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As we navigate the world, we use learned representations of relational structures to explore and to reach goals. Studies of
how relational knowledge enables inference and planning are typically conducted in controlled small-scale settings. It remains
unclear, however, how people use stored knowledge in continuously unfolding navigation (e.g., walking long distances in a
city). We hypothesized that multiscale predictive representations guide naturalistic navigation in humans, and these scales
are organized along posterior-anterior prefrontal and hippocampal hierarchies. We conducted model-based representational
similarity analyses of neuroimaging data collected while male and female participants navigated realistically long paths in vir-
tual reality. We tested the pattern similarity of each point, along each path, to a weighted sum of its successor points within
predictive horizons of different scales. We found that anterior PFC showed the largest predictive horizons, posterior hippo-
campus the smallest, with the anterior hippocampus and orbitofrontal regions in between. Our findings offer novel insights
into how cognitive maps support hierarchical planning at multiple scales.
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Significance Statement

Whenever we navigate the world, we represent our journey at multiple horizons: from our immediate surroundings to our
distal goal. How are such cognitive maps at different horizons simultaneously represented in the brain? Here, we applied a
reinforcement learning-based analysis to neuroimaging data acquired while participants virtually navigated their hometown.
We investigated neural patterns in the hippocampus and PFC, key cognitive map regions. We uncovered predictive represen-
tations with multiscale horizons in prefrontal and hippocampal gradients, with the longest predictive horizons in anterior
PFC and the shortest in posterior hippocampus. These findings provide empirical support for the computational hypothesis
that multiscale neural representations guide goal-directed navigation. This advances our understanding of hierarchical plan-
ning in everyday navigation of realistic distances.

Introduction
When we navigate a city, we draw on our memory. We learn,
retrieve, and update representations of relationships among

different locations. This relational knowledge guides deci-
sions and behavior (O’Keefe & Nadel, 1978; Burgess et al.
2002; Behrens et al., 2018; Momennejad, 2020) and has been
captured by computational models of planning, inference,
and spatial navigation (Garvert et al., 2017; Momennejad et
al., 2017; Stachenfeld et al., 2017). While some argue for one-
step relational representations, here we scale evidence for
computational models suggesting that predictive representa-
tions of relational structures may be organized at multiple
scales along hippocampal (Stachenfeld et al., 2017; Momennejad
and Howard, 2018) and prefrontal (Christoff and Gabrieli, 2000;
Koechlin and Hyafil, 2007; Momennejad and Haynes, 2013) hier-
archies. Such hierarchical structure could also enable the extrac-
tion of abstract relational structures that unfold at lower levels
(Fig. 1A).

Previously, we had shown that representations learned by
reinforcement learning (RL) models capture human planning
(Momennejad et al., 2017), in highly controlled experiments
with fixed predictive scales. Here, we used model-based fMRI
data analysis to test predictions of a multiscale predictive
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representation model (Momennejad and Howard, 2018) on
brain signals collected during virtual navigation of a real-world
city that participants had learned in their daily lives (dataset
from Brunec et al., 2018). Our results show that representations
in prefrontal and hippocampal hierarchies during real-world
navigation were aligned with model predictions.

Our framework of multiscale representations stems as much
from computational models as decades of electrophysiology and

neuroimaging findings. Our first hypothesis was that, during
virtual navigation, anterior hippocampus would display repre-
sentational similarity at longer predictive scales than posterior
hippocampus. Rodent place field size increases along the dorsal-
ventral hippocampal axis, with larger and more overlapping
place fields in more ventral regions (Jung et al., 1994; Kjelstrup et
al., 2008; Strange et al., 2014; Contreras et al., 2018). Human
fMRI evidence suggests a similar gradient along the posterior-

Figure 1. Schematic of the hypothesis, task conditions, and analytic methods. A, Multiple scales of representation along a navigated route are activated simultaneously. Longer predictive
horizons correspond to longer-range planning and greater scales of navigational representations. B, Predictive representations in the hippocampus and PFC should proceed along a posterior-an-
terior gradient within the hippocampus and PFC. C, Participants used the same keys to navigate goal-directed routes and to follow the GPS dynamic arrow, but only goal-directed routes
required goal-directed navigation. D, Analytic approach. The voxelwise pattern at each time point was correlated with the g -weighted sum of all future states (for g values of 0.1, 0.6, 0.8,
and 0.9). With higher g values, the weighted future states remain .0 further into the future. Not displayed: We also computed similarity for each TR to goal, and similarity of each TR to
mean of future TRs (equally weighted) within a given horizon (e.g., 10 TRs). For details of the model-based analysis, see Materials and Methods.
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anterior axis (homologous to the rodent dorsal-ventral axis)
(Poppenk et al., 2013). The larger-scale anterior hippocampal
representations might support goal-directed search (Ruediger et
al., 2012), integration of spatial and nonspatial states further
apart (Collin et al., 2015), and longer time horizons (Nielson et
al., 2015). Posterior hippocampal representations are more my-
opic and may support fine-grained spatial relations (Evensmoen
et al., 2013) and pattern separation in memory (Schlichting et al.,
2015; Duncan and Schlichting, 2018; Lohnas et al., 2018). Recent
computational models of predictive representations capture mul-
tiscale place fields and why they skew toward goals (Stachenfeld
et al., 2017; Momennejad and Howard, 2018).

Our second hypothesis was that anterior PFC (antPFC)
would display representational similarity to more distant
states than posterior PFC. The PFC’s hierarchical representa-
tions (Badre and D’Esposito, 2007) support active navigation
and planning (Spiers and Gilbert, 2015; Epstein et al., 2017),
computing alternative paths to goal (Javadi et al., 2017), rever-
sals and detours (Spiers and Gilbert, 2015), and retrospective reval-
uation via offline replay (Momennejad et al., 2018). Neuroimaging
evidence suggests a prefrontal hierarchy whereby more antPFC
regions support relational reasoning (Christoff et al., 2009), abstrac-
tion (Christoff et al., 2001; Bunge et al., 2003), and prospective
memory (Gilbert, 2011; Momennejad and Haynes, 2012, 2013).

Finally, we hypothesized that representational scales in
antPFC would exceed the longest predictive horizons of hip-
pocampal representations (Fig. 1B). The antPFC is the largest
cytoarchitectonic region of the human PFC (Ramnani and
Owen, 2004). PFC’s recurrent interconnectivity enables infor-
mation to linger across longer scales allowing slower learning
and integration. In contrast, the hippocampus supports rapid
statistical learning (Schapiro et al., 2013, 2016, 2017) and is less
heterogeneous across mammalian species (Strange et al., 2014).

To test these hypotheses, we conducted model-based repre-
sentational similarity analyses (Fig. 1D) on an existing fMRI
dataset (Brunec et al., 2018), in which participants actively navi-
gated to known goals (goal-directed condition), or followed a
dynamic arrow along unfamiliar routes (GPS condition) in a vir-
tual version of Toronto (Fig. 1C). The participants’ experience in
this virtual setup was as realistic as possible within the con-
straints of fMRI, and benefited from real-world familiarity,
allowing us to compare predictive horizons on well-learned ver-
sus novel routes.

Consistent with our predictions, antPFC displayed represen-
tational similarity at longer horizons on goal-directed compared
with GPS-guided paths. Anterior hippocampus followed the
PFC, whereas posterior hippocampus supported smallest-scale
predictive representations.

Materials and Methods
Subjects. Twenty-two healthy right-handed volunteers were

recruited. One participant was excluded because of excessive difficulty
with the task (i.e., repeatedly getting lost). Two additional participants
were excluded because of incomplete data or technical issues. Exclusions
resulted in 19 participants who completed the study (9 males; mean age
22.58 years, range 19-30 years). The sample size was not predetermined
using a power analysis. We reanalyzed the dataset from a previously
published study and included all participants with usable data. All partic-
ipants had lived in Toronto for at least 2 years (mean=10.45, SE= 1.81).
All participants were free of psychiatric and neurologic conditions, had
normal or corrected-to-normal vision, and otherwise met the criteria for
participation in fMRI studies. Informed consent was obtained from all
participants in accordance with Rotman Research Institute at Baycrest’s

ethical guidelines. Participants received monetary compensation on
completion of the study.

Experimental design and paradigm. The details of the experimental
design have been reported previously (Brunec et al., 2018). The task used
a realistic navigation software drawing on 360° panoramic images from
Google Street View. This allowed participants to walk through a virtual
Toronto from a first-person, street-level perspective. The navigation
software was written in MATLAB version 7.5.0.342. Navigation was con-
trolled using three buttons: left, right, and forward. A “done” button
allowed participants to indicate that they had completed a route. The
task was projected on a screen in the bore of the scanner viewed by the
participants through a mirror mounted inside of the head coil.
Participants navigated in four conditions, and navigated 16 routes in
total (four in each condition, in a randomized order).

Data from two conditions of interest were analyzed in the present
manuscript: goal-directed and GPS/arrow-following routes. The routes
were constructed before the day of scanning: participants built routes
with researcher assistance, using a computer program which showed
overhead maps of Toronto. Additionally, sets of routes in areas of
Toronto with which participants were generally unfamiliar were created.
Four of these routes were randomly assigned to each participant to be
used in the baseline (GPS) condition. In the scanner, participants were
provided with goal-directed route destinations and asked to navigate to-
ward the goal along the most goal-directed/comfortable route. GPS trials
involved no goal-directed navigation; instead, participants followed a
dynamic arrow (Fig. 1C). To navigate GPS-guided routes, participants used
the same control buttons as they did along goal-directed routes. However, in
the GPS condition, they did not know the goal or the distance.We only ana-
lyzed routes where participants successfully reached the goal (M-goal-directed =
3.37, M-GPS = 3.16 routes). Comparing these conditions enabled us to con-
trast navigational signals associated with goal-directed navigation with
matched motor control and optic flow, but no goal.

fMRI acquisition and preprocessing. Participants were scanned with
a 3T Siemens MRI scanner at the Rotman Research Institute at Baycrest.
A high-resolution 3DMPRAGE T1-weighted pulse sequence image (160
axial slices, 1 mm thick, FOV=256 mm) was first obtained to register
functional maps against brain anatomy. Functional T2*-weighted images
were acquired using EPI (30 axial slices, 5 mm thick, TR= 2000ms,
TE= 30ms, flip angle = 70 degrees, FOV=200 mm). The native EPI re-
solution was 64� 64 with a voxel size of 3.5 mm � 3.5 mm � 5.0 mm.
The preprocessed data were the same as those used in Brunec et al.,
(2018). Images were first corrected for physiological motion using the
Analysis of Functional Neuroimages (Cox, 1996). All subsequent prepro-
cessing steps were conducted using the statistical parametric
mapping software SPM12 (Penny et al., 2011). Preprocessing involved
slice timing correction, spatial realignment, and coregistration with a
resampled 3 mm isotropic voxel size, with no spatial smoothing. The
mean time courses from participant-specific white matter and CSF
masks were regressed out of the functional images, alongside estimates
of the 6 rigid body motion parameters from each EPI run. To further
correct for the effects of motion which may persist despite standard
processing (Power et al., 2012), an additional motion scrubbing proce-
dure was added to the end of our preprocessing pipeline (Campbell et
al., 2013). Using a conservative multivariate technique, time points that
were outliers in both the six rigid-body motion parameter estimates and
BOLD signal were removed, and outlying BOLD signal was replaced by
interpolating across neighboring data points. This method further
reduces effects of motion-induced spikes on the BOLD signal without
leaving sharp discontinuities because of the removal of outlier volumes.

Analysis.We used two main representational similarity analyses (Fig.
1D). To maximally benefit from the temporal resolution afforded by
fMRI, paths were discretized into steps: each step corresponded to a TR,
during which an entire brain volume was measured. In the first analysis,
we computed the correlation between every given step (TR) and the av-
erage of all future steps (TRs) within a particular horizon (e.g., mean of
future 10 TRs following the current TR). In the second analysis, follow-
ing the equations for predictive or successor representations (Dayan,
1993; Momennejad et al., 2017), we computed the correlation between
every given step and the discount-weighted sum of future steps within a
horizon. The pattern across voxels at each future TR was weighed
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exponentially using a discount parameter (i.e., g value, ɣ) between 0 and
1, and the value of the discount parameter corresponded to the scale of
abstraction, corresponding to different levels of a representational hier-
archy (Momennejad and Howard, 2018).

ROI analysis.We investigated the predictive similarity of each state to
future representations in a set of ROIs. To do so, we first extracted voxel-
wise time courses across each navigated route and z-scored the values
within each voxel. We then ran two predictive similarity analyses. First,
we measured the correlation of each time point (TR) with the mean of
successor TRs within a given horizon (e.g., correlation between TR at
time t, and the mean of 10 following TRs). Second, we correlated the
voxelwise pattern at each time point (TR) within each navigated route
with a discount-weighted sum of future TRs. The patterns at future TRs
were weighted by different constant values (ɣ), corresponding to differ-
ent predictive spatial scales. The specified ɣ values were 0.1, 0.6, 0.8, and
0.9 (Fig. 1D). With increasing ɣ values, time points further in the future
remain weighted.0.

As the average distance traversed within each TR was ;25 m, a ɣ
value of 0.1 meant that only each subsequent step (1 TR away) was
weighted .0, and steps farther in the distance contributed little to no
weight to the sum of future representations. We computed the predictive
horizon using the unit of fMRI measurement (i.e., a TR of 2 s). Hence,
depending on the speed of navigation, which was matched across condi-
tions (see Fig. 2C), each step could cover a varying range of spatial dis-
tances (in meters) within and across subjects. Here we used the average
distance traversed within a given horizon. For a ɣ value of 0.6, ;7 steps
in the future were weighted.0, corresponding to;175 m (see Fig. 6D).
For a value of 0.8,;15 steps or 375 m were weighted.0, while this was
the case for;32 steps or 800 m for a ɣ value of 0.9 (see Fig. 6D).

The TR-by-TR correlations within each route were averaged to
derive the representation of future states on each trial. We first applied
this analysis to a priori ROIs, including bilateral anterior and posterior
hippocampi (aHPC, pHPC) and anterior and medial prefrontal cortical
ROIs (antPFC, mPFC). We also examined the same measure in the
mPFC and antPFC. The antPFC and mPFC ROIs were defined as

spheres surrounding peak voxels identified in preliminary findings from
an fMRI adaptation of a known behavioral study of successor represen-
tations (Momennejad et al., 2017) reported by Russek et al. (2018). The
spheres were centered on an anterior prefrontal voxel (MNI coordinates
x= 8, y=68, z=8) and a medial prefrontal voxel (MNI coordinates x =
�22, y=56, z=10). These analyses were performed for each of the ROIs,
as well as a searchlight within the PFC.

PFC searchlight analysis. In order to identify any gradients of predic-
tive representation in the PFC, a custom searchlight analysis was per-
formed within a PFC mask (created in WFU PickAtlas). The analysis
was restricted to gray matter voxels, and a spherical ROI with a 6 mm ra-
dius was used to iteratively correlate each TR with the discount-weighted
sum of future states for voxels within each searchlight. The searchlight
analysis was performed for four different values of ɣ: 0.1, 0.6., 0.8, and
0.9. The single-subject correlation maps were then compared against
zero (AFNI 3dttest11). The output z score maps were thresholded at
values corresponding to 5% false positive rates established by a cluster-
size permutation simulation (AFNI ClustSim).

Model-based analysis: the discount-weighted sum of successor states.
This section addresses the reasoning behind testing the successor
representation hypothesis in terms of pattern similarity between a
given state and the discount-weighted sum of its successor states
(Fig. 1). Consider an environment that consists of n states, some of
which lead to one another. Consider T to be the n � n matrix of
transition probabilities for one-step transitions among these n
states. In a deterministic environment, when there is a transition
from a given state Si to state Sj, we assign 1 in the ith row and jth
column of T. The successor representation under a random policy
can be then computed from T as follows (for comparison to policy-
dependent SR, see Momennejad, 2020):

M ¼ ðI � gTÞ�1 (1)

Equation 2 expands Equation 1 for computing the successor repre-
sentation from state s1 to the goal state sg from T, which is one cell in the

Figure 2. Descriptive statistics for navigated distances in goal-directed and GPS conditions. A, The goal-directed routes were rated as more familiar by participants than GPS routes. Goal-
directed and GPS routes were matched in (B) ease of navigation and (C) speed of travel. D, GPS routes included more turns, on average, than goal-directed routes, but (E) the goal-directed
routes tended to be longer than GPS routes.
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SR matrix. Recall that T denotes the matrix of one-step transition proba-
bilities among adjacent states, while SR contains multistep dependencies
among nonadjacent states. Here the parameter t refers to the number of
steps (or the distance) between states. This parameter need not denote
temporal steps, and can denote any type of sequential relationship
among states.

Mðs1; sgÞ ¼
Xtg

t¼t1

g tTðst1; stÞ (2)

Assume the starting state is s1 and the goal state is s5. Expanding
Equation 2, the successor representation from States 1-5 is the fifth ele-
ment in the first row of the successor representation (Eq. 3), and corre-
sponds to the expected discounted number of times we expect to visit
State 5, if we start from State 1:

Mðs1; s5Þ ¼ gTðs1; s3Þ1 g 2Tðs3; s5Þ (3)

Equations 2 and 3 only capture 1 cell or element in the SR row asso-
ciated with state s1. In the successor representation framework, the sth
row of the SR matrix (the Mmatrix in Dayan, 1993 equations) is the rep-
resentation we expect to observe when the agent is in state s. It denotes
how often we expect to visit the current state’s successors on average and
given a discount. A given row of the successor representation includes
the present state, and the weighted representation of successor states.
Thus, at the moment when an agent is in state s, the row activation of
successor states predicts the simultaneous activation of g -weighted rep-
resentations. We take this simultaneous row activation as the sum of all
activated weighted states in the row (Eq. 4).

RepðsiÞ ¼
Xn

i¼t

g tRepðstÞ (4)

In short, the first row of the SR matrix corresponds to the representa-
tion that is simultaneously activated when the agent is in State 1, which
is the sum ofM(s1, s2), M(s1, s3), M(s1, s4), M(s1, s5). Since we only have a
goal-directed trajectory, this can be the weighted sum of representations
of successor states (Eq. 4). Each successor state is weighted by the dis-
count factor (g , ɣ) to the power of its distance (here in the number of
states) to the starting state. A simple prediction following this weighted
sum view is that being in a given state along the trajectory activates the
row associated with that state and hence the weighted sum of successor
states on that trajectory. This predicts neural similarity between the cur-
rent state and the weighted sum of successor state representations.

We did not have access to pretraining representations of the stim-
uli, for example, the uncorrelated representation of each location on
the trajectory before being associated with specific paths (through
lived experience in Toronto). Since we do not have these pretraining
representations, this method offers an approximation of the expected
similarity structure. Therefore, as a general rule, we make the follow-
ing prediction. In a goal-directed trajectory, and assuming the agent
stays on path, we can assume that the transition probability between
two adjacent states, for example, T(si, sj), equals 1 (i.e., we have a
deterministic Markov Decision Process (MDP)). We predict that
Equation 3 approximates the pattern similarity of the TR in the ith
state to the weighted sum of TRs that are its successor states. The predic-
tive horizon is the successor distance within which the discount parame-
ter g . 0 (see Fig. 6). We hypothesize that different parts of the brain
will show pattern similarity contingent with different values of the dis-
count parameter 0,g,1, and thus different predictive horizons.

This is a first step toward testing the multiscale predictive representa-
tion hypothesis in a realistic navigation setting. To improve prediction
accuracy, future studies are needed that incorporate diverse paths
through each state, to each goal, and to different goals. These studies
should include a larger graph or MDP of the environment with different
starting and goal locations. In order to study map-dependent and path-

dependent changes in the representation of each location, a study design
is needed where the participants learn a new environment. Such studies
would enable us to compare pretraining and post-training neural corre-
lations among the states or locations in the environment.

Results
Participants navigated a set of distances they regularly traversed
in everyday life (M-goal-directed = 3.5, M-GPS = 2.5 km). After com-
pleting each route, participants rated how familiar each route
felt, and how difficult they found it to navigate on a scale from 1 to
9 (where 1 would correspond to least familiar and most difficult,
respectively). As expected, the average reported familiarity was
higher in the goal-directed condition (mean=7.0, SD=1.44) than
in the GPS condition (mean=3.0, SD=0.51; t(18) = �10.53,
p, 0.001, d=2.42; Fig. 2A). The subjective difficulty was similar in
the goal-directed (mean=6.89, SD=1.43) and GPS (mean=7.24,
SD=1.08) conditions, suggesting that all navigated routes were per-
ceived to be similarly undemanding (t(18) =0.827, p=0.419,
d=0.190; Fig. 2B). There was also no difference in movement speed
across the goal-directed (mean=24.91, SD=7.66) and GPS condi-
tions (mean=25.23, SD=2.25; t(18) = 0.191, p=0.851, d=0.044; Fig.
2C). GPS routes did, however, include more turns (mean=7.08,
SD=1.39) than goal-directed routes (mean=5.86, SD=1.78;
t(18) =3.04, p=0.007, d=0.698; Fig. 2D). This was the case despite
the GPS routes being shorter than goal-directed routes, on average
(t(18) =�4.31, p, 0.001, d=0.989; Fig. 2E).

Hippocampal and prefrontal gradients of near-future
predictive representations
To investigate predictive representations along hippocampal and
prefrontal hierarchies, we conducted a progression of analyses.
First, we investigated representational similarity between each
time point (TR) and the average of future n TRs, where n deter-
mined different future horizons (i.e., unweighted average of 1, 2,
3, 4, 5, or 10 future TRs) (Fig. 3). We conducted the analyses sep-
arately on 6 a priori ROIs of anterior-posterior hippocampus
(split into 6 slices as in Brunec et al., 2018) and a priori selected
mPFC and antPFC ROIs (see Materials and Methods). Second, we
conducted the same analyses with discount-weighted sums of
future TRs at different horizons (Figs. 4 and 5), focusing on two
posterior and anterior hippocampal ROIs and mPFC and
antMPFC. In follow-up analyses, we included the path distance on
each route as a factor in the model. Third, we then conducted the
discount-weighted sum RSA in a PFC-masked searchlight analysis
to detect scales of representation in the PFC (Figs. 6 and 7).

Representational similarity to mean of future TRs across
horizons
We conducted linear mixed effects models on these similarity
measures in bilateral hippocampi for each of the routes traveled
within each condition. We included average Fisher’s z-trans-
formed similarity on each route as the dependent variable, and
axial segment (1-6), number of TRs (1-5), and hemisphere (L, R)
as fixed effects. Similar analyses were performed for PFC ROIs.
Participants were included as a random effect. The random inter-
cept mixed effects models were implemented in R (R Core
Team) using the packages lme4 (Bates et al., 2015) and lmerTest
(Kuznetsova et al., 2017) to assess significance. This produced a
Type III ANOVA table with Satterthwaite’s method of approxi-
mating degrees of freedom. Where these included decimal num-
bers, they were rounded to the nearest integer. Effect sizes for
individual factors in mixed effects models were calculated as hp

2

values using the effectsize R package (Ben-Shachar et al., 2020).
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For overall model fits, we report marginal
pseudo-R2 values using the r.squaredGLMM func-
tion from theMuMIn R package, which represent
the variance explained by fixed effects in the model
(R2M) (Nakagawa et al., 2017; Barto�n, 2020). The
similarity values for 10 TRs ahead were not entered
in the present model because of the nonlinear shift
from 5 to 10 TR, but they are plotted in Figure 3.
All plots were generated with the ggplot2 package
(Wickham, 2016).

Hippocampal results
We found a significant effect of axial segment
(F(5,6796) = 45.38, p, 0.001, hp

2 = 0.03), driven
by greater future representations in the anterior
segments compared with posterior ones. There
was also a main effect of condition (F(1,6796) =
1182.35, p, 0.001, hp

2 = 0.15), reflecting gener-
ally greater values in the goal-directed (Fig. 3A),
compared with the GPS condition (Fig. 3B),
and a significant effect of the future horizon
(F(1,6796) =633.44, p, 0.001, hp

2 = 0.27), reflect-
ing higher similarity values for states closer to the
present. There was a main effect of hemisphere,
reflecting higher values in the right compared
with the left hemisphere (F(1,6796) =6.97, p=
0.008, hp

2 = 0.001). There were significant inter-
actions between axial segment and condition
(F(5,6796) =6.97, p, 0.001, hp

2 = 0.004), axial seg-
ment and future horizon (F(20,6796) =2.13, p=
0.002, hp

2 = 0.006), and condition and future ho-
rizon (F(4,6796) =13.16, p, 0.001, hp

2 = 0.008).
The latter interaction is of particular interest as it
suggests that the decline across different predic-
tive horizons was greater in the GPS compared
with the goal-directed condition. There was no
significant three-way interaction (F, 1). The
overall R2M of the model was 0.30.

PFC results
We fit the same models separately for the a
priori selected ROIs in antPFC and mPFC. In
the antPFC (overall R2M = 0.22), there was a sig-
nificant main effect of condition (F(1,1222) =
363.76, p, 0.001, hp

2 = 0.23), as well as a main
effect of future horizon (F(4,1222) = 48.36,
p, 0.001, hp

2 = 0.14), but no condition by future
horizon interaction (F(4,1222) =1.18, p=0.319,
hp

2 = 0.004). In the mPFC (overall R2M = 0.26),
there was a significant effect of condition
(F(1,1222) = 218.77, p, 0.001, hp

2 = 0.19)
and a significant effect of future horizon
(F(4,1222) = 114.82, p, 0.001, hp

2 = 0.27), but
again no significant condition by future horizon
interaction (F(4,1222)=1.82, p= 0.122, hp

2 = 0.006).
Comparing the representational similarity in

the goal-directed and GPS conditions against zero, we found that
the antPFC displayed .0 similarity for every predictive horizon,
including 10 steps ahead, in the goal-directed condition (all p
values, 0.001), but only up to 5 steps in the GPS condition (all p
values for 1-5 steps, 0.001). In contrast, the mPFC only displayed
.0 similarity up to 5 steps in the future on goal-directed routes (p
values, 0.001) and 3 steps on GPS routes (p values� 0.002). The

anterior-most hippocampal segment displayed.0 similarity for up
to 4 steps in the future (p values� 0.006) on goal-directed routes
and only 1 step on GPS routes (p, 0.001), while the posterior-most
hippocampal segment displayed .0 similarity for 1 step on goal-
directed routes (p, 0.001), and 2 steps on GPS routes (p
values� 0.006).

We next conducted similar analyses with the weighted sum of
future TRs of different horizons.

Figure 3. Similarity of each TR to mean of future TRs (equally weighted). Average correlation between each time
point and the average of future 1/2/3/4/5 or 10 time points in (A) the goal-directed condition and (B) the GPS condi-
tion. C, Representational similarity for all ROIs across all temporal lags. More posterior regions cross zero at smaller
horizons. The difference between the anterior and posterior hippocampus is less pronounced here than in subsequent
analyses where neural representations were weighted by different discount factors. The aHPC and pHPC labels refer to
anterior-most and posterior-most hippocampal segments, respectively, shown in A and B.
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Model-based representational similarity to future TRs in ROIs
When an RL agent is in a given state during navigation, the dis-
count-weighted sum of the successor states is the predictive rep-
resentation for that state (see Materials and Methods). Therefore,
we investigated the similarity between each time point and ɣ-
weighted sum of the representations of future states. We ran a se-
ries of linear mixed effects models following the logic described
above, including each route within each of the conditions. The
models included Fisher’s z-transformed representational similar-
ity values as the dependent variable, with ɣ and condition as
fixed effects and participant as a random effect. ɣ was modeled
as an ordinal variable. All analyses were implemented using the
same packages as above. For the hippocampus, the reported sta-
tistics and plotted values apply to the right hippocampus, as there
was no significant difference between left and right hippocampi
(all p values. 0.34).

Mixed effects analysis
The first mixed effects model included all ROIs to compare av-
erage representational similarity differences across regions
with different hypothesized scales. There was a significant
main effect of ɣ (F(2,1448) = 322.14, p, 0.001, hp

2 = 0.31), sug-
gesting (not surprisingly) more representational similarity
within horizons that are closer to the present state. We also
observed a significant main effect of condition (F(1,1452) =
309.46, p, 0.001, hp

2 = 0.18), suggesting representational
similarity at higher predictive horizons in the goal-directed
compared with the GPS condition (Fig. 4A,B). There was a
main effect of ROI (F(3,1448) = 547.38, p, 0.001, hp

2 = 0.53),
confirming the hypothesis of longer predictive horizons in the

antPFC, followed by mPFC, aHPC, and pHPC.
There was also a significant interaction between ɣ
and condition (F(2,1448)= 7.49, p, 0.001, hp

2 =
0.01), and a significant interaction between con-
dition and ROI (F(3,1448) = 10.13, p, 0.001, hp

2

= 0.02). The overall R2M of the model was 0.57.

Within-ROI analyses
Follow-up mixed effects models were conducted
for predictive similarity values within each ROI.
Significance was established against a Bonferroni-
adjusted value of A = 0.0125 (for 4 ROIs). In the
antPFC (overall R2M = 0.27), there was a signifi-
cant main effect of ɣ (F(2,347) =53.29, p, 0.001,
hp

2 = 0.23). There was also a significant effect of
condition, with significantly higher correlations
in the goal-directed than the GPS condition
(F(1,349) =103.42, p, 0.001, hp

2 = 0.23). There
was no significant ɣ � condition interaction
(F, 1). In mPFC (overall R2M = 0.34), there was
again a significant main effect of ɣ (F(2,350) =
106.39, hp

2 = 0.38), as well as a main effect of con-
dition (F(1,352) =83.19, p, 0.001, hp

2 = 0.19) in
the same direction as the antPFC. There was no
significant ɣ � condition interaction (F(2,350) =
3.44, p=0.033, hp

2 = 0.02).
In the aHPC (overall R2M = 0.45), there was

a significant main effect of ɣ (F(2,348) = 151.90,
p, 0.001, hp

2 = 0.47), a main effect of condi-
tion (F(1,350) = 128.05, p, 0.001, hp

2 = 0.27), as
well as a ɣ � condition interaction (F(2,348) =
4.89, p= 0.008, hp

2 = 0.03). As in the mPFC,
this interaction reflected a steeper slope across
ɣ values in the GPS condition (–0.16) than in

the goal-directed condition (–0.12). In the pHPC (overall R2M =
0.47), there was a significant main effect of ɣ (F(2,349) = 218.38,
p, 0.001, hp

2 = 0.56), a main effect of condition (F(1,351) = 87.99,
p, 0.001, hp

2 = 0.20), and a significant ɣ� condition interaction
(F(2,349) = 3.81, p= 0.023, hp

2 = 0.02), again reflecting a steeper
slope in the GPS condition (–0.17), compared with the goal-
directed condition (–0.13).

To test for evidence of predictive representations, we con-
ducted one-sample t tests to test these values against zero, with
an adjusted value of A = 0.002 (24 comparisons in total). At ɣ =
0.1, the similarity values in all ROIs were significantly .0 in
both conditions. At ɣ = 0.6, similarity values for all ROIs but the
pHPC were significantly .0 in the goal-directed condition. In
the GPS condition, however, similarity values in neither the
aHPC nor the pHPC were significantly .0. At ɣ = 0.8, values in
both antPFC and mPFC remained significantly .0 in the goal-
directed condition, but only antPFC remained .0 in the GPS
condition. For this value of ɣ, the values in aHPC and pHPC were
not significantly .0 in either condition, and were actually signifi-
cantly,0 in the pHPC. This significant negative correlation could
reflect the differentiation of neural patterns across time, potentially
as a manner of separating experience into fine-grained units.

Representational similarity during goal-directed navigation
is related to traveled path distance
If the hippocampus and PFC represent planning processes asso-
ciated with the currently navigated route, these representations
should be modulated by the route path distance. To test this, we
included the path distance on each route as a factor in the mixed

Figure 4. Predictive similarity across predictive scales. Correlations between current time points and the ɣ-weighted
sum of future states for different values of g , in the four specified ROIs in the (A) goal-directed and (B) GPS condi-
tions. ɣ = 0.1 only included 1 step (1 TR) away, ɣ = 0.6 reached ;6 or 7 steps in the future, corresponding to
;175 m, ɣ = 0.8,;14 steps or 350 m ahead.
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effects model. Path distance was calcu-
lated as the summed change in longitude
and latitude coordinates between each adja-
cent pair of TRs. To account for the contri-
bution of time, we also regressed out the
number of TRs on each route. The reported
model-fits thus account for the variability in
the amount of time spent navigating differ-
ent routes. Before running these models, we
mean-centered distances within each partic-
ipant to account for different ranges trav-
eled. We excluded nine goal-directed routes
from a total of 8 participants because of
improbably long paths that diverged
.1.5km from the main path. Including
these paths, however, did not change the
significance of any of the results.

Path distance results
In the goal-directed condition (overall
R2M = 0.71), there were significant effects
of ɣ (F(2,630) = 186.83, p, 0.001, hp

2 =
0.37) and ROI (F(3,630) = 369.49, p,
0.001, hp

2 = 0.64). There was no signi-
ficant main effect of path distance
(F(1,645) = 1.06, p=0.304, hp

2 = 0.002), but
there were significant interactions be-
tween ROI and path distance (F(3,630) =
38.13, p, 0.001, hp

2 = 0.15) and ɣ and
path distance (F(2,630) = 6.47, p= 0.002,
hp

2 = 0.02; Fig. 5). The plotted values in
Figure 5 were estimated using the effects
package in R (Fox, 2003; Fox and
Weisberg, 2011). There was no signifi-
cant interaction between ɣ and ROI, nor
a three-way interaction (both p values
. 0.30). As predicted, we observed no
main effect of path distance in the GPS
condition (F, 1), nor any interactions
with ROI (F(3,671) = 2.07, p=0.103, hp

2 =
0.009) or ɣ (F, 1). The main effects of ɣ (F(2,671) = 180.62,
p, 0.001, hp

2 = 0.35) and ROI (F(3,671) = 209.62, p, 0.001, hp
2 =

0.48) remained significant, however. The overall R2M of this model
was 0.68.

ROI and path distance interactions
We conducted a linear mixed effects model for each of the ROIs,
predicting representational similarity from path distance and ɣ.
In the antPFC (overall R2M = 0.32), there were significant effects
of ɣ (F(2,144) = 33.92, p, 0.001, hp

2 = 0.32) and path distance
(F(1,149) = 91.51, p, 0.001, hp

2 = 0.38), but no interaction
between the two (F(2,144) = 1.09, p=0.340, hp

2 = 0.01). This sug-
gests that the effect of path distance was stable across different
predictive horizons in antPFC. In mPFC (overall R2M = 0.32),
the effects of ɣ (F(2,144) = 71.77, p, 0.001, hp

2 = 0.50) and path
distance (F(1,147) = 82.70, p, 0.001, hp

2 = 0.36) were again signifi-
cant, as was the interaction between the two (F(2,144) = 3.62,
p=0.029, hp

2 = 0.05). In the aHPC (overall R2M = 0.40), there
was a significant effect of ɣ (F(2,145) = 69.82, p, 0.001, hp

2 =
0.49), a significant effect of path distance (F(1,152) = 47.17,
p, 0.001, hp

2 = 0.24), and a weaker interaction between ɣ and
path distance (F(2,145) = 2.93, p = 0.057, hp

2 = 0.04). Finally, in
the pHPC (overall R2

M = 0.50), there were significant effects

of ɣ (F(2,144) = 146.40, p, 0.001, hp
2 = 0.67), path distance

(F(1,148) = 82.52, p, 0.001, hp
2 = 0.36), and a weaker interac-

tion between the two (F(2,144) = 3.23, p = 0.042, hp
2 = 0.04).

Comparison with Euclidean distance
To establish how specific these results were to the traversed
paths, we reran the models but this time included the Euclidean
distance from start to goal as a predictor instead. In the goal-
directed condition (overall R2M = 0.69), the effects of ɣ and ROI
remained significant (both p values, 0.001), but there was no
main effect of Euclidean distance (F, 1), and no significant
interaction between ɣ and Euclidean distance (F(2,631) = 1.93,
p= 0.145, hp

2 = 0.006). There was an interaction between ROI
and Euclidean distance (F(3,630) = 3.33, p= 0.019, hp

2 = 0.02), but
no three-way interaction (F, 1). In the GPS condition, the
effects of ɣ and ROI were again significant (p values, 0.001),
and there was a weaker main effect of Euclidean distance
(F(1,49) = 4.39, p=0.041, hp

2 = 0.08), but no other main effects or
interactions (all p values, 0.60).

Model-based representational similarity in prefrontal
searchlights
PFC has a much larger volume than the hippocampus. In
order to identify hierarchies of predictive representations

Figure 5. Linear mixed effects model predicting representational similarity (y axis) from path distance (x axis), ɣ, and ROI.
Voxelwise patterns in different ROIs interacted differently with path distance: in the antPFC, routes with longer path distances
were associated with greater representational similarity, whereas the opposite trend was present in the hippocampus (both
aHPC and pHPC). Plot represents the model fit values and CIs. These reflect the relationships between the variables of interest
after regressing out the effect of the number of TRs on each route and accounting for all other main effects and interactions.
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comparable to hippocampal ROIs, we ran a searchlight
analysis and computed similarity for voxels within every
spherical searchlight (of 6 mm radius). The searchlight
analysis was performed for four values of ɣ (0.1, 0.6, 0.8,
0.9) within each of the conditions. The thresholded z score
maps for different values of ɣ are displayed as overlays in

Figure 6A, along with the average thresh-
olded similarity maps within each condi-
tion (thresholded at 0.06; Fig. 6B).

Prefrontal hierarchy
To capture the gradient of values from the an-
terior-most to the posterior-most segments of
the PFC, we calculated the average value of
representational similarity across voxels
within each anterior-posterior slice (i.e., the y
direction). The slopes are plotted in Figure 7.
These plots reveal a gradation of predictive
representations extending from posterior-
most to anterior-most slices of the PFC. This
trend was reliable in both the goal-directed
and GPS conditions, but the representational
similarity values were consistently greater in
the goal-directed condition.

To account for the proportion of differ-
ent histologically defined brain regions
covered by each significant cluster, we cal-
culated the percentage of overlap between
each prefrontal Brodmann area (BA)
region and the significant voxels for each
value of ɣ in each of the conditions (Table
1; Fig. 8). These percentages represent the
proportion of each BA region covered by
the significant thresholded clusters. We
found the largest overlap between voxels in
the antPFC (BA 10) and significant voxels
in the searchlight analysis with various ɣ
values. Following anterior and polar PFC
was BA 11, corresponding to the OFC, and
then BA 25 and 32, corresponding to sub-
genual area or cingulate cortex and ACC,
respectively. These regions were followed
by smaller overlap in area 47, correspond-
ing to the orbital part of the inferior frontal
gyrus, areas 46 and 9 corresponding to the
dorsolateral PFC, and no overlap in area
45 corresponding to the inferior frontal
gyrus.

Representational similarity slope along
PFC hierarchy
Controlling for distance: matched distance
analysis
As discussed in earlier sections, the distances
were not matched between the two conditions
(Fig. 2E). To account for this difference, we
conducted a matched analysis in which we
manually selected pairs of routes with the
minimum difference in distance for each par-
ticipant, up to 1 km (Fig. 9A). We were
unable to include 3 of the participants in this
analysis as the distances in their goal-directed
and GPS routes were too different (with a
difference in distance. 1.5 km). For the

remaining 16 participants, there was no significant difference
between the selected GPS and goal-directed routes (p= 0.215).
We ran a paired-samples t test comparing participants’ prefron-
tal RSA maps for the two selected routes. We also included the
difference in distance for the two selected routes as a covariate

Figure 6. One-sample t tests for goal-directed and GPS condition. A, Voxels with significant representation of future
states in the goal-directed and GPS conditions using a one-sample t test against zero. B, Voxels with representational
similarity (correlation) values .0.06 for each value of ɣ. C, One-sample t tests with distance as covariate. The results
look very similar to running a t test on goal-directed routes versus zero, and GPS routes versus zero. The mean distance,
per participant, per condition, was included as a covariate. D, Discounted weights corresponding to different gammas
were applied to each successor TR. The average distance covered in each TR was ;25 m (24.8 m). Based on this, we
computed approximate distances corresponding to predictive horizons for each discount parameter. The exact distances
for each discount parameter differed across routes and participants depending on their speed. ɣ = 0.1 only included 1
step (1 TR) away, ɣ = 0.6 reached;7 steps in the future, corresponding to;175 m, ɣ = 0.8,;15 steps or 375 m,
ɣ = 0.9 reached;32 steps or 800 m ahead.
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for each participant. The brain maps of the average correlation
values thresholded at 0.04 are presented in Figure 9B, and the
results of the 5% False Positivity Rate (FPR)-corrected t test in
Figure 9C.

We compared matched-distance searchlight results in the
goal-directed and GPS conditions. In this comparison, relatively
few clusters significantly differed between the goal-directed and
GPS conditions. However, the comparison at each level of ɣ sug-
gests that there is a set of clusters along the rostrocaudal extent
of the PFC which differentiates between goal-directed and GPS-
guided navigation (Table 1). Notably, while only orbitofrontal
clusters were significantly different for smaller horizons, more
dorsal and rostral/polar PFC clusters emerged in the comparison
of larger horizons or scales, between the goal-directed and GPS
conditions. It is worth noting, however, to ensure matched dis-
tances between the goal-directed and GPS condition, we
excluded individuals with a large difference between the distan-
ces in the two conditions. As a result, this analysis only included
individual paths from 16 participants, which likely results in
increased noise and lower statistical power, which is common
when using more naturalistic data.

Discussion
We investigated the hypothesis that relational knowledge, about
navigational paths, is organized as multiscale predictive repre-
sentations in hippocampal and prefrontal hierarchies. We found
evidence for such multiscale representations in a task where par-
ticipants navigated the city of Toronto virtually in goal-directed
and GPS-guided conditions, with realistically long distances. Our
fMRI representational similarity analysis between each state

(TR) and a discounted sum of its prospective states (at multi-
ple scales, 25-875 m) confirmed this hypothesis. These results
support the idea that prefrontal-hippocampal representations
organize relational knowledge, in this case for navigation, at
different scales of generalization and abstraction (Behrens et
al., 2018; Momennejad and Howard, 2018).

Our primary goal was to investigate at which scale, and in
which condition, different brain regions remain informative
about the upcoming path. Representational similarity patterns in
different regions stopped carrying information about predicted
paths at different horizons. Namely, for higher horizons, fewer
regions had above chance similarity to planned paths (Fig.
3), suggesting a hierarchy of representation. Moreover, rep-
resentations in posterior regions stopped being predictive
at smaller scales, and gradually more anterior regions
remained predictive at longer horizons (Fig. 4). Notably,
there was an interaction between hierarchy and condition:
in the goal-directed condition (Fig. 4A), the findings were
more pronounced than in the GPS-guided condition (Fig.
4B). This finding reveals that during planning at realisti-
cally long horizons regions higher in the representational
hierarchy carry predictive information.

We have reported four main findings. First, fMRI similarity
reflected longer predictive horizons for paths in the goal-
directed, compared with the GPS condition. Second, similarity in
the anterior hippocampus and antPFC was significantly higher
in the goal-directed condition and for longer horizons (Fig. 4).
Third, predictive representations were organized along a poste-
rior-anterior hippocampal gradient of predictive horizons (25-
175 m) with larger scales in gradually more anterior regions (Fig.
3). Fourth, representational similarity to future horizons was

Figure 7. Increasing predictive similarity along posterior PFC to antPFC. In order to indicate which PFC regions displayed higher predictive similarity, we computed the slope of correlations
for posterior PFC to antPFC slices for goal-directed and GPS conditions. We computed these slopes for 4 values of ɣ, corresponding to gradients of low to high scales. Each line indicates predic-
tive similarity results from 1 of 19 participants.
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organized along an anterior-posterior gradient in the PFC with
larger-scale horizons (25-875 m) in gradually more anterior
regions (Fig. 6).

Representational hierarchy
In spatial navigation, hierarchical representation could enable hier-
archical planning and subgoal computation (Ribas-Fernandes et al.,
2019). Our proposal is that larger and more abstract scales of pre-
dictive representations in antPFC may support planning at larger
scales (Fig. 1, large-scale graph). This higher-level plan may be
translated into gradually more granular representations in prepolar
PFC, OFC, and anterior hippocampal regions (Fig. 1, mid-scale
graph), and finer-scale trajectories are translated by hippocampal
gradients to the smallest predictive horizons of place fields (Fig. 1,
small-scale graph). In our analyses, this was reflected in a gradation
of representational similarity: at longer horizons, fewer regions had
above chance similarity to planned paths.

Hippocampal hierarchy
One possibility is that the PFC represents the global structure of
each route, while the hippocampus supports fine-grained repre-
sentation of individual locations. This is consistent with recent
cognitive map work in rodents, monkeys, and humans indicating
PFC’s involvement in active navigation and planning (Epstein et
al., 2017), as well as evidence that the dorsal-ventral or posterior-
anterior hippocampal axis supports gradually larger spatiotem-
poral scales (Poppenk et al., 2013; Strange et al., 2014; Peer et al.,
2019) and inference on mnemonic relations (Collin et al., 2015;
Schlichting and Preston, 2015). Recent computational perspectives

suggest that the hippocampus and PFC form and
update a predictive map of the state space at mul-
tiple scales (Momennejad and Howard, 2018),
organizing relational knowledge of spatial and
nonspatial states (McKenzie et al., 2014; Schuck et
al., 2016; Garvert et al., 2017; Bellmund et al.,
2018).

Prefrontal hierarchy
Comparing predictive similarity across the PFC
(Figs. 6-9; Table 1) revealed an overall effect of
condition and prefrontal gradient. Longer pre-
dictive similarity horizons were observed in the
goal-directed versus GPS-guided condition, and
antPFC regions showed predictive similarity for
longer horizons: the anterior or polar PFC (BA
10; Table 1; Fig. 8), OFC (BA 11), and granular
and ACC (BA 25 and 32), consistent with the
slope of predictive similarity in Figure 7. Such a
prefrontal hierarchy of relational abstraction
could support task sets and schema. BA 10 is

structurally well connected within the PFC and with the rest of
the cortex and has long decay, thus a candidate for supporting
higher scales of abstraction, from predictive representations with
larger scales of integration to clustering relational graphs with
higher radii. These functions may rely on longer sustained mem-
ory leading to binding over longer time scales, associating farther
apart locations, or increasing representational similarity among
clusters of associations.

Nonspatial relevance
Previous work has proposed hierarchies of predictive representa-
tions along prefrontal and hippocampal gradients (Momennejad
and Howard, 2018), a hierarchy of time scales in the brain (Chen
et al., 2015), and a role for hippocampal-prefrontal interac-
tions in integrating episodes to build abstract schema
(Schlichting and Preston, 2017). Similar representational
hierarchy may also underlie relational knowledge and cate-
gory generalization (Constantinescu et al., 2016), abstrac-
tion and transfer (Cole et al., 2011), reward predictions
(Takahashi et al., 2017), associative inference, and schema
learning (Moscovitch and Melo, 1997; Zeithamova and
Preston, 2010; Zeithamova et al., 2012; van Kesteren et al.,
2013; Hebscher and Gilboa, 2016; Spalding et al., 2018; Yu,
2018; Lee et al., 2021). A crucially nonspatial body of evi-
dence indicates a functional role for antPFC in the encoding
and retrieval of prospective memory task-sets and goals
(Haynes and Rees, 2006; Gilbert, 2011; Momennejad and
Haynes, 2012, 2013). Lesions to the frontopolar cortex do

Figure 8. PFC hierarchy in the goal-directed and GPS conditions. Proportion of prefrontal BAs accounted for by
the significant PFC voxels in searchlight analysis are shown. Results were driven from the one-sample t test results
displayed in Figure 5A (not matched for distance). Color bars represent different discount values (ɣ) corresponding
to different predictive horizons within each condition (blue: ɣ = 0.1; green: ɣ = 0.6; yellow: ɣ = 0.8; red: ɣ =
0.9).

Table 1. Proportion of each prefrontal BA accounted for by the significant prefrontal voxelsa

Goal-directed GPS

ɣ = 0.1 ɣ = 0.6 ɣ = 0.8 ɣ = 0.9 ɣ = 0.1 ɣ = 0.6 ɣ = 0.8 ɣ = 0.9

BA9 5.8% 5.8% 5.6% 0% 5.8% 4.3% 0% 0%
BA10 59.4% 59.3% 54.9% 13.9% 59.1% 48.0% 4.9% 0%
BA11 46.5% 44.4% 32.6% 6.0% 42.6% 21.8% 0% 0%
BA25 41.1% 37.4% 15.9% 0% 21.5% 0% 0% 0%
BA32 23.9% 21.6% 11.2% 0% 21.1% 2.8% 0% 0%
BA47 16.6% 15.6% 5.8% 0% 12.7% 1.1% 0% 0%
BA46 6.8% 6.8% 6.8% 0% 6.8% 4.2% 0% 0%
BA45 0% 0% 0% 0% 0% 0% 0% 0%
a Results were driven from the one-sample t test results displayed in Figure 5A (not matched for distance). Proportions are displayed for each value of ɣ within each condition.
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not impair navigation, intelligence, or
working memory, but impair multitask-
ing and prospective memory (Burgess,
2000; Volle et al., 2011), such as complet-
ing a sequential plan for simple everyday
tasks (Burgess, 2000). This fits with the pro-
posal that the PFC is organized in a ros-
trocaudal hierarchy (Koechlin et al.,
2003; Badre and D’Esposito, 2007;
Koechlin and Hyafil, 2007; Koechlin,
2011), with more anterior or rostral
regions corresponding to higher levels of
integration and relational abstraction
(Bunge et al., 2003; Christoff et al., 2009;
Momennejad and Haynes, 2013).

OFC
More anterior OFC yielded higher predic-
tive similarity for larger predictive horizons
(Figs. 4, 8). OFC and antPFC have both
been suggested to support model-based RL
(Daw et al., 2011), where an agent unfolds a
learned state-action-state associative model
during goal-directed planning and decision-
making (McDannald et al., 2012, 2014; Daw
and Dayan, 2014; Pauli et al., 2019). Thus,
OFC may maintain task-relevant state-state
relational maps that enable iterative value
computation in planning and decision-mak-
ing (Daw et al., 2005; Simon and Daw, 2011;
Keiflin et al., 2013; Wilson et al., 2014;
Wimmer and Büchel, 2019). Predictive rep-
resentations in anterior hippocampus were
the most similar to OFC representations,
consistent with recent work on OFC-hippo-
campal interactions inmodel-based behavior
(Wood and Grafman, 2003; Keiflin et al.,
2013; Schuck et al., 2016; Wikenheiser and
Schoenbaum, 2016; Miller et al., 2017;
Vikbladh et al., 2019).

Prefrontal hierarchies of representations need not be static.
These representations could be constructed from compressed
representation, for example, eigenvectors (Stachenfeld et
al., 2017), inverse Laplace transform (Momennejad and
Howard, 2018), or generative models (Whittington et al.,
2020). Future studies can shed light on prefrontal and
medial temporal contributions to information integration,
eigen-decomposition, generative models, and abstraction.

Caveats and future directions
The fMRI dataset used here (Brunec et al., 2018) was acquired
for different questions, leaving some caveats for present pur-
poses, some of which we addressed in our control analyses,
whereas others remain to be addressed by future studies.

The first caveat: navigated routes in the goal-directed condi-
tion were longer than those in the GPS-guided condition (Fig.
2). To overcome this, we controlled for distance in one-sample t
tests to reveal regions with significant pattern similarity for a
given horizon (Fig. 6C). In a more conservative analysis, we
excluded longer routes from analyses, including only goal-
directed routes within the range of distances in the GPS-guided
condition (Fig. 9). Consistent with our earlier findings, longer
predictive scales engaged more dorsal PFC regions in the goal-

directed condition. Pending replication with more controlled
designs, these control analyses suggest that our main findings are
reliable (Table 1; Figs. 7 and 8).

The second caveat: the selection of routes did not include multi-
ple past and future trajectories for each state, nor multiple past
routes for each goal location. Such designs would enable testing the
graph structure of relations, advancing previous work using routes
with multiple paths (Balaguer et al., 2016; Chanales et al., 2017), and
dissociating pattern similarity because of recent memory from pat-
tern similarity because of predictive representations more directly.

Follow-up fMRI studies can also investigate compressed rep-
resentations and abstraction by asking whether states that appear
on many paths have a pronounced predictive representation
(e.g., subgoals, states with special graph properties), and whether
nearby locations are clustered as one state (or subgoal) by some
brain regions. Further studies could compare the temporal hier-
archy of large-scale predictive representations for higher-level
plans (e.g., train from New York to Philadelphia) and smaller
subgoal processing (e.g., walk to the train station). One way to
test this is to orthogonally manipulate distance and the number
and location of subgoals, such as turns. Such designs could also
test the dynamics of goal and subgoal representation, comple-
menting existing electrophysiology and neuroimaging work
showing goal representation in MTL and PFC (Howard et al.,
2014; Brown et al., 2016; Sarel et al., 2017; Tsitsiklis et al., 2019).

Figure 9. Predictive representations for goal-directed and GPS routes with matched distances. A, Distribution of distance-
matched routes included in this analysis. B, Voxels with average correlation values of . 0.04. C, Significant voxels in goal-
directed . GPS paired t test, thresholded at t value corresponding to 5% FPR. Colors represent predictive horizons corre-
sponding to different discount parameters (blue: ɣ = 0.1; green: ɣ = 0.6; yellow: ɣ = 0.8; red: ɣ = 0.9).
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Other interpretations
Theoretically, we have proposed that a given state has higher rep-
resentational similarity to its frequently visited successors along
the planned path (Ezzyat and Davachi, 2014; Momennejad et al.,
2017). This can also be discussed in terms of increased association,
integration, abstraction, and clustering (Ritvo et al., 2019); the
spread of activation across memory networks (Sievers and
Momennejad, 2019); or the replay of previous trajectories
or paths (Wu and Foster, 2014; Ambrose et al., 2016;
Momennejad et al., 2018). While there are clever analytic
designs to hint one way or another, a clear-cut dissociation
of these hypotheses requires higher spatiotemporal resolu-
tions, such as electrophysiology and MEG.

In conclusion, we present support for the hypothesis that multi-
scale predictive representations in hippocampal-prefrontal hierarchies
underlie cognitive maps and hierarchical planning. While posterior
hippocampal regions supported smallest predictive scales, anterior
prefrontal regions supported the largest predictive horizons. Follow-
up studies can be designed to further investigate planning, subgoal
setting, and abstraction in spatial and nonspatial tasks.
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