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Despite ample behavioral evidence of atypical facial emotion processing in individuals with autism spectrum disorder (ASD),
the neural underpinnings of such behavioral heterogeneities remain unclear. Here, I have used brain-tissue mapped artificial
neural network (ANN) models of primate vision to probe candidate neural and behavior markers of atypical facial emotion
recognition in ASD at an image-by-image level. Interestingly, the image-level behavioral patterns of the ANNs better matched
the neurotypical subjects ‘behavior than those measured in ASD. This behavioral mismatch was most remarkable when the
ANN behavior was decoded from units that correspond to the primate inferior temporal (IT) cortex. ANN-IT responses also
explained a significant fraction of the image-level behavioral predictivity associated with neural activity in the human amyg-
dala (from epileptic patients without ASD), strongly suggesting that the previously reported facial emotion intensity encodes
in the human amygdala could be primarily driven by projections from the IT cortex. In sum, these results identify primate
IT activity as a candidate neural marker and demonstrate how ANN models of vision can be used to generate neural circuit-
level hypotheses and guide future human and nonhuman primate studies in autism.
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Significance Statement

Moving beyond standard parametric approaches that predict behavior with high-level categorical descriptors of a stimulus
(e.g., level of happiness/fear in a face image), in this study, I demonstrate how an image-level probe, using current deep-learning-
based ANN models, allows identification of more diagnostic stimuli for autism spectrum disorder enabling the design of more
powerful experiments. This study predicts that IT cortex activity is a key candidate neural marker of atypical facial emotion process-
ing in people with ASD. Importantly, the results strongly suggest that ASD-related atypical facial emotion intensity encodes in the
human amygdala could be primarily driven by projections from the IT cortex.

Introduction
The ability to recognize others’ mood, emotion, and intent from
facial expressions lies at the core of human interpersonal commu-
nication and social engagement. This relatively automatic, visuo-
cognitive feature that neurotypically developed human adults take
for granted shows significant differences in children and adults
with autism (Adolphs et al., 2001; Golarai et al., 2006; Kennedy
and Adolphs, 2012; Wang and Adolphs, 2017). Currently we lack a
mechanistic and computational understanding of the underlying
neural correlates of such behavioral mismatches.

There is a growing body of work on how facial identity is
encoded in the primate brain, especially in the fusiform face
areas in humans (Kanwisher et al., 1997; Tsao and Livingstone,
2008) and in the topographically specific face patch systems of
the inferior temporal (IT) cortex of the rhesus macaques (Tsao et
al., 2003, 2008; Freiwald et al., 2009). Also, previous research has
linked human amygdala neural responses with recognizing facial
emotions (Adolphs et al., 1994; Adolphs, 2008; Rutishauser et al.,
2015). For instance, subjects who lack a functional amygdala of-
ten exhibit selective impairments in recognizing fearful faces
(Broks et al., 1998; Adolphs et al., 1999). Wang et al. (2017) also
demonstrated that the human amygdala parametrically enc-
odes the intensity of specific facial emotions (e.g., fear, hap-
piness) and their categorical ambiguity. A critical question,
however, is whether the atypical facial emotion recognition
broadly reported in individuals with autism spectrum dis-
order (ASD) arises purely from differences in sensory rep-
resentations (i.e., purely perceptual alterations (Behrmann
et al., 2006a; Robertson and Baron-Cohen, 2017) or because
of a primary (but not mutually exclusive) variation in the
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development and function of specialized affect processing
regions (e.g., atypical amygdala development leading to spe-
cific differences in encoding emotion). There are two main
roadblocks in answering this question. First, heterogeneity
and idiosyncrasies are commonplace across behavioral reports
in autism, including facial affect processing (formal meta-
analysis of recognition of emotions in autism, Uljarevic and
Hamilton, 2013; Lozier et al., 2014). The inability to parsimo-
niously explain such heterogeneous findings prevent us from
designing more efficient follow-up experiments to probe such
questions further. Second, in the absence of neurally mecha-
nistic models of behavior, it remains challenging to infer neu-
ral mechanisms from behavioral results and generate testable
neural-circuit-level predictions that can be validated or falsi-
fied using neurophysiological approaches. Therefore, we need
brain-mapped computational models that can predict at an
image-by-image level how primates represent facial emotions
across different parts of their brain and how such representa-
tions are linked to their performance in facial emotion judg-
ment tasks like the one used in Wang and Adolphs (2017).

The differences in facial emotion judgments between neuro-
typical adults and individuals with autism are often interpreted
with inferential models (e.g., psychometric functions) that base
their predictions on high-level categorical descriptors of the
stimuli (e.g., overall facial expression level of happiness, fear, and
other primary emotions (Ekman and Keltner, 1997). Such mod-
eling efforts are likely to ignore an important source of variance
produced by the image-level sensory representations of each
stimulus being tested. To interpret this source of variance, it is
necessary to develop models that are image computable. Recent
progress in computer vision and computational neuroscience
has led to the development of artificial neural network (ANN)
models that can both perform human-like object recognition
(Rajalingham et al., 2015, 2018) and contain internal components
that match human and macaque visual systems (Khaligh-Razavi and
Kriegeskorte, 2014; Yamins et al., 2014). Such image-computable
ANNs can generate testable neural hypotheses (Bashivan et al., 2019;
Kar et al., 2019) and help design experiments that leverage the
image-level variance to guide us beyond the standard parametric
approaches.

In this study, I have used a family of brain-tissue-mapped
ANN models of primate vision to generate testable hypotheses
and identify candidate neural and behavior markers of atypical
facial emotion recognition in people with ASD. Specifically, I
have compared the predictions of ANN models with behavior
measured in neurotypical adults and people with autism (Wang
and Adolphs, 2017) and facial emotion decodes from neural ac-
tivity measured in the human amygdala (Wang et al., 2017). I
observed that the ANNs could accurately predict the human
facial emotion judgments at an image-by-image level. Interestingly,
the image-level behavioral patterns of the models better
matched the neurotypical human subjects’ behavior than
those measured in individuals with autism. This behavioral
mismatch was most remarkable when the model behavior
was constructed from units that correspond to the primate
IT cortex. Interestingly, I also observed this behavioral mis-
match when comparing neural decodes from a distinct popu-
lation of visually facilitated neurons in the human amygdala
with Control and ASD behavior. However, ANN-IT activation
patterns could fully account for the image-level behavioral
predictivity of the human amygdala population responses that
has been previously implicated in autism-related facial emo-
tion processing differences (Rutishauser et al., 2015; Wang

et al., 2017). Furthermore, in silico experiments revealed that
learning the facial emotion discrimination task with noisier
ANN-IT representations (i.e., with higher response variability
per unit) results in weaker synaptic connections between the
model-IT and the downstream decision unit that increase the
match of the model to the image-level behavioral patterns
measured in the ASD population. In sum, these results argue
that atypical sensory representations in the primate inferior
temporal cortex that drive a distinct population of neurons in
the human amygdala is a key candidate mechanism of atypical
facial emotion processing in individuals with autism, a testa-
ble neural hypothesis for future human and nonhuman pri-
mate studies.

Materials and Methods
Human behavior
In this study, I have reanalyzed behavioral data previously collected
and used in a study by Wang and Adolphs (2017; raw behavioral data-
set from S. Wang and R. Adolphs, personal communication).

Participants
In the original study (Wang and Adolphs, 2017), 18 high-function-
ing participants with ASD (15 male) were recruited. All ASD partici-
pants met Diagnostic and Statistical Manual of Mental Disorders, fifth
edition, and International Classification of Diseases, Revision 10, diag-
nostic criteria for ASD, and they met the cutoff scores for ASD on the
Autism Diagnostic Observation Schedule Second Edition revised scoring
system for Module 4 and the Autism Diagnostic Interview Revised or
the Social Communication Questionnaire when an informant was avail-
able. The ASD group had a full-scale IQ (FSIQ) of 105 6 13.3 (from the
Wechsler Abbreviated Scale of Intelligence, Second Edition), a mean age
of 30.8 6 7.40 years, a mean Autism Spectrum Quotient (AQ) of 29.3 6
8.28, a mean Social Responsiveness Scale Adult Self Report (SRS-A-SR) of
84.6 6 21.5, and a mean Benton score of 46.1 6 3.89 (Benton scores 41–
54 were in the normal range). The Autism Diagnostic Observation
Schedule (ADOS) item scores were not available for two participants, so
we were unable to use the revised scoring system. But these individuals’
original ADOS algorithm scores all met the cutoff scores for ASD.

Fifteen neurologically and psychiatrically healthy participants
with no family history of ASD (11 male) were recruited as Controls.
Controls had a comparable FSIQ of 107 6 8.69 (two-tailed t test, p =
0.74) and a comparable mean age of 35.1 6 11.4 years (p = 0.20) but
a lower AQ (17.7 6 4.29, p = 4.62� 10�5) and SRS-A-SR (51.0 6
30.3, p = 0.0039) as expected. Participants gave written informed con-
sent, and all original experiments were approved by the California
Institute of Technology Institutional Review Board. All participants had
normal or corrected-to-normal visual acuity. No enrolled participants
were excluded for any reasons.

Facial emotion judgment task
During the task, Wang and Adolphs (2017) asked participants to dis-
criminate between two emotions, fear and happiness. The image set
includes faces of four individuals (two female) from the Stoichiometric
Traits of Organisms in Their Chemical Habitats database (Roy et al.,
2007), each showing fear and happiness expressions, which are highly
recognizable emotions. To generate the morphed expression continua
for the experiments, Wang and Adolphs (2017) interpolated pixel value
and location between fearful exemplar faces and happy exemplar faces
using a piecewise cubic-spline transformation over a Delaunay tessella-
tion of manually selected control points. They created five levels of fear-
happy morphs, ranging from 30% fear and 70% happy to 70% fear and
30% happy in steps of 10% (Fig. 1B). Low-level image properties were
equalized using the SHINE (spectrum, histogram, and intensity normal-
ization and equalization) toolbox (Willenbockel et al., 2010). In each
trial, a face was presented for 1 s followed by a question prompt asking
participants to make the best guess of the facial emotion (Fig. 1A).
After stimulus offset, participants had 2 s to respond, otherwise the
trial was aborted and discarded. Participants were instructed to
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respond as quickly as possible but only after stimulus offset. No feed-
back message was displayed, and the order of faces was completely
randomized for each participant. Images were presented approxi-
mately in the central 12° of visual angle. A subset of the participants
(11 participants with autism and 11 Controls) also performed confi-
dence ratings after emotion judgment and a 500ms blank screen,
participants were asked to indicate their confidence by pushing the
button labeled 1 for very sure, 2 for sure, or 3 for unsure. This ques-
tion also gave participants 2 s to respond.

Depth recording in human amygdala
In this study I have reanalyzed the neural data that was previously col-
lected and used in a study by Wang et al.(Wang et al., 2017). The raw
neural dataset was kindly shared via personal communication. Wang et
al. (2017) recorded bilaterally from implanted depth electrodes in the
amygdala from patients with pharmacologically intractable epilepsy.
Target locations in the amygdala were verified using postimplantation
structural MRIs. At each site, they recorded from eight 40mm micro-
wires inserted into a clinical electrode. Bipolar wideband recordings
(0.1–9 kHz), using one of the eight microwires as reference, were
sampled at 32kHz and stored continuously for off-line analysis with a
Neuralynx system (Cheetah software). The raw signal was filtered with a
zero-phase lag 300–3000Hz bandpass filter, and spikes were sorted using
a semiautomatic template-matching algorithm. Units were carefully iso-
lated, and spike sorting quality were assessed quantitatively. Subjects
were presented each image for 1 s (similar to the task description above)
to discriminate between two emotions, fear and happiness.

Experimental design and statistical analysis
Estimating image-level behavioral reliability. To estimate the

image-level behavioral reliability (Fig. 1D), I first estimated the
probability of choosing the happy image per image in each subject
(15 Controls, 18 ASD), referred to as the ~PC and the ~PIwA vectors.
Then, for each possible combination of selecting two subjects from
the subject pools, I estimated the subject-to-subject Kendall rank
correlation coefficient. This was done separately for the Controls
and ASD, leading to the red and black histograms in Figure 1D,
respectively. These correlation scores are not corrected by the indi-
vidual subjects’ internal reliability (across trials). Therefore, they
represent the lower bound of the intersubject correlations.

Estimating noise ceilings for ASD versus Control correlations. I
define the noise ceiling of a correlation as the highest possible value of a
correlation expected given the noise measured independently in the two
variables that are being tested. To estimate this, first I individually esti-
mate the split-half reliability of the ~PC and the ~PASD vectors, for the
Control and ASD groups, respectively. Each split is constructed
with a random sampling of half of the subjects and taking the aver-
age across them and doing same for the other half of the subjects.
For each iteration, such splits were made, and the correlation
between the resulting vectors was computed. This correlation score
was corrected by the Spearman–Brown correction procedure to
account for the halving of subject numbers. I then computed the
average across 100 such iterations, referred to as r~PC1 ;

~PC2
and

r~PASD1 ;
~PASD2

for the Controls and ASD, respectively. The noise ceil-

ing was then estimated as follows:
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Figure 1. Behavioral task and image-level assessment of behavioral markers. A, Subjects, both a neurotypical (Control, n = 15) population and individuals with autism (ASD, n = 18) viewed
a face for 1 s in their central;12°, followed by a question asking them to identify the facial emotion (fearful or happy). After a blank screen of 500 ms, subjects were then asked to indicate
their confidence in their decision (1 for very sure, 2 for sure, or 3 for unsure). B, The psychometric curves show the proportion of trials judged as happy as a function of facial emotion morph
levels ranging from 0% happy (100% fearful, left) to 100% happy (0% fearful, right). ASD (red curve), on average, showed lower specificity (slope of the psychometric curve) compared with
the Controls (black curve). The shaded area and error bars denote SEM across participants. C, Image-level differences in behavior between Controls versus ASD. Each red dot corresponds to an
image. The size of the dot is scaled by the difference in behavior between the Controls and ASD. Error bars denote SEM across subjects. Right, Two example images show similar
emotional (happiness) judgments by the Controls but drive significantly different behaviors in ASD, demonstrating the importance of investigating individual image-level dif-
ferences. D, The estimated image-by-image happiness judgments were highly reliable as demonstrated by comparisons across individuals (estimated separately for each
group). The mean reliability (average of the individual subject to subject correlations) was 0.73 and 0.70 for the Controls (black histogram) and ASD (red histogram), respec-
tively. E, Correlation between image-by-image behavioral patterns measured in Controls versus ASD, with two different selections of images (cross-validated image selec-
tions with held-out subjects). Noise ceilings were calculated based on measured behavioral (split half) reliability across populations within each group (see above, Materials
and Methods). The difference between the noise ceiling and the mean raw correlation is referred to as the diagnostic efficiency of the image set (h ). F, Diagnostic efficiency
ðh ) as a function of image selection criteria. Error bars denote bootstrap confidence intervals.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r~PC1 ;

~PC2
p r~PASD1 ;

~PASD2

q
:

Intuitively, if both groups provided noiseless data, then these reliabil-
ities should be each at one, and therefore the noise ceiling shall also be
set at one. Noisy data will lead to ,1 values for the individual r~PC1 ;

~PC2

and r~PASD1 ;
~PASD2

reliabilities, and hence the noise ceiling shall also be,1.

Of note, each selection of image with result in a different ~P vector and
therefore will result in a slightly different noise ceiling estimate, as dem-
onstrated in Fig. 1E (two green lines).

Estimating cross-validated diagnostic efficiency of image sets.
Diagnostic efficiency (h ; Fig. 1E,F) of an image set is defined as the
cross-validated estimate of the difference between the noise ceiling and
the raw correlation between the~PC and the~PASD vectors. The cross-vali-
dation is achieved by choosing the images based on a specific subset of
subjects and then measuring the noise ceiling and the raw correlation on
a different held-out set of subjects. For efficient collection of human sub-
ject data that could optimally discriminate between the behavior meas-
ured in Controls and ASD, one must aspire for the highest h values for
image sets.

Selection of neurons for analyses. In the original study, only units
with an average firing rate of at least 0.2Hz (entire task) were consid-
ered, and only single units were considered. In addition, in this study I
have further restricted the neural dataset to neurons that have a signifi-
cant visual response (both increase and decrease). To estimate that, I
compared the neural firing rates (per image) averaged across two specific
time bins, [�1000, 0] and [250, 1250], where 0 is the onset of the image.
If the paired Wilcoxon signed-rank test between these two firing rate
vectors was significant, the site was considered for further analyses.
Thus, I considered 156 total neurons, 99 visually facilitated (VF) neurons
and 57 visually suppressed (VS) neurons.

Decoding facial emotion judgment from neural population activity.
To decode facial emotion judgments from the neural responses per
image, I used a linear model that linked the neural responses to the levels
of happiness (ground truth from image generation). Building the model
essentially involves solving a regression problem estimating the weights
(~w) per neuron and a bias term. I used a partial least squares regression
procedure (MATLAB command, plsregress), using 15 retained compo-
nents. I also used 10-fold cross-validation. For each fold, the model was
trained (i.e., ~w and bias were estimated) using the data from the other
nine folds (training data), and predictions were generated for the held-
out fold (test images). This was repeated for each of the folds, and the
entire procedure was repeated 100 times. The predictions of the trained
neural model on the held-out test images were used for future correla-
tion analyses. Given the training scheme, every image was assigned as
the test-image once per iteration.

ANN models of primate vision. The term model in this study always
refers to a specific modification of a pretrained ANN. For instance, I
have used an ImageNet pretrained deep neural network, AlexNet, to
build multiple models. Each model was constructed by deleting all layers
succeeding a given layer. For instance, the fifth convolutional (cnv5)
layer model was built by removing all layers of AlexNet that followed the
output of its fifth convolutional layer. The feature activations from the
fifth convolutional layer output were then trained with the linear regres-
sion procedure (similar to the neural decodes).

Estimating model facial emotion judgment behavior. To decode facial
emotion judgments from the model responses per image, I used the same
linear modeling approach that I used for the neural data (see above), which
linked the model feature activations to the level of happiness (ground truth
from image generation). The model features, per layer, were extracted using
the MATLAB command activations for AlexNet (Krizhevsky et al., 2012),
VGGFace (Parkhi et al., 2015), and EmotionNet (https://github.com/
mathinking/FaceGenderAgeEmotionDetection) in MATLAB-R 2020b. For
the CORnet-S (Kubilius et al., 2019) model, I used the code from https://
github.com/dicarlolab/CORnet.

Estimation of discriminatory index (d9). The discrimination index
was computed to quantify the difference between the match of the be-
havioral predictions of the ANNs (models per layer) and the behavior
measured in Controls and ASD (Fig. 2E). It was calculated as follows:

rControl � r IwAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
pðs 2

Control 1s 2
IwAÞ

r ;

where rControl and r IwA was the correlation between ANN predictions
and behavior measured in Controls and ASD, respectively; and sControl

and s IwA was the SD of the bootstrap estimates of the correlations with
random subsampling features from the model layers. To make the com-
parisons fair across all layers, 1000 features were randomly subsampled
(without repetition) 100 times to estimate the ANN predictions.

Estimation of residuals between ANN-IT and behavioral predictions
of human amygdala. I first estimated the cross-validated test predictions
(ANNPred) of behavioral patterns from an ANN-IT layer (e.g., AlexNet
fc7 model used in the study) using the partial least squares regression
method. The ground truth values of image-level facial happiness were
used as the dependent variable in this analysis. Next, I used the same
algorithm but with the human amygdala neural features (instead of the
ANN-IT features) as the predictors to estimate the neurally decoded be-
havioral patterns (AmygdalaPred). I then used a generalized linear regres-
sion model (MATLAB glmfit) to estimate the residues while using
ANNPred as the predictor and AmygdalaPred as the dependent variable.
The square of the Pearson correlation [percentage of explained variance
(%EV)] between this residue vector (one value per image) and the
image-level behavioral vector (probability of choosing “Happy” per
image) measured in the Controls is plotted (see Fig. 4, left, y-axis). These
%EV values were corrected by the noise estimates in the behavioral data
per image selection. In addition, all %EV values were estimated in a cross
validated way, wherein the image selections and the final estimates were
done based on different groups of subjects.

In silicomodel perturbation and training
Generation of activity scaled additive noise values. To estimate how

much noise shall be added to each unit (feature) of the model layer, I
used the following procedure. First, I estimated the SD (s , across all 28
images) of the activation distribution per unit in a noise-free model. The
addition of noise was made proportional to this value. To vary noise lev-
els, a scalar factor (c; Fig. 5D,E, x-axis) was multiplied with s per unit.
For each unit, the noise added to the original activation was drawn from
a normal distribution that had a SD of c p s .

Training the model with and without noise. To simulate a learning
scheme with noise, I modified the model feature activations in the fol-
lowing way. During training of the regression model (i.e., estimating ~w
and bias), the noisy version of the model was generated by concatenating
1000 randomly drawn features (which were fixed for each iteration of
the procedure), with 10 repetitions of the same features but with the
added noise on top of it. This procedure was repeated several times to
estimate the variance in the model predictions per noise level. For the
noise-free model, the same 1000 randomly drawn features were repeated
without addition of any noise.

Statistical tests
All correlation scores reported in this study are Kendall rank coefficients
(unless otherwise mentioned). For significance tests of correlations
(between two variables of interest), I have used a bootstrapped permuta-
tion test. To do this, I first constructed a null hypothesis by mixing the
two variables and then randomly drew (as many times as the number of
elements in the original variable) with replacements two elements from
the mixed dataset to create two vectors. These two vectors can be con-
structed multiple times (typically .100) and correlated. The resulting
correlation distribution was considered as the null hypothesis. Then the
true raw correlation was compared with this distribution to determine a
p value of rejecting the null distribution.

Data and availability
All data and code used in this study is available to download and use
from https://github.com/kohitij-kar/2021_faceEmotion_ASD.
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Results
As outlined above, I reasoned that the ability to predict the
image-level differences in facial emotion judgments between
individuals with ASD and neurotypical adults (Controls) allow us
to (1) design more efficient experiments to study the atypical fa-
cial processing observed in ASD and (2) efficiently probe the
underlying neural correlates. In this study, I first took a data-
driven approach to discover such image-level differences in
behavior across Controls and ASD in a facial emotion discrimi-
nation task (Wang and Adolphs, 2017). I then used brain-
mapped computational models of primate vision to probe the
underlying neural mechanisms that could drive such differences.

The behavioral and neural measurements analyzed in this
study were performed by Wang et al. (2017) and Wang and
Adolphs (2017). During the task, participants were shown
images of individual faces with specific levels of morphed emo-
tions (for 1 s) and asked to discriminate between two emotions,
fear and happiness (Fig. 1A; see above, Materials and Methods).
The authors observed a reduced specificity in facial emotion
judgment among individuals with ASD compared with neuro-
typical Controls (Fig. 1B). Notably, the study controlled for low-

level image confounds, and eye movement patterns across the
two groups did not explain the reported behavioral differences.
Therefore, the behavioral results significantly narrowed the space
of neural hypotheses to sensory and affect-processing circuits.

Image-level differences can be leveraged to produce stronger
behavioral markers of atypical facial emotion judgments in
autism
Wang and Adolphs (2017) primarily investigated the differences
in behavior of ASD and Controls across parametric variations of
facial emotion levels (e.g., levels of happiness and fear). Here, I
first examined whether the image-by-image behavioral patterns
(regardless of their facial identity or emotion levels) across the
ASD and Control groups could be reliably estimated. Therefore,
I computed the individual subject-to-subject correlations in
image-level behavior (Fig. 1D), which show that both of the
groups exhibit highly reliable image-level behavior. The internal
reliability (see above, Materials and Methods) for Control and
ASD groups are 0.73 and 0.70, respectively. A visual inspection
of the comparison of behavioral patterns across the two groups
(Fig. 1C) shows there are pairs of images (two such examples are

Figure 2. Testing ANN models on facial emotion recognition tasks. A, ANN models of the primate ventral stream (typically comprising V1, V2, V4, and IT-like layers) can be
trained to predict human facial emotion judgments. This involves building a regression model, that is, determining the weights ~w based on the model layer activations (as
the predictor) to predict the image ground truth (level of happiness) on a set of training images and then testing the predictions of this model on held-out images. B, The
predicted psychometric curves of an ANN model (e.g., AlexNet, shown here) show the proportion of trials judged as happy as a function of facial emotion morph levels rang-
ing from 0% happy (100% fearful, left) to 100% happy (0% fearful, right). This curve demonstrates that activations of ANN layers (layer fc7, which corresponds to the model-IT layer)
can be successfully trained to predict facial emotions. C, Comparison of the image-level behavioral patterns of the ANN with the behavior measured in Controls (x-axis) and ASD (y-axis).
Four ANNs (with 5 models each generated from different layers of the ANNs are shown here in different colors). ANN predictions better match the behavior measured in the Controls com-
pared with ASD. The correlation values (x-axis and y-axis) were corrected by the noise estimates per human population so that the differences are not because of differences in noise levels
in measurements across the ASD and Control subject pools. The dot size refers to the degree of discrepancy between ANN predictivity of Controls versus ASD. D, A comparison of the ANN
predictivity (results from AlexNet shown here) of behavior measured in ASD versus Controls as a function of model layers [cnv layers 1, 3, 4, and 5 and the fully connected layer 7 (fc7),
which approximately corresponds to the ventral stream cortical hierarchy]. The difference between the predictivity of behavior of the ANN in ASD and Controls increases with depth and is
referred to as D. E, Discriminability index (d9; ability to discriminate between image-level behavioral patterns measured in ASD vs Controls; see above, Materials and Methods) as a func-
tion of model layers (all 4 tested models shown separately). The difference in ANN predictivity between Controls and ASD was largest at the deeper (more IT-like) layers of the models
instead of earlier (more V1, V2, and V4-like) layers. Error bars denote bootstrap confidence intervals.
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shown in Fig. 1C) for which the Control group exhibited very
similar behavior, but the ASD made very different behavioral
responses. This further confirms that diagnostic image-level var-
iations in behavior could be further used to gain more insight
into the mechanisms that drive the atypical facial emotion
responses in ASD. Next, I quantified how stimuli selection based
on high image-level differences can be leveraged to design more
efficient behavioral experiments. To do this, I selected images
based on the difference in behavior between the two groups
(DBehav, using data from four randomly selected individual sub-
jects from each group) and tested the resulting correlation
between the behavior of the two groups (using the held-out sub-
ject population). This was repeated several times to get a mean
measure of the cross-validated raw correlation (Fig. 1E, y-axis).
Subjects from either group can exhibit different levels of behav-
ioral variability in their responses for each group of selected
images. It is critical to account for these varying noise levels
while comparing across image groups. Therefore, noise ceilings
were estimated for each image set selection based on image-level
internal reliability of the held-out test population (see above,
Materials and Methods). The difference between the noise ceiling
and the raw correlation is referred to as the diagnostic efficiency
h of the image set, which is a measure of how efficient the image
set is in discriminating between the ASD and Control behavior.
The subject-level cross-validation was performed to estimate
how h might vary based on the specific cohorts of subjects cho-
sen while determining the specific images. Figure 1F shows how
h varies across a more and more efficient selection of image
sets (based on higher differences in image-level behavior with
Controls and ASD). These results suggest that one reasonable
goal of the field should be to find more efficient ways to predict
which images will produce the highest h values. Focusing
human behavioral testing on such images is likely going to yield
stronger inferences and lead to a better understanding of the be-
havioral and neural markers driving the difference in behavior.

ANNmodels of primate vision trained on varied objectives
can perform facial emotion judgment tasks
To investigate how one can predict the image-level facial emo-
tion judgments, I first tested how accurately current ANN mod-
els of primate vision can be trained to perform such tasks. One
advantage of using these ANNs is that there are significant corre-
spondences between their architectural components and the
areas in the primate ventral visual cortex (Yamins et al., 2014;
Bashivan et al., 2019; Cadena et al., 2019; Fig. 2A, schematic).
Also, there is a significant match in the predicted behavioral pat-
terns of such models with primate behavior (including face-
related tasks) measured during multiple object recognition tasks
(Rajalingham et al., 2015, 2018). Together, these models are great
candidates for generating testable hypotheses regarding both neural
and behavioral markers of specific visual tasks. I selected four differ-
ent ANNs to test their behavioral predictions with respect to the fa-
cial emotional judgment task. These ANNs were pretrained to
perform image classification (AlexNet, Krizhevsky et al., 2012;
CORnet-S, Kubilius et al., 2019), face recognition (VGGFace,
Parkhi et al., 2015), and emotion recognition (Emotion Net, https://
github.com/mathinking/FaceGenderAgeEmotionDetection).
I observed that a 10-fold cross-validated partial least squares regres-
sion model (see above, Materials and Methods) could be used to
train each model to perform the task. The variation of the behav-
ioral responses of the model with parametric changes in the level of
happiness in the faces qualitatively matched the patterns observed
in the human data (Fig. 2B).

ANNmodel predictions better match the behavioral patterns
measured in neurotypical adults compared with individuals
with autism
Next, I quantified how well the ANNs can predict the human
image-level behavioral responses (across both Controls and
ASD). Interestingly, ANN models significantly better predicted
the image-level behavior measured in Control compared with the
behavior measured in ASD (Fig. 2C; 20 models tested; paired t
test, p , 00,001, t(19) = 10.99). To account for the difference in
variability in the behavior across ASD and Control groups, the
correlation between model predictions and human data (Fig. 2C;
referred to as Consistency) was normalized by the trial split-half
reliability (i.e., noise ceiling estimates) of each group independ-
ently. To dissect which layer of the ANN best discriminated
between the behavior of Controls and ASD, I compared individual
models constructed from different layers of the same pretrained
ANN architectures. This revealed two critical points. First, the cor-
relation between model behavior and the Control group behavior
increased as a function of model depth (Fig. 2D, black line,
AlexNet), which corresponds to the ventral visual hierarchy as
reported in many studies (Khaligh-Razavi and Kriegeskorte, 2014;
Yamins et al., 2014). Second, the difference in the predictivity of
the model of behavior measured in Controls versus ASD across
layers is also highest at deeper layers, which corresponds to pri-
mate IT (Fig. 2D, comparison of the black and the red line for
AlexNet). This overall qualitative observation was consistent
across all four tested models (Fig. 2E). Given the high discrimina-
bility index (see above, Materials and Methods), established map-
pings between the layers and primate brain, as well as wide usage
among researchers, I have used AlexNet for the subsequent analy-
sis presented in this study. Therefore, these results suggest that
population neural activity in primate IT could play a significant
role in the atypical facial emotion processing in people with au-
tism, and the image-level differences in sensory representations in
IT might explain the difference in behavior observed across the
images. However, such a role has been previously attributed to the
human amygdala responses (Wang et al., 2017). Therefore, I next
tested whether the human amygdala responses can predict the
image-level behavior and how well this predictivity could be
explained by the ANN-IT representations.

Two distinct neural population coding schemes in the
human amygdala
Wang et al. (2017) recorded bilaterally from implanted depth
electrodes in the human amygdala (Fig. 3A, schematic) from
patients with pharmacologically intractable epilepsy. Subjects
were presented each image for 1 s, same as the task description
above (Wang and Adolphs, 2017), to discriminate between two
emotions, fear and happiness. Similar to previous reports (Wang
et al., 2017), I observed two distinct population of neurons in the
human amygdala. These two populations were marked by signif-
icant response suppression, VS (57 neurons; Fig. 3B, right) and
facilitation VF (99 neurons; Fig. 3B, left), respectively, after the
onset of the facial image stimulus. I first tested how well the pop-
ulation-level activity (250–1500ms postimage onset) of three
specific subsamples of the amygdala neurons (VS only, VF only,
and VS plus VS neurons) predicted the behavioral patterns
measured in human subjects. I observed that each of these popu-
lations of VF, VS, and mixed (equal number of VS and VF
neurons) could significantly (p , 0.0001; permutation test for
significance of correlation) predict the image-level facial emotion
judgments measured in Controls. Figure 3C shows how these
three populations predict the image-level behavior measured in
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Controls as a function of the number of neurons sampled to build
the neural population decoders. Given that all these groups ex-
hibit an increase in behavioral predictivity with the number of
neurons, it is difficult to reject any of these decoding models
(with the current neural dataset). Therefore, in the following
analyses I have examined the VF and VS units separately. Next, I
estimated how well the VS and VF population predicted the be-
havioral patterns measured in the Controls and ASD, respec-
tively. Interestingly, I observed that similar to the ANN-IT
behavior, neural decodes of the VF neurons in the human amyg-
dala better match the Control group behavior compared with the
ones measured in ASD (Fig. 3C; DVF is significantly .0; permu-
tation test of correlation, p , 0.05). However, the VS neurons
did not show this trend (Fig. 3D; DVS is not significantly different
from 0; permutation test of correlation, p. 0.05). Figure 3E

shows how VF (and not VS) neurons become more discrimina-
tory of the ASD versus Control behavior (i.e., DVF increases) as
we choose image sets with higher diagnostic efficiencies (h ).
Consistent with prior work, these results provide evidence that
neural responses in the human amygdala are implicated in atypi-
cal facial processing in people with autism. However, the results
presented here also critically identify the VF neurons as stronger
candidate neural marker of the differences in facial emotion
processing observed in ASD.

ANN-IT features can explain a significant fraction of the
image-level behavioral predictivity of the human amygdala
population
Given the significant predictivity of facial emotion judgments
observed in the ANN-IT layers and the presence of strong

Figure 3. Facial emotion representation in the population neural activity of human amygdala. A, Schematic of bilateral amygdala (blue patch) recordings performed by Wang et al. (2017).
B, Two distinct populations of neurons observed in the human amygdala. Top left, The VF (purple) neurons (n = 99) increased their responses after the onset of the face stimuli (averaged nor-
malized spike rate across time; 250 ms time bins). Bottom left, The normalized firing rate across time for each VF neuron. Top right, The VS (yellow) neurons (n = 57) decreased their responses
after the onset of the face stimuli (averaged normalized spike rate across time; 250 ms time bins). Bottom right, The normalized firing rates across time for each VS neuron. Error bars denote
SEM across neurons. C, An estimate (correlation) of how three subsamples of neural populations, VS (yellow), VF (purple), and VS plus VF (All, black) predict the image-level behavior measured
in Controls as a function of the number of neurons sampled to build the neural decoders. Error bars denote bootstrapped CI. D, Comparison of how well the VS (yellow bars) and VF (purple
bars) neurons predict the behavior measured in Controls versus ASD. The red and black edges denote the predictivity of ASD and Controls, respectively. DVF and DVS are the differences in the
human amygdala (neural decode) predictivity of facial emotion judgments measured in Controls and ASD from the VF and VS neurons, respectively. Error bars denote bootstrap CI. E, DVF and
DVS as function of image selection (which is proportional to the diagnostic efficiency h estimated per image set). Cross-validation was done at the level of subjects for each image selection.
Error bars denote bootstrap CI. *denotes a statistically significant difference (p, 0.05) and ns denotes no statistically significant difference.
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anatomic connections between primate IT
and amygdala (Webster et al., 1991), I fur-
ther asked how much of the image-level
predictivity estimated from the amygdala
activity is likely driven by input projections
from the IT cortex. To test this, I first asked
(with a linear regression analysis; see above,
Materials and Methods) how well the
image-by-image behavioral predictions
from the ANN-IT models (AlexNet-fc7
tested here) can explain the image-
by-image neural decoding patterns
estimated from the amygdala neurons
(separately for VS and VF neurons).
The residue of this analyses (see above,
Materials and Methods) contained the
variance in the amygdala decodes that
was not explained by the predictions
of the ANN-IT models. Therefore, the
amount of variance in the measured
behavioral patterns explained by this
residue provides an estimate of how
much of the behavior is purely driven
by the amygdala responses independent of
the image-driven sensory re presentations.
Assuming a feedforward hierarchical
circuit whereby the IT cortex drives the
human amygdala and not the other way
around, a lower %EV obtained after
such an analysis should indicate that the
source of the signal in amygdala is at
least partially coming from the IT cor-
tex. Interestingly, this analysis revealed
that the behavioral predictivity (%EV)
of the human amygdala is significantly
reduced once I regressed out the var-
iance that is driven by the ANN-IT
responses. For instance, when consider-
ing all images (i.e., very low diagnostic
efficiency of the image set), I observed that VS and VF neu-
rons could explain ;17.24 and 17.39% (a lower bound of the
%EV as neural noise has not been accounted for) of the
behavioral variance (Fig. 4A,B, left). However, once the ANN-
IT-driven variance was regressed out, these values signifi-
cantly dropped to 0.06 and 0.2%, respectively (Fig. 4A,B,
right). Overall, VF neural residuals (after regressing out
ANN-IT predictions) explained significantly less variance
at all tested h levels. VS neural residuals explained signifi-
cantly less variance only at lower h levels (DBehav , 2.5%).
Given that VS neurons showed a drop in %EV for higher h
levels, it is not surprising that I did not observe any differ-
ences with the residual predictivity at those levels. Interestingly,
there was no significant change in %EV across the image selec-
tions when VS activity was regressed out of VF activity (and
vice versa; Fig. 4A,B, middle), providing further evidence that
they largely support a complementary coding scheme for facial
emotions within the amygdala. In sum, these results suggest that
input projections from the IT cortex into the amygdala (Webster
et al., 1991) might be the primary career of the facial-emotion-
related signals. Furthermore, the results also suggest a likely dif-
ference in how VS and VF neurons are affected in ASD, with VF
neurons being more diagnostic of the atypical behavior observed
in ASD.

In silico perturbations with additional noise in ANN-IT
layers improves the match of the model with the behavior of
individuals with autism
To further probe how IT representations might be different in
ASD compared with Controls (Fig. 5A), I compared ANNs inde-
pendently trained to predict the behavior of Controls and ASD. I
directly compared the learned weights, that is, the synaptic
strengths between the model-IT layer and the behavioral output
node in the two cases. I observed that models trained on the
behavior measured in ASD yielded weaker synaptic strengths for
both excitatory (positively weighted) and inhibitory (negatively
weighted) connections (Fig. 5B), compared with models trained
to reproduce the behavior measured in Controls. I further
explored how this modest difference in the models could be
simulated so that an ANN trained on ground truth labels of
human facial emotions could be transformed into behaving
more like what we observe in ASD. Based on previous studies
(MacDonald et al., 2006; Haigh et al., 2015), I hypothesized that
increased noise (scaled according to overall responsiveness of the
model units) in the sensory representations during learning
could potentially yield weaker synaptic strengths between the
model-IT layer and the trained behavioral output node. Of note,
although a noisy representation likely yields a reduced specificity
in behavioral performance, an addition of specific amounts
of noise does not necessarily guarantee a stronger or weaker

Figure 4. Amount of behavioral variance (measured in Controls) explained by different neural markers. A, Left, Percentage
of behavioral variance explained by the human amygdala (VF) neural activity as a function of the overall differences in
image-level behavior between ASD and Controls. As demonstrated in Figure 1F, the x-axis is proportional to the diagnostic ef-
ficiency (h ). Middle, Percentage of variance explained by the residual (VS-based predictions regressed out of the predictions
from VF-based neural decodes). There was no significant change in %EV across the image selections when VS was regressed
out, suggesting a complementary coding scheme. Right, Percentage of behavioral variance explained by the residual (ANN-IT
predictions regressed out of the predictions from VF-based neural decodes). There was a significant difference (reduction in
%EV) between the two cases for all levels of tested h . B, Left, Percentage of behavioral variance explained by the human
amygdala (VS) neural activity as a function of the overall differences in image-level behavior between ASD and Controls.
Middle, Percentage of variance explained by the residual (VF-based predictions regressed out of the predictions from VS-
based neural decodes). There was no significant change in %EV across the image selections when VF was regressed out, sug-
gesting a complementary coding scheme. Right, Percentage of variance explained by the residual (ANN-IT predictions
regressed out of the predictions from VS-based neural decodes). There was a significant difference (reduction in %EV)
between the two cases, whereas DBehav was ,2. All %EV values were estimated in a cross-validated way, wherein the
image selections and the final estimates were done based on different groups of subjects. Error bars denote bootstrapped CI.
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correlation with the image-level behavioral patterns observed in
ASD. Therefore, such in silico perturbations could produce three
primary outcomes. First, adding noise might produce no effects
in the behavioral match of the model with the behavior of ASD
(Fig. 5C, top, H0). Second, the added noise might weaken the
correlation achieved by a noiseless model (Fig. 5C, middle, H1).
Third, and consistent with an ASD-relevant mechanism, addi-
tion of noise could improve the correlation with the image-level
behavior measured in ASD (Fig. 5C, bottom,H2). I observed that
at specific levels of added noise (Fig. 5D; dashed black line) dur-
ing the model training (transfer learning), the behavioral match
of the model with ASD significantly improved (assessed by per-
mutation test of correlation) beyond the levels noted with a
noise-free model (Fig. 5D). In addition, this increase in the
predictivity of ASD behavior with the addition of noise is sig-
nificantly higher than that observed when compared with the
predictivity of the model of the behavior measured in the
Controls (Fig. 5E). Within the dashed black lines (Fig. 5E),

noise added to each model unit was drawn from a normal
distribution with a zero mean and SD equal to two to five
times the width of the response distribution of that unit
across all tested images. Together, this strongly suggests that
additional noise in sensory representations is a very likely
candidate mechanism implicated in atypical facial emotion
processing in adults with autism.

Discussion
The overall goal of this study was to identify candidate neural
and behavioral markers of atypical facial emotion judgments
observed in individuals with autism. Based on discovering
reliable image-by-image differences between the behavior of
Controls and ASD that could not be explained by categorical
ambiguity in the stimuli, I reasoned that such image-level
variance could be leveraged to probe the neural mechanisms
of behavioral differences observed in ASD. Therefore, I used

Figure 5. In silico experiments on ANNs to probe neural mechanisms underlying atypical facial emotion judgments in individuals with ASD. A, What changes can one induce in the model-IT
layer to simulate the behavioral patterns measured in ASD? B, Comparison of synaptic strengths (weights) between ANN-IT and the behavioral node when models are independently trained
with the behavior measured in ASD versus Controls. ANN fits to the behavior of ASD yielded weaker synaptic strengths for both excitatory (positively weighted) and inhibitory (negatively
weighted) connections. Each blue dot refers to the weights in the connection between an individual model unit in the IT layer and the decision (level of happiness) node. C, Hypotheses and
corresponding predictions; H0, addition of noise could lead to no differences in how it affects the match of the model to behavior measured in ASD; H1, addition of noise could reduce the match
of the models to behavior measured in ASD compared with the noise-free model, and H2, addition of noise could improve the match of the models to the behavior measured in ASD compared
with the noise-free model.H2 supports the high IT variability in autism hypotheses. D, Correlation of ANN behavior with ASD as a function of levels of added noise. The results show that at spe-
cific noise regimes ANNs are significantly more predictive of the behavior measured in ASD compared with the noiseless model. Error bars denote bootstrapped CI. E, Ratio of ANN behavioral
predictivity of noisy versus noise-free ANNs. At specific levels of noise, referred to as the ASD-relevant noise levels, the ANNs trained with noise show much higher predictivity for behavior
measured in ASD while suffering a reduction in predictivity of the Controls. Error bars denote bootstrapped CI. Facial images shown in this figure are morphed and processed versions of the
original face images. These images have full reuse permission. *denotes a statistically significant difference (p, 0.05).
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image-computable, brain-tissue-mapped artificial neural net-
work models of primate vision to further probe the issue. By
using computational models (that have established brain tis-
sue correlates) to explain experimental data, I hereby demon-
strate how such an approach could be used to probe the neural
mechanisms that underlie the differences in facial emotion
processing observed in individuals with autism. Below, I dis-
cuss the findings with their relevance to future experiments
and candidate mechanisms implicated in atypical facial emo-
tion recognition in ASD.

ANN-based predictions can be used to efficiently screen
images and provide neural hypotheses for more powerful
experiments
A family of ANN models can currently predict a significant
amount of variance measured in various object recognition
related behaviors and neural circuits (Schrimpf et al., 2018).
Given that the results presented here demonstrate the ability of
such ANNs to discriminate between the behavior measured in
Controls and ASD, we can further leverage the ANNs to screen
facial image stimuli and select images where the predicted behav-
ioral differences are maximum. Further, such models can be
reverse engineered (Bashivan et al., 2019; Xiao and Kreiman,
2020) to synthesize images that could achieve maximum differ-
ences to optimize behavioral testing and diagnosis. Such deep
image synthesis methods could also modify the facial images
such that the differences in the observed behavior between the
Controls and ASD are minimized. Although clearly at an early
stage, such methods have significant potential to improve future
cognitive therapies. Unlike many machine-learning approaches
that are not closely tied to the computation and architecture of
the primate brain, the ANNs used in this study have established
homologies with the primate brain and behavior (Schrimpf et al.,
2018). As demonstrated in this study, these links allow us to relate
the ANN predictions to distinct brain areas directly. Specifically,
the ANN results presented here suggest that population ac-
tivity patterns in areas like the human and macaque inferior
temporal cortex are vital candidates for neural markers of
atypical facial processing in autism. The modeling results
provide further insights into the most affected aspects of the
population responses, implicating noisier sensory represen-
tations (see below) as a source of the differences in sensory
representation, learning, and subsequent decision-making.
In addition to the specific hypotheses generated in this study,
it is essential to note that ANN models of primate vision is
an active area of research, and we are witnessing the gradual
emergence of better brain-matched models (Nayebi et al.,
2018; Kubilius et al., 2019; Lee et al., 2020; Zhuang et al.,
2021). Therefore, this study establishes a critical link between
atypical face processing in autism and how to leverage ANNs to
study this.

Modeling results imply the need for more fine-grain neural
measurements in the primate IT cortex and amygdala
The ANN-based computational analyses in this study provide
specific neural hypotheses that can be tested using macaque elec-
trophysiology and human fMRI experiments. First, I observed
that the ANN-IT layers could best discriminate between the
behavior of Controls versus ASD. Therefore, such signals are
likely also measurable in the primate IT cortex and are key candi-
dates for neural markers of atypical facial emotion processing
in autism. Given that most ANN models are feedforward only
or have minimal dynamics, it will be critical to test how the

different temporal components of IT population responses carry
the facial emotion signal. Similar to predictions of ANN-IT
layers, I observed that population activity in the human amyg-
dala also better matches behavior measured in the Controls than
ASD. There can be multiple reasons for the observed differences
in behavioral predictivity. First, it is possible that because of
the atypical development of the human amygdala in ASDs, the
behavior they exhibit does not match well with the neural
decodes out of the neurotypical amygdala. Second, the lack of
predictivity might be carried forward from responses in the IT
cortex, as predicted by the ANNs. The current study attempted
to disambiguate these two factors. I asked how well ANN-IT pre-
dictions can account for the behavioral patterns of the amygdala
activity. Indeed, the image-level predictivity of facial emotion
judgments observed in the population activity of the human
amygdala (both VF and VS neurons) was significantly explained
away by the ANN-IT features (Fig. 4A,B, left). This result is con-
sistent with the hypothesis that the higher level visual cortices
(like IT) primarily drive the facial affect signal observed in the
human amygdala. Simultaneous neural recordings in IT and
amygdala or finer grain causal perturbation experiments need to
be conducted to test this hypothesis more directly. Notably, the
behavioral mismatch (neural decodes vs Control/ASD behavior)
was specific to the decodes constructed from the VF neurons
(and not VS neurons). Therefore, future experimental investiga-
tions should dissect the role of IT cortex and how it functionally
influences the VF and VS neurons, which are likely part of a
complementary coding scheme. Furthermore, it will be essential
to examine how the IT cortical activity is driven by feedback pro-
jections from the amygdala, given that evidence for the impor-
tance of such connections from ventrolateral PFC has been
demonstrated for object recognition (Kar and DiCarlo, 2021).

High variability in sensory representation can lead to weaker
efferent synaptic strengths during learning and development
In a psychophysical discrimination task, the typical consequence
of having a noisy detector is a reduction in the sensitivity of per-
formance, which manifests as a reduced estimated slope of the
psychometric function. This is consistent with what Wang and
Adolphs (2017) had observed. Given that the idea of higher sen-
sory variability in autism is also consistent with previous findings
(Haigh et al., 2015), I considered this as a potential neural mech-
anism that could explain the image-level differences I have
observed in the facial emotion discrimination behavior in ASD.
Therefore, I tested the increased sensory noise hypothesis to test
whether such a perturbation could simulate the weaker efferent
synaptic connections from IT-like layers as revealed by the
ANN-based analyses (Fig. 5B). Indeed, addition of noise during
learning made the ANN behavior more matched with that
observed in ASD. First, this could suggest that perhaps the
behavior measured in ASD results from additional noise in the
sensory representations that affects the subjects’ behavior during
the task. However, this could also be the result of executing an
inference engine (in the brain) that learned its representations
under high sensory noise during development (as a child). An
estimate of noise levels (sensory cortical signal variability) in
children with autism and a quantitative probe into how that
could potentially interact with learning new tasks is essential to
test this hypothesis. As demonstrated in this study, the ANN
models provide a very efficient framework to generate more
diagnostic image sets for these future studies given that we can
simulate any level (and type) of noise under different learning
regimes and make predictions on effect sizes. Such model-driven
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hypotheses are likely to play a vital role in guiding future experi-
mental efforts and inferences.

High variability in sensory representation can qualitatively
explain other ASD-specific behavioral reports
Addition of noise during the transfer learning procedure of
the ANN models made the behavioral output of the model
more consistent with the behavior measured in ASD (Fig.
5D). Such a mechanism can indeed qualitatively explain
other previous behavioral observations made in individuals
with autism. For example, Behrmann et al. (2006b) observed
that reaction times measured during object discrimination
tasks in adults with autism were significantly higher than the
those of Control subjects. This difference was especially high
during more fine-grained discrimination tasks. Such a be-
havioral phenomenon can be explained by an increase in
sensory noise in ASD that leads to longer time requirements
during integration of information (Ratcliff et al., 2016) and
weaker performances on finer discrimination tasks. The
ANN-based approach demonstrated in this study, however,
provides guidance beyond the qualitative predictions of
overall effect types. Specific image-level predictions provided
by ANNs will help researchers to design more diagnostic
behavioral experiments and make measurements that can
efficiently discriminate among competing models of brain
mechanisms.

Potential underlying mechanisms for atypical IT responses
In a psychophysical discrimination task, the typical consequence
of having a noisy detector is a reduction in the sensitivity of per-
formance, which manifests as a reduced estimated slope of the
psychometric function. This is consistent with what Wang and
Adolphs (2017) had observed. Given that the idea of higher sen-
sory variability in autism is also consistent with previous findings
(Haigh et al., 2015), I speculate that this as a potential neural
mechanism that could explain the image-level differences I have
observed in the facial emotion discrimination behavior in ASD.

Addition of noise during the learning procedure of the ANN
models could be used to simulate this hypothesis in the models.
Such a mechanism could indeed also qualitatively explain other
previous behavioral observations made in individuals with au-
tism. For example, Behrmann et al. (2006b) observed that reac-
tion times measured during object discrimination tasks in adults
with autism were significantly higher than those of the Control
subjects. This difference was especially high during more fine-
grained discrimination tasks. Such a behavioral phenomenon
could be putatively explained by an increase in sensory noise
in ASD that leads to longer time requirements during inte-
gration of information (Rubenstein and Merzenich, 2003)
and weaker performances on finer discrimination tasks. The
ANN-based approach demonstrated in this study, however,
provides guidance beyond the qualitative predictions of
overall effect types. Specific image-level predictions provided
by ANNs will help researchers to design more diagnostic be-
havioral experiments and make measurements that can effi-
ciently discriminate among competing models of brain
mechanisms. An imbalance in the ratio of the excitatory and
inhibitory (E/I) processes in cortical circuits has been pro-
posed as an underlying mechanism for various atypical
behaviors observed in autism (Rubenstein and Merzenich,
2003). I speculate that such an E/I imbalance could arise
because of lower inhibition in the cortical networks. This
could lead to larger neural variability and a subsequent

noisier, less efficient sensory processing. Therefore, the pro-
posed in silico experiments might lead to biologically plausi-
ble mechanistic hypotheses. In fact, genetic mutations that
have an impact on the generation and function of interneur-
ons have been previously linked with autism (Chao et al.,
2010; Sohal and Rubenstein, 2019). Therefore, cell-type-spe-
cific causal perturbation approaches are necessary to test
whether a decreased inhibition in the visuocortical pathway
(especially in the primate IT cortex) leads to noisier sensory
representations and can reproduce the specific image-level
differences in facial emotion processing reported in this
study. The image-level behavioral measurements and ANN
predictions reported here will enable such stronger forms of
hypothesis testing during the interpretation of such experi-
mental results.

Limitations of the current study
The current study explores the mechanism of facial emotion rec-
ognition differences across a limited set and a specific cohort of
ASD and control subjects. Furthermore, the stimuli set is also
limited to 28 face images. Given the heterogeneity observed in
ASD, the inferences drawn from this study should motivate
others to design large-scale studies of the same nature, where fur-
ther predictions from the ANN models can be tested across a
more diverse subject pool and a broader set of images (and possi-
bly videos).
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