-
tance (Foster and Wilson, 2007; Johnson and Redish, 2007;
Gupta et al., 2012; Zheng et al., 2016). Recent work indicates that
theta sequences encode prospective information about future
behavior (Kay et al., 2020; Wang et al., 2020) and can represent
distant goal locations (Wikenheiser and Redish, 2015), suggest-
ing that they may facilitate navigational decision-making. While
theta sequences do not appear to correlate to behavioral choice
in a maze with two path options distant from a reward location
(Kay et al., 2020), the content in theta sequences could theoreti-
cally be used to evaluate possible future outcomes, particularly as
an animal approaches a goal. Indeed, given the relatively short
spatial distances typically observed in theta sequences (Kay et al.,
2020; Wang et al., 2020), biases in theta sequence representation
toward goal locations may only arise as the animal draws nearer
to a destination.

During periods of immobility, the hippocampus can generate
temporally compressed spatial sequences encoded within sharp-
wave/ripples (Buzsáki, 2015), termed replay (Foster and Wilson,
2006; Diba and Buzsáki, 2007). The content of replay can be
diverse (Pfeiffer, 2020) but is typically correlated to an animal’s
recent past or immediately future behaviors (Diba and Buzsáki,
2007; Davidson et al., 2009; Singer et al., 2013; Ólafsdóttir et al.,
2017; Xu et al., 2019; Gillespie et al., 2021). Several studies have
reported that replay trajectories are biased to represent paths
from a rat’s current location to a recently learned location of ei-
ther positive or negative salience (Pfeiffer and Foster, 2013;
Ólafsdóttir et al., 2017; Wu et al., 2017; Carey et al., 2019; Xu et
al., 2019), implicating replay in a decision-making process that
evaluates future behavioral options. In addition, the paths
encoded by replay are more tightly aligned with future behaviors
than with past behaviors during a goal-directed navigational task
(Pfeiffer and Foster, 2013; Singer et al., 2013; Ólafsdóttir et al.,
2017; Xu et al., 2019). Consistent with a role for hippocampal
replay in guiding navigation, cortical networks implicated in
decision-making are coordinated with the hippocampus
during replay (Peyrache et al., 2009; Jadhav et al., 2016;
Shin et al., 2019) and interfering with replay during a navi-
gational task impairs working memory performance (Jadhav
et al., 2012). Importantly, recent studies have observed that, in
some behavioral tasks, replay events more strongly encode
paths to a previous goal location rather than a current goal
location (Carey et al., 2019; Gillespie et al., 2021), suggesting
that replay events are more compatible with retrieval or con-
solidation of prior experience rather than planning or pro-
spective evaluation of future experience.

Thus, while sequentially organized activity during both theta
sequences and ripple-based replay have been associated with the

formation and/or retrieval of spatial memory, their precise con-
tribution to goal-directed navigation remains unclear. In this
study, large ensembles of hippocampal neurons were examined
while rats performed a task requiring rapid acquisition and use
of a novel spatial memory to quantify how the hippocampal net-
work changes to facilitate this process.

Materials and Methods
The dataset used in this study has been previously analyzed (Pfeiffer and
Foster, 2013).

Behavior and electrophysiological recording. All animal procedures
were approved by the Johns Hopkins University Animal Care and Use
Committee and followed National Institutes of Health animal use guide-
lines. A detailed description of the behavior and training has been
described previously (Pfeiffer and Foster, 2013) and is summarized here.
Four male adult Long-Evans rats were used in this study. Behavior dur-
ing recording was performed in a 2 m � 2 m open arena with 30-cm-
high walls and 36 identical, evenly spaced, 1.5-cm-diameter, 3-mm-deep
conical reward delivery wells embedded into the floor such that the rim
of each well was level with the floor. Each well could be independently
filled without audible or visible cue. When filled, each well held;300ml
of chocolate milk. Recordings took place during the rats’ light cycle.
Behavioral training took ;20-30 d. On each day of training, a different
well was used as the Goal well such that no well was ever repeated as the
Goal well. During recording, the rat was placed into one of the four cor-
ners of the arena and the Goal well was the only filled well. Once the rat
found and consumed the Goal well, one of the remaining 35 Random
wells was filled. When the rat found and consumed the filled Random
well, the Goal well was filled. When the rat found and consumed the
Goal well, another Random well was filled. This pattern was repeated
until the end of the recording. No Random well was used twice for at
least the first 19 trials, and no Random well was used more than
once within 15 consecutive trials. Goal-seeking periods were
defined as periods when the Goal well was filled; Random-foraging
periods were defined as periods when a Random well was filled.
Well boundaries were defined as borders equidistant from adjacent
wells. Well entries were quantified as crossings of well boundaries
(moving from one well to another).

A detailed description of the electrophysiological recording has been
described previously (Pfeiffer and Foster, 2013) and is summarized here.
Adult male rats were implanted with a microdrive array (25-30 g) con-
taining 40 independently adjustable, gold-plated tetrodes aimed at area
CA1 of dorsal hippocampus (20 tetrodes in each hemisphere; 4.00 mm
posterior and 2.85 mm lateral to bregma). Postexperimental lesions con-
firmed that the recording locations were in area CA1 (Pfeiffer and
Foster, 2013). Tetrode advancement took place over the course of 7-10d,
during which the rats continued to be trained in the task. Each tetrode
consisted of a bundle of four 17.8mm platinum/10% iridium wires
(California Fine Wire), and each wire was electroplated with gold to an
impedance of ,150 MV before surgery. A bone screw near l served as
ground. All electrophysiological data were acquired at 32,556Hz using a
Neuralynx data acquisition system and an overhead video system
recorded behavior at 60Hz. Action potentials were detected as threshold
(50mV) crossings of 600-6000Hz bandpass filtered data. Continuous
local field potential (LFP) data were digitally filtered between 0.1 and
500Hz and recorded at 3255.6Hz.

Action potentials were assigned to individual units via manual clus-
tering based on spike waveforms. A detailed description of cluster proce-
dures and unit isolation quality from this study has been reported
previously (Pfeiffer and Foster, 2013).

LFP analysis. For each tetrode that recorded at least one place cell, a
representative electrode was selected and the LFP signal was analyzed.
To identify ripples, the LFP was bandpass filtered between 150 and
250Hz, and the absolute value of the Hilbert transform of this filtered
signal was smoothed (Gaussian kernel, SD 12.5ms). This processed sig-
nal was averaged across all tetrodes, and ripples were identified as local
peaks with an amplitude .3 SD above the mean, using only periods
when the rat’s velocity was ,5 cm/s. The start and end boundaries for
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each ripple were defined as the point when the signal crossed the mean.
To quantify theta in each session, a single centrally located electrode was
identified in the pyramidal layer based on the observance of multiple sin-
gle excitatory units and large amplitude ripple events with minimal
sharp-wave deflection from that electrode. The raw LFP of this electrode
was bandpass filtered between 6 and 12Hz. Theta power was defined as
the smoothed (Gaussian kernel, SD 300ms) absolute value of the Hilbert
transform, z-scored across the entire session. Only periods of active
movement (velocity. 10 cm/s) were used to analyze theta.

Place cell analysis and spatial decoding. Position was binned (2 cm)
and position tuning curves (place fields) were calculated as the smoothed
(2D Gaussian kernel, SD 4 cm) histogram of firing activity normalized
by the time spent per bin. Only periods of time when the rat was moving
faster than 5 cm/s were used to determine place fields. Units were con-
sidered to have a place field if the unit was classified as excitatory and
the peak of the tuning curve was .1Hz. Place fields for each unit were
defined as contiguous spatial bins with.20% of the maximal firing rate
(minimum of 20 bins). Spatial correlations were calculated as the linear
correlation of smoothed firing rate across all spatial bins in which either
cell had a non-zero smoothed firing rate. For in-field firing rate calcula-
tions, only the place field with maximal firing rate was considered. “Goal
cells” were place cells with maximal firing nearer the Goal well than any
other well. “Goal-adjacent cells” were place cells with maximal firing
nearer any of the eight Random wells adjacent to the Goal well than any
other well. Any other place cell was defined as a “Goal-distant cell.”
Spatial information was calculated as previously described (Skaggs et al.,
1993).

Spatial decoding was performed as previously described (Davidson et
al., 2009; Pfeiffer and Foster, 2013). To quantify mean decoding error
during movement, nonoverlapping time windows of 250ms were used.
Decoding error is defined as the distance between the rat’s current loca-
tion and the weighted mean of the posterior probability for each
window.

Replay analysis. For each ripple, the encoded position was estimated
using a time window of 20ms advanced in 5ms steps. A sequence of
locations (weighted mean of each decoding window) was calculated, and
each ripple was then analyzed to identify events that met criteria to be
classified as trajectory-encoding events. A trajectory-encoding replay
required at least 15 consecutive decoding frames in which the decoded
location moved ,30 cm between frames but in which the start-to-end
distance traveled across all decoded frames was .40 cm. These criteria
eliminated ripples which either encoded a single, unmoving location
(Denovellis et al., 2021) or which “jumped” randomly around the arena.
For ripples that met the criteria, statistical significance was quantified via
a Monte-Carlo p value using two shuffle methods: randomly shuffling
cell identify and randomly rotating each cell’s place field in both the x
and y dimensions. The p value was calculated as (n1 1)/(r1 1), where n
is the number of shuffles that met the criteria and r is the total number
of shuffles. Events that encoded a trajectory with a p value ,0.05 for
both shuffle methods were classified as replays. For each replay event,
representation of the well nearest the rat’s current location was elimi-
nated from future analysis, including all spatial bins closer to the current
well than any other well. Thus, replay analysis focused exclusively on
nonlocal representations. A ripple was considered to encode the Goal
location if the sum of posterior probabilities across all decoding frames
within a 30 cm� 30 cm box around the Goal well was.0.075.

Theta sequence analysis. The trough of the theta-filtered oscillation
was defined as 0°. The beginning (and end) of each theta oscillation was
assigned to 60°. Only theta oscillations when the rat was moving
.10 cm/s were included in theta oscillation decoding. To quantify
decoding accuracy across each theta oscillation (see Fig. 5), each theta
oscillation was decoded in a single window (spanning from 60° to 60°).
For theta sequence decoding, the encoded position was estimated using
a phase window of 60° (equivalent to 15-25ms) advanced in 15° (equiva-
lent to 3.5-7ms) bins. The forward-encoding portion of each theta oscil-
lation was defined as a period from 240° to 60° (Wang et al., 2020). All
decoding windows for a given theta oscillation were averaged, and the
resulting two-dimensional matrix was centered to the rat’s current loca-
tion and rotated by either the rat’s current movement direction or the

direction from the rat to the Goal well. The resulting two-dimensional
matrix was then summed across the y axis to produce a relative represen-
tation normalized to the rat. Slope was calculated by quantifying a
weighted best-fit line in the forward-encoding portion. The quadrant
score was calculated as previously described (Feng et al., 2015). For sub-
sampling control analyses, for each session, the mean number of action
potentials in each theta oscillation was quantified during the Learning
period. For each theta oscillation in the Retrieval period, action poten-
tials were randomly removed to match this average. This subsampling
was performed 1000 times for each theta oscillation during the Retrieval
period. Slope and quadrant scores were calculated for each subsampled
dataset, and the results were averaged for each theta oscillation.

Statistics. Statistical analyses were performed via custom MATLAB
code. Before ANOVA, Lilliefors test was used to assess normality (a =
0.05). All ANOVA post hocmultiple comparison tests used Tukey’s hon-
estly significant difference procedure. For two-sample comparisons, the
Wilcoxon rank sum test was used. Detailed statistical information for
each figure is provided in each figure legend.

Figure color code. To provide visual structure to the data presenta-
tion, the following color code is used throughout all figures, other than
Figures 2D and 8. Green represents analysis of random foraging periods;
blue represents analysis of inhibitory neurons; red represents analysis of
goal-adjacent excitatory neurons; cyan represents analysis of goal-distant
excitatory neurons; and magenta represents analysis of goal-seeking
periods.

Data and code accessibility. All data and analysis code are available
on request.

Results
Rats were trained to perform a spatial navigation task in a famil-
iar open arena (2 m � 2 m) with 36 evenly spaced wells embed-
ded in the arena floor arranged in a 6� 6 grid (Fig. 1A). The task
required alternation between random foraging to find reward in
an unpredictable location (Random wells) and goal-directed nav-
igation to a recently learned, predictable reward location (the
Goal well). The location of the Goal well remained in the same
location across all trials of a given day but changed unpredictably
to new locations across days, forcing the rats to learn the new
Goal location each day. Once a location was used as a Goal, it
was never reused as a Goal for any subsequent day, forcing the
rats to establish a new memory and use novel navigational strat-
egies every day. After rats reached criterion performance on the
task, they were implanted with large tetrode arrays to monitor
neural activity during performance across multiple days. Eight
sessions were recorded (4 rats; two sessions per rat), with
between 80 and 263 simultaneously recorded CA1 hippocampal
units in each session. The analyses in this study sought to identify
experience-dependent changes in hippocampal circuit function
during spatial learning.

Behavioral performance was quantified to identify periods of
initial memory acquisition and subsequent memory use.
Analysis was initially restricted to the first 15 trials of each ses-
sion to avoid behavioral changes in later trials caused by satiety.
In each session, rats showed significant improvement in their
ability to navigate to the new Goal well location, but not to the
Random well (Fig. 1B,E). Behavioral performance curves for
goal-directed navigation reached asymptote on Trial 6, at which
point neither path length nor latency improved further (Fig. 1B,
E, Trials 1-6, path length, r = �0.905, p, 0.02, latency, r =
�0.841, p, 0.04; Trials 7-15, path length, r =�0.231, p. 0.5, la-
tency, r= 0.144, p. 0.7). Based on these observations, Trials 1-4
were conservatively defined as the Learning phase, when goal-
directed navigation consistently improved, and Trials 8-11 as
the Retrieval phase, when peak performance was sustained. The
Learning phase was hypothesized to be a period when the
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location of the Goal well was being incorporated into memory,
and the Retrieval phase was hypothesized to be a period when
the memory of the Goal location was recalled to more effi-
ciently guide behavior. Navigation to the Goal well significantly

improved from the Learning to Retrieval phase, but navigation
to unpredictable, Random wells did not change during this pe-
riod (Fig. 1C,F). To ensure that the choice of Learning and
Retrieval windows did not bias the observation of behavioral

Figure 1. Improvement in behavioral performance across trials. A, Quantified behavioral trajectories (black line) across the first 8 trials for one session during goal-seeking (Goal) and ran-
dom-foraging (Random) components, with start (green circle) and end (red square) denoted. B, E, H, For the first 15 trials across all sessions, mean6 SEM path length (B), latency (E), and
mean velocity during active movement periods (H) during goal-seeking versus random-foraging segments. Pearson’s linear correlation statistics for first 15 trials shown below graph. C, F, I,
Mean6 SEM of path length (C), latency (F), and velocity (I) during Learning versus Retrieval periods defined by shaded regions in B, E, and H, respectively. D, G, J, Significance matrix calcu-
lated as in C, F, and I, but for different definitions of the Learning and Retrieval periods. Plotted is the p value for Learning versus Retrieval period. Highlighted square in D, G, and J represents
the Learning and Retrieval period windows quantified in C, F, and I. K, For the first 15 trials, mean6 SEM number of times the rat entered a well partition during the random-foraging seg-
ment of the task for the Goal well (thick black line) and each other well (thin colored lines). L, Mean6 SEM of Goal well (black) and average non-Goal well (green) crossings during random-
foraging portion of Learning versus Retrieval periods. Statistical tests and results: C, Two-way ANOVA. n=8 sessions� 4 time points per group. Main effects: Learning versus Retrieval, F(1,124) = 8.163,
p=0.005; Goal-seeking versus Random-foraging, F(1,124) = 13.02, p=0.0004; Interaction, F(1,124) = 4.671, p=0.0326. Post hoc multiple comparisons (Tukey’s HSD): Learning-Goal versus Retrieval-Goal,
adjusted p=0.003; Retrieval-Goal versus Learning-Random, adjusted p, 0.0001; Retrieval-Goal versus Retrieval-Random, adjusted p=0.0005; all other comparisons, adjusted p. 0.7. F, Two-way
ANOVA. n=8 sessions � 4 time points per group. Main effects: Learning versus Retrieval, F(1,124) = 8.332, p=0.0046; Goal-seeking versus Random-foraging, F(1,124) = 4.231, p=0.0418; Interaction,
F(1,124) = 6.684, p=0.0109. Post hoc multiple comparisons (Tukey’s HSD): Learning-Goal versus Retrieval-Goal, adjusted p=0.001; Retrieval-Goal versus Learning-Random, adjusted p=0.0036; Retrieval-
Goal versus Retrieval-Random, adjusted p=0.0072; all other comparisons, adjusted p. 0.9. I, Two-way ANOVA. n=8 sessions � 4 time points per group. Main effects: Learning versus Retrieval,
F(1,124) = 0.7076, p=0.4019; Goal-seeking versus Random-foraging, F(1,124) = 4.086, p=0.0454; Interaction, F(1,124) = 2.213, p=0.1394. Post hoc multiple comparisons (Tukey’s HSD): all comparisons,
adjusted p. 0.067. L, Two-way ANOVA. n=8 sessions � 4 time points � 1 well for Goal groups, n=8 sessions � 4 time points � 35 wells for Random groups. Main effects: Learning versus
Retrieval, F(1, 2,300) = 0.7216, p=0.3957; Goal versus Random crossings, F(1, 2,300) = 0.1569, p=0.6921; Interaction, F(1, 2,300) = 0.4626, p=0.4965. **p� 0.01. ***p� 0.001. n.s., p. 0.05.
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improvement, a wide range of Learning and Retrieval windows
were tested (Fig. 1D,G). Improved performance in the goal-
seeking portion of the task was largely independent of the spe-
cific windows used to define the Learning or Retrieval phases
(Fig. 1D,G), although when the Learning phase was extended to
later trials with short latencies and path lengths, the difference
between Learning and Retrieval was predictably diminished.
Overall running speed did not change across the task and thus
did not account for behavioral improvement (Fig. 1H–J).

To ensure proper interpretation of these data, it is important
to assess whether rats understood the underlying rules of the

task (consistent alternation between goal-
directed navigation and random foraging)
rather than learning a more basic, but false
rule that the Goal well is simply more likely
to be rewarding than other locations. If a
rat learned the false rule, it would be
expected to repeatedly return to the Goal
well during the random-foraging segment
of the task. However, during the random-
foraging component, rats did not cross the
Goal well more often than any other non-
Goal well, even during the Retrieval phase
when their behavior during the goal-seek-
ing segment was strongly biased toward the
Goal well (Fig. 1K,L). Thus, rats behaved
differently during the two segments of the
task and often did not return to the Goal
well until after finding a baited Random
well, displaying a basic understanding of
the overall rules of the task. Specific com-
parison between the Goal-seeking and
Random-foraging components of the task
could therefore be performed to assess how
the hippocampal circuit may facilitate stor-
age and retrieval of the goal location.

Given the distinct behaviors and mne-
monic requirements for goal-directed navi-
gation versus random foraging in this task,
place cell representation was independently
quantified in the two behavioral compo-
nents to determine whether the hippocam-
pal network differentiated between these
two behavioral tasks in the same arena. For
each cell, place field firing maps were gener-
ated using neural activity and position infor-
mation restricted to either goal-seeking or
random-foraging segments; 1172 of 1188
(98.7%) putative excitatory neurons had
place fields in both behavioral conditions,
and place fields were strikingly similar
across behavior categories (Fig. 2A). Spatial
correlations between goal-seeking versus
random-foraging place fields from the same
cell were significantly higher than between
place fields from different cells with similar
peak firing locations (Fig. 2B). In addition,
there was no difference in the accuracy
of population-level spatial representations
when decoding with place fields calculated
either during the entire session, during
only goal-seeking periods, or during only
random-foraging components of the task
(Fig. 2C). Thus, gross differences were not

observed in spatial coding between the two components of the
task, arguing against global place field remapping (Colgin et al.,
2008) as a contributing factor for goal-directed navigation.

Prior studies have reported increased place cell activity at
learned goals (Hollup et al., 2001; Hok et al., 2007; Gauthier and
Tank, 2018; Sato et al., 2020). Enhanced representation of
rewarding locations across the hippocampal network has been
postulated as a mechanism that may influence goal-directed nav-
igation. To determine whether the Goal location was more
strongly encoded by the hippocampal ensemble, the arena was

Figure 2. Spatial representation does not change during goal-seeking versus random-foraging. A, Spatial tuning maps
(place fields) for 8 example neurons calculated using spikes and position information either during the entire session (left),
restricted to the goal-directed segments of the task (middle), or restricted to the random-foraging segments of the task
(right). Maximum firing rate listed for each tuning curve in top left. B, Left, Mean6 SEM spatial correlation between place
fields for each cell calculated during only goal-directed segments and place fields calculated during only random-foraging
segments. Middle, Correlation between entire-session place fields for all recorded cells. Right, Correlation between place
fields of different cells with overlapping fields (spatial bin of maximal firing ,10 cm apart). C, Mean 6 SEM decoding
error across the entire session (using nonoverlapping decoding windows of 250 ms) when decoding with place fields calcu-
lated during the entire session (left), during only goal-directed segments (middle), or during only random-foraging seg-
ments (right). D, Mean excitatory population firing rate at each well (Goal well in red) for all 4 rats on experimental days
1 (top) and 2 (bottom). E, Mean6 SEM place field size (left) and information per spike (right) for place cells with peak fir-
ing closer to the Goal well than any other well (“Goal cells”), place cells with peak firing nearest the eight wells adjacent
to the Goal well (“Goal-Adjacent”), and place cells with peak firing elsewhere in the arena (“Goal-Distant”). Statistical tests
and results: B, One-way ANOVA. n= 1172 field pairs for Goal/Random; 101,482 field pairs for All-Fields; 1135 field pairs
for Nearby. Main effects: F(2, 103,786) = 12,130.39, p, 10�6; post hoc multiple comparisons (Tukey’s HSD): all comparisons
adjusted p, 10�8. C, One-way ANOVA. n= 8 sessions per group. Main effects: F(2,21) = 1.3429; p= 0.2826. E, Left, One-
way ANOVA. n = 44 Goal cells, 235 Goal-adjacent cells, 909 Goal-distant cells. Main effect: F(2,1185) = 0.4388; p= 0.6449.
E, Right, One-way ANOVA. n = 44 Goal cells, 235 Goal-adjacent cells, 909 Goal-distant cells. Main effect: F(2,1185) = 2.2784;
p= 0.1029. ***p� 0.001. n.s., p. 0.05.
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divided into 36 partitions centered on
each well and the population firing rate in
each partition was quantified during peri-
ods of active movement. All wells, includ-
ing the Goal well, had similar levels
of total neural activity (Fig. 2D, Goal =
196.16 36.9Hz across all recorded cells;
non-Goal=185.46 5.7Hz; Wilcoxon rank
sum p. 0.7). In addition, cells with maxi-
mal activity at the Goal well (“Goal cells”)
did not have significantly different place field
sizes or spatial information per spike than
cells with maximal activity at wells adjacent
to (“Goal-Adjacent cells”) or distant from
(“Goal-Distant cells”) the Goal well (Fig.
2E). Therefore, the recently learned Goal
location had similar spatial representation
quality as any other location in the arena,
and changes in goal-specific encoding across
the hippocampal place cell network are
unlikely to explain successful goal-directed
navigation in this behavioral task.

Thus, no obvious bias in Goal represen-
tation was observed when activity across
the entire session was combined, arguing
against a global or preexisting mechanism
for hippocampal goal-directed navigation
in the current task. Having defined periods
of both rapid memory acquisition and
post-learning memory use, changes in the
circuit-level hippocampal function were
next quantified across the Learning and
Retrieval phases to identify network fea-
tures which may account for behavioral
improvement.

To assess whether overall neural activ-
ity changed as a function of learning, pop-
ulation firing rates were quantified on a
per-trial basis. Average in-field firing rates
for putative excitatory neurons consis-
tently increased throughout the Learning phase, in agreement
with prior work (Michon et al., 2021), and plateaued during the
Retrieval phase (Fig. 3A–C). The per-trial in-field firing rate of
excitatory neurons was highly correlated with behavioral per-
formance to find the Goal, but not Random well (firing rate vs
Goal latency, r = �0.151, p, 0.0175; vs Goal path length, r =
�0.160, p, 0.0120; vs Random latency, r = �0.0096, p. 0.88;
vs Random path length, r=0.024, p. 0.71). Importantly, there
was no difference between Goal cells, Goal-Adjacent cells, or
Goal-Distant cells in experience-dependent firing rate changes
(Fig. 3D,E), indicating that the increased activity of excitatory
neurons was not specific to representation of the Goal well,
but instead reflected overall increased activity across the hippo-
campal network. Furthermore, excitatory in-field firing rates
increased during both goal-seeking and random-foraging seg-
ments of the task (Fig. 3F). Thus, increased hippocampal activ-
ity was not limited only to periods when memory retrieval was
necessary to perform the task. Unlike excitatory neurons, puta-
tive inhibitory neurons showed no sustained or significant
change in firing rate across the experiment, despite a brief
increase in activity over the first few trials (Fig. 3A–C), indicat-
ing cell-type specificity in how learning influenced hippocam-
pal activity.

Given the observed changes in excitatory neural activity
across experience, it was hypothesized that spatial representation
at the ensemble level may change between the Learning and
Retrieval phases. During movement epochs, the ongoing 6-12Hz
theta oscillation organizes hippocampal ensembles (Skaggs et al.,
1996). Theta power increased throughout the Learning phase
and plateaued during the Retrieval phase (Fig. 4A–C), parallel to
the overall increase in excitatory firing rate (Fig. 3). Per-trial
changes in theta power increased during both goal-seeking and
random-foraging (Fig. 4D); however, changes in theta power
were only correlated to goal-seeking, but not random-foraging,
performance (theta power vs Goal latency, r = �0.154, p,
0.0160; vs Goal path length, r = �0.224, p, 0.000405; vs
Random latency, r = �0.0841, p. 0.18; vs Random path length,
r= 0.113, p. 0.077). The percent of recorded neurons that par-
ticipated in each theta oscillation did not increase across learning
(Fig. 4E–H); thus, the increase in population firing rate (Fig. 3)
was likely driven by increased activity of individual neurons
rather than recruitment of additional ensembles. Consistent with
this hypothesis, the number of action potentials observed in indi-
vidual participating neurons on each theta oscillation increased
throughout the Learning phase and plateaued in the Retrieval
phase (Fig. 4I–L). Due primarily to large variability in the activity
of individual neurons on Trial 1, the specific windows used to

Figure 3. Excitatory population activity increases across learning. A, For the first 15 trials across all sessions, mean6 SEM
in-field firing rate per putative excitatory cell (black) or overall firing rate per putative inhibitory cell (blue). B, Mean6 SEM
excitatory in-field (left) or inhibitory (right) firing rate during Learning and Retrieval periods defined by shaded regions in A.
C, Significance matrix as in Figure 1D for excitatory in-field (top) or inhibitory (bottom) firing rate. D, Same as in A, separated
by Goal cells (black), Goal-adjacent cells (red), and Goal-distant cells (cyan). E, Mean6 SEM in-field firing rate for Goal cells
(left), Goal-adjacent cells (middle), and Goal-distant cells (right) during Learning and Retrieval periods defined by shaded
regions in A. F, Mean6 SEM excitatory in-field firing during goal-seeking (black) or random-foraging (green) segments dur-
ing Learning and Retrieval periods defined by shaded regions in A. Statistical tests and results. B, Left, Wilcoxon rank sum
test. n= 1188 cells. p, 10�10. B, Right, Wilcoxon rank sum test. n= 50 cells. p= 0.4380. E, Two-way ANOVA. n= 44 Goal
cells, 235 Goal-adjacent cells, 909 Goal-distant cells � 4 time points � 8 sessions. Main effects: Learning versus Retrieval,
F(2, 6970) = 76.53, p, 0.0001; Cell type, F(2, 6970) = 2.052, p= 0.1286; Interaction, F(2, 6970) = 2.054, p= 0.1284. Post hoc
multiple comparisons (Tukey’s HSD): all Learning versus Retrieval for same cell type, adjusted p, 0.0007; all across-cell-type for
Learning, adjusted p. 0.14; all across-cell-type for Retrieval, adjusted p. 0.9. F, Two-way ANOVA. n=1188 cells. Main effects:
Learning versus Retrieval, F(1, 4187) = 40.07, p, 0.0001; Goal-seeking versus Random-foraging, F(1, 4187) = 2.145, p=0.1431;
Interaction, F(1, 4187) = 3.056, p=0.0805. Post hoc multiple comparisons (Tukey’s HSD): all Learning-Goal versus Retrieval-Goal,
adjusted p=0.0109; Learning-Random versus Retrieval-Random, adjusted p, 0.0001; Learning-Goal versus Retrieval-Random,
adjusted p, 0.0001; Learning-Random versus Retrieval-Goal, adjusted p=0.0047; all other comparisons, adjusted p. 0.12.
*p� 0.05. ***p� 0.001. n.s., p. 0.05.
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define the Learning and Retrieval phases were impactful for par-
ticipating cell activity analysis: a significant difference between
Learning and Retrieval firing on an individual cell level was only
observed when the Learning phase was at least three trials long
and the Retrieval phase did not start until Trial 7 or 8 (Fig. 4K).

To assess how well the hippocampal ensemble encoded spa-
tial information across time, a memory-less Bayesian decoding
algorithm was applied to the ensemble activity across the entirety
of each theta oscillation and the error between the decoded loca-
tion and the rat’s actual location (a measure of the accuracy of
spatial representation) and the maximum posterior probability
(a measure of the precision of spatial representation) were

quantified (Fig. 5A). Neither network accu-
racy (Fig. 5B–D) nor precision (Fig. 5E–G)
was significantly different across Learning
and Retrieval phases within theta oscilla-
tions during active movement. These obser-
vations remained true when analyses were
restricted only to goal-directed or random-
foraging segments (Fig. 5B–G). Despite a
lack of significant difference between the
Learning and Retrieval phases, there is an
apparent trend toward reduced decoding
error and posterior probability across trials,
particularly during the Learning phase (Fig.
5B,E). However, no statistically significant
correlation was observed between either of
these measures and trial number, perhaps
because of large variability in decoding qual-
ity across sessions driven by differences in
total cell yield (decoding error vs trial num-
ber, first 15 trials, r = �0.107, p. 0.24; first
four trials, r = �0.027, p. 0.79; peak poste-
rior probability vs trial number, first 15 tri-
als, r = �0.113, p. 0.26; first four trials, r =
�0.079, p. 0.44). Thus, while overall activ-
ity rates increased across learning, spatial
encoding at the behavioral timescale did not
appear to meaningfully change during active
navigation.

On a finer timescale, theta oscillations ex-
press brief virtual sweeps through the current
environment, termed theta sequences (Skaggs
et al., 1996; Foster and Wilson, 2007; Johnson
and Redish, 2007; Gupta et al., 2012; Zheng et
al., 2016; Kay et al., 2020; Wang et al., 2020).
The quality of theta sequences has been
reported to increase following learning (Feng
et al., 2015; Igata et al., 2021), and theta
sequences have been shown to encode goal
locations during a task requiring precise spa-
tial memory (Wikenheiser and Redish, 2015).
To explore whether representation of the
newly learned Goal location emerged in theta
sequences across learning, each theta oscilla-
tion was decoded and examined at a fine
timescale. The slope (i.e., the virtual move-
ment velocity) of theta sequences increased
throughout the Learning period and pla-
teaued in the Retrieval phase (Fig. 6A–D),
indicating that the hippocampal network
became increasingly capable of prospectively
evaluating more distant future paths as a
function of experience. This learning-related

increase in theta sequence quality was observed during both
goal-seeking and random-foraging phases of the task (Fig. 6C,
D). Unexpectedly, theta sequence slopes were significantly
higher while the rat was engaged in random foraging behavior
compared with goal-seeking in the Learning phase, although
both behaviors displayed similar theta sequence quality in the
Retrieval phase (Fig. 6C). As with excitatory firing rate and
theta power, the improvement in theta sequence slope directly
correlated with improved navigation to the Goal well, but not
the Random well (forward slope vs Goal latency, r = �0.71,
p, 0.0028; vs Goal path length, r = �0.70, p, 0.0038; vs

Figure 4. Theta power increases across learning. A, E, I, For the first 15 trials across all sessions, mean 6 SEM
theta power (A), percent of recorded cells active per theta oscillation (E), and number of spikes per participating cell
per theta oscillation (I). B, F, J, Mean 6 SEM of theta power (B), cell participation (F), and spikes per participating
cell (J) during Learning versus Retrieval periods. C, G, K, Significance matrix as in Figure 1D for theta power (C), cell
participation (G), and spikes per participating cell (K). D, H, L, Same as in B, F, and J, separated into goal-seeking
(black) and random-foraging (green) segments. Statistical tests and results: B, Wilcoxon rank sum test. n= 8 sessions
� 4 time points per group. p= 0.003975. D, Two-way ANOVA. n= 8 sessions � 4 time points per group. Main
effects: Learning versus Retrieval, F(1,124) = 11.66, p= 0.0009; Goal-seeking versus Random-foraging, F(1,124) = 0.0578,
p= 0.8105; Interaction F(1,124) = 0.6253, p= 0.4307. Post hoc multiple comparisons (Tukey’s HSD): Learning-Goal ver-
sus Retrieval-Goal, adjusted p= 0.0130; Learning-Random versus Retrieval-Random, adjusted p= 0.0404; all other
comparisons, adjusted p. 0.1399. F, Wilcoxon rank sum test. n= 8 sessions� 4 time points per group. p= 0.2192.
H, Two-way ANOVA. n= 8 sessions � 4 time points per group. Main effects: Learning versus Retrieval,
F(1,124) = 1.582, p= 0.2111; Goal-seeking versus Random-foraging, F(1,124) = 0.001244, p= 0.9719; Interaction,
F(1,124) = 0.007203, p= 0.9325. J, Wilcoxon rank sum test. n= 8 sessions � 4 time points per group. p= 0.004707.
L, Two-way ANOVA. n= 8 sessions � 4 time points per group. Main effects: Learning versus Retrieval,
F(1,124) = 11.71, p= 0.0009; Goal-seeking versus Random-foraging, F(1,124) = 0.3030, p= 0.5831; Interaction,
F(1,124) = 0.07663, p= 0.7824. Post hoc multiple comparisons (Tukey’s HSD): Learning-Goal versus Retrieval-Goal,
adjusted p= 0.0371; Learning-Random versus Retrieval-Random, adjusted p= 0.0457; Learning-Random versus
Retrieval-Goal, adjusted p= 0.0386; all other comparisons, adjusted p. 0.1549. *p� 0.05. **p� 0.01. n.s.,
p. 0.05.
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Random latency, r = �0.21, p. 0.47; vs Random path length,
r = 0.16, p. 0.58). To determine whether the increase in theta
sequence quality was a direct result of increased overall firing
rates in each theta oscillation (Fig. 4), the number of spikes in
each theta oscillation for Trials 8-11 were randomly sub-
sampled to match the average number observed in Trials 1-4
for that session. This subsampling was repeated 1000 times.
The slope of the forward portion of the theta sequence was not
significantly changed when the number of action potentials

was matched between the Learning and Retrieval phases (Fig.
6C), arguing that the improvement in theta sequence quality
was unlikely to be exclusively driven by increased network ac-
tivity. The quadrant score of each oscillation (Feng et al.,
2015), an additional measure of theta sequence quality, also
improved across the Learning to Retrieval phases (Fig. 6E). As
with the theta sequence slope, the quadrant score was signifi-
cantly improved from Learning to Retrieval phases, even
when the Retrieval phase was subsampled to match the

Figure 5. Spatial encoding across entire theta oscillations is unchanged by learning. A, Ensemble activity during movement was decoded using a single decoding window for each theta os-
cillation. For representative trials across a single session, the mean decoded posterior probability across all theta oscillations within that trial (colormap) and the rat’s behavioral trajectory (cyan
line). For clarity, only the goal-directed portion of each trial is displayed. B, E, For the first 15 trials across all sessions, mean6 SEM decoding error (B) and maximal posterior probability (E)
for each theta oscillation per trial. C, F, Mean6 SEM of decoding error (C) and maximal posterior probability (F) during Learning versus Retrieval periods. Black represents all theta oscillations
during active movement. Magenta and green represent theta oscillations during either the goal-directed navigation (magenta) or random-foraging (green) component of the task. D, G,
Significance matrix as in Figure 1D for decoding error (D) or maximal posterior probability (G). Statistical tests and results: C, Two-way ANOVA. n= 8 sessions� 4 time points per group. Main
effects: Learning versus Retrieval F(2,186) = 1.326, p= 0.2510; Trial type F(1,186) = 0.5138, p= 0.5991; Interaction F(1,186) = 0.00847, p= 0.9916. F, Two-way ANOVA. n= 8 sessions � 4 time
points per group. Main effects: Learning versus Retrieval, F(2,186) = 2.726, p= 0.1004; Trial type, F(1,186) = 0.03736, p= 0.9633; Interaction, F(1,186) = 0.2129, p= 0.8084. n.s., p. 0.05.
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number of action potentials observed in the
Learning phase (one-way ANOVA, F(2, 34,178),
main effect p, 10�6, Tukey’s HSD post hoc
multiple comparisons Learning vs Retrieval
and Learning vs Retrieval Subsampled adjusted
p, 10�6).

To explore whether theta sequences prefer-
entially encoded a path to the newly learned
Goal location, each theta sequence was oriented
to either the rat’s current movement direction
or the direction to the Goal well. Given the rel-
atively short paths encoded by theta sequences
(mean 6 SEM, 7.836 0.03 cm across all theta
oscillations oriented to movement), analysis
was restricted to times when the rat was within
25 cm of the Goal well. To dissociate theta
sequence alignment to movement versus align-
ment to the goal, analysis was further restricted
to periods when the difference between the
rat’s movement direction and the direction
from the rat to the Goal well was ,180° (the
rat was not moving away from the Goal well)
and .30° (the rat was not moving directly to
the Goal well). In this subset, theta sequences
were significantly more aligned with the rat’s
movement direction than with the direction to
the Goal well, even after learning (Fig. 6F,G),
indicating that, in this task, theta sequences did
not facilitate goal-directed navigation by pref-
erentially encoding paths to the Goal well.

The increase in excitatory firing rates across
learning (Fig. 3) may reflect increased input
from upstream regions or may instead reflect
increased excitability of the local hippocampal
network. To explore these two possibilities, en-
semble activity was examined within sharp-
wave/ripple events, when hippocampal activity

Figure 6. Theta sequences extend to movement direction, but not Goal location across learning. A, Each theta oscil-
lation during movement (velocity� 10 cm/s) was decoded in 15° steps and normalized to rat’s current position and
movement direction. Plotted is the probability histogram of theta phase with maximal posterior probability at each
position relative to rat position (2 cm bins) for all movement-related theta oscillations during goal-seeking (Goal) or
random-foraging (Random) components of Trials 1 and 10. B, For the first 15 trials across all sessions, mean6 SEM
slope of weighted best-fit line of forward portion of decoded theta sequences oriented to rat’s movement direction. C,
Mean 6 SEM of forward slope during Learning versus Retrieval periods. Black represents all theta oscillations during
active movement, including Retrieval period with subsampled spike data (Ret. Sub.). Magenta and green represent
theta oscillations during either the goal-directed navigation (magenta) or random-foraging (green) component of the

/

task. D, E, Significance matrix as in Figure 1D for forward slope of
weighted best fit line (D) or quadrant score (E). F, Same as in B,
for theta sequences when rat was within 25 cm of Goal well and
the difference between the rat’s movement direction and the
direction to the Goal well was.30° and,180°. Each theta oscil-
lation was oriented to either the rat’s current movement direction
(solid line) or to the direction to the Goal (dashed line). G, Mean 6
SEM of forward slope during Retrieval phase for theta sequences ori-
ented to rat’s movement direction (black) versus the direction to the
goal well (gray). Statistical tests and results: C, Left, One-way ANOVA.
n=13,551 Learning oscillations, 10,313 Retrieval and Retrieval
Subsample oscillations. F(2, 34,174) = 51.109; p, 10�10). Post hoc
multiple comparisons (Tukey’s HSD): Learning versus Retrieval,
adjusted p, 10�9; Learning versus Ret. Sub., adjusted p, 10�9;
Retrieval versus Ret. Sub., adjusted p. 0.13. C, Right, Two-way
ANOVA. n=6892 Learning-Goal oscillations, 2953 Retrieval-Goal oscil-
lations, 6659 Learning-Random oscillations, 7752 Retrieval-Random
oscillations. Main effects: Learning versus Retrieval, F(1, 24,252) = 82.56,
p, 0.0001; Goal-seeking versus Random-foraging, F(1, 24,252) = 1.243,
p=0.2649; Interaction, F(1, 24,252) = 9.421, p=0.0021. Post hoc multi-
ple comparisons (Tukey’s HSD): Retrieval-Goal versus Retrieval-
Random, adjusted p=0.5961; Learning-Goal versus Learning-
Random, adjusted p=0.0043; all other comparisons, adjusted
p, 0.0001. G, Wilcoxon rank sum test. n=1162 oscillations.
p, 10�10. **p� 0.01. ***p� 0.001. n.s., p. 0.05.
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is thought to be largely driven by local, intrahippocampal sources
(Buzsáki, 2015; Davoudi and Foster, 2019). The occurrence rate
of ripples (number of ripples per time immobile) dramatically
increased across learning (Fig. 7A), consistent with prior reports
(Jackson et al., 2006; Eschenko et al., 2008; Girardeau et al., 2014;
Igata et al., 2021) and a role for extrahippocampal input to drive
ripple initiation (Abadchi et al., 2020). However, neither ripple
duration, ripple power, cell participation, within-ripple firing
rate, nor the percent of ripples that encoded statistically signifi-
cant virtual spatial trajectories (replay events) was impacted by
experience (Fig. 7B–F). These results indicate that, while ripple
drive increased across learning, basic circuit properties underly-
ing ripple expression were unchanged. Thus, it is likely that local
hippocampal excitability is unaffected by experience in this task
and the movement-based changes in excitatory firing rate (Fig.
3) and theta power (Fig. 4) are a result of increased extrahippo-
campal drive.

The patterns of neuronal activity within hippocampal ripples
often represent virtual spatial paths through the current environ-
ment (Diba and Buzsáki, 2007; Davidson et al., 2009; Pfeiffer and
Foster, 2013, 2015; Pfeiffer, 2020). The spatial representation
encoded within ripple events was quantified by identifying a sub-
set of ripple events that encoded a statistically significant spatial
trajectory (termed replay events). Prior work has demonstrated
that replay events in this task are significantly biased to encode a
path from the rat’s current location to the recently learned Goal
well (Pfeiffer and Foster, 2013). However, those analyses were
averaged across the entire session and did not assess potential

trial-to-trial changes in replay content as the rat learns the Goal
well location. A hypothesis of the current study is that learning
produces a rapid increase in the number of replay events that
encode rat-to-Goal virtual trajectories, and thus, an increase in
Goal representation that parallels improvements in behavioral
performance. Alternatively, recent work suggesting that replay
events preferentially encode prior reward locations predicts that
emergence of the Goal in replay may not appear until consider-
ably later in training (Carey et al., 2019; Gillespie et al., 2021). To
test these alternate hypotheses, each replay event was analyzed to
quantify the representation of the Goal well compared with the
previous Random well and all other wells. Because of small num-
bers of ripple events in each trial, a running average representa-
tion across four consecutive trials was used. Importantly, for
each replay event, the representation of the well currently occu-
pied by the rat was eliminated to remove the well-known initia-
tion bias of replay. This prevented artificially increasing the
representation of the Goal well because of increased numbers of
replay events that occurred while the rat was at that location, and
thus explicitly focused the analysis on nonlocal representation in
replay. Surprisingly, virtually no representation of the Goal well
was observed in replay events during the Learning phase.
Starting on Trials 7 and 8 (in the beginning of the Retrieval
phase), a sudden increase in Goal representation arose in replay
events which persisted throughout the remainder of the experi-
ment (Fig. 8A,B). Thus, Goal representation in replay events
only emerged after the rat had achieved peak performance on
the task, suggesting that such events are unlikely to be necessary

Figure 7. Ripple rate, but not other ripple properties, increases across learning. A-F, Same as in Figure 4A-C, for ripple rate per time immobile (A), ripple duration (B), ripple power (C), per-
cent of recorded cells that participate in each ripple (D), firing rate of participating cells per ripple (E), and percent of ripples that encode statistically significant replay (F). Statistical tests and
results: A, Wilcoxon rank sum test. n= 8 sessions � 4 time points per group. p= 8.495� 10�6. B, Wilcoxon rank sum test. n= 8 sessions � 4 time points per group. p= 0.5836. C,
Wilcoxon rank sum test. n= 8 sessions � 4 time points per group. p= 0.3647. D, Wilcoxon rank sum test. n= 8 sessions� 4 time points per group. p= 0.5134. E, Wilcoxon rank sum test.
n= 8 sessions� 4 time points per group. p= 0.1458. F, Wilcoxon rank sum test. n= 8 sessions� 4 time points per group. p= 0.3964. ***p� 0.001; n.s., p. 0.05.
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for initial learning. Representation of the previous Random well
was observed strongly in replays of the first few trials, but this
representation dropped rapidly during learning and encoding of
the previous Random well was never significantly different from
any other non-Goal well throughout the experiment (Fig. 8A,B),
strongly indicating that, in this behavioral task, retrospective
replay of nonrepeated past experience is rare. Prior work
(Pfeiffer and Foster, 2013) demonstrated that the virtual trajecto-
ries encoded within replay events are moderately correlated with
the rat’s heading direction. To determine whether the increased
representation of the Goal well was driven by replay events that
occurred while the rat was facing the Goal well, replay events
were subdivided into those in which the rat was oriented toward
the Goal well (645°) or was facing elsewhere. No significant
effect of heading direction was observed (two-way ANOVA
F(1,24), all main effects p. 0.095).

Contrary to replay-encoding ripples, non–replay-encoding
ripples showed a rapid, but transient, increase in Goal represen-
tation during the Learning phase (Fig. 8C). The criteria used to
define replay events require representation of a spatially plausible
path, meaning that ripples encoding trajectories which jump or
teleport around the arena would fail to qualify. As with replay
events, representation of the well currently occupied by the rat
was eliminated from analysis of non–replay-encoding ripples.
Thus, this analysis excluded ripple events which encoded sta-
tionary representation of the rat’s current location (Denovellis
et al., 2021). Goal representation in non–replay-encoding rip-
ples therefore necessarily included a virtual teleportation of
spatial representation to the Goal without a spatially informa-
tive virtual path leading to that location. This nonlocal Goal
representation across all ripples arose very quickly in the
Learning phase in a manner that preceded changes in move-
ment-based network activity. Furthermore, the emergence of
Goal representation within ripples on the first few trials
strongly argues that the novel Goal location can be incorpo-
rated into hippocampal ripples without prolonged, repeated ex-
perience. As observed for trajectory-encoding replays, the Goal
representation in non–replay-encoding ripples was not
impacted by whether the rat was facing the Goal well at the
time of the event (two-way ANOVA F(1,24), all main effects
p. 0.30).

To determine whether representation of the Goal well in rip-
ples impacted subsequent behavioral performance, the latency
of the rat to return to the Goal well was quantified for every rip-
ple event that occurred while the rat was away from the Goal
well. This analysis combined both trajectory-encoding replay
events and non–replay-encoding ripples together. Significantly
shorter latencies to return to the Goal well were observed fol-
lowing Goal-encoding ripples than following ripples which did
not represent the Goal well (Fig. 8D). Post hoc analysis revealed
that this effect was only significant for the Learning period (Fig.
8D), suggesting that representation of the Goal, even during
nonspatially structured ripples, contributes to improved behav-
ioral performance.

Figure 8. Representation of a goal emerges rapidly in ripples. A, Across all sessions, mean
representation of the Goal well (red), the previous Random well (black), and all other wells
(gray) in all statistically significant replay events occurring in Trials 1-4 (top), Trials 8-11
(middle), and Trials 15-18 (bottom). For each replay, representation of the well currently
occupied by the rat was eliminated from analysis. *p, 0.05 (statistical outlier, Grubb’s
test). B, Representation of the Goal well (red), previous Random well (solid black), or aver-
age6 SEM of all other wells (dashed black) across the first 30 trials, using a four-trial aver-
age. *p, 0.05, Goal well is a statistical outlier from all other wells for that four-trial
window (Grubb’s test). The previous Random well is not a statistical outlier for any data
point. C, Same as in B for ripples that do not encode statistically significant, spatially smooth
trajectories. D, For both Learning (top) and Retrieval (bottom) phases, mean latency to return
to Goal well following ripples which occurred while the rat was away from the Goal well and
which represented the Goal well (“Goal Encoding,” red) or did not represent the Goal well
(“No Goal Encoding,” black). Statistical tests and results: D, Two-way ANOVA. n= 10
Learning/Goal-encoding ripples, 16 Retrieval/Goal-encoding ripples, 27 Learning/non-Goal-

/

encoding ripples, 56 Retrieval/non-Goal-encoding ripples. Main effects: Learning versus
Retrieval, F(1,105) = 17.53, p, 0.0001; Goal-encoding versus non-Goal-encoding,
F(1,105) = 11.12, p= 0.0012; Interaction, F(1,105) = 3.266, p= 0.0736. Post hoc multiple com-
parisons (Tukey’s HSD): Learning/Goal-encoding versus Learning/non-Goal-encoding, adjusted
p= 0.0086; Retrieval/Goal-encoding versus Learning/not-Goal-encoding, adjusted p,
0.0001; Learning/non-Goal-encoding versus Retrieval/non-Goal-encoding, adjusted
p, 0.0001; all other comparisons, adjusted p. 0.5. *p� 0.05.
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Discussion
This work provides a detailed examination of hippocampal net-
work modulation during a period of rapid spatial memory for-
mation and subsequent memory retrieval. The study used a
modified delayed matching-to-place task, a behavior shown to
require proper hippocampal function and plasticity across both
hippocampal and frontal cortical networks (Steele and Morris,
1999; Kilonzo et al., 2021). This work reveals four main findings:
(1) the Goal location did not display elevated firing rates or accu-
mulation of place fields, even after behavioral performance indi-
cated that spatial memory of the Goal location had been
established; (2) global activity rates increased across the hippo-
campal network during periods of active movement in a manner
that paralleled behavioral performance; (3) the quality of theta
sequences improved across learning without reliably encoding
virtual trajectories to the learned Goal; and (4) the novel Goal
location was rapidly encoded in spatially unstructured ripples
which emerged during early learning periods, followed by a pro-
longed representation of the Goal in spatially organized replay
during post-learning retrieval periods. Together, these findings
provide evidence that successful spatial navigation does not
require enhanced representation of a distant goal location across
the hippocampal network during active movement. Rather, goal
representation appears to initially emerge during periods of
immobility, when hippocampal networks may be able to syn-
chronize activity of cortical networks implicated in goal repre-
sentation (Basu et al., 2021; Hocker et al., 2021).

The absence of amplified goal-specific encoding in place field
activity is surprising given several prior studies that reported
increased hippocampal representation of a learned site of reward
(Hollup et al., 2001; Lee et al., 2006; Hok et al., 2007; Dupret et
al., 2010; Mamad et al., 2017; Kaufman et al., 2020). Most prior
work exploring goal encoding used tasks that maintained the
goal in a consistent spatial location across sessions (Hollup et al.,
2001; Lee et al., 2006; Hok et al., 2007; Mamad et al., 2017;
Kaufman et al., 2020). In the present study, however, the Goal
location moved unpredictably between sessions, which may
account for the lack of accumulation of goal-related activity
reported here. Importantly, two previous studies observed
increased goal representation in place cell activity even when
the goal location changed daily (Dupret et al., 2010; Xu et al.,
2019). In these two reports, rats displayed navigation “errors”
during the initial trials of each day, exploring the previous
day’s rewarding sites before learning the current day’s goal
(Dupret et al., 2010; Xu et al., 2019). In contrast, rats in the
present study did not visit the previous day’s Goal location
more often than chance (across-session binomial cumulative
distribution p. 0.68; in only one session did a rat explore the
previous day’s Goal well before finding the current Goal well
on Trial 1). This may be because of prolonged training in the
current study, during which rats adopted an optimal strategy
of avoiding Goal sites from previous days, as they were never
reused on subsequent days. Furthermore, most prior work on
goal representation in the hippocampus has relied on environ-
ments with linear paths or open environments with consistent
optimal path strategies, such that the rat necessarily follows
the same path and reactivates the same population of neurons
on each goal-directed trajectory. In the current study, how-
ever, rats were forced to navigate to a goal location in an open
field from a large number of starting locations; thus, paths to
the Goal well rarely repeated. This lack of repetition may pre-
vent or slow synaptic plasticity which likely underlies accumu-
lation of goal representation across the hippocampal network

(Dupret et al., 2010). Finally, it is possible that increased Goal
representation may require prolonged experience, and may
have emerged in the present study had the experiment been
extended. Regardless, these data indicate that successful spa-
tial memory retrieval is not critically dependent on accumula-
tion of place fields at a learned goal location.

In opposition to the lack of change in goal representation
across learning, several features of hippocampal function during
active movement did change in parallel to mnemonic improve-
ment. Excitatory firing rate, theta power, and the quality of theta
sequences all significantly increased as rats learned the location
of a goal and remained elevated during sustained performance.
These changes directly correlated to improved navigation toward
the learned Goal well, but did not relate to random foraging suc-
cess, indicating a specific effect on memory-guided behavior
(rather than, for example, heightened sensitivity to olfactory
cues). Importantly, these changes in online network activity did
not arise exclusively at the learned Goal location or emerge only
during periods of goal-directed navigation but were instead
observed throughout the task and across the entire population of
recorded place cells. These findings argue that, for this spatial
navigation task, increased place cell representation exclusively
at a learned reward location is not necessary for improved goal-
directed navigation to that site. Rather, global activity of excita-
tory hippocampal neurons increased with learning, consistent
with a prior study (Michon et al., 2021). Such increases in over-
all firing rates are unlikely to be due to increased speed
(McNaughton et al., 1983), as velocity was unchanged across
learning. The fact that firing rates increased regardless of place
field location and during both the random foraging and goal-
directed navigation portions of the task strongly suggests a
global increase in synaptic input as a function of experience.
Furthermore, measures of local connectivity and excitability
during hippocampal ripples were unchanged across learning.
Given that activity in ripples is largely thought to be driven by
local, intrahippocampal connections (Buzsáki, 2015; Davoudi
and Foster, 2019), the increase in “online” activity without a
concomitant increase in “offline” activity is consistent with the
hypothesis that extrahippocampal input may be the driving
force behind the changes in online activity observed in the
hippocampal network, although more work is necessary to con-
clusively test this hypothesis. Prior reports indicate that hippo-
campal theta power is increased during periods of spatial
decision-making (Schmidt et al., 2013; Belchior et al., 2014),
supporting a model of hippocampal function in which increased
network organization during active navigation facilitates infor-
mation retrieval and/or processing.

Surprisingly, however, the increase in theta power and
improvement in the quality of theta sequences did not appear
to result in reliable encoding of theta sequences to the learned
Goal location. A prior report demonstrated that theta sequen-
ces can encode paths to distant goal locations in a circular track
(Wikenheiser and Redish, 2015). This prior study further indi-
cated that theta sequences were generally correlated to behav-
ioral needs, with longer sequences emerging during navigation
to more distant goals (Wikenheiser and Redish, 2015). A subse-
quent study, however, reported that the spatial content in theta
sequences does not predict future behavior, but instead itera-
tively samples between multiple possible future paths (Kay et
al., 2020). In the current study, goal representation in theta
sequences was assessed by orienting the decoded virtual paths
to either the rat’s movement direction or the direction to the
Goal. In this task, theta sequences are heavily biased to reflect
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the rat’s current movement direction, even when that move-
ment was not optimally oriented to the learned Goal. Given the
lack of representation of the Goal location in theta sequences,
even when the rat was near the Goal, it is unclear whether or
how theta sequences might facilitate navigation to the goal in
the present task.

During periods of immobility, the hippocampus produces
brief, highly organized activity bursts termed ripples, which often
encode spatially structured virtual trajectories through the cur-
rent environment (Foster and Wilson, 2006; Diba and Buzsáki,
2007; Gupta et al., 2010; Pfeiffer and Foster, 2013, 2015; Pfeiffer,
2020). In this study, nonlocal goal representation emerged rap-
idly in ripples which did not appear to encode spatially coherent
replay of virtual paths. Representation of the goal in non–replay-
encoding ripples diminished after learning, and was replaced by
goal representation in ripples which encoded coherent replay.
Thus, across all ripples, representation of the Goal location
emerged rapidly and persisted throughout the entirety of the
experiment. While many diverse paths were encoded by ripples
in this dataset (Pfeiffer and Foster, 2013), only the Goal well
showed repeated, elevated representation, a finding observed on
virtually every trial. The previous Random well was not encoded
in ripples more strongly than any other non-Goal well, suggest-
ing that, in this task, replay did not preferentially encode paths to
prior rewarding locations (Gillespie et al., 2021). Further, the
rapid emergence of Goal representation in ripples in the current
study argues against a slow, progressive development in which
past rewarding sites are gradually incorporated into ripples
(Gillespie et al., 2021). Importantly, this work does not refute
that of prior studies which showed a lack of current goal repre-
sentation in ripples (Carey et al., 2019; Gillespie et al., 2021), but
rather argues for a more nuanced view of hippocampal ripples as
a flexible mechanism that may be capable of altering their infor-
mation content based on the cognitive demands of the current
task. The transition from unstructured ripples to spatially organ-
ized replay across the first few trials argues that experience-de-
pendent synaptic plasticity, perhaps across the CA3 or CA2
networks (He et al., 2021), is necessary to coordinate replay, even
in a familiar environment.

Recent work indicates that neurons in the orbitofrontal cortex
can faithfully encode spatial information regarding distant goal
locations (Basu et al., 2021; Hocker et al., 2021). Goal representa-
tion in the orbitofrontal cortex emerges before movement onset
and is maintained throughout the entirety of goal-directed navi-
gation (Basu et al., 2021). Hippocampal activity in ripples is
known to activate and coordinate activity across a large number
of cortical networks (Logothetis et al., 2012; Shin et al., 2019;
Abadchi et al., 2020). Thus, findings from the current study sup-
port a model of hippocampo-cortical function in which hippo-
campal ripples can represent a distant goal location before
movement, thereby activating orbitofrontal cortex neurons that
also encode that location and which serve to maintain represen-
tation of that goal during subsequent navigation.
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