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Simulated Attack Reveals How Lesions Affect Network
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Aphasia is a prevalent cognitive syndrome caused by stroke. The rarity of premorbid imaging and heterogeneity of lesion
obscures the links between the local effects of the lesion, global anatomic network organization, and aphasia symptoms. We
applied a simulated attack approach in humans to examine the effects of 39 stroke lesions (16 females) on anatomic network
topology by simulating their effects in a control sample of 36 healthy (15 females) brain networks. We focused on measures
of global network organization thought to support overall brain function and resilience in the whole brain and within the
left hemisphere. After removing lesion volume from the network topology measures and behavioral scores [the Western
Aphasia Battery Aphasia Quotient (WAB-AQ), four behavioral factor scores obtained from a neuropsychological battery, and
a factor sum], we compared the behavioral variance accounted for by simulated poststroke connectomes to that observed in
the randomly permuted data. Global measures of anatomic network topology in the whole brain and left hemisphere
accounted for 10% variance or more of the WAB-AQ and the lexical factor score beyond lesion volume and null permuta-
tions. Streamline networks provided more reliable point estimates than FA networks. Edge weights and network efficiency
were weighted most highly in predicting the WAB-AQ for FA networks. Overall, our results suggest that global network
measures provide modest statistical value beyond lesion volume when predicting overall aphasia severity, but less value in
predicting specific behaviors. Variability in estimates could be induced by premorbid ability, deafferentation and diaschisis,
and neuroplasticity following stroke.

Key words: aphasia; network; neuroimaging; simulated attack; stroke; WAB

(s )

Poststroke, the remaining neuroanatomy maintains cognition and supports recovery. However, studies often use small, cross-
sectional samples that cannot fully model the interactions between lesions and other variables that affect networks in stroke.
Alternate methods are required to account for these effects. “Simulated attack” models are computational approaches that
apply virtual damage to the brain and measure their putative consequences. Using a simulated attack model, we estimated
how simulated damage to anatomic networks could account for language performance. Overall, our results reveal that global
network measures can provide modest statistical value predicting overall aphasia severity, but less value in predicting specific
behaviors. These findings suggest that more theoretically precise network models could be necessary to robustly predict indi-
vidual outcomes in aphasia.

- j

Introduction
Received June 5, 2021; revised Feb. 17, 2022; accepted Feb. 18, 2022. Aphasja is one of the primary cognitive symptoms following left
Author contributions: J.D.M. designed research; J.D.M., BA.E, D.P., ASK, ATD. JVD., and P.ET. hemispheric strokes affecting 180.000 new individuals a year in
performed research; J.D.M. analyzed data; J.D.M. wrote the first draft of the paper; B.A.E, D.P., ASK, ATD., . > ’ .
JV.D., and P.E.T. edited the paper; J.D.M. wrote the paper. the United States (OVblagele. and Nguyen_Hl}ynh’ 201 l)' Desplte
J.D.M. was supported by National Instituts of Health (NIH) Grants DP5-0D-021352, R01-DC-16800, and decades of research, the brain basis of aphaSIa outcomes and re-

R01-AG-059763 and by the Department of the Army Grant PRMRP 12902164. P.ET. and J.D.M. were covery remain only partially understood. The majority of stroke

ignificance Statement

supported by the NIH Grant R01-DC014960. research has focused on the relationship between the regional
The authors declare no competing financial interests. .. e
- ' . anatomic influences of stroke on cognitive symptoms and out-
Correspondence should be addressed to John D. Medaglia at johnmedaglia@gmail.com.
https://doi.org/10.1523/INEUR0SCI.1163-21.2022 comes (Bates et al., 2003; Rorden et al., 2007; Meyer et al., 2016;

Copyright © 2022 the authors Mirman and Thye, 2018). More recently, investigators have


https://orcid.org/0000-0003-1987-2012
https://orcid.org/0000-0001-8874-5442
mailto:johnmedaglia@gmail.com

4914 . ). Neurosci., June 15,2022 - 42(24):4913-4926

studied the relationships between individual anatomic tracts, the
topology of complex brain networks, the connectome (Hagmann,
2005; Sporns et al., 2005; Bassett and Sporns, 2017; van den
Heuvel and Sporns, 2019), and behavior (Yourganov et al,,
2016; Gleichgerrcht et al., 2017; Del Gaizo et al., 2017; Fox,
2018; Gollo et al., 2018).

Poststroke, the remaining neuroanatomy maintains cognition
and supports recovery. Anatomical network connectivity in the
lost and residual (spared) connectome after stroke is related to
behavior (Kunimatsu et al., 2003; Heller et al., 2005; Mukherjee,
2005; Crofts et al., 2011; Kim and Jang, 2013; Forkel et al., 2014;
Yourganov et al., 2016; Gleichgerrcht et al., 2017). In particular,
single-connection analyses have demonstrated that regions with
links to classical hub regions such as the temporoparietal junc-
tion are crucial for overall language function assessed with clini-
cal measures (Yourganov et al, 2016). Strokes that directly
impact network hubs disproportionately lead to global cognitive
deficits poststroke on tasks that place significant semantic or lan-
guage-production demands on patients (Warren et al., 2014). In
addition, cognitive outcomes are associated with the preservation
of the brain’s modular configuration, the tendency for brain
regions to group into well-connected clusters (Marebwa et al.,
2017; Schlemm et al.,, 2020). Overall, these findings suggest that
the role of single regions and their connections in network topol-
ogy, as well as overall network topology, are related to stroke
symptomatology.

A primary difficulty in assessing stroke-induced effects on
network topology is that researchers often lack premorbid data
within-subjects, leading them to rely on cross-sectional analyses.
This is problematic when comparing behaviors in stroke to that
observed in healthy subjects. Lesions interact with other factors
about the individual, such as their development, demographics,
and brain organization. As a complement to observing the con-
sequences of stroke and other types of brain injury, “simulated
attack” models are computational approaches that apply virtual
damage to the brain and measure their putative consequences
(Kaiser et al., 2007; Joyce et al., 2013). These models can be used
to systematically quantify the influences of damage to regions
and connections on brain network organization. Examining
brain networks of individual participants with brain lesions con-
flates the direct effects of lesions with idiosyncratic individual
differences that may have predated the lesions with the effects of
changes in the brain after the lesion. In contrast, simulated attack
models can isolate the direct effect of lesions on brain networks,
quantifying how a given lesion effects the network properties of a
range of otherwise typical brains. In the context of aphasia
because of stroke where sample sizes comprise a few tens of indi-
viduals, simulated attacks also allow us to estimate a range of
expected brain-behavior relationships that can be directly attrib-
uted to the direct effects of the lesion on the brain network, leav-
ing aside individual differences that may have predated the
stroke or changes in the brain after the stroke. After simulating
damage, hypotheses about network robustness, cognitive resil-
ience, and recovery can be tested in the residual connectomes
(Aerts et al., 2016). Measures characterizing the disconnectivity
of circuits and networks (Gleichgerrcht et al., 2017), the overall
efficiency of the network (Van Den Heuvel et al., 2009; Bullmore
and Sporns, 2012; Ajilore et al,, 2014), and the balance between
local and distributed processing (small-worldness; Bassett and
Bullmore, 2017) could relate to behavioral performance. In addi-
tion, the deviation in these properties from that expected in a
comparison model of healthy subjects might also characterize
variation in resilience to cognitive decline.
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To examine these possibilities in aphasia severity, we used
probabilistic diffusion tractography to create anatomic connec-
tomes in 39 subjects with left-hemispheric strokes. Then, we
computed measures that quantify five network properties of ana-
tomic connectivity poststroke thought to be related to the integ-
rity of observed topology. Using a simulated attack model, we
computed the effects of each stroke’s specific pattern of connec-
tion losses to quantify its effects on the whole brain and intra-left
hemisphere connections in a sample of healthy subjects. Then,
we computed models estimating the behavioral variance meas-
ured with clinical language measures accounted for by simulated
anatomic network measures. This technique allowed us to obtain
confidence intervals for the strength of brain-behavior relation-
ships between lesioned network topology and behavior. Above
and beyond lesion volume, we hypothesized that total edge
weights, network modularity, global shortest path length, higher
local clustering, and small-worldness would be related to better
language performance. We further hypothesized that the global
network measures would be more related to global measures of
the severity of language deficits than factor scores representing
specific lexical, auditory comprehension, phonology, and cogni-
tive/semantic deficits.

Materials and Methods

Subjects

The Western aphasia battery, revised (Kertesz, 2007) was obtained for
each individual with stroke. In addition, participants with stroke per-
formed a broader battery of tasks previously described in detail (Lacey et
al.,, 2017). To reduce the scores from the battery, a principal components
factor analysis was performed in SPSS 25 using the individual test scores
from the Western Aphasia Battery Revised (WAB-R) and the other bat-
tery tasks on the 59 participants with stroke from a larger ongoing study
who were able to provide complete behavioral data. Factor analysis was
performed on the correlation matrix, factors were extracted based on the
standard cutoff of eigenvalue >1, and Varimax rotation with Kaiser nor-
malization was applied to achieve orthogonal factors. Consistent with a
previously reported factor analysis on a subset of these participants
(Lacey et al., 2017), the factor analysis revealed four factors cumulatively
accounting for 83.7% of variance in the scores that we interpreted to
reflect lexical production, auditory comprehension, phonology, and cog-
nitive and semantic aspects of behavior (see Table 1). Factor scores for
each participant were calculated using the regression method.

All procedures were approved in a convened review by Georgetown
University’s Institutional Review Board and were conducted in accordance
with the guidelines of the Institutional Review Board/Human Subjects
Committee, Georgetown University. All participants volunteered and pro-
vided informed consent in writing before data collection.

Behavioral data

The WAB-R (Kertesz, 2007) was obtained for each individual with
stroke. In addition, participants with stroke performed a broader battery
of tasks previously described in detail (Lacey et al., 2017). To reduce the
scores from the battery, a principal components factor analysis was per-
formed in SPSS 25 using the individual test scores from the WAB-R and
the other battery tasks on the 59 participants with stroke from a larger
ongoing study who were able to provide complete behavioral data.
Factor analysis was performed on the correlation matrix, factors were
extracted based on the standard cutoff of eigenvalue >1, and Varimax
rotation with Kaiser normalization was applied to achieve orthogonal
factors. Consistent with a previously reported factor analysis on a subset
of these participants (Lacey et al., 2017), the factor analysis revealed four
factors cumulatively accounting for 83.7% of variance in the scores that
we interpreted to reflect lexical production, auditory comprehension,
phonology, and cognitive and semantic aspects of behavior (see Table 1).
Factor scores for each participant were calculated using the regression
method.
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Table 1. Factor loadings for the behavioral data
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Factor | (lexical production)

Factor Il (auditory comprehension)

Factor Il (phonology) Factor IV (cognitive/semantic)

Philadelphia naming test 0.83 0.24
WAB object naming 0.79 0.36
Reading real words 0.77 0.19
Reading word-to-picture matching 0.75 0.39
WAB spontaneous speech fluency 0.73 0.41
WAB spontaneous speech content 0.7 0.4

WAB responsive speech 0.67 0.54
WAB repetition 0.57 0.52
WAB yes/no questions 0.24 0.86
WAB sequential commands 0.32 0.68
WAB word recognition 0.42 0.69
WAB sentence completion 0.58 0.62
Digit span forwards 0.29 0.43
Digit span backwards 0.45 0.16
Pseudoword repetition 0.46 0.45
Reading pseudowords 0.5 0.27
Letter fluency (total 4 letters) 0.58 0.12
Backward spatial span 0.18 —0.05
Pyramids and palm trees 0.41 0.13
Forward spatial span —0.12 0.27
Picture pointing 0.51 0.41

0.24 0.26
0.33 0.21
0.39 0.26
0.32 0.11
0.34 0.18
0.31 0.31
0.33 0.14
0.52 0.12
0.18 0.03
0.29 0.32
0.23 0.36
0.3 0.12
0.76 0.21
0.72 0.31
0.65 0.01
0.62 0.34
0.61 0.16
0.32 0.83
—0.06 0.8
0.41 0.76
—0.05 0.65

Bold values represent higher factor loadings.

Neuroimaging

Diffusion images were acquired on a Siemens 3.0T Magnetom Trio
for all subjects along with a T1-weighted 1-mm resolution MPRAGE
anatomic scan at each scanning session as part of a larger imaging
protocol. We used a high-angular resolution diffusion imaging
(HARDI) acquisition scheme with a maximum b-value of 1100 (80
dirs, 10 b=0; 10 b=300; 60 b=1100) and a 2.5-mm isotropic voxel
size. We used a transversal acquisition of 55 axial slices with the fol-
lowing parameters: repetition time (TR)=7.5 s; echo time (TE)=
87 ms; field of view (FoV) =240 x 240, 138 mm, matrix = 96, total acquisi-
tion time of 10:00. MPRAGE scans were collected with TR=1900 ms,
TE =2.52ms, 176 sagittal slices with 0.9 mm slice thickness, FoV =240 x
240, matrix = 256, inversion time (TT) =900 ms and flip angle = 9°, total ac-
quisition time of 5:34.

Anatomical image imputation

We conducted full-brain tractography with techniques that reduce trac-
tography artifacts. To achieve this, tractography must be constrained
anatomically to seed or terminate streamlines at the gray matter/white
matter border (Smith et al., 2012; Song et al., 2014; Jeurissen et al., 2019).
However, identifying tissue types in stroke cases is problematic because
of the abnormal signal intensity at the gray-white matter border because
of encephalomalacia and other pathologic effects. These intensity differ-
ences and the tissue lost because of stroke can be problematic for sur-
face-based registration and parcellations such as those used in the
current study. We resolved these issues by imputing estimates of healthy
tissue in the anatomic T1 images from subjects in the stroke sample.

We imputed anatomic images in two steps. In step 1, lesioned voxels
were identified using lesion tracings provided by an experienced cogni-
tive neurologist (coauthor PET). We then flipped the lesioned brain
along the left-right plane and registered the flipped brain onto the non-
flipped brain. Next, we filled the lesioned area with the healthy tissue of
the homotopic contralesional hemisphere. This procedure can leave visi-
ble marks of the filled area because of the sudden change in signal, which
may cause artifacts when identifying tissue types. Thus, we imputed a
new brain with highly similar morphologic features as the original sub-
ject’s brain. The imputation procedure used the morphologic structure
of the reference image (the filled brain from step 1) and the voxel values
of a set of healthy control images to produce a new image. Each voxel
value in the new image was determined by combining the values from
all the healthy images using ANTS’ joint image fusion procedure, where
images more similar around the voxel of interest received more weight

(similar to multiatlas label fusion; H. Wang et al., 2013). We conducted a
search of the optimal number of healthy brains and the optimal radius of
similarity around each voxel to obtain the best result. We obtained an
optimal outcome with 22 healthy brains and a radius of 1 (i.e., a single
layer of voxels around each voxel is used to check the similarity between
images and assign weights to healthy images). We inspected the resulting
imputed image to make sure there were no artifacts; none were found.
Importantly, the nonlesioned gyri and sulci in the original image fol-
lowed the gyri and sulci of the imputed image without any visible
deviation.

We performed all the imputation procedures in ANTS (v. 2.2.0). Before
any processing, all images were skull-stripped (antsBrainExtraction.sh),
corrected for magnetic field inhomogneity (N4BiasFieldCorrection), and
denoised with an edge preserving algorithm (PeronaMalik, denoising
amount: 0.7, iterations: 10). We added back the lesion mask to the brain
mask after skull-stripping to ensure that the lesion area was included in
the imputation. Each imputation required one registration of the flipped
image and 22 registrations of the healthy brains onto the filled image.
We conducted all registrations using the SyN nonlinear algorithm
(Avants et al., 2011) with cost function masking to remove the lesion
mask from consideration during the registration computations (Brett et
al,, 2001).

Diffusion tractography

We used MRtrix3 to process the diffusion data (Tournier et al., 2019). to
denoise the diffusion images (function: dwidenoise -extent 9,9,9), correct
for motion and eddy currents (function: dwipreproc), and correct
for field inhomogeneity (function: dwibiascorrect). We then com-
puted response functions for multiple tissues using the tissue
information available in the DWI data (function: dwi2response
dhollander). Finally, we computed fiber orientation distributions
(FOD) via a multishell multitissue constrained spherical deconvo-
lution (function: dwi2fod msmt_csd; Jeurissen et al., 2014).

To find the GM/WM tissue, we applied tissue classification to the
imputed anatomic image (function: 5ttgen fsl) and brought the tissue in-
formation into DWI space after registering the original (lesioned and
imputed) T1w image of the subject onto the mean b =0 image (function:
antsRegistration, order: translation, rigid, SyN) and applying the
transformations to the tissue types. We performed white matter
tractography by seeding 15 million streamlines probabilistically
from the white matter based on estimated fiber densities (tckgen
algorithm: iFOD2, step: 1 mm, min length: 10 mm, max length:
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300 mm, angle: 45°, seeding: dynamic, backtracking allowed, stream-
lines cropped at GM/WM border).

To decrease tractography artifacts, spherical deconvolution informed
filtering of tractograms (SIFT2) was conducted to determine the relative
apparent fiber density associated with each streamline (Smith et al,,
2015a, b). Each subject’s anatomic connectivity was then quantified
through FA connectomes that accounted for the apparent fiber densities
associated with each streamline. The contribution of each streamline’s
FA value to an edge’s mean FA was weighted by the streamline’s SIFT2
cross-sectional multiplier, which represents the streamline’s relative
apparent fiber density. Specifically, the mean FA along the path of each
streamline was calculated using the subject’s tractogram and FA image
derived from the DWI.

Network construction

Anatomical scans (imputed in the case of patients) were segmented
using FreeSurfer (Fischl, 2012) and parcellated using the connectome
mapping toolkit (Cammoun et al., 2012). A parcellation scheme including
N =234 regions was registered to a single b = 0 volume from each subject’s
native-space diffusion spectrum imaging (DSI) data. The b=0 to MNI
voxel mapping produced via Q-Space Diffeomorphic Reconstruction
(QSDR) was used to map region labels from native space to MNI coordi-
nates so that individual subject data could be combined and analyzed in a
shared standard space. To extend region labels through the gray-white
matter interface, the atlas was dilated by 4 mm (Cieslak and Grafton,
2014). Dilation was accomplished by filling nonlabeled voxels with the sta-
tistical mode of their neighbors’ labels. In the event of a tie, one of the
modes was randomly selected. Each streamline was labeled according to
its terminal region pair. From these data, we constructed an anatomic
connectivity adjacency matrix, A whose element A;; represented either (1)
the weighted mean fractional anisotropy (FA) of the streamlines connect-
ing that pair of regions based on the underlying fiber densities or (2) the
streamline connectome edge values representing the sum of weights asso-
ciated with each streamline computed by SIFT2 (Hagmann et al., 2008;
Smith et al., 2015b).

To enable group analyses, intersubject apparent fiber density and
connection density normalization was conducted. Specifically, each sub-
ject’s connectome was multiplied by the geometric mean of the ratio of
the individual’s response function size at each b value to the group aver-
age response function size at each b value. Individual differences in white
matter b0 intensity were accounted for by multiplying each connectome
by the ratio of the mean median b0 value within the subject’s white
matter mask to the grand mean median b0 value for the whole group.
Intersubject connection density normalization was then achieved
through scalar multiplication of each connectome by the subject’s
“proportionality coefficient” derived by SIFT2, denoted by u, which
represents the estimated fiber volume per unit length contributed by
each streamline.

To visualize the effects of lesions on parcels in the Lausanne ana-
tomic atlas, we registered the lesion masks to each individual’s T1 image
(the same space as the Lausanne parcel registration). We computed
whether the lesion intersected > 0 voxels in that parcel, and counted the
number of subjects at which that parcel was intersected by the lesion. See
Figure 1 for a visualization of the distribution of lesions across subjects
and Figure 2 for a summary of the tractography pipeline including the
imputation.

Connectome edge inclusion mask

Given well-described false positives issues in diffusion tractography, it is
difficult to ensure that every individual streamline is valid in the absence
of ground-truth data (Maier-Hein et al., 2017). We only permitted edges
to participate in our analysis if they were present in 100% of the healthy
control sample. This procedure ensured that any changes in topology
observed in the stroke sample were likely to be driven by lesion-related
effects rather than spurious patterns attributable to unreliable tractogra-
phy findings between each pair of parcels. All triangle matrices produced
via MRTrix3 were symmetrized across the diagonal before network
analyses.
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Figure 1. Distribution of lesioned parcels across subjects with stroke. Lesions mapped
prominently to parcels in left perisylvian regions with decreasing frequency in the superior,
inferior, anterior, and posterior directions. The degree of red is proportional to the number of
subjects with lesions at that location. N = the number of subjects with a lesion at that parcel
label.

Simulated attack

Our goal was to simulate connectome attacks using estimates of the con-
sequences of real strokes on the connectome relative to the connectivity
observed in control subjects. To identify a set of potentially lesioned
edges for each subject, we compared the edge values from each stroke
subject’s observed connectome to those observed in healthy subjects
(Fig. 3). Because the definition of lesioned tissue depended on a binary
threshold, we computed the simulated attacks at thresholds of 2, 3, and 4
SDs below the mean FA or the log of the streamlines (to account for log-
normal edge distributions, see Smith et al,, 2015a; Zhang et al., 2018;
Yeh et al., 2019; Rosen and Halgren, 2021) relative to the control sample.
For each threshold, a mask was created for all lesioned edges for each
stroke subject. Next, we applied the edge lesion mask to each connec-
tome in the control sample in addition to the same stroke subject. By
applying the mask to the stroke subject, we ensured that the number and
configuration of edges included in the analysis was equal between each
stroke subject and the controls. Finally, each connectome measure was
averaged across the thresholds to obtain a representative value for each
subject. We computed the pairwise similarity between lesion masks
across thresholds using intrasubject Pearson’s correlations for each
threshold pair. Across the thresholds, we found very high consistency
for the streamline networks [R(mean, SD)=0.88 (0.14), p(mean, SD)
<0.001 («0.001)] and FA networks (R(mean, SD)=0.82 (0.13), p
(mean, SD) <0.001 («<0.001)] across the intrasubject correlations. After
simulating the attacks, an empirical distribution of the expected effects
of lesions on network measures was obtained by computing the network
measures (described below) for each possible control subject-to-lesion
pairing.

Connectome measures
We focused on five global network measures that are thought to charac-
terize overall network communication (Fig. 4). We examined (1) the net-
work edge weights: the sum of observed edge values, which could be
related to overall network intactness and can drive other global network
measures. The sum of edge weights served as a network proxy that esti-
mates the overall integrity of edges in the residual connectome.
Intuitively, edge weight should be positively related to function in the
context of stroke and aphasia.

There are additional measures that can exhibit complex interactions
with one another and behavior, and our goal was to benchmark these
relationships with our simulated attack approach. Thus, we examined
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Parcelltion
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Schematic of stroke imputation and diffusion tractography. A, Processing scheme for healthy subjects. Diffusion tractography was computed in subjects’ native space, and the

Lausanne multiscale parcellation was fit to subjects’ anatomic T1 images. Connectomes were defined based on the FA or streamline counts of the edges connecting each region pair and
advanced to analyses. B, The processing scheme for stroke subjects was the same as the healthy subjects with an additional preprocessing step. Specifically, the anatomic T1 image was
imputed using the stroke subject’s right hemisphere and healthy subjects’ data to estimate the prelesion T1 anatomic image. The parcellation was computed on this imputed anatomic image

to guide connectome extraction through the same regions as the controls.

Apply toall
subjects

i q
Control, Control, ...Control,

Figure 3.

Schematic of network lesion masking. A, Top, Each element 4;j from each subject with aphasia (Stroke;) was compared with (bottom) the observed values in all control subjects

(Control, to Control,). B, The elements with FA or streamlines 2, 3, or 4 standard deviations (SDs) less than controls were labeled as lesioned edges. €, Then, the lesion mask was applied to
the stroke subject and all control subjects, and the resulting networks were advanced to connectomic analyses.

other commonly examined characteristics of the overall network topol-
ogy that have been linked to variability in global cognitive performance.
The (2) modularity of a network is thought to support local computa-
tions within tightly-connected subgroups of nodes within a network
(Meunier et al., 2009; Alexander-Bloch et al., 2010; Marebwa et al., 2017;
Siegel et al, 2018) and can predict intervention-related cognitive

plasticity (Gallen and D’Esposito, 2019). It is computed to estimate the
relative within-module connectivity of a network relative to between-
module connectivity with the modularity value Q (Reichardt and
Bornholdt, 2006; Leicht and Newman, 2008).

In addition, to examine overall network processing efficiency, we
examined (3) network global efficiency (Iturria-Medina et al., 2008;
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Figure 4.

(2) Modularity
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(3) Global Efficiency

Schematic of network measures. Moving Left to Right from the Top, We began with the (1) sum of edge weights in each network as an overall metric capturing the density of

the networks, including any edges lost because of stroke. Four other measures were of interest. (2) Modularity: measures the extent to which nodes in the network are grouped into modules
(sometimes, “communities”) as a function of highly-connected nodes. (3) Global efficiency: one long path is represented by the set of consecutive edges highlighted in green. (4) Transitivity:
one possible triplet’s edges are represented in green. (5) SWP: involves a high degree of local clustering (represented by the set of nodes connected by purple edges) and short path lengths
(e.g., higher weights along the green path represents a shorter network path between the prefrontal and occipital nodes).

Griffa et al., 2013; Lawrence et al., 2014; Berlot et al., 2016; Beare et al.,
2017). Here, global efficiency is a weighted measure that quantifies aver-
age inverse shortest path length across the connectome for all pairs of
nodes (Latora and Marchiori, 2001). It is inversely related to the network
measure path length. A pair of nodes with a short path length are con-
nected by sequences of stronger edges (higher FA or streamline values).
Intuitively, stronger connections between nodes can theoretically repre-
sent the strength of information flow between regions. Thus, the average
path length of a network represents the extent to which all pairs of nodes
are associated via short hops through the network. Accordingly, net-
works with high global efficiency are thought to have increased long-dis-
tance information processing capacity across all nodes mediated by
short paths.

In brain networks, local clustering among u-fibers constitute most of
the brain’s white matter (Schiiz and Braitenberg, 2002). Accordingly,
short-distance, local clustering is another important aspect of informa-
tion processing in brain networks. Therefore, we also examined network
(4) transitivity (Lo et al., 2011; Prasad et al., 2013; Llufriu et al., 2017).
Transitivity is the ratios of triangles, which are groups of three nodes
connected by three non-zero edges, to all possible triplets (sets of three
nodes). Networks typically have many more triplets than they have trian-
gles. Therefore, greater transitivity means that there are more local clus-
ters in a network. Networks with high transitivity are thought to have
increased local communication efficiency (Rubinov and Sporns, 2010).

Finally, healthy brain networks are characterized by an optimal use
of available anatomic connections to support short path lengths and
high clustering, which is often referred to as small-worldness (Watts and
Strogatz, 1998; Stam, 2014). Small-world brain networks are thought to
confer many of the processing advantages that support diverse and
dynamic cognitive functions (Bassett and Bullmore, 2017). To investi-
gate this property, we used a robust measure of small-worldness, (5)
small-world propensity (SWP; Muldoon et al., 2016). SWP is a weighted
metric for small-worldness that accounts for networks of different den-
sities, standardizing the measure against individualized network null
models. This technique makes SWP appropriate for measuring small-
worldness in weighted networks by mitigating the network density-de-
pendence of other measures.

Statistical analyses

The effects of lesions on connectome measures and behavior

First, we examined whether observed and simulated strokes had signifi-
cant effects on each network measure in the whole brain and within the

left hemisphere. We computed Welch’s t tests assuming unequal varian-
ces using Satterthwaite’s approximation for degrees of freedom for each
measure against those observed in the control subjects corrected for
multiple comparisons at an « level of 0.05. Then, we used bootstrapping
to estimate the proportion of network measure sample means from the
simulated attacks that fell within the range of the observed lesion
for each measure. We used this technique because we intended the simu-
lation to sample from all lesion-control subject pairs to yield a distribu-
tion of possible lesion profiles in a much larger simulated sample.
Specifically, we performed 10,000 resamplings with replacement of 39
subjects and quantified the proportion of simulated attack sample means
for each network measure (FA and streamline) and each size network
(whole brain or left hemisphere). In these and similar permutation anal-
yses, there is always a trade-off between establishing a null distribution
and computing time and complexity, and inferential significance. In this
case of these analyses, there were 39 subjects with stroke and 36 healthy
controls, totaling 1404 unique lesion-subject pairings for the simulated
nulls. We chose a permutation set of 10,000 re-samplings per test at an
order of magnitude higher than the possible unique pairs, allowing each
pair to contribute to multiple re-samplings. This sample size allowed us
to obtain effect size and variance estimates for univariate models with a
maximum p-value of 0.0001 per test. Finally, to estimate the behavioral
variance accounted for by lesion volumes, we fit separate linear regres-
sion models using lesion volume as an independent variable and either
WAB-AQ, the factor sum score, or each behavioral factor score cor-
rected for multiple comparisons at an « level of 0.05.

Preparing network measures to identify behavioral variance beyond
lesion volume

Our objective was to obtain and present an empirical estimate for the
full range of possible lesion-behavior relationships observed in the real,
simulated, and null analyses.

For all connectome analyses, we were interested in the total variance
accounted for using all five network measures for the observed and
simulated data. Before analyses, we tested the network measures for vio-
lations of normality with the Kolmogorov-Smirnov test. To correct for
skewed distributions in the observed statistics, we used a log-transforma-
tion for global efficiency and SWP. In the simulated attack statistics, we
observed negative values and skew for each statistic; thus, we added a
constant value of 1 to each measure before a log-transformation. Finally,
network measures were standardized using z scores before all analyses.

To test the hypothesis that real and simulated measures of network
topology were related to behavioral scores beyond lesion volume, we first
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computed separate linear regressions using stroke subject’s lesion vol-
ume as the independent variable and each behavioral scale as the de-
pendent variable. Then, we used the residualized behavioral scores as the
dependent variable for all connectome-behavior analyses. We performed
the same procedure for each network measure to mitigate any remaining
influences of lesion volume effects.

Network-behavior relationships in observed, simulated, and null regres-
sion models

Next, all analyses associating network measures with behavioral scores
were performed using linear regression in R statistical software (R Core
Team, 2013). Our simulated attacks broke the relationship between
stroke subjects and behavior by randomly sampling residual anatomic
connectomes after simulating strokes in control subjects, but preserved
the relationship between each behavioral score and simulated lesion.
Specifically, in the simulated attacks, the stroke connectome lesion mask
was defined from a subject with a real stroke. This lesion mask was
applied to each healthy control. Each healthy control was not the indi-
vidual who suffered a real stroke. Thus, the sample of simulated attacks
represented a range of possible relationships between that specific lesion
profile and the behavior but did not include the original (real) connec-
tome associated with the stroke. In each case, the distribution was com-
pared with the observed relationship between the real anatomic
connectomes with a stroke and the behaviors of interest. The null model
completely randomized the relationships between simulated lesions and
behaviors.

Specifically, we computed linear regression models for (1) the
observed stroke network topology, (2) the simulated stroke network to-
pology (10,000 permutations per lesion edge threshold), and (3) a
randomized shuffling of all simulated network measures against the
behavior (10,000 permutations per lesion edge threshold). We examined
the effects of observed and simulated lesions on each of the topological
measures in the whole brain and within intra-left hemisphere connec-
tomes (i.e., only the whole-brain connectomes included interhemispheric
and right-hemispheric fibers). Then, we computed the relationships
between network measures and the behavioral scores for the whole brain
and intra-left hemisphere connectomes.

In analyses of the observed data (ie., data from subjects with real
strokes), we used each of the five network measures as independent vari-
ables (z-scored across subjects) and each behavioral score as a dependent
variable (raw WAB scores, the factor sum scores, or one of the four be-
havioral factor scores) in separate linear regression models. Because the
network measures and behavioral scores were the residuals obtained af-
ter regressing out the influence of lesion volume, we obtained specific
parameter estimates for each network measure and the total variance
accounted for in the models (R? value) beyond lesion volume.

To obtain estimates for network-behavior relationships in the simu-
lated attack, we computed the linear regression models with the same de-
pendent behavioral variables, but with independent network variables
sampled from the control-lesion pairings for the simulated attack (z-
scored across subjects). Specifically, in 10,000 permutations, we ran-
domly assigned each stroke lesion to a healthy brain from the control
sample while preserving the link between that lesion and the behavioral
outcome. We then computed each network measure on that sample of
simulated attacks, and fit a regression model. Across the 10,000 models,
this approach provided a full representation of the absolute minimum,
maximum, and of the predictive value (R?) of the anatomic connectomes
beyond lesion volume. In addition, we obtained the range of 8 weights
for each network measure in the simulations to reveal their relative con-
tributions to the prediction.

In high-dimensional data analyses such as these, it is often helpful to
have an empirical null distribution to contextualize the models of inter-
est. By fully randomizing the relationships between the simulated and
network measures and behavior (ie., breaking the lesion-behavior pair-
ing in the simulated strokes), we were able to create a distribution of the
expected variance accounted for (R?) if the data were to be completely
randomized. In this kind of null permutation analysis, we would expect
that models could trivially account for more variance than 0 by chance.
Further, the null could include permutations equaling or similar to real
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lesion-behavior network pairings, potentially meeting or exceeding
the variances obtained from the observed or simulated attack. If
the observed or simulated models exhibited effects that were
higher than the null’s central tendency, it would increase our con-
fidence that the network topology across the range of simulated
attack outcomes is nontrivially related to behavior above and
beyond lesion volumes.

Our primary goal was to test whether the simulated attacks
based on observed lesions differed from the null distribution. After
computing the R* value for each null and simulated model in each
permutation, we used a 2 (simulated vs null) x 6 (behavioral varia-
bles) ANOVA to test the effects of (1) the simulated attack relative
to the null permutations and (2) behavioral domain on the esti-
mated R* values.

Results

The effects of lesions on network measures

The observed strokes influenced network topology for each
measure. In FA networks in the whole brain, we observed a
reduction in mean edge weight and network efficiency and
increased SWP. In the left hemisphere, we observed all of
these effects in addition to reduced modularity (Fig. 5). In
the streamline networks in the whole brain, we observed
reduced mean edge weight, network efficiency, and transitiv-
ity as well as increased modularity. In the left hemisphere, we
observed reduced edge weights, modularity and increased
transitivity (Fig. 5; Table 2). The network measures from the
simulated strokes were similar to those observed after real
strokes (see Table 3), suggesting that they were reasonable
approximations of stroke effects on the connectomes.

Relationships between observed and simulated connectome
topology and aphasia-related behaviors

Lesion volume accounted for ~44% of WAB-AQ, 53% of the fac-
tor sum, and 10-16% of the variance in factor scores (Table 4). In
addition, lesion volume was negatively correlated with FA network
edge weights, modularity, and efficiency, and positively associated
with small world propensity. Lesion volume was negatively corre-
lated with streamline network edge weights, efficiency, and posi-
tively associated with transitivity and small world propensity
(Table 5).

R-values represent Pearson’s correlation coefficients between
lesion volume and the network measure.
We regressed lesion volume from the behavioral and network
data to obtain the additional unique variance between the net-
work measures and behavior. The full model results are pre-
sented in Figure 6 For each of the FA and streamline whole brain
and intra-left hemisphere networks, the variance accounted for
(R*) by the simulated attack networks was greater than the nulls
in the omnibus ANOVA [see Table 6 for condition-wise mar-
ginal means, which quantify the difference in the observed vs the
null (R?) across behaviors].

In addition, there were main effects of behavior on the model
R? values. The central tendency of the null models revealed that
network measures would be expected to account for nearly 10%
of the behavioral variance on global or specific language per-
formance at random (i.e., when the link between the lesion being
simulated and behavioral score was broken). Outperforming the
null, the simulated attack models generally suggested that ~20%
of global aphasia outcomes measured with the WAB-AQ could be
accounted for by residual anatomic network topology. Among
the language behavioral factor scores, lexical processing exhibited
the strongest relationships with network topology, at 20% or more
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Figure 5.

The effects of stroke on network measures in observed and simulated attack connectomes. The leftmost column of each plot facet shows the network statistic observed in controls,

followed by that observed in strokes, then the simulated attacks. Network measures are presented in their raw (untransformed) values before inclusion in network-behavior analyses. Asterisks
indicate a significant Welch's two-sample t test between the control and stroke network measures at p << 0.001 (a stringent threshold after Bonferroni correction for 40 total tests in FA and
streamline data). The top and bottom edges of the boxes represent the 25th and 75th percentiles, respectively. SWP = small world propensity.

Table 2. Two-samples t tests assuming unequal variances comparing network
measures between the control and stroke samples for the whole brain FA and
streamline networks (df = Satterthwaite’s approximation for samples with
unequal variances)

FA Streamlines
Measure t af p Measure t af p
Whole brain
Edge weights 574 63 <<0.001 Edge eeights 10.55 38 <<0.001
Modularity 039 42 0.699  Modularity —-371 38 <0.001
Efficiency 404 62 <<0.001 Efficiency 7.06 38 <<0.001
Transitivity 277 70 0.007  Transitivity 495 39  <0.001
swp —3.69 39 <0.001 SWP —278 38 0.009
Left hemisphere
Edge weights ~ 23.96 68 <C0.001 Edge weights 467 38 <0.001
Modularity 11.64 38 <<0.001  Modularity 147 38 <0.001
Efficiency 417 55 <<0.001 Efficiency 3.08 38 0.004
Transitivity 095 66 0.293  Transitivity —9.11 38 <<0.001
swp —6.01 38 <<0.001 SWP —0.76 38 0.445

variance accounted for by the whole brain or left hemisphere net-
work measures. In most cases, the observed R” estimate was within
the range estimated in the simulated attacks. Exceptions were
observed in several cases, and more frequently in FA networks,
where observed stroke estimates were outside the simulated esti-
mates for the whole-brain lexical, phonology, and cognitive/seman-
tic factors and the left-hemisphere cognitive/semantic factors.

Table 3. The proportion of bootstrap sample means of simulated attacks com-
pared the range of observed lesion values

Condition Edge weight Modularity  Efficiency  Transitivity = SWP
FA, whole brain 1 1 1 1 1
FA, left hemisphere 1 1 1 1 0.77
Streamline, whole brain 1 1 1 1 1
Streamline, left Hemisphere 1 1 1 1 0.77

P Weights for specific network measures

We additionally obtained the B values for the simulated attack
models to observe which measures contributed the most weight
to model R>. B Weights for the whole brain and intra-left hemi-
sphere models are illustrated in Figures 7. In the whole-brain
models, edge weights and efficiency were most consistently asso-
ciated with higher Bs across behaviors, with some variation
across the individual factor scores. Within the left hemisphere,
edge weights and efficiency remained relatively stronger contrib-
utors to the global WAB and factor score sum behavioral meas-
ures. Among the four factor subscores, network measure S
weights exhibited more variation across specific factors.

Discussion
In subjects with left-hemispheric strokes, we used an anatomic
network simulated attack analysis to examine the relationships
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Table 4. The relationships between lesion volume and behavioral scores

I3 F p
WAB-AQ 0.44 29.74 <0.001
Factor sum 0.53 2.1 <0.001
Lexical 0.16 6.97 0.012
Auditory 0.12 4.87 0.034
Phonology 0.12 5.04 0.031
Cognitive 0.1 44 0.043

Table 5. The relationships between lesion volume and network measures

Measure R P

FA Edge weights —0.52 0.001
Modularity —0.44 0.005
Efficiency —0.46 0.003
Transitivity —0.13 0.414
Swp 0.34 0.033

Streamline Edge weights —0.87 0.000
Modularity —0.21 0.201
Efficiency —0.89 0.000
Transitivity 0.55 0.000
Swp 0.31 0.051

between topological network measures, a widely used clinical
aphasia outcome measure (the WAB-AQ), and dimensional
factor scores of language performance. We found that (1) simu-
lating lesions in healthy connectomes can provide a good
approximation of the effects of real lesions on anatomic net-
works, (2) the network properties of the simulated lesions can
explain variance in behavior above and beyond lesion size, (3) in
most cases observed lesions do not explain more variance in
behavior than simulated lesions, and (4) the relationships
between simulated and observed networks and behavior varied
across language functions.

In general, lesions in the left hemisphere disrupted several
measures of global topological organization. In whole brain and
left hemispheric FA networks, stroke reduced the overall edge
weight and efficiency relative to controls. In contrast, SWP
tended to increase poststroke, consistent with reduced network
efficiency relative to relatively unaffected global clustering (tran-
sitivity; Muldoon et al., 2016). Interestingly, modularity was
decreased in the intrahemispheric connectomes. The relative
increases in modularity in the whole brain were likely driven by
the absorption of residual left-hemispheric networks into right
hemispheric homotopic communities via interhemispheric fibers
mediated through the corpus callosum. These patterns were sim-
ilar in the simulated attacks, suggesting that the simulations were
reasonable approximations of real stroke effects. A minority of
sampled simulated cases in the left hemisphere had SWP values
averaging outside the range of stroke subjects, potentially reflect-
ing neuroplastic or premorbid differences in the hemispheric
balance between long distance and local communication. Across
the analyses, as lesion volume increased, efficiency decreased
(meaning that path lengths increased) along with increases in
transitivity. SWP quantifies clustering relative to path length in
null models. Thus, our findings suggested that the positive asso-
ciation between lesion volume and SWP is because of the
increase in transitivity with increasing lesion size outpacing the
increase in path lengths.

As the focus of several previous studies, modularity changes
in persons with stroke could vary based on the location of
lesions. For instance, left hemisphere anatomic modularity has

J. Neurosci., June 15,2022 - 42(24):4913-4926 - 4921

been found to increase in subjects with upper limb motor deficits
(Cheng et al.,, 2019), and increased left hemisphere anatomic
modularity have been associated with more severe chronic apha-
sia (Marebwa et al., 2017). In contrast, reduced modularity in
functional connectomes observed in multiple stroke phenotypes
(Corbetta et al., 2018) has been shown to partially recover in the
transition from the acute to chronic phase (Lim and Kang, 2015;
Siegel et al., 2018; Schlemm et al., 2020). Anatomical connections
and network topology predict region-to-region functional con-
nectivity (Griffis et al., 2020), and it will be important to clarify
how specific lesion distributions interact with anatomy, and joint
anatomy-function relationships. For instance, sensorimotor cor-
tices are highly interconnected within each hemisphere, and pre-
central regions are often revealed to participate in the brain’s
anatomic hub system (Van Den Heuvel and Sporns, 2011;
McColgan et al,, 2015). Thus, disrupting sensorimotor regions
and their connections is likely to enhance the modularity of the
remaining intrahemispheric network. Reduced modularity was
not strongly related to the language behaviors examined here,
suggesting that this measure is not uniquely a feature of language
function. Rather, individual patterns of region or connection
damage could drive overall changes in topology that influence
modularity. Overall, the topology of the left hemisphere was
sparser and more tightly clustered, which is often thought to
limit the general ability for a network to transmit information
and reduce the interference between competing demands on the
network because of the loss of specialized processing modules
(Stam, 2014). However, this change in topology is not guaranteed
to increase modularity, which is computed with respect to the
configuration of clusters rather than overall network clustering.

In the simulated attack regression models associating brain
network measures with behavior, we found that anatomic net-
work measures accounted for behavioral variance above and
beyond the effects of lesion volume. Unsurprisingly, lesion vol-
ume accounted for a moderate amount of variance in the global
aphasia measures (WAB-AQ and factor sum), and less variance
in the specific factor scores. Among the network-behavior analy-
ses, in most cases, the observed model value was within the simu-
lated attack distribution, placing the observed R value within a
few percent of the central tendency of the simulated distribution.
We did not obtain evidence that the observed brain-behavior
relationships always significantly overperform or underperform
estimates from simulated attacks for the measures we examined.
These findings suggest that the majority of brain-behavior rela-
tionships in the simulated permutations are driven by the direct
effects of the lesion on the connectome, i.e., that the simulated
attacks were an informative basis to obtain confidence intervals
for the effects of prototypical lesions on the connectome and
behavior. Cases where specific deviations between the observed
stroke and simulated attack models were found (e.g., in the FA
lexical, phonological, and semantic factors) could reveal the
influences of sampling effects, premorbid network organization
and behavior, deafferentation, diaschisis, adaptive neuroplastic-
ity, or related neurologic effects and secondary damage cascades
(Turkeltaub, 2019). Complementary physiological data sources
would be necessary to test these possibilities.

Across the simulations, there was an intuitive relationship
between measures of global network topology and overall apha-
sia severity, accounting for 20% of the variance on the WAB-AQ.
Interestingly, this network-behavior relationship was stronger
than that observed with the total factor sum score. Within the
left hemisphere, this pattern remained, and lexical processing
and auditory comprehension tended to have strong relationships
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Figure 6.  Network measures and behavioral variance in FA and streamline networks. Each plot facet illustrates histograms of the simulated null, histograms of the simulated attack distribu-

tions, and the observed R with solid vertical lines. Asterisks indicate significant post hoc Welch’s one-tailed t tests assuming unequal variances comparing the R values in the simulated attacks
to the null distribution at p < 0.001. Daggers indicate cases where the observed R value was outside the range obtained in the simulated attack models. See Extended Data Figures 6-1, 6-2,
6-3, and 6-4 for specific effects of behavior on variance explained in the whole brain and left hemisphere.

Table 6. Marginal means for the simulated attack relative to the null for FA
and streamline networks in the whole brain and left hemisphere

Type Location Lower Cl Mean diff. Upper (I p
FA Whole 0.017 0.017 0.016 <<0.001
FA Left 0.01 0.009 0.008 <0.001
Streamline Whole 0.048 0.047 0.047 <0.001
Streamline Left 0.03 0.03 0.029 <0.001

with network topology, potentially reflecting the anatomically dis-
tributed demands of these tasks in left hemispheric perisylvian cir-
cuits (Hickok and Poeppel, 2007), association regions (Dronkers et
al, 2004), and sensory-perceptual pathways (Desai et al, 2010;
Friederici, 2012). Perhaps because of the relatively circumscribed
circuits thought to mediate phonological processing (Poldrack et al.,
1999; Pollack and Ashby, 2018) and relatively preserved prefrontal
circuitry that might mediate the functions in our cognitive factor
(Krieger-Redwood et al., 2016; Ralph et al, 2017), we observed
weaker relationships between these behaviors and the topology in
the simulated attacks.

Overall, streamline networks estimated using apparent fiber
density appeared to offer substantially more reliable point esti-
mates for global and dimensional behavioral outcomes despite
similar central tendencies to FA networks. This could be because
our use of a reliable healthy connectome ensured consistent
sets of streamline edges in healthy controls, whereas FA values

are derived from estimated streamlines and offer an additional
source of variance in the simulations. In addition, streamline dis-
tributions tend to be heavy-tailed with few highly connected
pairs of regions (Smith et al., 2015a; Zhang et al., 2018; Yeh et al.,
2019; Rosen and Halgren, 2021) with node degree (number of
connections) and strength (the total weight of the connections)
distributions that follow exponentially-truncated power laws
(Clauset et al., 2009; Crossley et al., 2014). Lesions induce a sig-
nificant loss in the number of estimated fibers, and the measured
topology of these losses across subjects within the reliable
healthy connectome will be strongly influenced by the
heavy-tailed distribution of edges and presence of a subset
of high-connection-strength nodes. In contrast, FA is com-
puted over the estimated streamlines connecting region
pairs regardless of their number, exhibiting significantly
less skew and consequently relatively fewer high-connec-
tion-strength nodes. Qualitatively, FA can represent the in-
tegrity of axonal pathways (Seehaus et al., 2015; Kantarci et
al., 2017), offering a distinct interpretive value relative to
streamlines. However, our results suggest that increased
caution when evaluating the effect sizes of brain-behavior
relationships could be advised for FA relative to streamline
connectomes.

Across the FA networks, it was not clear that any one of the
investigated network measures uniquely corresponds to a single
dimension of language function poststroke. When examined
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models for the network measure. The top and bottom edges of the boxes represent the 25th and 75th percentiles, respectively. W. = edge weights; Mod. = modularity; Eff. = efficiency;
Trans. = transitivity; SWP = small world propensity. See Extended Data Figure 7-1 for observed and simulated model betas.

using the whole brain FA networks, edge weights were one
measure that contributed to most of the behavioral measures.
This finding could represent the possibility that individual varia-
tion in the myriad nearby, short-distance connections such as
u-fibers and direct connections are relevant to mediating recov-
ery (Mukherjee, 2005; Pallast et al., 2020). U-fibers dominate the
brain’s white matter but their links to cognition are conspicu-
ously understudied (Y. Wang et al.,, 2020). Intuitively, a higher
degree of intact local bypasses could facilitate adaptations to lost
functions in general (Lizarazu et al., 2020). It is likely that as the
behavioral measures increase in specificity, the unique edges
contributing to losses in each function vary, driving differences
in topology-behavior relationships (Yourganov et al,, 2016). In
lexical processing (where the models accounted for the most var-
iance among the individual factor scores) edge weights were
most prominently related to behavior for both streamlines and
FA, suggesting that overall loss of connections independent of
their relationship with lesion volume is a key mediator of deficits
relative to other topological measures. More generally, damage
to u-fibers could influence network local and global clustering,
potentially explaining differences in observed network transitiv-
ity and corresponding changes in SWP and modularity.

Several limitations to our work can motivate future studies.
We focused on a narrow set of commonly used network topology
measures that characterize some of the aspects of global network
organization as an initial benchmark for the connectome bases of
language performance. Numerous other measures are available,
but the link between specific network measures and cognitive

functions remains an active area of inquiry and debate (Sporns,
2014; Medaglia et al., 2015; Bassett and Sporns, 2017; Bassett et al.,
2018). In aphasia research, it remains to be seen whether valid net-
work-based models that predict variance and inform us about the
mechanisms of language function and recovery will emerge. More
specific hypotheses that allow researchers to rule out spurious
or nonspecific network-behavior effects, ideally informed by
theoretical models, should be a focus of applied network
studies. In particular, a priori theoretical language networks
and data-driven networks could be used to focus analyses on
one or more set of brain regions and connections that drive
topological changes and could be more sensitive and specific
to discrete language functions. In addition, other measures
that represent connectome edges (mean or radial diffusivity,
etc.; Smith et al., 2012, 2015b; Donahue et al., 2016) could be
investigated. We recommend that these efforts will be best
supported by collaborative efforts to pool patient samples
and test the robustness of brain-behavior relationships. It
would also be necessary to include larger permutation tests
to distinguish the influences of all pooled covariance in the
data, which would be encouraged in larger datasets if specific
and sensitive differences between models are a priority. Such
tests could additionally investigate fine distinctions between
lesion threshold effects. Finally, we used a well-established
anatomic atlas to guide our parcellation with an imputation
procedure to compare healthy and stroke subjects, but
numerous atlases are now available. Given that there is no
consensus that a particular atlas is ideal for any specific
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purpose (Salehi et al., 2020), we further encourage research-
ers to collaboratively pool data to examine the reliability and
validity of different processing decisions in anatomic and
functional studies (Caiazzo et al., 2018; Sinke et al., 2018;
Botvinik-Nezer et al., 2019; Boukadi et al., 2019; Elliott et al.,
2020; Reid et al., 2020).

In conclusion, our simulations revealed that several anatomic
connectome measures thought to be related to global network
processing can be expected to account for 10-20% of the variance
in language performance on clinical measures above and beyond
lesion volume. Importantly, measures of whole brain and left hemi-
sphere anatomic connectomes have stronger relationships with
global language function than specific language dimensions, reflect-
ing an intuitive relationship between network-wide integrity and
overall functioning. More specific measures of anatomic circuits
could be necessary to gain more sensitivity to distinct language
processes. Simulated attacks are useful in leveraging matched com-
parison samples to obtain confidence estimates for observed effects.
Differences between observed and simulated values could identify
the influences of premorbid status, deafferentation, diaschisis, and
neuroplasticity following stroke.
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