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Neural substrates of evidence accumulation have been a central issue in decision-making studies because of the prominent success of
the accumulation model in explaining a wide range of perceptual decision making. Since accumulation-shaped activities have been
found in multiple brain regions, which are called accumulators, questions regarding functional relations among these accumulators
are emerging. This study employed the deconvolution method of functional magnetic resonance imaging (fMRI) signals from human
male and female participants during object-category decision tasks, taking advantage of the whole-brain coverage of fMRI with
improved availability of temporal information of the deconvolved activity. We detected the accumulation activity in many non-
category-selective regions (NCSRs) over the frontal, parietal, and temporal lobes as well as category-selective regions (CSRs) of the cat-
egorization task. Importantly, the frontal regions mostly showed activity peaks matching the decision timing (classified as “type-A accu-
mulator”), while activity peaks of the parietal and temporal regions were behind the decision (classified as “type-B accumulator”). The
CSRs showed activity peaks whose timing depended on both region and stimulus preference, plausibly reflecting the competition among
the alternative choices (classified as “type-C accumulator”). The results suggest that these functionally heterogeneous accumulators form a
system for evidence accumulation in which the type-A accumulator regions make decisions in a general manner while the type-B and
type-C accumulator regions are employed depending on the modality and content of decision tasks. The concept of the accumulation sys-
tem may provide a key to understanding the universality of the accumulation model over various kinds of decision tasks.
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Significance Statement

Perceptual decision making, such as deciding to walk or stop on seeing the signal colors, has been explained theoretically by
the accumulation model, in which sensory information is accumulated to reach a certain threshold for making decisions.
Neural substrates of this model, however, are still under elucidation among candidate regions found over the brain. We show
here that, taking advantage of the whole-brain coverage of functional magnetic resonance imaging (fMRI) with improving
availability of temporal information by deconvolution method, the accumulation is conducted by a system comprising many
regions in different abstraction levels and only a part of these regions in the frontal cortex make decisions. The system concept
may provide a key to explaining the universality of the accumulation model.

Introduction
The behavioral properties of perceptual decision making have
been successfully explained by the accumulation model, in which
sensory information is temporally accumulated as evidence of
each alternative, and one of the alternatives with evidence first
reaching a certain threshold is selected (Ratcliff and Rouder,
1998; Ratcliff et al., 2016). (In this paper, we use the “accumula-
tion model” to inclusively indicate the model variants.) Because
of the remarkable effectiveness of the accumulation model in a
wide range of decision making, neural substrates of the accumu-
lation, which are referred to as accumulators and thought to
show accumulation-like activity during decision processes, have
been intensively studied (for recent review, see Brody and
Hanks, 2016). Neurophysiological studies in monkeys have
found accumulators in the lateral intraparietal area (Shadlen and
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Newsome, 2001), the frontal eye field (FEF; Kim and Shadlen,
1999), and the superior colliculus (Horwitz and Newsome,
1999). Functional magnetic resonance imaging (fMRI) studies
have also found accumulators of the human brain, employing
some approaches to overcome the low temporal resolution. In
the accumulation-model-based approach as one of the typical
approaches, accumulators were determined as regions whose
blood oxygen level-dependent (BOLD) signals matched the
predicted signals based on the modeled accumulation on even a
finer timescale. The accumulators were found in multiple
regions, such as the intraparietal sulcus including the human
homolog of the lateral intraparietal area (Kayser et al., 2010; Liu
and Pleskac, 2011), FEF (Liu and Pleskac, 2011), anterior insula
(Grinband et al., 2006; Ho et al., 2009; Liu and Pleskac, 2011),
medial frontal gyrus and subcortical structures (Grinband et al.,
2006). In the temporal-profile approach as another one, the tech-
nique of gradually unmasking stimuli (James et al., 2000) was
applied to make the decision process protracted enough for
fMRI to track the associated signals. Innovatively by using a clus-
tering method of temporal profiles of the BOLD signals, Ploran
et al. (2007) classified the decision-related regions into three
classes: accumulator, sensory processor, and moment-of-rec-
ognition region, the latter two of which were regarded as being
associated with processes antecedent and subsequent to accu-
mulation, respectively. In their results, many decision-related
regions, which included most of the accumulators found by
the accumulation-model-based approach described above, were
classified as accumulator or moment-of-recognition region. Now
that such multiple accumulators over the brain have been
found, questions have arisen regarding their functional
relations: How are these accumulators of different regions
committed to decision making? It also remains to be clari-
fied whether the moment-of-recognition regions of Ploran
et al. (2007), which were mostly regarded as accumulators
in the frontal cortex by the other studies, just follow deci-
sions made by the other regions or are directly committed
to making decisions. Another important issue has been
raised by Tremel and Wheeler (2015) and Dunovan and
Wheeler (2018), which found that the face-selective and
house-selective visual regions in the category-decision task
showed choice content-specific accumulation consistent
with trial-based decisions. Thus, the relations between the
content-specific accumulators and the other accumulators
also have to be elucidated.

The present study addressed the issue of functional rela-
tions among the multiple accumulators in decision proc-
esses. Because the temporal evolution of neural activity
plays an essential role in the accumulation account, we
employed the fMRI deconvolution method, which recov-
ered the approximate original neural activity from BOLD
signals (Glover, 1999), aiming to improve the temporal-
profile approach with keeping the fMRI advantage of the
whole-brain coverage (Hanks and Summerfield, 2017).
Using a visual category-decision task, we found that many
regions over the frontal, parietal, and temporal lobes as well
as the content-selective regions showed accumulation activ-
ities. However, only a certain class of these regions mostly
in the frontal cortex showed activity peaks that matched de-
cision moments, suggesting that the evidence accumulation
is conducted by a system comprising multiple functionally-
heterogeneous regions, only a part of which make decisions.
We also discuss rationality of the system account to under-
stand the generality of the accumulation model over various
domains of decision making.

Materials and Methods
Participants
This study employed a cluster analysis of the decision-related activity as
an essential procedure as described below. Thus, for the sample size of
the study we do not have a readily usable method of power analysis suit-
able for the clustering which is exploratory rather than hypothesis based.
Then we used a priori power analysis not for precise determination but
as only guidance for the sample size. As our starting point, we followed
the hypothesis by Ploran et al. (2007) that the class of sensory processor
should be discriminated from the two classes of accumulator and
moment-of-recognition region in terms of response-time dependence of
activity peak times. In our results we found anatomically corresponding
typical regions to these three classes, such as right middle occipital gyrus
(R MOG) to sensory processor, right superior parietal lobule (R SPL) to
accumulator, and left anterior insula (L AIns) to moment-of-recognition
region. In our analysis in advance, for the first six participants whose
response times (RTs) covered six 2-s bins from 1 to 13 s, (deconvolved),
activity time courses of trials with each of the six response-time bins
were averaged for the above three regions within each participant, and
peak times of the averaged activity relative to the stimulus onsets were
extracted. As response-time dependence indicators, SDs of the peak
times across the six response-time bins were obtained for the three
regions of the six participants. Effective sizes of Cohen’s dz of the SD dif-
ference between paired regions were 1.10 and 0.90 for R SPL versus R
MOG and L AIns versus R MOG, respectively, and a priori power analy-
sis determined the respective minimum sample sizes of 7 and 10 with
80% power at a significance level of 0.05. Guided by these results, we
determined the sample size to be.10. Fourteen healthy native Japanese
speakers with normal or corrected-to-normal vision [nine women, aged
26.86 7.8 (SD) years] participated in an fMRI experiment, which was
composed of two sections: the first section investigated the decision pro-
cess of categorizing degraded images (decision section) and the second
section was to localize visual category-selective regions (CSRs) of indi-
vidual participants (localization section). This study was approved by
the Ethics Committee for Human and Animal Research of the
National Institute of Information and Communications Technology,
Japan. All participants provided written informed consent in accord-
ance with the guidelines approved by this committee and were paid
for their participation.

Stimuli
All the stimuli were digital photographic grayscale images of 640
(horizontal)� 480 pixels, whose original versions were selected
from clip-art collections (Sozaijiten; Image Navi Corporation) and
personal photographs. The images were presented using the soft-
ware Presentation (Neurobehavioral Systems) onto a back-projec-
tion screen mounted outside the MRI scanner bore behind the
participants’ head, with subtending 8.0� 6.0° of visual angle. In the
decision section, we used 90 images consisting of 30 stimulus images
of each of the three categories: human, scene, and tool. A “human”
image depicted humans with both the head and body parts. A
“scene” image included architectural scenery objects, such as houses
and bridges. A “tool” image included handheld tools such as sports
goods and stationery. We produced 15-level degraded versions of
each image by means of spatial low-pass Fourier filtering, whose
high cutoff frequency was manipulated from 1.0 to 4.5 cycles per
degree (on the screen) with 15 levels of equal increments. Using the
gradual unmasking technique (James et al., 2000; Carlson et al.,
2006; Eger et al., 2007), the 15 versions were sequentially presented
every 1.4 s from the most to the least degraded level (Fig. 1A).
Participants were required to categorize the stimulus images as one
of the three categories of human, scene, and tool. In the practice
before the data collection, we also used 15-level degraded versions
of another 20 images of each category.

In the localization section, we prepared 200 images consisting of 40
images of each of the five categories: face, body, human, scene, and tool.
Each image included an exemplar object in the assigned category (Fig.
1B). A “face” image included a human face except other body parts,
while a “body” image included parts or a whole of a human body except
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a head. A “human” image included a whole human body with head. A
“scene” image includes natural scenery objects such as mountains or the
same types of architectural scenery objects as in the decision section. A
“tool” image included the same types of handheld tools as in the decision
section. The backgrounds of the target objects were filled with uniform
gray, except for the scene images, whose backgrounds were kept as the
important content of the expanse of scenery. Unlike the decision section,
all the images were not degraded but were clear enough to recognize the
depicted objects easily and unambiguously.

Acquisition and preprocessing of MRI data
MRI images were acquired using a 3T MR scanner (Trio, Siemens). For
functional imaging, an ascending T2*-weighted gradient-echo echopla-
nar imaging (EPI) procedure was used to produce trans-axial slices cov-
ering the entire cerebrum and cerebellum, excluding the eyeballs, by
oblique scanning. Imaging parameters in the decision section were repe-
tition time (TR)= 2000ms, echo time (TE)= 30ms, flip angle (FA)= 79°,
field of view (FOV)= 192 mm, 64� 64 matrix, 34 slices, and voxel
size = 3.0� 3.0� 3.45 mm. In the localization section, TR= 2500ms,
TE=30ms, FA=80°, FOV=192 mm, 64� 64 matrix, 38 slices, and
voxel size= 3.0� 3.0� 3.0 mm. To ensure stabilization of the functional
imaging data, the first five scans (10 s) of the decision section and the
first four scans (10 s) of the localization section were discarded (not used
in the subsequent analyses).

The acquired MRI data of raw DICOM format were converted to
NIFTI format and preprocessed using the software Statistical Parametric
Mapping 12 (SPM12; Friston et al., 1995; Wellcome Trust Center for
Neuroimaging, London, United Kingdom; https://www.fil.ion.ucl.ac.uk/
spm), implemented in MATLAB 2016b (MathWorks). For the data of
each session, the displacement of scans caused by the participants’ head
motion was realigned relative to the mean of the images using the affine
transformation, modifying the headers of the images to reflect their

relative displacement. In the determination of
regions of interest (ROIs), to improve the ac-
curacy of blocked-design SPM analysis, we
applied the slice timing correction, which con-
cerns differences in signal acquisition times
because of the positions of slices and modifies
each time series in the slice to have values that
would have been obtained if the slice had been
acquired at the same time as the reference
slice. The reference slices were the middles of
the scans, which were 17 and 19 in the decision
and localization sections, respectively. In the
temporal-profile analysis of data of the deci-
sion section, however, we did not apply the
slice timing correction; instead, we conducted
the slice-timing modeling by which we obtained
not-modified values of fMRI data with their
accurate acquisition times (Kiebel et al., 2007)
as described below in the subsection, Profile
classification of deconvolved signals. Spatial
normalization was applied to the data with non-
linear three-dimensional transformations into
the ICBM template of East Asian brains, which
we used because all the participants were native
Asian (Japanese). The normalized images were
spatially smoothed in a three-dimensional
Gaussian kernel with a half-maximum width of
6 mm.

Experimental sections
Each participant had the decision section first
and the localization section on a different day
to prevent fatigue. The decision section con-
sisted of 90 trials, which were given in six ses-
sions of 15 trials each. One stimulus image was
used in each trial, and 90 trials covered 30
images for each of the three categories (human,
scene, and tool). As shown in Figure 2, each
trial lasted for 36 s, which began with a 2-s rest

epoch in which a white fixation point in the center of a uniform gray
background was presented, followed by a 1-s cue epoch in which a black
word of the cue for the oncoming stimulus was presented. Intervened by
a 2-s rest epoch, a stimulus epoch lasted from 5 s to 26 s, in which a set
of 15-level degraded versions of a stimulus image were sequentially pre-
sented every 1.4 s according to the gradual unmasking technique. The
stimulus epoch was followed by a 12-s rest epoch, which was composed
of the remaining 10 s of the present trial and 2 s at the beginning of the
next trial. This length of the rest epoch was expected to be long enough
for the BOLD signal elevated in the preceding stimulus epoch to
approach the baseline levels (Tremel and Wheeler, 2015). The beginning
of a trial was precisely synchronized with the fMRI scan with a TR of 2 s,
so that a trial comprised 18 scans and the stimulus onset (at 5 s) was at
the midpoint of the third scan of the trial. The least common multiple of
the TR (2 s) and the unmasking step interval (1.4 s) was large enough
(14 s) so that the image-change moments of the unmasking steps were
little synchronized with the scan timing. A cue word was given ahead of
each stimulus epoch to investigate the influence of prior knowledge on
categorical decisions. We expected that a cue congruent with its follow-
ing stimulus would facilitate decision while an incongruent cue would
obstruct the decision to the contrary, so that cue congruency was
expected to influence the accumulation of the decision process. Either
“Human,” “Scene,” “Tool,” or “****” (indicating no cue) was displayed
in characters at the center of the screen with a size around 5° of visual
angle. (Quotation marks, “ ”, are not displayed.) To evaluate the effects
of cues, we gave stimulus-congruent cues, incongruent cues, and no
cues, each of which were in one third of all the trials; for example, 30
epochs of human stimuli were preceded by “Human” in 10 trials,
“Scene” and “Tool” in five trials each, and “****” in 10 trials. The presen-
tation order of the cue-stimulus combinations was randomized.

Figure 1. Examples of stimulus images. A, Images used in the decision section, which were ones of three categories:
human, scene, and tool. Although the original versions of the images were easy to categorize, each of them was low-pass fil-
tered to produce 15-level degraded versions, which were sequentially presented by every 1.4 s from the most degraded level
(level 1) to the least (level 15). The times below the levels indicate the presentation times from the stimulus onset. B,
Images used in the localization section, which were ones of five categories: face, body, human, scene, and tool. The back-
grounds of the target objects were filled with uniform gray, except for the scene images. The mean luminance of each image
was adjusted to be the same among all the stimulus images to avoid any effects caused by changes of stimulus luminance.
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Participants were required to discriminate the stimu-
lus category among human, scene, and tool and
respond by clicking the assigned button as soon as
they could discriminate it. The buttons for the index,
middle, and ring fingers were assigned to human,
scene, and tool, respectively. We encouraged partici-
pants not to hesitate to respond by allowing the second
clicks to revise their answers. Participants were told
that only clicks during a stimulus epoch were valid. As
a result, 68% of all trials across participants responded
correctly in the first response, and in 96% of all the tri-
als correct answers were obtained in the final (includ-
ing the second and later) responses, showing that most
of the stimuli with the least degradation could be cor-
rectly categorized. In the following fMRI time series
analysis, we used only the trials with the first correct
responses not to intermingle the activity of the sec-
ond-decision process. To monitor the subjective verifi-
cation of the participants’ recognition, the instruction
asked participants to double-click the same button as their previous final
response at any time within the stimulus epoch when they became confi-
dent of the answer. The results of the present study showed that partici-
pants verified their responses in 86% of all the correct-first-response
trials, indicating that participants consistently recognized the images
through the stimulus epochs of most of the correct trials. Relative tem-
poral positions of the verification-RTs were shown to be almost uni-
formly distributed in the intervals between the correct first response and
the end of stimulus epoch of trials with a mean of 0.54 and SD of 0.25
(across trials and participants) by comparing with a theoretical uniform
distribution that has the mean of 0.50 and SD of 0.29. Thus, influences
of the verification responses on activity profiles seem to be minimal.
One session comprised 278 scans (556 s), the initial five scans of which
were discarded. The remaining 273 scans, which consisted of 270 scans
of 15 trials by 18 scans and an additional three scans after the last trial,
were used in the following analysis. A decision section typically took
;100min for the data collection, including breaks inside the MRI scan-
ner and ;50min for instructions, practice using another 20 images of
each category, and postexperiment debriefing outside the scanner.

The localization section consisted of four sessions, each of which
included 10 trials. Each trial was dedicated to one of the five categories
of face, body, human, scene, and tool, and eight trials for each category
were conducted in a randomized order. Each trial began with a 2-s rest
epoch (only a fixation point), followed by an 18-s stimulus epoch and a
subsequent 10-s rest epoch, constituting a 30-s duration. During a stimu-
lus epoch, the first image was presented for 2 s followed by a 1-s fixation
point, and 10 images of the same category were presented in successive
turns every 1.5 s. The first image appeared once or twice again in the
subsequent 10 images of randomly selected turns. All the other nine or
eight images were different. To enhance attention to the stimuli, partici-
pants were required to remember the first image and to press an
assigned button when the same image appeared again within the stimu-
lus epoch. Each of the 200 images was used twice in this section, cover-
ing the 400 images used in the 40 trials in total. Each trial began in
synchrony with the fMRI scan, with a TR of 2.5 s. One session comprised
126 scans (315 s), the initial four scans of which were discarded. The
remaining 122 scans, which consisted of 120 scans of 10 trials by 12 scans
(30 s) and an additional two scans after the last trial, were used in the fol-
lowing analysis. A localization section for a participant typically took
;70min including instructions, practice, short breaks, and debriefing.

Determination of ROIs
As for regions associated with perceptual decision making, we deter-
mined ROIs that showed the decision task-related positive activation. To
determine coordinates of each ROI, we adopted “individual peaks within
group activation”method (O’Reilly et al., 2012), in which we selected the
voxel that showed the strongest task effect in the individual-level analysis
of each participant with applying an inclusive mask that was the activa-
tion ROI detected by the group-level analysis. This approach provides
the most sensitive results of the individual-level effect, allowing for

interindividual differences within the functionally identical ROI. Using
the preprocessed (slice-timing corrected) fMRI data, the following three
steps were conducted using SPM12. In the first step, using the decision
section data, we determined positively activated regions during the deci-
sion process regardless of the stimulus category, to use it as an inclusive
mask of positive activation. The reason to restrict ROIs to positive acti-
vation was that the accumulator regions, which were the primary targets
of this study, should show positively-growing activity during the deci-
sion process. We defined a model of task-related positive activation as
being positive relative to the baseline throughout all the stimulus epochs
of the decision section; thus, the model of positive activation was com-
mon to all the sessions, whose stimulus epochs had the same temporal
structures. This model was convolved with the canonical hemodynamic
response function (HRF; Friston et al., 1998) for use as the regressor of
positive activation in a blocked design SPM analysis. In the individual-
level (first-level) analysis, the fMRI data of each participant were ana-
lyzed by a general linear model (GLM) using the regressors, applying
high-pass filtering with a cutoff period of 128 s, and serial autocorrela-
tion estimation with a first-order autoregressive model to eliminate arti-
factual low-frequency trends and aliased biorhythms. A single-condition
contrast of the positive activation was applied to the parameter weights
(b values) of the regressor, and a t-contrast image of an individual
participant was constructed. The t-contrast images of all participants were
incorporated into a random-effects model to make inferences of a group-
level (second-level) analysis (Holmes and Friston, 1998). Activation was
detected with a voxel-wise threshold of p, 0.001 (uncorrected for multi-
ple comparisons) and a cluster-wise threshold of the familywise error rate
(FWER) p, 0.05, corrected for multiple comparisons based on random
field theory (Friston et al., 1994b), which corresponded to a cluster-size
threshold of 1257. Then, a spatial mask of positive activation was made of
all the voxels detected with this cluster-wise threshold of the group-level
analysis (Fig. 3A), and used as an inclusive mask common to all the indi-
vidual participants in the following steps.

In the second and third steps, choice-selective and nonchoice-selec-
tive regions were determined. The choice-selective regions of this study
were visual CSRs because the task of the decision section was to discrim-
inate the object categories. The nonchoice-selective regions, to which we
refer as non-CSRs (NCSRs), were defined as all regions that did not
show any selectivity for the concerned categories. The second step was
to determine the coordinates of the CSRs of individual participants using
data from the localization section. In the SPM analysis, we modeled five
regressors at the individual level representing the stimulus epochs of the
five categories: face (F), body (B), human (H), scene (S), and tool (T).
The GLM of these regressors was applied to the preprocessed data of the
localization section, including the high-pass filtering and serial autocor-
relation estimation in the same way as in the first step. The t-contrast
images of category selectivity were obtained using four contrasts of the
weighted regressors, which were designed according to the previous
studies of CSRs as follows: F . (S1T)/2 for face selectivity (Kanwisher
et al., 1997), B . (S1T)/2 for body selectivity (Downing et al., 2001),
S . (H1T)/2 for scene selectivity (Epstein and Kanwisher, 1998), and

Figure 2. Design of a trial of the decision section. Each trial lasted for 36 s, which was synchronized with the 18
scans of fMRI with a TR of 2 s. R and C indicate the epochs of rest and cue, respectively. In the stimulus epoch indi-
cated by S, whose onset (at 5 s) was at the midpoint of the third scan, a set of 15-level degraded versions of a stim-
ulus image were sequentially presented with a changing interval of 1.4 s causing little synchrony with the scan
timing.

4894 • J. Neurosci., June 15, 2022 • 42(24):4891–4912 Morito and Murata · Accumulation System of Perceptual Decision Making



T . (H1 S)/2 for tool selectivity (Grill-Spector et al., 1999; Chao et al.,
1999). Here, we used the regressor of H to define scene and tool selectiv-
ity because it is not clear whether the F-regressors and B-regressors,
objects of whose categories are evidently related, can be used equiva-
lently with the T-regressor or S-regressor in making the contrasts. With
the H-regressor, all the kinds of selectivity could be defined by contrast-
ing with two other categories in a consistent manner as above. For each
category selectivity, the individual-level t-contrast images of all partici-
pants were incorporated into a group-level analysis with inclusive appli-
cation of the positive-activation mask. The selective regions were
detected with a voxel-wise threshold of p, 0.001 (uncorrected) and a
cluster-wise threshold of the FWER (p, 0.05, corrected for multiple
comparisons), which corresponded to cluster-size thresholds of 90, 80,
161, and 921 for selectivity of face, body, scene, and tool, respectively.
Since separate (discontiguous) clusters of voxels detected at the group
level with even the same contrast could be distinct functional regions of
that category selectivity, each contiguous cluster was regarded as a dis-
tinct CSR, resulting in 3, 5, 5, and 1 regions selective for face, body,
scene, and tool, respectively. Each of these CSRs was applied as an inclu-
sive mask to the individual-level t-contrast image of each participant
regarding the corresponding category selectivity, and we extracted all the
local peak voxels whose t-values were above the voxel-wise threshold
p, 0.001 (uncorrected). In six of the 14 CSRs above, two or more of the
14 participants showed no significant voxels; thus, we excluded these six
CSRs from the following analysis. For the remaining eight CSRs, which
were two face-selective, two body-selective, three scene-selective, and
one tool-selective region, the Montreal Neurologic Institute (MNI) coor-
dinates of each region were determined for each participant by selecting
the peak voxel that showed the maximum t-value for its selectivity con-
dition. Since in the later stages we averaged activity signals from the vox-
els of the participants in the same region, we expected that reducing the
dispersion of the locations among participants of an identical region
would contribute to lowering functional variability and clarifying com-
mon activity profiles among participants. Thus, to diminish the spatial
dispersion of the coordinates among participants, we conducted an addi-
tional operation in which the location of a participant with the largest
deviation from the mean location of all the participants was replaced
with the peak of the next greatest t-value of that participant (only when
the participant had two or more peaks) if this replacement reduced the
variability of the locations. The replacement was allowed to repeat for a

participant who showed the largest deviation among
participants until no reduction in the variability was
obtained. As a result, 11 peaks (10%) of 112 regions (8
CSRs by 14 participants) were replaced by the second
greatest peaks, and this operation reduced the SD of the
coordinates among participants by 0.7 mm, resulting in
7.8 mm on average of the eight CSRs. The location of
each region was represented by the mean coordinates of
all the participants of that region (Fig. 3B).

In the third step, by inversely using the category-
selective maps, we defined NCSRs that showed positive
activation without any significant category selectivity.
The second step produced 56 images of category-selec-
tive activation in the individual-level analyses for four
categories by 14 participants with a voxel-wise threshold
of p, 0.001 (uncorrected). Using the Image Calculator
of SPM12, these 56 images were summed up and
inverted (by taking 1 for 0 and 0 for non-zero values of
the summed image) to obtain a binary image, all of
whose voxels did not show any category-selective activa-
tion of any participant with such a liberal threshold.
This image was used as a spatial mask for noncategory
selectivity. To parcel the noncategory-selective range,
which extends over the whole brain, into the anatomic
structures, we employed the anatomic atlas of the tissue
probability map (TPM) available with SPM12. The TPM
provides the MNI-space volume data of 136 tissue struc-
ture-based regions of the brain, including both neural
and non-neural types. Excluding 15 structures that lack
neuronal cell bodies, such as white matter, optic chiasm,

vessels, and ventricles, we used the volume data of 121 atlas regions of
cortical areas and nuclei. The intersection of each of these TPM-atlas
regions and both masks of noncategory selectivity and positive activation
provided a TPM-based NCSR that showed positive activation during the
decision task. We refer to this volume of intersection simply as an
NCSR. Each of these 121 NCSRs was applied as an inclusive mask to the
individual-level t-contrast images of the task-related positive activation
that were obtained from the decision-section data in the first step, and
we extracted all the local peak voxels whose t-values were above the
voxel-wise threshold p, 0.001 (uncorrected). In 66 of the 121 NCSRs,
two or more of the 14 participants showed no significant voxels; thus, we
excluded these 66 regions from the following analysis. We determined
the MNI coordinates of each of the remaining 55 NCSRs for each partic-
ipant in the same way as the CSRs; that is, the coordinates of the voxel
with the maximum t-value were adopted, followed by an additional
operation in which the voxel of a participant deviated most from the
mean location of all participants was replaced with a voxel of the second
greatest t-value of that participant if this replacement reduced the loca-
tion variability. As a result, 137 peaks (18%) of 770 regions (55 NCSRs
by 14 participants) were replaced by the second greatest peaks, and 10
peaks (1%) were replaced by the third or fourth greatest peaks. This
operation improved cohesiveness of the peak locations among partici-
pants, reducing the coordinates SD by 2.5 mm resulting in 5.0 mm on
average of the 55 NCSRs. The location of each region was represented by
the mean coordinates of all the participants of that region (Fig. 3C).

Deconvolution of BOLD signals
Using the preprocessed, normalized, but not slice-timing corrected fMRI
data of the decision section, BOLD signals were extracted from voxels at
the coordinates of the eight CSRs and 55 NCSRs determined above for
each participant. The BOLD time series of each session (273 data points)
was linearly detrended, keeping its mean value, and we estimated its
baseline level with the mean of 45 signal values of the first, second, and
18th scans of the 15 trials, which were temporally the most remote rest
scans from the previous stimulus onsets. We used the 271st and 272nd
scans just after the last (15th) trial instead of the first two scans of the
first trial, expecting the baseline activity to be more stabilized. Using this
baseline, the time series was scaled to percent signal change (PSC) from
the baseline. Here, we introduce deconvolution of the PSC of BOLD

Figure 3. Procedure to determine coordinates of ROIs. A, The mask of positive activation, which consists of all
the voxels detected in the group-level analysis of positive activation throughout stimulus epochs of the decision
section (cluster-wise threshold of the FWER p, 0.05). B, An example of coordinates of a CSR: left body-selective
region. The light green region indicates a body-selective region, which was obtained in a group-level analysis
(FWER p, 0.05) with inclusive application of the mask of positive activation. Following the “individual peaks
within group activation” method (O’Reilly et al., 2012), within this region, the peak voxels of body-selective acti-
vation of all the participants were extracted (small dark red spheres) from the individual-level t-contrast images
(voxel-wise threshold p, 0.001, uncorrected). Their mean coordinates (large red sphere) represent the location
of this body-selective region. The SD of coordinates of participants was 7.4 mm in this example of our data. C, An
example of coordinates of an NCSR: the left anterior insula. The light blue region indicates the left anterior insula
of the TPM atlas masked inclusively by both the masks of positive activation and noncategory selectivity. Within
this region, the peak voxels of decision task-related activation of participants were extracted (small dark red
spheres) from the individual-level t-contrast images (voxel-wise threshold p, 0.001, uncorrected) obtained from
the decision-section data. Their mean coordinates (large red sphere) represent the location of the left anterior
insula. The SD of coordinates of participants was 4.8 mm in this example of our data.
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signals aiming to improve availability of temporal information of the sig-
nals on the following grounds. Because of the linearity of the hemody-
namic system, a BOLD signal can be well approximated by convolving
the neural activity with a HRF that is an impulse response (Friston et al.,
1994a; Boynton et al., 1996). Since the convolution makes the BOLD sig-
nal delayed and blurred from the original neural activity, it is difficult to
determine the timing of the original activity using the BOLD signal in a
straight manner. On the other hand, the accumulators are characterized
by their temporal profiles of activity regarding the onsets and peaks rela-
tive to the stimulus onsets and subject’s responses. Therefore, recovery
of the neural activity from BOLD signals can be expected to be effective
in searching for the accumulators, and we employed Wiener deconvolu-
tion as one of the powerful methods for such recovery. The PSC time se-
ries was used to estimate the original neural activity using the Wiener
deconvolution (Papoulis, 1977; Glover, 1999; David et al., 2008; Surhone
et al., 2011; Wu et al., 2013) with the following details.

Let sðtÞ and hðtÞ be the time series of neural activity and HRF,
respectively. The measured time series of the BOLD signal in PSC, mðtÞ,
originating from the neural activity, is expressed as following:

mðtÞ ¼ hðtÞ � sðtÞ1 nðtÞ;

where � denotes the convolution operation of the neural activity and
HRF, and nðtÞ denotes the noise in the measurement. Using the Wiener
deconvolution filter wðtÞ, the neural activity is estimated as ŝðtÞ from the
BOLD signalmðtÞ as follows:

ŝ ¼ wðtÞ �mðtÞ:

According to the Wiener deconvolution theory,

Wðf Þ ¼ 1
Hðf Þ

jHðf Þj2jSðf Þj2
jHðf Þj2jSðf Þj21jNðf Þj2
" #

;

and

ŝðtÞ ¼ IFT Wðf ÞMðf Þ� �
; (1)

where Wðf Þ, Mðf Þ, Hðf Þ, Sðf Þ, and Nðf Þ are the Fourier transforms of
wðtÞ, mðtÞ, hðtÞ, sðtÞ, and nðtÞ, respectively, and the squared forms such
as jNðf Þj2 are the energy spectral density (ESD) of the corresponding
quantity. IFT indicates the inverse Fourier transformation. For simplic-
ity, we also refer to Wðf Þ, the Fourier transform of the Wiener filter
wðtÞ, as the Wiener filter. Postulating that the neural activity (signal) and
noise are uncorrelated, then

jMðf Þj2 ¼ jHðf Þj2jSðf Þj2 1 jNðf Þj2;

and using this relation we obtain

Wðf Þ ¼ 1
Hðf Þ 1� jNðf Þj2

jMðf Þj2
" #

: (2)

This indicates that the Wiener filter attenuates the Fourier compo-
nents with larger ratios of the noise relative to the measured signal, con-
sequently diminishing noise in the deconvolved signal. Thus, using the
appropriate functions of Hðf Þ and Nðf Þ, we can obtain an approxima-
tion of sðtÞ from the measured datamðtÞ.

The measured data Mðf Þ at high frequencies seem to be dominated
by the noise component Nðf Þ because the HRF works as a temporal low-
pass filter that substantially cuts off high-frequency components of neu-
ral activity. As shown in Figure 4A, this property was verified by the
ESD jMðf Þj2 of the PSC time series of this study, averaged across all the
sessions over regions and participants, which displays the flat energy
content over high frequencies above ;0.2Hz suggestive of the constant
noise components. This grand-averaged ESD (Fig. 4A) was used to

estimate the mathematical form of jMðf Þj2, which was applied to data of
individual regions below. Following Glover (1999), we assumed a con-
stant spectrum of noise (white noise) as jNðf Þj2 ¼ N2

0 , whose magnitude
was estimated from the high-frequency components of jMðf Þj2. We esti-
mated the noise energy logN0

2 by averaging the values at the 20 highest
frequencies above 0.214Hz, as indicated by the thick line in Figure 4A.
As a typical function describing this type of data distribution, we fitted
an exponential function with the asymptote logN2

0 :

logjMðf Þj2 ¼ Cexpð�Df Þ1logN2
0 ;

to the ESD data by means of the least squares method, excluding the DC
component (f=0Hz) and the harmonics of trial frequency (1/36, 2/36,
..., 6/36Hz because of a trial period of 36 s). The results showed that the
exponential function fitted well with the grand-averaged ESD of the
measured data (goodness of fit, r2 = 0.99). We postulated that this math-
ematical form could be applied to individual data, and the same estima-
tion method was used to obtain the parameters of the exponential
function best fitted to the ESD data of each region of each participant
(averaging the six sessions). In this ESD estimation, we excluded two
regions of a single participant (#11) whose ESDs had smaller values at
low frequencies than the noises so that the exponential functions could
not fit. In the other cases, the exponential functions were successfully fit-
ted to the ESD data of individual regions of participants with r2 = 0.64
on average, as shown by the examples in Figure 4B. The values of param-
eters C and D obtained for each region of each participant provided the
function:

log
N2

0

jMðf Þj2
 !

¼ �C expð�Df Þ;

which was used to construct the Wiener filter of Equation 2.
In contrast to Mðf Þ and Nðf Þ, which can be estimated using the

measured data, we do not know the particular Hðf Þ of the concerned
regions in most cases, so that we need to presume a certain form of
HRF. Whereas the magnitude of convolution hðtÞ � sðtÞ is constrained
by the measured BOLD data, the absolute magnitude of the HRF is arbi-
trary because the magnitude of the neural activity is not defined in gen-
eral. Thus, we cannot compare the magnitudes of the deconvolved
signals among different regions with a presumed HRF whose magnitude
is arbitrarily given. It should be noted here that effective information
provided by the deconvolution method in this study was not magnitude
(except comparing conditions within the same region) but temporal pro-
file (shape) of activity. It is also critical to consider the fact that the
shapes of observed HRFs, which are obtained as BOLD responses to an
impulse neural activity, vary across regions and individuals (Aguirre et
al., 1998; Handwerker et al., 2004). Our strategy to overcome this prob-
lem of the HRF variability was to estimate the sizes of the variability
effects on deconvolution results and to show that the effects can be
smaller than the fMRI sampling timescale. As the HRF hðtÞ used in the
Wiener deconvolution, we adopted a typical form of HRF, which is char-
acterized by a positive peak and the postpeak undershoot that returns to
the baseline within a proper timescale according to the properties
described by many studies. The typical HRF was determined by averag-
ing substantial amount of empirical data of human HRFs with excluding
apparently atypical cases such as ones whose undershoots do not return
to the baseline. Then the Wiener deconvolution using this typical HRF
was applied to empirical HRF data without excluding any atypical or
outlier cases to estimate the effects of the HRF variability on the decon-
volution results. By courtesy of Daniel Handwerker (National Institute
of Mental Health) and his collaborators, we were permitted to use the
dataset of BOLD impulse responses presented by Handwerker et al.
(2004), which includes 80 samples of the BOLD responses empirically
obtained from four different regions [the primary motor cortex (M1),
primary visual cortex (V1), FEFs, and supplementary eye fields (SEFs)]
of 20 participants. Each sample of the BOLD RT series was scaled to 0 at
the initial point and 1 at the maximum. It is shown that a reasonably
good fit to the BOLD impulse response is provided by a model function
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comprising a sum of two g distribution functions (GDFs; Boynton et al.,
1996; Friston et al., 1998), and thus we fitted each sample with this type

of model. A GDF was given by Gðt;a; u Þ ¼ ta�1e�
t
u

u aCðaÞ, where a and u are

shape-determining parameters and CðaÞ is a g function. We fixed u to
1 for simplicity and omitted it from the fitting scans. The model function
was given by:

hðtÞ ¼ A1G t;a1ð Þ � A2G t;a2ð Þ;

where the first and the second GDFs model the
positive peak and the undershoot of the HRF,
respectively. In our fitting, the four parameters
determining amplitudes (A1, A2) and shapes
(a1, a2) were scanned with a precision of 0.01,
to minimize the sum of squared residuals.
Because the peak of a GDF (with u = 1) is
obtained at a � 1, we set the initial values of
the scan parameters for the first and second
GDF using the maximum and minimum peaks
of the sample data, respectively. Ten of the 80
samples, whose undershoots did not return to
the baselines, had no optimal fits with a2 under
the maximum scanning limit of 23; therefore,
these 10 samples were excluded from the fol-
lowing averaging. Another 8 samples had out-
liers (apart from the quartiles by 1.5 times the
interquartile range) of at least one of the four
parameters, so that they were also excluded.
The fittings were as good as r2 = 0.940 on aver-
age for the remaining 62 samples, with an
improvement from 0.934 for including the 18
excluded samples above. The model functions
of the 62 samples were calculated from 0 to 32 s
with a precision of 0.1 s, normalized to start at 0
and peak at 1, and averaged at each time point.
The average model function was again normal-
ized and fitted by a model function, which pro-
vided us the dataset-based empirical HRF with
parameters a1 = 5.10, A1 = 5.21, a2 = 11.55,
and A2 = �1.89 (Fig. 4C). We used this empiri-
cal HRF to construct the Wiener filter. Relating
to Hðf Þ, whose ESD jHðf Þj2 is shown in Figure
4D, Equation 2 has the problem of diverging
(very large) magnitudes of the filter Wðf Þ at
high frequencies, where the magnitude of
the denominator Hðf Þ is close to zero. With
diverging Wðf Þ, even small fluctuations in
the measured data Mðf Þ can cause consider-
able disturbances in the deconvolved signals
in Equation 1. To prevent this problem, we
introduced a positive term d to increase the
minimum of the denominator from zero, as
follows:

Wðf Þ ¼ H � ðf Þ
jHðf Þj21d

1� N2
0

jMðf Þj2
" #

; (3)

where * denotes a complex conjugate. It should
also be noted that d emphasizes the particular fre-
quency components of Wðf Þ, where jHðf Þj2 = d
because the function x/(x21d ) has a maximum
peak at x2 = d . To prevent this distortion, we
used d = 24, which is larger than the maximum
jHðf Þj2, so that the influence of d becomes
monotonic over frequency. In this study, we
used Equation 3 as the Wiener filter, whose
magnitude jWðf Þj depends on frequency as
shown in Figure 4E.

We estimated the influences of the HRF var-
iability over regions and individuals on the activity signals obtained by
the deconvolution filter of Equation 3. As shown in Figure 5, we used a
model neural activity of a Gaussian function (mean of 0 s and SD of 2 s)
and convolved it with the 80 different HRFs of the dataset of
Handwerker et al. (2004) to generate BOLD signals. Subsequently, the
Wiener deconvolution (Eq. 3) was applied to these BOLD signals to

Figure 4. Construction of the Wiener filter. A, The red symbols with lines indicate the one-sided ESD jMðfÞj2 of
the signals in PSC on a logarithmic scale, grand-averaged across all the sessions over regions and participants. The
frequency ranged from 0 Hz (DC component) to 0.2491 Hz with the interval of 1/546 Hz, given by the Fourier trans-
formation of the time series of 273 sample points with TR of 2 s. The values at the 20 highest frequencies (from
0.2143 to 0.2491 Hz), whose range is indicated by the black thick line, were averaged to estimate the noise energy
logN20, whose magnitude is indicated by the black dotted line. The period of a trial (36 s) caused the outstanding
increases at the harmonics of 1/36 Hz. Excluding these harmonics of the trial frequency (3 points centering at each
peak of the first to sixth harmonics) and the DC component (at 0 Hz), we fitted logjMðfÞj2 � logN20 with an expo-
nential function Cexpð�DfÞ by means of the least square’s method. The result showed a successful fitting (r2 =
0.986) with C = 1.32 and D = 14.3 s. B, Examples of the ESDs of individual regions of individual participants. The
noise energy estimation and fitting of the exponential functions were conducted in the same way as A. First exam-
ple: the left body-selective region of participant #02. C = 1.23, D = 9.8 s, r2 = 0.63. Second: the left anterior insula
of participant #10. C = 1.97, D = 16.1 s, r2 = 0.86. C, Broken line, The average time course of the model functions
fitted to the 62 samples of the Handwerker dataset of HRFs. Red line, The model function fitted to the average
time course, which was used as the dataset-based empirical HRF in the Wiener deconvolution (see the main text
for the parameters). Blue line, For reference, the canonical HRF (Friston et al., 1998; provided by SPM12) with the
default shape parameters (a1= 6, a2 = 16) and normalized amplitude (A1 = 5.70, A2 = �0.95). The dotted line
indicates the zero-baseline. All the functions were calculated with the time step of 0.1 s and normalized to start at
0 and peak at 1. D, The two-sided ESD of the empirical HRF of (C) jHðfÞj2, which was used in the Wiener filter.
(The function is shown on the lower half of the frequency axis.) E, The magnitude of the Wiener filter jWðfÞj of
Equation 3, where d = 24. This panel shows the Wiener filter obtained by using the function N20=jMðfÞj2 of the
grand-averaged ESD (panel A), whereas in the deconvolution of data the filter was obtained for each region of each
participant.
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recover the original (model) activity. A two-way ANOVA showed that
the deconvolved signals had peak times dependent on both region
(F(3,57) = 6.60, p, 0.001) and individual (F(19,57) = 8.03, p, 0.001). The
peak times of regions averaged over individuals were 0.526 0.86 s (SD)
for M1, and �0.166 0.98 s for V1, 0.30 s6 0.92 s for FEF, and
�0.086 0.91 s for SEF. Using these values, we estimated 95% confidence
intervals of the mean peak times of the regions averaged over 14 individ-
uals, which were expressed as mean61:96� SD=

ffiffiffi
n

p
, where n= 14:

[0.07, 0.97] (s) for M1, [�0.67, 0.35] for V1, [�0.18, 0.78] for FEF, and
[�0.56, 0.40] for SEF. Thus, we could expect to obtain the mean peak
times in the bin of the true (model) activity peak time (0 s), which was
[�1, 1] with the same width of the sampling time of fMRI (2 s). While
the precision of the deconvolved peak time, which is given by the stand-
ard error of the mean, can be improved by increasing the number of par-
ticipants (n), the accuracy of the deconvolved peak time of a region,
which is the closeness of the mean to the true value, is limited by the
properties of HRF intrinsic to the region owing to multiple factors such
as vasculature and baseline cerebral blood flow (Handwerker et al.,
2004). The estimation above, however, showed that the intrinsic peak-
time differences among regions are not significantly large relative to a
typical fMRI sampling time (2 s), so that detected differences can be sig-
nificant in most cases. We also estimated the variability of the rise time
of the deconvolved signal, which was defined as the time to reach at 0.3
(30% of the amplitude). The mean difference of rise time from the true
(model) value averaged over individuals and regions was �0.766 0.71 s
(6SD), indicating that the deconvolved signal rose earlier than the

model activity. It seems that this earlier rise was caused by the low-fre-
quency transparency of the Wiener filter (Fig. 4E), which is an unavoid-
able property for the filter to eliminate the high-frequency noise. The
above estimations aimed to theoretically show that the differences in the
deconvolved signals could reflect significant differences in the original
activity despite the HRF variability over individuals and regions. The ex-
perimental data, however, include variability caused by many other fac-
tors, so that taking a peak of averaged time course could be more
effective than averaging peaks taken from time courses, the former of
which was the way this study adopted in the following.

Profile classification of deconvolved signals
As illustrated in Figure 6A, a time series of the PSC of a session of the de-
cision section was extracted from each ROI voxel of each participant,
and was deconvolved by the Wiener filter. From the deconvolved time
series, we extracted segments of trials in which the participant’s first
responses were correct (68% of all the trials as described above) to avoid
intermingling activity of the second-decision process. To evaluate the
temporal profiles of activity, the trial segments of each region were aver-
aged separately for participant’s RTs of the trials because the activity de-
pendence on decision moment is a critical property of the accumulator
regions, and the RT approximates the decision moment. The trial seg-
ments were grouped by RT of the trial, with intervals of [5, 7), [7, 9), [9,
11), [11, 13), and [13, 15) (s). (The notation [...) indicates an interval
with a closed low end and open high end.) We did not use trials with
RTs shorter than 5 s or longer than 15 s to avoid high error rates and

Figure 5. Procedure to estimate precision of the present deconvolution method. A model neural activity was given by a Gaussian function with mean 0 s and SD 2 s, whose peak time and
rise time (defined as a time for activity to reach 30% of the amplitude) were 0 and �3.1 s, respectively. The model activity was convolved with 80 HRFs obtained from the dataset of
Handwerker et al. (2004) to generate BOLD signals, which reflected the HRF variability over participants and regions. Here, we used all the 80 HRFs of the dataset, including HRFs of the outliers,
for the purpose of estimating the effects of HRF variability (the figure displays 20 representative HRFs from the dataset). We did not add noise to the model activity to emphasize influences of
HRF variability. These BOLD signals were deconvolved by the Wiener filter Equation 3, which was constructed with the empirical HRF. All the time series of this figure were calculated with the
time step of 0.1 s and normalized between 0 at the baseline and 1 at the maximum.
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low observed numbers (see Results). The RT-grouped trial segments
were averaged across sessions and participants in both stimulus-locked
and response-locked alignments, which were defined by the signal acqui-
sition times relative to the stimulus onset and the participant’s response,
respectively (Fig. 6B). Signal acquisition times were obtained using the
slice-timing modeling. In this method, the original slice position of the
ROI voxel before the spatial normalization of the image was recovered
by reading the normalization parameter file (y_*.nii) produced by
SPM12, and the accurate (modeled) slice acquisition time of the voxel
was calculated based on the mean relative position of the original slice in
scans. For averaging the trial segments, we used time coordinates with
18 bins with a 2-s width (corresponding to the length of a trial) whose
centers were multiples of the TR (2 s). The 18 data points of each trial
segment were assigned to the bins according to their acquisition times
relative to either the stimulus onset or the response. In the stimulus-
locked alignment, the bins for all the ROI voxels were made completely
matched the scans because the stimulus onset was at the midpoint of the

third scan of the trial (as described above); thus,
each of the 18 time bins whose centers were�4,
�2, 0, ..., and 30 s covered acquisition times of
all the ROI voxels within a scan relative to the
stimulus onset (Fig. 6B, left panel). In the
response-locked alignment, the 18 time bins
were made to have their centers at �4�RT0,
�2�RT0, �RT0, ..., 0, ..., 28�RT0, and 30�RT0

(s) for trials of an RT group with center RT0 (s),
in a manner of stimulus-locked coordinates
shifted by RT0 (Fig. 6B, right panel). However,
the assignments of data points to the bins were
not the same as the simply-RT0-shifted stimu-
lus-locked assignments because the response-
locked time bins depended on both the acquisi-
tion times of data points and RT of the trial. For
example, consider a trial with an RT of 7.8 s,
which is grouped into RT0 of 8 s. The bin of 0 s
of the response-locked alignment can include
data points with acquisition times ranging from
RT� 1 (= 6.8 s) to RT1 1 (= 8.8 s), which can
be assigned to bins of 6 and 8 s of the stimulus-
locked alignment. By a similar trace, in the case
of RT 8.2 s of the same group of RT0 8 s, data
points of the same bin of 0 s of the response-
locked alignment can be assigned to bins of 8 s
and 10 s of the stimulus-locked alignment.
Generally, a bin of the response-locked alignment
can include data points from three consecutive
stimulus-locked bins, reflecting temporal relations
between the signal acquisitions of the voxels and
the response moments more precisely than the
simply-RT0-shifted stimulus-locked alignment.
Therefore, employing both the two kinds of align-
ments seems to be effective to obtain accurate
properties of activity profiles. The averaged signal
segments were normalized to have values between
0 and 1, as shown in Figure 6B. We refer to this
“normalized average deconvolved PSC” as “nor-
malized activity” for short, because the decon-
volved PSC is the estimated neural activity.

To classify the activity profiles of regions,
we basically followed the approach of Ploran et
al. (2007), whereas we also took a heuristic
approach when it was necessary. We initially
postulated peak and rise times of activity signals
as the parameters to characterize the activity
profiles because the region classes of Ploran et
al. (2007) were defined by dependence of these
parameters on the decision moment: both of
the two parameters show the dependence in the
moment-of-recognition regions, only the peak
time in the accumulators, and neither in the

sensory processors. We also evaluated validity of the present method by
reproducibility of the classification results of Ploran et al. (2007, 2011),
the latter of which was an improved version of the former study showing
substantially similar classification results with modified methods of stim-
ulation and clustering. [In this study, our approach basically followed
Ploran et al. (2007), while we referred to the results of Ploran et al.
(2011) as well.] In a heuristic manner, we found that the rising slope was
more effective for reproducing the classification results of Ploran et al.
(2007, 2011) than the rise time as described in Results, so that we used
the rising slope of the response-locked time course (referred to as
Slope_rsp) instead of the rise time. The three profile parameters, which
were the peak times of the stimulus-locked and response-locked time
courses (referred to as Peak_stm and Peak_rsp, respectively) and
Slope_rsp, were extracted from each of the RT-group-averaged signal
segments, as shown in Figure 6B. For Slope_rsp, four points on the rising
side of each response-locked time course were obtained at heights of 0.5,

Figure 6. From PSC time series to profile parameters. A, An example of time series of PSC (blue line) and its deconvolved
signal (red line) obtained from the left anterior insula of the fourth session of participant #05. The deconvolved signal was
segmented in a trial-based manner, and each segment was labeled by stimulus, participant’s first answer and RT of the trial.
Segments of trials with correct answers and the assigned-range RTs (indicated in red letters) were averaged in the RT groups
(indicated by small disks with colors in common with panel B). B, The stimulus-locked averages (left) and the response-
locked averages (right) of the deconvolved PSC segments of each RT group across sessions and participants. (For CSRs, the
averages were also separated by the region’s selectivity to stimuli.) The averaged signals were normalized to have values
between 0 and 1 to highlight temporal profiles rather than magnitudes of activity. For classification of activity patterns, we
obtained three kinds of parameters to characterize the profiles: Peak_stim and Peak_rsp, which were the peak times of time
courses of the two alignments, and Slope_rsp, which was the slope of the line fitted to four points (at signal values of 0.5,
0.6, 0.7, and 0.8) on the rising side of response-locked time course. The black thick line segment indicates the fitted line as
an example. We also obtained Rise_stm, which was the time of the rising side of a stimulus-locked time course reached at a
signal value of 0.3, to use not for classification but for rationalizing the classification in Results.

Morito and Murata · Accumulation System of Perceptual Decision Making J. Neurosci., June 15, 2022 • 42(24):4891–4912 • 4899



0.6, 0.7, and 0.8 by interpolating between the consecutive sampling
points that sandwiched these heights, and Slope_rsp was defined as the
slope of the line fitted to these four points. As shown in Figure 6B, the
rise time of the stimulus-locked time course (Rise_stm) was defined as
the time of the rising side of the time course at a height of 0.3, which was
obtained by interpolating between the consecutive sampling points that
sandwiched 0.3 in height. Rise_stm was not used for the classification
but to rationalize the present method. To reproduce similar results as
the classification of Ploran et al. (2007, 2011), we used four statistical
quantities of the profile parameters over RTs as follows: SD of Peak_stm
(Peak_stm_SD), SD of Peak_rsp (Peak_rsp_SD), mean of Slope_rsp
(Slope_rsp_MN), and mean of Peak_rsp (Peak_rsp_MN). The first three
quantities were used to reflect the different dependence on decision
moment (i.e., RT), while the fourth was employed in a heuristic manner
as described in Results.

We classified the regions by means of a hierarchical cluster analysis
in the four-dimensional space of the above four quantities using Ward’s
method (Ward, 1963) following Ploran et al. (2007). In this method, at
the initial step, each data point is regarded as a cluster comprising one
member; in the next step, a new cluster is created by merging a pair of
clusters that minimizes the increase in the sum of the squared Euclidean
distances of all the member data points of the new cluster from their
centroid (average coordinates). This cluster-merging step is repeated
until all data points are included in one cluster to form a clustering tree
(dendrogram) that represents the proximity among data points in a hier-
archical manner. Because Ward’s method uses the Euclidean distances
in the multidimensional space of the parameters, the clustering results
can be affected by the absolute scales of the parameters. To evaluate the
parameters with equal weights, we scaled the SD of the values of each pa-
rameter over the regions to 1 by dividing by their original SD before
applyingWard’s method. In this study, we usedWard’s algorithm imple-
mented in MATLAB Statistics and Machine Learning Toolbox (version
11.0; function linkage).

In the data analyses of this study, we used applications including
SPM12 and homemade programs working on MATLAB 2016b.
Statistical tests were performed using SPSS version 21 (IBM Corp.) and
G*Power (Faul et al., 2007). Visualization of brain mapping in Figures 3,
6, 12 was conducted with the BrainNet Viewer (version 1.53; Xia et al.,
2013; http://www.nitrc.org/projects/bnv/).

Results
Behavioral results
In the decision section, while participants were allowed to make
second or later responses to revise their answers, we used only
trials of the correct first responses, which were 68% of all trials
across participants, in the fMRI analysis to avoid intermingling
the second-decision process. Figure 7A shows the histogram of
the first RT, and the relationship between accuracy (percent
correct) and RT. The accuracy was higher with longer RT
(except for the highest RTs with low observation frequencies),
which seems to be consistent with the general property of the
accumulation model using various decision thresholds pooled
over participants (Bogacz et al., 2006). A cue word was given
immediately before each stimulus epoch to determine the influ-
ence of prior knowledge on accumulation activity. We expected
that a stimulus-congruent cue would facilitate decision while a
stimulus-incongruent cue would obstruct the decision to the
contrary. The results showed that the effects were not as simple
as the expectation. A 3� 4 repeated measures ANOVA of accu-
racy with factors of stimulus (human, scene, and tool) and cue
[“Human,” “Scene,” “Tool,” and “****” (no cue)], passing
Mauchly’s test of sphericity (p. 0.05), showed significant
effects of stimulus (F(2,26) = 11.08, p, 0.001) and of the interac-
tion of cue and stimulus (F(6,78) = 8.44, p, 0.001) but not of
cue (F(3,39) = 1.16, p= 0.34). Multiple comparisons with
Bonferroni correction of the simple effects of cues showed only

the obstruction by the incongruent cues for human stimulus,
while only the facilitation effects of congruent cues were
observed for scene and tool stimuli (Fig. 7B), indicating that the
cue congruency effects varied depending on the stimulus. The
same statistical tests were applied to cue congruency effects on

Figure 7. Behavioral performance of the categorization task in the decision section,
regarding the first responses of trials. A, Left axis, Histogram of response observations on RT
of all the trials over stimuli and participants. Right axis, Relationship between accuracy (per-
cent correct) and RT. B, Accuracy averaged across participants. Cues congruent with the stim-
uli are denoted by $. In each stimulus condition, multiple comparisons of the simple
effects of cues were conducted with Bonferroni correction: *p, 0.05, **p, 0.01,
***p, 0.001. Error bars show SEM. C, Mean RT averaged across participants. The indications
are the same as B.
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RT, and the repeated measures ANOVA of RT showed signifi-
cant effects of stimulus (F(2,26) = 18.81, p, 0.001) and the inter-
action of cue and stimulus (F(6,78) = 4.26, p, 0.001) but not of
cue (F(3,39) = 2.38, p= 0.084). Multiple comparisons showed
that cue congruency did not have a significant effect on RT in
most of the comparisons (Fig. 7C). In these results, the cue con-
gruency effects were more complicated and less obvious than
expected. Therefore, we pooled the cue conditions in the fol-
lowing analyses. As a possible reason for the less notable effects
of cue congruency, participants noticed a substantial propor-
tion of cues being incongruent early in the experiment and did
not rely on the cues to make decisions, which was reported
spontaneously by more than half of the participants in the post-
experiment debriefing.

Functional localization of CSRs
We determined CSRs using fMRI data of the localization section,
and the coordinates of their peak voxels were selected by means
of the “individual peaks within group activation” method (see
Materials and Methods). First, we conducted group-level analy-
ses of SPM for the four kinds of category selectivity (face, body,
scene, and tool) by applying the inclusive mask of positive activa-
tion, and 14 ROIs of clusters of contiguous voxels were detected
at a 0.1% voxel-wise threshold and a cluster-wise threshold of the
FWER 5%. Second, applying each of these ROIs as an inclusive
mask, we detected the peak voxels in the ROIs of the correspond-
ing categories in the individual-level analysis. We excluded six of
the 14 ROIs in which two or more participants showed no signif-
icant voxels, and the remaining eight ROIs were identified as
CSRs, which were two right face-selective regions (referred to as
R Face-SR 1 and R Face-SR 2), one left body-selective region (L
Body-SR), one right body-selective region (R Body-SR), two left
scene-selective regions (L Scene-SR 1 and L Scene-SR 2), one
right scene-selective region (R Scene-SR), and one left tool-selec-
tive region (L Tool-SR). Finally, we selected the peak voxel show-
ing the strongest effect in each of the eight CSRs of each
participant, with diminishing spatial dispersion of the voxels
among participants as described in Materials and Methods. The
location of each CSR was represented by the mean coordinates
among the participants of that ROI. Table 1 shows that the coor-
dinates of these CSRs, which, except L Scene-SR 2, were close to
the CSRs identified in the previous studies. Based on this corre-
spondence, we can reasonably regard R Face-SR 1 as the right
fusiform face area (Kanwisher et al., 1997), R Face-SR 2 as the
right occipital face area (Kovács et al., 2008), bilateral Body-SRs

as the extrastriate body areas (Downing et al., 2001), L Scene-SR
1 and R Scene-SR as the posterior extension of the parahippo-
campal place areas (Epstein and Kanwisher, 1998), and L Tool-
SR as the lateral occipital complex (Grill-Spector et al., 1999).
The peculiarity of L Scene-SR 2 is discussed below.

Localization of NCSRs
The NCSRs were defined as the TPM-based regions that showed
the decision task-related positive activation without any signifi-
cant category selectivity. We used the volume data of 121 atlas
regions of the TPM as anatomic masks to parcel the noncate-
gory-selective range. Applying each TPM-atlas mask together
with the masks of positive activation and noncategory selectivity
inclusively to the individual-level t-contrast image of the task-
positive activation, in the same manner as CSRs we extracted the
peak voxel showing the strongest task effect in the individual-
level analysis of each participant, with diminishing spatial disper-
sion of the voxels among participants. We adopted 55 NCSRs, in
which 14 or 13 participants had significant voxels in the individ-
ual-level analyses (Table 2).

We examined the activity dependence of the CSRs and
NCSRs on stimulus category in the decision section because it
was not obvious how their category selectivity, which was deter-
mined by using the easy-to-categorize stimuli in the localization
section, would be kept in response to degraded difficult-to-cate-
gorize stimuli of the decision section. A blocked design SPM
analysis was applied to the BOLD data of the decision section
(preprocessed with the slice timing correction) using models of
boxcar-shaped activation during the stimulus epochs of three
categories (human, scene, and tool), which were confined to tri-
als of the participant’s correct first responses. We extracted the
b values (regression coefficients of the models on BOLD signals
over six sessions) from the contrast images of stimulus condi-
tions at the coordinates of CSRs and NCSRs of each participant.
These b values were analyzed using repeated measures ANOVA
with a factor of stimulus (human, scene, and tool). Table 3 shows
that the effects of stimulus were highly significant (p, 0.001 or
0.01) for all the CSRs except L Scene-SR 2, while significant
effects were found in only 9 of 55 NCSRs, most of whose signifi-
cance levels were not high (p, 0.05). Each CSR except L Scene-
SR 2 showed that the b of its preferred stimulus was significantly
larger than those of both the other two nonpreferred stimuli,
which is consistent with the definition of category selectivity
employed in the previous studies (see Materials and Methods).
On the other hand, none of the NCSRs had its preferred stimulus

Table 1. Locations of CSRs

Previous studies

ROI idx. Region name x (mm) y z Anatomical location BA
Region
vol. (voxels)

Number
of partic.

SD of ind.
coord. (mm) Lit. x (mm) y z

Distance
(mm)

(1) R Face-SR 1 44 �54 �21 R fusiform gyrus 37 112 14 4.8 (1) 40 �57 �15 7.8
(2) R Face-SR 2 50 �70 �2 R inferior occipital gyrus 37 210 14 7.2 (2) 47 �73 �12 10.9
(3) L Body-SR �52 �70 5 L inferior occipital gyrus 37 588 14 7.4 (3) �51 �72 8 3.7
(4) R Body-SR 52 �67 1 R inferior occipital gyrus 37 964 14 8.0 (3) 51 �71 1 4.1
(5) L Scene-SR 1 �28 �45 �11 L fusiform gyrus 37 356 14 5.9 (4) �34 �31 �9 15.4
(6) L Scene-SR 2 �12 �90 �5 L calcarine cortex 18 161 13 7.2
(7) R Scene-SR 30 �45 �11 R fusiform gyrus 37 445 13 9.0 (4) 18 �40 �9 13.2
(8) L Tool-SR �40 �67 �11 L inferior occipital gyrus 19 921 13 13.2 (5) �36 �74 �19 11.4

ROI idx., ROI index. x, y, z, the mean MNI coordinates of all participants of the ROI. Anatomical location (tissue labeling) of the mean coordinates was provided by TPM of SPM12 (when the label was the white matter, that
of a neighboring voxel was used). BA, Brodmann’s area of the mean coordinates provided by MRIcron. Region vol., region volume in voxels of activation in group-level analysis. Number of partic., the number of participants
who showed significant voxels within the ROI. SD of ind. coord., SD (in 3D space) of MNI coordinates of individual participants, the smaller value suggesting the more cohesive anatomic locations among participants. Previous
studies, representative reports of CSR locations (in MNI coordinates): (1) Kanwisher et al. (1997), (2) Kovács et al. (2008), (3) Downing et al. (2001), (4) Epstein and Kanwisher (1998), and (5) Grill-Spector et al. (1999).
Distance, Euclid distance between the coordinates of the present and previous studies. In the column of region name: L, left. R, right. -SR, -selective region. Full descriptions of the abbreviations are in the main text.
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that took precedence over both the other two stimuli. The results
justified averaging the CSR signals of the decision section sepa-
rately for preferred and nonpreferred stimuli because the signals
were significantly different depending on the preference of
stimuli.

Regarding the peculiarity of L Scene-SR 2, whose category se-
lectivity was inconsistent between the localization and decision
sections, we investigated the stimulus images used in the

localization section by spatial frequency analysis, and found that
the scene images contained markedly more high-frequency com-
ponents than images of the other categories. This difference
seems to originate from the image components; the backgrounds
of the scene images were not removed to keep the expanse of sce-
nery as the content, while those of the other-category images
were removed and filled with uniform gray (Fig. 1B). Thus, the
scene images included more lines and edges, which contributed

Table 2. Locations of NCSRs

ROI idx. Region name x (mm) y z BA Number of partic. SD of ind. coord. (mm)

(9) L AIns (anterior insula) �29 22 �2 47 14 4.8
(10) R AIns (anterior insula) 32 24 1 47 14 5.8
(11) L AnG (angular gyrus) �27 �65 43 7 14 5.4
(12) L Caudate �14 �1 15 NA 14 5.1
(13) R Caudate 16 0 16 NA 13 5.0
(14) L Cerebellum Exterior �35 �72 �24 NA 14 12.0
(15) R Cerebellum Exterior 35 �65 �26 NA 14 14.5
(16) L FO (frontal operculum) �33 19 7 48 14 6.5
(17) R FO (frontal operculum) 36 23 6 48 14 5.0
(18) L FuG (fusiform gyrus) �32 �61 �14 19 14 1.0
(19) R FuG (fusiform gyrus) 37 �42 �19 37 14 6.9
(20) L Hippocampus �19 �32 �6 NA 14 3.6
(21) R Hippocampus 21 �30 �5 NA 14 3.1
(22) L IOG (inferior occipital gyrus) �27 �90 0 18 14 4.0
(23) R IOG (inferior occipital gyrus) 32 �89 5 18 14 2.4
(24) L ITG (inferior temporal gyrus) �46 �52 �12 37 14 3.3
(25) R ITG (inferior temporal gyrus) 44 �50 �10 37 14 0.9
(26) R MCgG (middle cingulate gyrus) 6 18 37 24 14 4.8
(27) L MFG (middle frontal gyrus) �39 7 31 44 14 6.0
(28) R MFG (middle frontal gyrus) 38 5 42 6 14 12.0
(29) L MOG (middle occipital gyrus) �28 �92 8 18 14 1.8
(30) R MOG (middle occipital gyrus) 32 �84 12 18 14 0.0
(31) L MSFG (superior frontal gyrus medial segment) �4 27 42 32 14 4.7
(32) R MSFG (superior frontal gyrus medial segment) 7 27 37 32 14 3.8
(33) L OCP (occipital pole) �22 �98 6 17 14 0.0
(34) L OFuG (occipital fusiform gyrus) �26 �87 �11 18 14 2.9
(35) R OFuG (occipital fusiform gyrus) 29 �86 �11 18 14 2.5
(36) L OpIFG (opercular part of the inferior frontal gyrus) �41 11 25 48 14 6.7
(37) R OpIFG (opercular part of the inferior frontal gyrus) 47 12 30 44 14 2.8
(38) L OrIFG (orbital part of the inferior frontal gyrus) �30 27 �1 47 14 3.7
(39) R OrIFG (orbital part of the inferior frontal gyrus) 34 28 �1 47 14 3.8
(40) L Pallidum �17 0 1 NA 14 6.1
(41) R Pallidum 18 5 0 NA 14 6.3
(42) L PHG (parahippocampal gyrus) �16 �33 �5 27 14 2.5
(43) R PHG (parahippocampal gyrus) 18 �32 �6 27 14 2.5
(44) L PrG (precentral gyrus) �43 5 31 44 14 6.0
(45) R PrG (precentral gyrus) 46 5 33 44 14 8.4
(46) L Putamen �22 3 �2 NA 14 8.5
(47) R Putamen 23 7 �1 NA 14 9.8
(48) R SFG (superior frontal gyrus) 25 4 59 6 14 9.3
(49) L SMC (supplementary motor cortex) �4 9 52 6 14 5.5
(50) R SMC (supplementary motor cortex) 7 14 50 32 14 8.0
(51) R SMG (supramarginal gyrus) 45 �29 42 2 14 3.6
(52) L SOG (superior occipital gyrus) �26 �94 11 18 13 1.0
(53) R SOG (superior occipital gyrus) 30 �84 14 18 14 1.0
(54) L SPL (superior parietal lobule) �24 �62 51 7 14 6.5
(55) R SPL (superior parietal lobule) 24 �60 53 7 14 5.2
(56) L Thalamus Proper �19 �31 �4 NA 14 3.3
(57) R Thalamus Proper 22 �29 �3 NA 14 3.0
(58) L TrIFG (triangular part of the inferior frontal gyrus) �39 30 14 48 14 5.4
(59) R TrIFG (triangular part of the inferior frontal gyrus) 49 35 14 45 14 6.5
(60) L Ventral DC (diencephalon) �19 �26 �6 NA 14 6.8
(61) R Ventral DC (diencephalon) 20 �25 �6 NA 14 6.3
(62) Cerebellar Vermal Lobules VI-VII �2 �76 �31 NA 14 6.1
(63) Cerebellar Vermal Lobules VIII-X 0 �55 �37 NA 13 3.3

The order and abbreviations of the regions followed the TPM database of SPM12. Abbreviations of the column headings are the same as Table 1. NA, not applicable.
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to the high-frequency components and could strongly activate
the early visual areas such as the calcarine cortex where L Scene-
SR 2 was identified (Table 1). This would not be the case in the
decision sections in which all the stimuli kept their background
of the objects. Because L Scene-SR 2 seems not to represent the
high-level content of the scene category, we excluded it from the
following analysis of CSRs.

Classification of NCSRs based on activity profiles
As described in Materials and Methods, time series of BOLD sig-
nals were extracted from the fMRI data of the decision section at
the coordinates of CSRs and NCSRs determined for each partici-
pant, and deconvolved by means of the Wiener filter. Trial seg-
ments of the deconvolved signals were averaged separately for
the regions and the RT-groups of the trials in both the stimulus-
locked and response-locked alignments, and the temporal-profile
parameters such as Peak_stm (peak time of the stimulus-locked
time course) were extracted from the averaged trial-segment
time courses. The statistics of the profile parameters across RTs
were used to classify the regions as follows. We first investigated
the NCSRs to establish a method of classifying the activity pro-
files of decision-related regions, and then examined the CSRs
using this classification. Because our primary aim was to clarify
relations among multiple accumulators and other decision-
related regions such as those shown by Ploran et al. (2007, 2011),
we confined our investigation to regions whose activity peaks
were either response-dependent or stimulus-dependent. For this
restriction, we evaluated the Peak_rsp_SD and Peak_stm_SD
(SDs of the response-locked and stimulus-locked peak times
over RT groups), which reflected temporal cohesiveness (i.e., the
degree of timing constancy) of the peaks relative to the response
and the stimulus onset, respectively. Figure 8A, left panel, shows
a scatter plot between the Peak_stm_SD and Peak_rsp_SD of the
55 NCSRs, in which the 10 regions colored violet had large values
of both the Peak_stm_SD and Peak_rsp_SD, being distinctively
apart from the other regions. The right panel confirms this ob-
servation by Ward’s clustering method applied to this two-
dimensional space, which generated a dendrogram showing
these 10 regions as a different cluster from the other regions.
These 10 regions were neither response dependent nor stimulus

dependent; therefore, we excluded them from further analysis of
classification. To classify the remaining 45 NCSRs, we initially
used the SD of the rise times over RTs (in either stimulus-locked
or response-locked alignments) as well as the Peak_stm_SD and
Peak_rsp_SD for separating the regions based on the peak
properties hypothesized by Ploran et al. (2007). In our results,
however, Ward’s clustering in the three-dimensional space
comprising these parameters could not provide satisfactory
reproduction of the results of Ploran et al. (2007, 2011), espe-
cially of separation between accumulators and moment-of-
recognition regions. In a heuristic manner, we found that this
separation was remarkably improved by employing the mean
of rising slopes of the response-locked time courses over the
RT groups (Slope_rsp_MN) instead of the SD of rise times.
(Possible reasons for this empirical improvement are dis-
cussed below.) We also found that there was substantial dis-
persion of the mean of the response-locked peak times over
RT groups (Peak_rsp_MN) among the regions classified as ac-
cumulator and moment-of-recognition region in our results.
Thus, we added Peak_rsp_MN as the fourth parameter to the
clustering space. Then, in the 4-D space of Peak_stm_SD,
Peak_rsp_SD, Peak_rsp_MN, and Slope_rsp_MN, Ward’s
clustering generated a dendrogram of the 45 regions, as shown
in Figure 8B. The dendrogram at a linkage distance of 4.2 pro-
vided the four classes of the regions, which reasonably repro-
duced the results of Ploran et al. (2007, 2011) with some
necessary modifications as described below. Figure 8C also
shows that the classes were clearly segregated in this parame-
ter space.

Figure 9A shows activity profiles of the averages over the
regions and of typical regions for the four classes. Evidently,
these classes showed different activity profiles regarding the
peak and rise times. The profile differences in the averages
could mostly be observed in the typical regions, too. These
observations are confirmed by the noticeably different distribu-
tions of the profile parameters of individual regions, which are
Peak_stm, Peak_rsp, Slope_rsp, and Rise_stm, across the classes
as shown in Figure 9B. Figure 9C shows that the four classes
were characterized by statistical properties of the profile param-
eter values as follows. In the first two panels, Class 1 showed

Table 3. Dependence of activation on stimulus in the decision section

ROI idx. Region name rm ANOVA Human . scene Human . tool Scene . human Scene . tool Tool . human Tool . scene

CSR (1) R Face-SR 1 *** *** ***
(2) R Face-SR 2 *** *** ***
(3) L Body-SR *** *** *** *
(4) R Body-SR *** *** ** **
(5) L Scene-SR 1 *** *** **
(6) L Scene-SR 2
(7) R Scene-SR *** ** **
(8) L Tool-SR ** * *

NCSR (11) L AnG * *
(18) L FuG *** ** *
(24) L ITG * *
(27) L MFG *
(32) R MSFG *
(44) L PrG * *
(49) L SMC *
(50) R SMC *
(63) Cerebellar Vermal Lobules VIII-X * *

rm ANOVA, repeated measures ANOVA of b values regarding the stimulus conditions (human, scene, and tool). The ANOVA is followed by multiple comparisons with Bonferroni correction between the stimulus conditions.
*p, 0.05, **p, 0.01, ***p, 0.001. For NCSRs, only regions that showed significant effects of stimulus conditions are shown. Six of 882 cases in total (63 regions� 14 participants) did not have their coordinates owing
to the absence of significant voxels, and we used the coordinates averaged over other participants to fill the data blanks of ANOVA. Multiple comparisons were two-sided. Take notice that all the CSRs except L Scene-SR 2
showed the precedence of their preferential stimuli over both of the other two stimuli.
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significantly smaller Peak_stm_SD and larger Peak_rsp_SD
than the other three classes, indicating that Class 1 had the
stimulus onset-dependent peak times. In contrast, the peak
times of Classes 2, 3, and four were dependent on RTs because
of their small Peak_rsp_SDs and large Peak_stm_SDs. In the
third panel, Slope_rsp_MNs of both Class 3 and Class 4 were
significantly greater than those of Classes 1 and 2. Based on
these properties, we can see the following correspondence of
classes between the present results and Ploran et al. (2007,
2011): Class 1 to sensory processor, Class 2 to accumulator, and
both Class 3 and Class 4 to moment-of-recognition regions,
based on the hypothesis by Ploran et al. (2007) from which the
slopes of the scaled activity are expected to be steeper in the
moment-of-recognition regions than in the accumulators.
Table 4 shows the consistency of this correspondence in the
anatomic relations, which substantially overlap between the
studies.

Despite the above correspondence, the present results also
showed some discrepancies with the hypothesis by Ploran et al.
(2007). In this hypothesis, to which we would refer below as the
Ploran hypothesis, the moment-of-recognition regions are
recruited at the moment of recognition so that their activity
would peak after the response. If Class 3 and Class 4 share these
properties of the moment-of-recognition region, both of the two
classes are characterized by activity rises near the response
moment and by activity peaks after the response. In the present
results, however, Figure 9C shows significant differences
between Class 3 and Class 4 in Peak_rsp_MN (the fourth panel)
and in Rise_stm_MN (mean of the stimulus-locked rise times
over RT groups; the fifth panel). Whereas Class 4 regions
seemed to share the properties of the moment-of-recognition
region, Class 3 regions showed the stimulus onset-dependent
rise times similarly to Classes 1 and 2 (the fifth panel) and the
peak times matching the response moment (the fourth panel).

Figure 8. Classification of NCSRs based on the profile-parameter statistics. A, Left panel, A scatter plot between Peak_stm_SD (the SD of the stimulus-locked peak times over RT groups)
and Peak_rsp_SD (the SD of the response-locked peak times over RT groups) of the 55 NCSRs. To prevent unequal weights of the parameters caused by their different scales from biasing the
following Ward’s clustering, each of these parameters was scaled so that the SD over regions was 1, being indicated by the label “(scaled)” of the axis (see Materials and Methods). The 10
regions surrounded by a dashed circle colored violet had large values of both Peak_stm_SD and Peak_rsp_SD, being distinctively apart from the other regions. Right panel, A dendrogram of
the 55 NCSRs obtained by Ward’s clustering method in the two-dimensional parameter space described above. By cutting the dendrogram at a linkage distance of 4.8, we obtained the four dis-
tinct clusters, one of which comprised the same 10 regions as the left panel, shown by the surrounding dashed lines colored violet. (See Table 2 for the abbreviations of the region names.) B,
A dendrogram of the 45 NCSRs obtained by Ward’s clustering method in the four-dimensional parameter space comprising Peak_stm_SD, Peak_rsp_SD, Slope_rsp_MN (the mean of rising
slopes of the response-locked time courses over the RT groups), and Peak_rsp_MN (the mean of the response-locked peak times over RT groups). Four meaningful clusters (indicated as Class
1–4) were generated by cutting the dendrogram at a linkage distance of 4.2, which was determined based on the inspection of the parameter values (see the text). C, A scatter plot of the pa-
rameter values in the three-dimensional space of Peak_stm_SD, Slope_rsp_MN, and Peak_rsp_MN to illustrate segregation of the classes (the clustering was conducted in the four-dimen-
sional space with the addition of Peak_rsp_SD). Each of these parameters was scaled to have the SD over regions being 1 as in panel A.
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Figure 9. Activity profiles of NCSRs. A, Activity time courses of the averages over the regions of each class (left panels) and those of typical regions selected for each class (right panels). (See Table 2
for the list of the regions.) The origins of time coordinates are stimulus onset and participant’s response in the stimulus-locked average and the response-locked average, respectively. For selecting typical
regions of the classes in the right panels, we estimated “proximity” of each region to the NCSR classes. Based on the distance r between the coordinates of the region and the mean coordinates (the cen-
ter) averaged over all the regions of each of the four classes in the four-dimensional clustering space of the profile parameters, the proximity was defined as a quantity 1� log r, which indicates how
close the region was to the center of the class (shown in the rightmost figures). A region with the largest proximity to each class was selected as the typical region of the class. B, The profile parameters
of the individual NCSRs obtained for each of RTs. C, Box plots of the profile-parameter statistics (i.e., mean, SD) across RTs for the NCSRs. The data points represent the statistical values of regions and the
box plots represent their distribution for each of the classes. The inset displays the elements of a box plot: 1–6, respectively, indicate minimum, lower quartile, median, upper quartile, maximum, and out-
lier. The outliers were defined as values larger than the upper quartile or smaller than the lower quartile by 1.5 times the interquartile range. The minimum and maximum were taken excluding the
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In addition, Peak_rsp_MN of Class 3 was even earlier than that
of Class 2 whose correspondence is accumulator of the Ploran
hypothesis (in the fourth panel). Facing these results, we recon-
sidered the classification of regions. In the present results, both

Class 2 and Class 3 could be regarded as accumulators because
their activity rose at the stimulus onset and increased toward
the decision moment. These classes were differentiated in the
activity peak times at and behind the decision moment for
Class 3 and Class 2, respectively. Thus, we would propose to
refer to Class 3 as “type-A accumulator (aAccum)” and Class 2
as “type-B accumulator (bAccum),” after the activity peaking
“at” and “behind” the decision moment, respectively. In Class
4, both rise and peak times were dependent on the decision
moment, which matched the characteristics of the moment-of-
recognition region of the Ploran hypothesis. Emphasizing that
their peaks were markedly behind the decision moments in our

Table 4. Anatomical correspondence between Ploran et al. (2007, 2011) and the present study

The present study Ploran et al. (2007) Ploran et al. (2011)

Class Region name x (mm) y z Region name x (mm) y z Dist. Class Region name x (mm) y z Dist. Class

Class 1 (22) L IOG �27 �90 0 L cuneus �19 �102 �3 14.7 sens L cuneus �28 �94 �7 8.1 sens

(23) R IOG 32 �89 5 R mid occipital G 30 �81 14 12.2 sens R mid occipital G 31 �90 3 2.4 sens

(25) R ITG 44 �50 �10 R fusiform G 49 �63 �14 14.5 accum R fusiform G 44 �65 �11 15.0 IT

(29) L MOG �28 �92 8 L mid occipital G �30 �81 19 15.7 accum L mid occipital G �32 �88 7 5.7 sens

(30) R MOG 32 �84 12 R mid occipital G 30 �81 14 4.1 sens R mid occipital G 33 �83 16 4.2 accum

(33) L OCP �22 �98 6 L cuneus �19 �102 �3 10.3 sens L mid occipital G �32 �88 7 14.2 sens

(34) L OFuG �26 �87 �11 L inf occipital G �32 �92 �16 9.3 accum L cuneus �28 �94 �7 8.3 sens

(35) R OFuG 29 �86 �11 . 20 R inf occipital G 29 �91 �11 5.0 sens

(52) L SOG �26 �94 11 L mid occipital G �30 �81 19 15.8 accum L mid occipital G �32 �88 7 9.4 sens

(53) R SOG 30 �84 14 R mid occipital G 30 �81 14 3.0 sens R mid occipital G 33 �83 16 3.7 accum

Class 2 (11) L AnG �27 �65 43 L intraparietal S �26 �72 38 8.7 accum L intraparietal S �24 �61 46 5.8 accum

(14) L Cerebellum Ext. �35 �72 �24 L cerebellum �34 �76 �36 12.7 accum L fusiform G �29 �73 �17 9.3 IT

(15) R Cerebellum Ext. 35 �65 �26 R fusiform G 49 �63 �14 18.5 accum R fusiform G 33 �58 �23 7.9 IT

(18) L FuG �32 �61 �14 L fusiform G �42 �65 �14 10.8 accum L fusiform G �30 �57 �21 8.3 IT

(19) R FuG 37 �42 �19 . 20 R fusiform G 28 �48 �22 11.2 IT

(24) L ITG �46 �52 �12 L fusiform G �42 �65 �14 13.7 accum L fusiform G �40 �67 �17 16.9 IT

(28) R MFG 38 5 42 R inf frontal G 44 4 36 8.5 accum R inf frontal G 39 4 31 11.1 accum

(45) R PrG 46 5 33 R inf frontal G 44 4 36 3.7 accum R inf frontal G 39 4 31 7.3 accum

(54) L SPL �24 �62 51 L intraparietal S �26 �72 38 16.5 accum L intraparietal S �24 �61 46 5.1 accum

(55) R SPL 24 �60 53 R inf parietal lobule 34 �61 48 11.2 recog R intraparietal S 27 �59 46 7.7 accum

(62) Cerebellar Verm. Lob. VI-VII �2 �76 �31 . 20 . 20

Class 3 (9) L AIns �29 22 �2 L ant insula �32 23 2 5.1 recog L ant insula �30 19 3 5.9 recog

(10) R AIns 32 24 1 R ant insula 33 23 �1 2.4 recog R ant insula 30 21 5 5.4 recog

(16) L FO �33 19 7 L ant insula �32 23 2 6.5 recog L ant insula �30 19 3 5.0 recog

(17) R FO 36 23 6 R ant insula 33 23 �1 7.6 recog R ant insula 30 21 5 6.4 recog

(26) R MCgG 6 18 37 R ant cingulate 6 23 35 5.4 recog R ant cingulate G 9 20 39 4.1 accum

(27) L MFG �39 7 31 L post inf frontal G �46 �2 35 12.1 accum L inf frontal G �43 0 35 9.0 accum

(31) L MSFG �4 27 42 . 20 L ant cingulate G �5 24 44 3.7 recog

(32) R MSFG 7 27 37 R ant cingulate 6 23 35 4.6 recog R ant cingulate G 9 20 39 7.5 accum

(36) L OpIFG �41 11 25 L post inf frontal G �46 �2 35 17.1 accum L inf frontal G �43 0 35 15.0 accum

(37) R OpIFG 47 12 30 R inf frontal G 44 4 36 10.4 accum R inf frontal G 39 4 31 11.4 accum

(38) L OrIFG �30 27 �1 L ant insula �32 23 2 5.4 recog L ant insula �30 19 3 8.9 recog

(39) R OrIFG 34 28 �1 R ant insula 33 23 �1 5.1 recog R ant insula 30 21 5 10.0 recog

(40) L Pallidum �17 0 1 L striatum �11 7 6 10.5 recog . 20

(44) L PrG �43 5 31 L post inf frontal G �46 �2 35 8.6 accum L inf frontal G �43 0 35 6.4 accum

(49) L SMC �4 9 52 L med frontal G �1 12 56 5.8 recog L med frontal G �7 11 53 3.7 recog

(50) R SMC 7 14 50 R med frontal G 1 25 47 12.9 recog R med frontal G 5 13 52 3.0 recog

(58) L TrIFG �39 30 14 L mid frontal G �44 28 28 15.0 accum L ant insula �30 19 3 18.0 recog

(61) R Ventral DC 20 �25 �6 . 20 . 20

(63) Cerebellar Verm. Lob. VIII-X 0 �55 �37 . 20 . 20

Class 4 (12) L Caudate �14 �1 15 L striatum �11 7 6 12.4 recog . 20

(13) R Caudate 16 0 16 R striatum 12 6 4 14.0 recog . 20

(41) R Pallidum 18 5 0 R striatum 12 6 4 7.3 recog . 20

(46) L Putamen �22 3 �2 L striatum �11 7 6 14.2 recog L ant insula �30 19 3 18.6 recog

(47) R Putamen 23 7 �1 R striatum 12 6 4 12.1 recog R ant insula 30 21 5 16.8 recog

Coordinates of all the decision-related regions described in the two papers by Ploran et al. (2007, 2011) were extracted, and the nearest region to each region of the present study within a limited distance (dist.) of 20 mm was determined.
See Table 2 for the regions of the present study. As for the regions of Ploran and colleagues, the Talairach coordinates were transformed into the MNI coordinates for the distance calculation. No near regions within 20 mm (.20) are left blank.
The region names followed the original Ploran papers, with the abbreviations: L, left; R, right; G, gyrus; S, sulcus; ant, anterior; post, posterior; inf, inferior; mid, middle; med, medial. The classes are described in the Introduction: sensory proces-
sor (sens), accumulator (accum), and moment-of-recognition region (recog). While Ploran et al. (2011) updated the concept of recog class to imply the commitment to a recognition decision by renaming to “comm,” we use “recog” here for
simplicity of comparison. Ploran et al. (2011) introduced the fourth class of inferior temporal (IT) region although stimulus selectivity of the regions was not identified. The dominant class of the Ploran papers corresponding to each class of the
present study was: sens to Class 1 (63% of the Class 1-nearst regions of the Ploran papers were sens), accum to Class 2 (68%), recog to Class 3 (66%), and recog to Class 4 (100%).

/

outliers. Data points were overlaid as black dots on the box plots. Multiple comparisons with
Bonferonni correction showed significant differences among the classes. The significance level was
p, 0.001 (denoted as ***) for all differences detected here. While the parameters of the first
four panels were used for the clustering of regions, the parameter Rise_stm_MN of the fifth panel
was not used for the clustering but was essential for interpreting the new results of classification
(see the main text).
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results, however, we would like to refer to Class 4 as “postdeci-
sion processor (Post).” We refer to Class 1 as “sensory proces-
sor (Sens),” whose definition is exactly the same as the Ploran
hypothesis. Figure 10 shows our proposal for the region classifi-
cation in relation to the Ploran hypothesis, illustrating that the
different classifications are based on the subtle differences in
the peak and rise times. The deconvolved signals seem to pro-
vide improved availability of temporal information such as
whether the signal peaks are at the decision moment or behind,
which could be implicit in BOLD signals. In Figure 10, the
aAccum and bAccum regions do not differ in Rise_stm_
MN, providing a reason to employ Slope_rsp_MN instead of
Rise_stm_MN to separate these two classes, as described above.
In a logical sense, however, Slope_rsp_MN and Rise_stm_MN
can have equal power to cluster these regions because different
Slope_rsp_MN could be derived from the same Rise_stm_MN
and the different Peak_rsp_MN, the latter of which was

employed as another clustering parameter. On
the contrary, the results demonstrated that
clustering is more effective when employing
two different parameters (Peak_rsp_MN and
Slope_rsp_MN) than employing one different
(Peak_rsp_MN) and one same (Rise_stm_MN)
parameter. We think that the results showing
“two is better than one” justify the heuristic
method to select the classification parameters
in the present study. It should be noted that
not all of the accumulators found in the
results seemed to determine the decision timing
because activity peaks of the bAccum regions
were significantly behind the decision responses.
Since activity peaks of the aAccum regions
consistently matched the decision moments,
it seems reasonable to postulate that deci-
sions are made within the aAccum regions.
In Discussion, we discuss this crucial issue
regarding the relationship between accumu-
lation and decision making.

Activity profiles of CSRs in reference to
classification of NCSRs
Figure 11A shows the time courses of CSR
activities, which were averaged separately across
trials with preferred and nonpreferred stimuli in
each region. The CSRs were activated even for
their nonpreferred stimuli as also observed by
Tremel and Wheeler (2015) and Dunovan and
Wheeler (2018), suggesting that they are not
passively activated by visual stimuli but actively
commit to the decision process. We character-
ized the activity profiles of CSRs in reference
to the classification of NCSRs by estimating
their proximity to each of the four NCSR classes
[Sens (sensory processor), aAccum (type-A ac-
cumulator), bAccum (type-B accumulator), and
Post (postdecision processor)] in the same way
as in Figure 9A. Figure 11A reveals that the
classes of CSRs depended not only on region but
also on stimulus preference. The four regions of
Face-SRs (face-selective regions) and Body-SRs
(body-selective regions) showed quite different
activity profiles between the preferred stimulus
(human image) and nonpreferred stimuli (scene
and tool images). In particular, L Body-SR was

classified as bAccum for the preferred stimulus, whereas for
the nonpreferred stimuli it was not close to any of the
classes showing very small proximity values. Curiously, the
activity peaks of L Body-SR for the nonpreferred stimuli
were outstandingly earlier than the response moment. The
remaining three of the Face-SRs and Body-SRs were classi-
fied as aAccum or bAccum for the nonpreferred stimuli
while they were classified as Sens for the preferred stimuli,
indicating their continued activity for the preferred stimuli
after the decision. On the other hand, the three regions of
Scene-SRs (scene-selective regions) and Tool-SR (tool-
selective region) showed less different activity profiles
between preferred and nonpreferred stimuli, classified as
aAccum or bAccum regardless of stimulus.

Although the results showed the variety of activity patterns of
the CSRs, we would propose that the fundamental classes of

Figure 10. Proposal for the region classification by the present study in relation to the hypothesis by Ploran et al.
(2007). The hypothesis by Ploran et al. (2007), whose original is drawn as BOLD signals on the stimulus-locked coordi-
nates in Figure 2 of that paper, was redrawn as neural activities on the response-locked coordinates. The correspon-
dence of the present proposal to the Ploran hypothesis was based on the anatomic correspondence shown in Table 4.
Properties of the classes are described in the main text.
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CSRs are accumulators because their
rise and peak times were stimulus and
response dependent, respectively, and
they were classified as accumulators
(aAccum and bAccum) in most cases.
The property characteristic to the CSRs
as accumulators is that their activities
are modified by their selectivity to
stimuli. It is noteworthy that their peaks
were earlier for nonpreferred stimuli
than for preferred stimuli in most cases
and often earlier than even the response
(decision) moment as shown in Figure
11B, which was rarely observed in the
NCSRs. Such distinguishing properties
of the CSRs plausibly reflect their com-
mitment to competing processes among
the alternatives of decision. It seems
reasonable to regard their peaks before
the decision moment for nonpreferred
stimuli as their withdrawals from the
losing competition. In this sense, L
Body-SR might show peculiarly early
withdrawals from the losing competi-
tion. In contrast to the cases for non-
preferred stimuli, the activity peaks of
all the CSRs for the preferred stimuli
were at the RT or later, which could be
reasonably interpreted as activities of
the competition winners that do not
drop before the decision. The different
classifications as Sens (the Face-SRs
and Body-SRs) and aAccum/bAccum
(the Scene-SRs and Tool-SRs) for pre-
ferred stimuli might originate from
difference in intrinsic properties of
the objects for which the regions were
selective. As a possible explanation, re-
cognition of humans would recruit fur-
ther processing of the image contents
such as facial expression and social cat-
egorization by age and sex, while rec-
ognition of scene would make attention
more divergent. In such a case, Face-
SRs and Body-SRs for their preferred
stimuli would keep activity after the
decision for the extended processing,
which could be classified as Sens. Based
on the observed properties of CSRs,
we would propose that their fundamental
class is the content-specific accumulator
as proposed by Tremel and Wheeler
(2015). They seem to play a distinctive
role in representing competition among

Figure 11. Activity profiles of CSRs. A, Time courses of CSR activities averaged separately for the regions’ preferred and
nonpreferred stimuli on the response-locked coordinates. (See Table 1 for the list of the regions.) The activity profiles were
classified into the four classes obtained for the NCSRs using the proximity to the classes defined in the same way as Figure
9A. In the estimation of the proximity in the four-dimensional clustering space, the clustering parameters such as
Peak_stm_SD were scaled using the same scaling ratios as those of NCSRs in Figure 8C. The class was given by the largest
proximity as indicated in each panel, whose axis is labeled with abbreviations: S (sensory processor), aA (type-A accumula-
tor), bA (type-B accumulator), and P (postdecision processor). Classes whose difference in the proximity was ,0.01 were

/

both described, e.g., bAccum/aAccum. L Body-SR showed
outstandingly small proximity to any of the classes for non-
preferred stimuli, so that this case was not classified. B,
Activity peak times on the response-locked coordinates,
Peak_rsp, for each of RTs. The values were extracted from
the class-averages of NCSRs (Fig. 9A) and from each CSR sep-
arately with preferred and nonpreferred stimuli (panel A).
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the choice alternatives, so that their activity profiles could be
modified depending on the dynamics of the competition,
including withdrawals as the losers. In addition, the CSRs
could reflect processing specific to their preferred objects,
such as extended processing of human stimuli after the deci-
sion. Because these distinctive properties of CSRs cannot be
covered by a single class of either type-A or type-B accumu-
lator, we would refer to the class of the decision-related CSRs
as “type-C accumulator (cAccum)” after “content-specific
accumulator.”

Discussion
Classification of decision-related regions and proposal for a
concept of accumulation system
Previous decision-making studies have found neural substrates
of evidence accumulation in multiple brain regions of animal
and human, raising questions about their functional relations
in decision processes. To work on this issue, we employed
the fMRI deconvolution to take advantage of the whole-
brain coverage with improving availability of the temporal
information of activity, which is critical to identify the
accumulators. In our results of the visual category-decision
experiment, the NCSRs were classified into the four groups
of Sens (sensory processor), aAccum (type-A accumulator),
bAccum (type-B accumulator), and Post (postdecision
processor) regions. From their activity profiles (Fig. 10),
the Sens regions and Post regions were associated in the

antecedent and subsequent processing to the accumulation,
respectively. Although both aAccum and bAccum regions
showed the accumulation profiles, only aAccum regions showed
activity peaks consistently matched the decision moments, rea-
sonably indicating that decisions are made within aAccum
regions. Regarding the decision-related CSRs, whose class was
given as cAccum (type-C accumulator), their activity profiles
were modified by their selectivity to stimuli, suggesting their
commitment to competition among the alternatives in decision
making.

Now, how do these classes of regions work in the decision
process? Figure 12A shows the anatomic distribution of the
classes of regions, which evidently illustrate a posterior-ante-
rior gradient over the brain; Mostly Sens in the occipital
areas, bAccum and cAccum in the temporal and parietal
areas, aAccum in the frontal areas, and Post in the subcorti-
cal structures. This spatial gradient appears to imply hier-
archical processing from sensory to abstract information
along the organization from occipital to frontal areas. In gen-
eral, hierarchical processing includes interactions between
the different levels through feedback as well as feedforward
connections (Felleman and Van Essen, 1991). Thus, in par-
ticular, the interactions among the three classes of accumula-
tors may play an important role in the accumulation process.
According to the knowledge of previous studies of the parie-
tal cortex, its posterior regions are reciprocally connected
with the prefrontal and temporal cortices including the high-
level visual areas (Steinmetz, 1998). It is well known that the

Figure 12. Organization of the decision-related regions over the brain. A, Anatomical distribution of the classes of NCSRs and CSRs. The region indices and abbreviations
are consistent with Tables 1 and 2. For CSRs, parts of the superior and posterior views are shown. B, A schematic drawing of our proposal of the accumulation
system. Sens and Post are regions associated with the antecedent and subsequent processing to accumulation, respectively. Evidence accumulation is conducted by the
system comprising type-A, type-B, and type-C accumulators, which work at different levels of information abstraction in a co-evolving manner. The system concept may
provide a clue to unravel the puzzle of the universal applicability of the accumulation account over a variety of decision making. (The rationale is described in the main
text.)
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posterior parietal cortex plays an essential role in attentional
functions, which mediate associations of perceptual analysis
and actions in a wide variety of tasks. In other words, the parie-
tal cortex selects particular components (e.g., motion, color,
object) from multidomain sensory information in a manner
appropriate to the task requirements represented in the frontal
cortex (for review, see Gottlieb, 2007; Shomstein, 2012). In this
context, bAccum regions in the parietal cortex may operate on
cAccum and bAccum regions of the temporal cortex to extract
the high-level visual information that is required by aAccum
regions of the frontal cortex. Since activities of bAccum and
cAccum regions depended on the decision moment and
competition process, bAccum regions may receive control
signals from aAccum regions and also send regulatory signals
to cAccum regions. This idea of the interacting accumulators
seems to be consistent with the present observation of the
peak-time variations (Fig. 11B), which suggest that the accu-
mulation process is not steadily passive but actively con-
trolled on the way to decision.

Based on these grounds, we would propose an idea that
the accumulation process is conducted by multiple accumu-
lator regions of heterogeneous functions working in a dis-
tributed manner as a system, to which we would refer as the
accumulation system. A possible organization of the accu-
mulation system is schematically shown in Figure 12B.
In this proposal, cAccum regions separately accumulate choice-
specific information being controlled by bAccum regions,
which extract the information components required by
aAccum regions. Considering the integrative functions
of the parietal cortex over a wide variety of stimuli and actions,
bAccum regions convert information from cAccum regions
into some abstract forms to send to aAccum regions. Then (a
part of) aAccum regions make decisions based on comparisons
among the choices in the abstract forms, and terminate their
demand signals of accumulation to the other accumulators.
Because the abstraction levels of information represented by
the three classes of accumulators are different, the information
accumulation needs to be conducted at each level in a co-evolv-
ing manner, which constitutes the core idea of this system
concept.

Universality of the accumulation account over a variety of
tasks
The concept of the accumulation system may provide one step to
solve a crucial puzzle of the wide applicability of the accumula-
tion model over a variety of decision tasks. The accumulation
model has been demonstrated to be effective for the tasks over
modalities and contents of sensory stimuli; for example, visual
tasks such as random-dot motion direction discrimination
(Palmer et al., 2005), symbol density discrimination (Ratcliff et
al., 1999), object distance discrimination (Ratcliff et al., 2003),
brightness discrimination (Ratcliff et al., 2007), and object cate-
gory discrimination (Philiastides et al., 2006; Murata et al., 2014),
somatosensory tasks such as vibrotactile frequency discrimina-
tion (Mulder and van Maanen, 2013), and auditory tasks such as
phonetic discrimination (Binder et al., 2004). In these tasks,
regions representing the alternatives vary in a wide range; for
example, the alternatives of visual object categorization are repre-
sented by the high-level visual areas, while the alternative pho-
nemes of the phonetic discrimination are represented by the
auditory cortex (Binder et al., 2004). Thus, the crucial question
arises: How can such different kinds of perceptual decisions be
neurally implemented in a manner unified by the accumulation

model? As another important knowledge to consider this ques-
tion, some regions have been found to be commonly associated
with a wide range of decision tasks. For example, the anterior
insula is reported to be engaged in motion-direction discrimina-
tion (Ho et al., 2009; Liu and Pleskac, 2011), bar-length categori-
zation (Grinband et al., 2006), facial-expression discrimination
(Thielscher and Pessoa, 2007), phonetic discrimination (Binder
et al., 2004), object identification (Ploran et al., 2007, 2011), and
object categorization (Tremel and Wheeler, 2015). If (a part
of) aAccum regions work commonly to various decision-mak-
ing tasks, their working properties can determine the proper-
ties common to such various decisions, or in other words,
implementation of the accumulation model by aAccum
regions can cause the universality of the model. In a similar
context to this discussion, a concept of “general accumulator”
(Heekeren et al., 2004; Ploran et al., 2011) has been proposed
to indicate accumulators working commonly to various tasks,
being differentiated from domain-dependent accumulators.
The general accumulators were reported to be mostly in the
frontal regions, such as the right insula (Ho et al., 2009), ante-
rior insula and inferior frontal regions (Liu and Pleskac,
2011), and left inferior frontal sulcus (Filimon et al., 2013). It
should be noted that their cortical locations are nearby those
of aAccum regions of this study (Fig. 12A). Thus, it seems to
be an idea worth exploring that the decision-making region
(decision maker) corresponds to a general accumulator in the
frontal cortex. This picture would be consistent with the
report of Ho et al. (2009), which found neural correlates of
modality-independent decision variables of the accumulation
model in the insula of the frontal cortex. In an extended idea
combined with our accumulation-system concept, the general
accumulators receive a certain abstraction level of evidence in-
formation through the accumulation system, accumulate in-
formation according to the accumulation model, and make
decisions in a universal manner regardless of sensory modal-
ity. Fundamental tests of our proposal of the system would be
to determine the degrees of simultaneity of decision moments
and aAccum activity peaks over a variety of decision tasks.
Despite of our suggestion about the decision makers in the
aAccum class, we neither argue that all aAccum regions are
decision makers nor deny the possibility that a single or very
restricted regions of the class are decision makers. Although a
certain aAccum region that generates activity peaks most
closely to decision moments is most likely to be the decision
maker, the precision of the present study was not high enough
to determine differences within the aAccum class.

The accumulation-system concept could be a viewpoint to
address the recent emerging issues of involvement of the parietal
regions in decision making (Pisupati et al., 2016). Studies of rat
and monkey showed that the inactivation of the decision-related
prefrontal regions substantially impaired decisions while that of
the posterior parietal regions did little or not, suggesting that the
parietal cortex, despite its accumulating activity, does not causally
contribute to decision making but plays a supporting role (Erlich et
al., 2015; Hanks et al., 2015; Katz et al., 2016). Another rat experi-
ments showed that inactivation of the posterior parietal cortex
impaired visual decisions but not auditory decisions, suggesting that
the involvement of parietal regions depends on the task modality
(Raposo et al., 2014; Licata et al., 2017). From the system viewpoint,
it is possible that the parietal regions contribute to the evidence
accumulation with the task-relevant weights but do not make deci-
sions themselves. In this sense, accumulation activity would be a
necessary but not sufficient sign of a decision-making region.
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