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The integration of somatosensory signals across fingers is essential for dexterous object manipulation. Previous experiments
suggest that this integration occurs in neural populations in the primary somatosensory cortex (S1). However, the integration
process has not been fully characterized, as previous studies have mainly used 2-finger stimulation paradigms. Here, we
addressed this gap by stimulating all 31 single- and multifinger combinations. We measured population-wide activity patterns
evoked during finger stimulation in human S1 and primary motor cortex (M1) using 7T fMRI in female and male partici-
pants. Using multivariate fMRI analyses, we found clear evidence of unique nonlinear interactions between fingers. In
Brodmann area (BA) 3b, interactions predominantly occurred between pairs of neighboring fingers. In BA 2, however, we
found equally strong interactions between spatially distant fingers, as well as interactions between finger triplets and quadru-
plets. We additionally observed strong interactions in the hand area of M1. In both M1 and S1, these nonlinear interactions
did not reflect a general suppression of overall activity, suggesting instead that the interactions we observed reflect rich, non-
linear integration of sensory inputs from the fingers. We suggest that this nonlinear finger integration allows for a highly
flexible mapping from finger sensory inputs to motor responses that facilitates dexterous object manipulation.
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Significance Statement

Processing of somatosensory information in primary somatosensory cortex (S1) is essential for dexterous object manipula-
tion. To successfully handle an object, the sensorimotor system needs to detect complex patterns of haptic information, which
requires the nonlinear integration of sensory inputs across multiple fingers. Using multivariate fMRI analyses, we character-
ized brain activity patterns evoked by stimulating all single- and multifinger combinations. We report that progressively
stronger multifinger interactions emerge in posterior S1 and in the primary motor cortex (M1), with interactions arising
between inputs from neighboring and spatially distant fingers. Our results suggest that S1 and M1 provide the neural sub-
strate necessary to support a flexible mapping from sensory inputs to motor responses of the hand.

Introduction
When writing with a pen or manipulating a Rubik’s cube in one
hand, the sensorimotor system needs to integrate somatosensory
information from multiple fingers to estimate the object’s shape,

position, and movement within the hand. The mechanism that
underlies this integration, however, remains poorly understood.
We hypothesized that, to support flexible behavioral responses to
any pattern of sensory stimulation across the hand, sensory
inputs from neighboring and non-neighboring fingers need to be
integrated in a nonlinear fashion. This nonlinear code provides
the neural substrate necessary to detect any specific pattern of
stimulation across the hand and forms the basis for learning flex-
ible mappings between sensory inputs and motor responses of
the hand.

Stimulation to the fingers is relayed from mechanoreceptors
via the cuneate nucleus to the thalamus, with signals from differ-
ent fingers remaining largely segregated (Florence et al., 1988,
1989). Signals from different fingers begin to interact substan-
tially only in S1 and M1 (Hsieh et al., 1995). Cortical sensory
processing is critical for dexterous hand control, as perturbing ei-
ther the transmission of somatosensory information from the
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hand to the cortex (Moberg, 1958; Monzée et al., 2003; Chemnitz
et al., 2013) or lesioning S1 (Carlson, 1981; Hikosaka et al., 1985;
Brochier et al., 1999) grossly impairs fine manual dexterity. We
refer here to S1 and M1 collectively as sensorimotor cortex. In
the primate brain, this comprises six cytoarchitectonically dis-
tinct Brodmann areas (BAs): 4a, 4p, 3a, 3b, 1, and 2 (Brodmann,
1909; Powell and Mountcastle, 1959; Geyer et al., 1996). Inputs
from the thalamic somatosensory nuclei vary across these
regions, with BA 3a and BA 3b receiving most of the inputs, BA
4a and BA 4p receiving a substantial amount, and BA 1 and BA 2
receiving progressively fewer (Jones and Powell, 1970; Jones,
1975; Shanks and Powell, 1981; Darian-Smith and Darian-Smith,
1993). In nonhuman primates, neurons in BA 3b have receptive
fields mainly devoted to single fingers, whereas in BA 1 and BA
2, receptive fields encompass multiple fingers (Hyvärinen and
Poranen, 1978b; Sur, 1980; Iwamura et al., 1993). Measuring the
coarse spatial organization for fingers in these regions with fMRI
reveals comparable findings in humans, with finger representa-
tions becoming more spatially overlapping in posterior subre-
gions of S1 (Krause et al., 2001; Martuzzi et al., 2014; Besle et al.,
2014). At the single-neuron level, paired finger stimulation gen-
erally results in lower firing rates relative to what would be
expected from summing the firing rates resulting from single fin-
ger stimulation (Friedman et al., 2008; Lipton et al., 2010; Reed
et al., 2010; Thakur et al., 2012). Together, these findings have
been interpreted as evidence that inputs from multiple fingers
are integrated in the sensorimotor cortex (Iwamura, 1998; Yau et
al., 2016).

Everyday object manipulation often demands the integration
of information across all fingers of the hand. In contrast, most
previous studies have typically examined stimulation of only a
few pairs of fingers. Consequently, the full nature of the interac-
tions that occur between somatosensory inputs from all five fin-
gers is not well characterized. Furthermore, it is unclear whether
these previously reported suppressive interactions reflect the
encoding of specific patterns of multifinger stimulation (i.e.,
nonlinear finger integration) or simply divisive normalization
(Carandini and Heeger, 2011; Brouwer et al., 2015), where the
inputs coming from individual fingers are linearly combined, but
the net activity is suppressed through a diffuse inhibition. Studies
of finger integration in humans also share these limitations
(Gandevia et al., 1983; Hsieh et al., 1995; Biermann et al., 1998;
Ishibashi et al., 2000; Hoechstetter et al., 2001; Ruben et al.,
2006).

Here, we addressed this gap by studying all 31 possible finger
combinations by simultaneously stimulating one, two, three,
four, or five fingers of the right hand. We measured activity pat-
terns evoked in the hand area of the sensorimotor cortex using
7T fMRI while human participants experienced passive tactile
stimulation. Consistent with previous work, we found progres-
sive overlap of single finger representation in sensorimotor
cortex. By analyzing the multivoxel activity patterns in each sub-
region, we also found clear evidence for progressively stronger
multifinger interactions in posterior S1 and M1.

Materials and Methods
Participants
Ten healthy participants were recruited for the study (7 males and 3
females, mean age=25.5 yr, SD=3.24 yr; median Edinburgh Handedness
Score=80.0, median absolute deviation=20.0). Participants completed
one training session and two experimental sessions. During the training
session, participants were familiarized with the finger stimulation task. In
the two experimental sessions, participants experienced finger stimulation

while undergoing 7T fMRI. All participants provided informed consent
before the beginning of the study, and all procedures were approved by
the Office for Research and Ethics at the University of Western Ontario.

Apparatus
We used a custom-built 5-finger keyboard to apply stimulation inde-
pendently to each of the five fingers of the right hand. Each finger was
comfortably restrained above an immobile key using a clamp covered
with padding (Fig. 1A). The clamp prevented any hand or finger move-
ment and ensured that the passive stimulation was delivered to a con-
stant area of the fingertip. We delivered independent stimulation to each
fingertip using a pneumatic air piston mounted underneath each key.
The pistons were driven by compressed air (100psi) delivered from out-
side the MRI scanning room through polyvinyl tubes. The forces applied
to the fingertips were monitored using force transducers (Honeywell-FS
series, dynamic range= 0-16 N, resolution, 0.02 N, sampling rate= 200
Hz), and the air pressure for each piston rod was independently regu-
lated using PID control to deliver forces of;3 Newtons to each fingertip
(one participant experienced stimulation of ;2 N). The piston rods
(diameter = 3 mm) deformed the skin of the fingertip. As the padding
prevented movement of the finger, the stimulation was predominantly
tactile in that it involved deformation of the skin.

Task
Finger stimulation. While lying in the scanner, participants viewed a

back-projection screen through a mirror mounted to the head coil. They
saw five bars in the center of the screen, surrounded by a box (Fig. 1B).
Each bar corresponded to one of the five fingers of the right hand (left to
right: thumb to little finger). All 31 possible finger combinations were
stimulated (5 single-finger, 10 2-finger, 10 3-finger, 5 4-finger, and 1 5-
finger configuration; Fig. 1C).

Each trial lasted 6.5 s and consisted of four phases (Fig. 1B): a cue
phase (0.5 s), finger stimulation (4 s), perceptual judgment (�1.5 s),
and feedback (�0.5 s). The cue phase alerted participants to the start
of the trial. During the cue, the outline box turned orange and the
words “RELAX FINGERS” were presented on screen, instructing par-
ticipants to relax their hand. No information was provided about
which finger combination was going to be stimulated; therefore, par-
ticipants remained naive about the stimulation until it occurred. At
the start of the stimulation phase, the words disappeared from the
screen and the box turned white, after which one of the 31 possible
finger combinations was stimulated. The stimulated force on each
finger approximated a rectified sine wave, gradually increasing and
decreasing. Each “wave” of stimulation lasted ;1 s, and two complete
waves were delivered during each trial. Across all fingers and combi-
nations, the average measured peak force was 2.676 0.17 N.

Mismatch detection. In the perceptual judgment phase of each trial,
we presented a visual arrangement of a specific finger combination, with
the boxes corresponding to the stimulated fingers turning orange (Fig.
1B). To ensure that participants remained attentive during the experi-
ment, we asked them to detect the occurrence of relatively rare (5% of
trials) mismatches between the visually presented and stimulated pat-
terns (probe trials). Participants were asked to detect this mismatch and
indicate it by pressing their right thumb (2N threshold). If the presented
and stimulated patterns matched, they were instructed to refrain from
pressing any finger. We chose this particular task because it ensured that
participants remained attentive, but it did not explicitly require the inte-
gration of sensory information across fingers. On the contrary, the task
demanded that sensory information from each finger be analyzed
separately.

Participants had 1.5 s to judge and respond. After either 1.5 s elapsed
(indicating a match) or immediately following a thumb press (indicating
a mismatch), participants were provided feedback on their response by
changing the color of the finger combination green (correct) or red
(incorrect). The feedback was presented on-screen for �0.5 s, such that
the feedback and response phases together lasted 2 s regardless of
response type.

To encourage good performance, participants received points based
on the performance of their perceptual judgements. They were awarded

5174 • J. Neurosci., June 29, 2022 • 42(26):5173–5185 Arbuckle et al. · Integration of Sensory Information across Fingers



1 point for correctly identifying a matching configuration, and 10 points
for correctly identifying a mismatched configuration. False alarms were
penalized by �1 point, and misses (failing to recognize a mismatch con-
figuration) were penalized by �10 points. Points were combined across
imaging runs and used to calculate a financial bonus. Behavioral per-
formance on the perceptual judgment task was high (overall error
rate = 1.776 0.40%) with participants being well able to discriminate
perceptual mismatch trials (hit rate = 86.976 5.09%, false alarm rate =
1.206 0.21%, d9 = 3.686 0.31). Although participants tended to be con-
servative in their response behavior (i.e., they were somewhat biased to
not report a mismatch: c=0.446 0.11), this was expected because most
of the trials (95%) were matches and thus required participants to refrain
from making a thumb press. Together, this resulted in participants mak-
ing a thumb press on 5.356 0.20% of all trials.

Procedure
Participants completed one training session and two imaging sessions.
Each session was comprised of several runs. Each run contained 62 trials,
with two trials for each of the 31 finger combinations (see Finger stimula-
tion); 5% of these trials contained perceptual mismatches (see Mismatch
detection). Trials were separated by a variable intertrial interval (ITI),
drawn randomly from the set of possible ITIs {1, 2.5, 4, 5.5, 7, 8.5, 10 s},
with the probability p = [0.37, 0.24, 0.16, 0.10, 0.06, 0.04, 0.03] for each
ITI, respectively. Thus, shorter delays occurred more often and longer
delays occurred less often. The order of trials, including the position of the
mismatch trials, was randomized across runs and participants.

During training, participants performed runs of trials until they
achieved an overall error rate of 0% in one run. Participants completed

the training session 1-2 d before the first scan-
ning session. For the imaging sessions, partici-
pants completed 11 total runs, yielding 682
total trials (31 combinations � 2 repeats � 11
runs). These 11 runs were split over two sepa-
rate scanning sessions for each participant,
usually within the same week.

MRI data acquisition
We used high-field fMRI (Siemens 7T
Magnetom with a 32-channel head coil at
Western University, London, Ontario, Canada)
to measure the BOLD responses evoked in par-
ticipants. Each participant completed 11 runs of
trials across two separate scanning days, usually
with 6 runs on the first day and 5 runs on the
second day. Each run lasted 614 s. During each
run, 410 functional images were obtained using
a multiband 2D-echoplanar imaging sequence
(GRAPPA, in-plane acceleration factor=2, mul-
tiband factor=3, TR = 1500 ms, TE = 20 ms,
in-plane resolution 148� 148 voxels). Per
image, we acquired 66 interleaved slices
(without gap) with isotropic voxel size of
1.4 mm. The first 2 images in the sequence
were discarded to allow magnetization to
reach equilibrium. To estimate magnetic
field inhomogeneities, we acquired a gradi-
ent echo field map at the end of the scan-
ning session on each day. Finally, a T1
weighted anatomical scan was obtained
using an MPRAGE sequence with a voxel
size of 0.75 mm isotropic (3D gradient echo
sequence, TR= 6000 ms, 208 volumes).

fMRI preprocessing and first-level analysis
Functional images were first realigned to cor-
rect for head motion during the scanning
sessions (three translations: x, y, z; three rota-
tions: pitch, roll, yaw), aligned across sessions
to the first image of the first session, and core-
gistered to each participant’s anatomical T1
image. Within this process, we used B0 field-

maps from each imaging session to correct for image distortions arising
from magnetic field inhomogeneities (Hutton et al., 2002). Because of
the relatively short TR (1.5 s), no slice-timing correction was applied,
and no spatial smoothing or normalization to a standard template was
applied.

The minimally preprocessed data were then analyzed using a GLM
(Friston et al., 1994) using SPM12 (https://www.fil.ion.ucl.ac.uk/spm/)
with a separate regressor for each of the 31 possible finger combinations
in each run. The activation during stimulation was modeled using a box-
car function that spanned the stimulation phase of each trial, convolved
with an HRF with a delayed onset of 1.5 s and a poststimulus undershoot
at 12 s. Given the low error rate, all trials were included in the analysis,
regardless of the perceptual judgment accuracy. To capture activity
evoked by the thumb press during mismatch detection, we included one
thumb press regressor in each run which modeled all thumb responses
per run (duration: 1 s). Because the response was always the same thumb
press and occurred with roughly equal probability for each finger combi-
nation, any incomplete modeling of the response-evoked activity should
not influence our results pertaining to the differences in activity patterns
between finger combinations. Finally, we included an intercept regressor
for each run, yielding 363 total regressors (33 regressors� 11 runs).

To model the long-range temporal autocorrelations in the functional
timeseries, we used the SPM FAST autocorrelation model. High-pass fil-
tering was then achieved by temporally prewhitening the functional
data with this temporal autocorrelation estimate. This analysis yielded
one b weight for each voxel for each of the 31 finger combinations per

Figure 1. Experiment design. A, Participants experienced tactile stimulation using a custom-built finger stimulation box.
Each finger was independently restrained, and pneumatic pistons were used to deliver stimulation to each fingertip. B,
Schematic illustration of a single trial (ITI: intertrial interval). Blue trace represents the mean finger stimulation force (6SEM
across participants), time-aligned to the start of the stimulation phase. C, Participants experienced stimulation of all 31 possible
single-finger and multifinger combinations.
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run for each participant. Collectively, these defined the estimated activity
patterns. We did not further analyze the activity pattern from the thumb
press regressor. From these b weights, we calculated the average percent
signal change evoked by each finger combination relative to the baseline
for each voxel, yielding 31 percent signal change values per voxel.

Surface-based analyses
Surface reconstruction. We used Freesurfer (Fischl et al., 1999) to

reconstruct the cortical surface from the anatomical image of each partic-
ipant, with each node having a location on the white-matter/gray-matter
surface and the pial surface. The surfaces were then spherically registered
to match a template atlas (FreeSurfer’s Left-Right 164k node template)
based on a sulcal-depth map and local curvature.

Projection of activity patterns to cortical surface. To visualize the
evoked activity patterns, the individual patterns were projected on
the individual surface. For each surface node, all voxels that lay
between the white matter and the pial surface location for that node
were averaged. To avoid the mixing of signals between M1 and S1
across the central sulcus, we excluded voxels that projected to two
disconnected groups of surface nodes (one on the anterior and one
on the posterior bank of the central sulcus) with the second projec-
tion accounting for at least 25% of the total surface (for details, see
github.com/DiedrichsenLab/surfAnalysis).

Surface-based searchlight. For multivariate analysis, we used a sur-
face-based searchlight approach (Oosterhof et al., 2011). For each node
on the individual surface reconstruction, we used a geodesic distance
metric to define a circular region on the surface that included the nearest
160 voxels between the pial and white/gray-matter surface (average geo-
desic radius= 5.856 0.04 mm). The use of a geodesic metric ensured
that each searchlight region did not include voxels across a sulcus. The
set of activity patterns from these voxels were then analyzed together
(see Multivariate fMRI analysis), and the results were assigned to the
corresponding center node. The searchlight analysis was primarily used
for visualization purposes (e.g., Fig. 2C).

Cross-sectional profile plots. To create the cross-sectional surface
profiles of univariate and multivariate measures (e.g., Fig. 2B,D),
we used the data that fell into a rectangular box that spanned the
sensorimotor cortex of each participant (Fig. 2A, dashed rectan-
gle). We orthogonally projected surface nodes within the rectangu-
lar box onto a cross-sectional line that approximately spanned the
rostral-caudal axis from BA 4a to 2. Data from the projected nodes
were then averaged within 101 equidistant bins along this cross-
section. Figure 2B, D shows the group-averaged cross-sectional
profiles. As with the searchlight analysis, the cross-sectional pro-
files were primarily for visualization purposes.

Surface-based tessellation. To conduct more computationally in-
tensive representational model comparisons (see Representational
model analysis) across the cortical surface, we used a coarser alter-
native to the continuous surface-based searchlight approach: We
defined a reduced set of surface patches by tessellating the left
hemisphere into 1442 regular hexagonal tessels. We then subse-
lected a set of tessels that had enough reliable differences between
stimulation conditions to allow for model comparison. Specifically,
a tessel was included if the group-averaged continuous searchlight
result showed an average pattern dissimilarity across all activity
patterns of �0.005. This criterion yielded 82 tessels that spanned
the surface of sensorimotor cortex, with an average of 98.936 2.81
voxels per tessel.

ROI definition
For a targeted analysis of subregions of the sensorimotor cortex, we
used a probabilistic cytoarchitectonic atlas projected to the cortical
surface (Fischl et al., 2008) to define Brodmann areas 4a, 4p, 3a,
3b, 1, and 2. Surface nodes were assigned to the region that had the
highest probability, and this probability needed to exceed 0.25. We
further restricted these regions to the hand area by excluding
nodes that fell 2.5 cm above and 2.5 cm below the hand knob ana-
tomical landmark (Yousry et al., 1997). To avoid smearing activity
across the central sulcus, we excluded (as in the surface projection)

voxels with .25% of their volume in the gray matter on the oppo-
site side of the central sulcus. This yielded 546.706 35.45 voxels
for BA 4a, 642.206 41.99 voxels for BA 4p, 275.206 10.48 vo-
xels for BA 3a, 711.006 31.05 voxels for BA 3b, 602.406 33.50
voxels for BA 1, and 1034.306 57.80 voxels for BA 2.

Single-finger selectivity
Voxel selection. To quantify the selectivity of each voxel for a specific

finger, we considered only the activity estimates for the single-finger
conditions. We selected voxels from each region that showed significant
modulation (relative to baseline) during any single-finger stimulation,
by conducting an omnibus F test per voxel, retaining only voxels that
were significant at a p=0.05 level (uncorrected). This criterion selected
8.986 1.24% of the voxels from BA 4a (50.706 8.58 voxels), 7.626
0.88% from BA 4p (48.306 5.60 voxels), 8.196 1.23% from BA 3a
(22.506 3.61 voxels), 14.846 2.10% from BA 3b (105.606 15.73 vox-
els), 16.606 2.57% from BA 1 (101.506 16.78 voxels), and 10.916
1.46% from BA 2 (116.506 20.91 voxels). We verified in simulations
that this voxel selection approach did not bias the subsequent selectivity
analysis, but simply increased its power. This is because the omnibus F
test only tests if a voxel is tuned to one or more fingers, whereas the se-
lectivity analysis characterizes the shape of the voxel’s tuning to different
fingers.

Quantifying selectivity. We then normalized the tuning curves (5
activity values for each voxel), such that the maximal response
equaled 1 and the lowest response equaled 0. For the plots in
Figure 3B, we grouped the voxels according to the most preferred
finger.

Using the normalized tuning curve for each voxel, we calculated the
voxel’s selectivity (l ) as follows:

l ¼ 1� 1
4

X

i

yi;

where yi are the normalized responses to the four “less-preferred” fin-
gers. This yields the average difference between the activity evoked by
the finger that the voxel is most tuned to (the maximal activity) and all
other finger activities. Therefore, l = 1 indicates a voxel is only active
during stimulation of a specific finger. Conversely, l , 1 indicates that
a voxel also responds to stimulation of other fingers. For each partici-
pant, we averaged the resulting selectivity coefficients across the selected
voxels per region. This yielded one selectivity coefficient per region per
participant, which are plotted in Figure 3C.

Controlling for measurement noise. Because of measurement noise,
the estimated selectivity coefficients will always be ,1, even if all voxels
would only respond to a single finger. The level of signal to noise may
differ across regions and participants, making it inappropriate to directly
compare the raw selectivity coefficients. Furthermore, even completely
random tuning would still result in estimated selectivity coefficients.0.
To address this issue, we simulated voxel tuning curves under two differ-
ent generative models. First, for random tuning, we simulated voxels
with tuning that was drawn from a multivariate Gaussian distribution,
with covariance identical to the group-averaged finger-by-finger correla-
tion matrix (Ejaz et al., 2015). Second, for highly selective tuning, we
simulated voxels that were selective for stimulation of a single finger and
remained unresponsive to all other fingers. Both simulations were scaled,
so that the average diagonal of the covariance matrix matched the signal
strength for that region and participant (s 2

s ). We then added the mea-
surement noise, drawn from a normal distribution with variance set to
s 2

e , again matched to that region and participant.
To estimate s 2

s and s
2
e from the real data of each participant, we first

vectorized the matrix of mean-centered tuning curves for each run, and
then calculated the average covariance between these vectors across
runs. An estimate of s 2

e could then be obtained via s 2
e ¼ s 2

s =r � s 2
s ,

where r is the average Pearson’s correlation between the vectorized tun-
ing curves across runs. This expression arises because we assume the
noise in the real data is independent (i.e., uncorrelated) across different
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runs; therefore, the expected value of the Pearson’s correlation between
vectorized tuning curves from different runs is r ¼ s 2

s = s 2
s1s 2

e

� �
.

Using these estimates, we simulated 1000 datasets with random tun-
ing and 1000 datasets with perfectly selective tuning for each region in
each participant, each with the same number of voxels as the real data.
All datasets were simulated with 11 imaging runs. As for the real data,
we then applied the voxel selection to the simulated data. We calculated
the average selectivity across voxels in each simulated dataset and aver-
aged the selectivity coefficients across simulations. For statistical com-
parison of selectivity coefficients across regions, the selectivity of the real
data was then normalized such that a selectivity of 0 reflected the
expected value under random tuning and 1 reflected the expected value
for highly selective tuning. This normalization was done for each region
and participant separately and ensured that comparisons across regions
were not biased by differences in noise.

Representational similarity analysis
To test for reliable differences between fMRI activity patterns for each
condition (i.e., the first-level GLM b weights), we used the cross-vali-
dated squared Mahalanobis dissimilarity (i.e., crossnobis dissimilarity)
(Walther et al., 2016). Cross-validation ensures that the dissimilarity esti-
mates are unbiased, such that, if two patterns differ only by measure-
ment noise, the mean of the estimated dissimilarities would be zero. This
also means that estimates can sometimes become negative (Diedrichsen
et al., 2016, 2020). Therefore, dissimilarities significantly larger than zero
indicate that two patterns are reliably distinct, and we take this as evi-
dence that features about the finger combinations are represented in the
activity patterns.

The crossnobis dissimilarity d between the fMRI activity patterns (x)
for conditions i and j was calculated as follows:

di;j ¼ 1
M

XM

m

xi � xjð ÞTmR
�1 xi � xjð Þ;m

;

where the activity patterns from run m are multiplied with the activity
patterns averaged over all runs exceptm (;m). R is the voxel-wise noise
covariance matrix, estimated from the residuals of the first-level GLM,
and slightly regularized to ensure invertibility. Multivariate noise nor-
malization removes spatially correlated noise and yields generally more
reliable dissimilarity estimates (Walther et al., 2016). Analyses were con-
ducted using functions from the RSA (Nili et al., 2014) MATLAB tool-
box. For the searchlight results (Fig. 2C,D), we averaged the resulting
dissimilarities based on whether they were between single-finger pat-
terns, 2-finger patterns, 3-finger patterns, or 4-finger patterns.

Representational model analysis
We used representational models to infer what feature sets were present
in the activity patterns from each region. A representational model char-
acterizes the tuning curves of a group of voxels or neurons. In the sense
we are using it here, it specifies a probability distribution over all possible
tuning curves (Diedrichsen and Kriegeskorte, 2017). Here, we used an
encoding-style approach (Naselaris et al., 2011) to specify and evaluate
representational models that predicted activity patterns for all finger
combinations using various feature sets. Models were fit and evaluated
using the PCM toolbox (Diedrichsen et al., 2018), using cross-validation
across imaging runs for each region in every participant.

Linear model. The linear model predicted that activity patterns
evoked during multifinger stimulation were the sum of the constituent
single-finger patterns as follows:

Ŷ lin ¼ MlinUsf ;

where Ŷ lin are the [31 � P voxels] predicted activity patterns, Usf is a
[5 features � P voxels] matrix of single-finger feature patterns, and Mlin

is a [31 combinations � 5 features] indicator matrix denoting which fin-
ger(s) are in each of the combinations. To complete the representational
model, we also specified that the single-finger features had a second-

moment matrix (covariance matrix without subtraction of the mean
across voxels) of Glin. The second moment matrix of finger-related pat-
terns is highly invariant across individuals, reflecting the high correla-
tions of patterns from neighboring fingers, and the low correlation of
the pattern of the thumb with the other fingers (Ejaz et al., 2015;
Arbuckle et al., 2020). We determined the exact form of the matrix for
each region separately, using the group-averaged second moment matrix
�G from the region under analysis. Specifically, we determined the second
moment matrix for the single-finger patterns that would best approxi-
mate the overall second moment matrix Glin ¼ M1

lin
�GM1T

lin , where M1
lin

is the Moore-Penrose pseudoinverse.
Multifinger interaction models. We also constructed three multifin-

ger interaction models. Like the linear model, these models assumed that
the multifinger patterns were the sum of the constituent single finger
patterns, but also included specific interaction effects between specific
fingers. These models took the same general form as the linear model
above. For the 2-finger interaction model, we included 10 terms indicat-
ing the presence of a specific pair of fingers (i.e., when the pair of fingers
was pressed, the regressor was 1 and 0 otherwise), in addition to the 5
model features for the individual fingers. In the 3-finger interaction
model, we additionally added 10 regressors indicating the presence of
each unique 3-finger combination. Finally, the 4-finger model included,
in addition to the 3-, 2-, and 1-finger terms, the five possible 4-finger
interactions, resulting in 30 model features overall. For each of the mod-
els, the second-moment matrix for the feature patterns U was estimated
from the group-averaged second-moment matrix as for the linear
model.

Adjacent and nonadjacent 2-finger interaction models. To test the
strength of finger interactions between adjacent and nonadjacent finger
pairs, we created two modified versions of the 2-finger interaction
model. In the first version, we only included the four adjacent finger
pairs as interaction terms. In the second version, we included only the 6
nonadjacent finger pairs.

Linear–nonlinear model. The linear–nonlinear model predicted that
activity patterns for single-fingers combined linearly when multiple fin-
gers were stimulated, but that the overall activity was compressed by an
unknown, nonlinear function f, Ŷ lnl ¼ f MlinUsfð Þ: Such a nonlinearity
could arise from a global divisive normalization of neural activity in the
region, or from nonlinearities in the relationship between neural activity
and the BOLD signal. To approximate any form of such compressive
nonlinearity, we created a model, based on the linear model, that allowed
for flexible scaling of the predicted multifinger patterns. All predicted
patterns that included the same number of stimulated fingers were
scaled by a common factor. These scaling factors, as well as the single-
finger feature patternsUsf, were estimated from the training data.

Null model. As a baseline for model comparison, we defined a null
model that predicted overall activity scaled with the number of fingers
stimulated, but that the patterns lacked finger specificity. Under this
model, the predicted patterns were derived from the average activity pat-
terns for the single-finger, 2-finger, 3-finger, 4-finger, and 5-finger com-
binations, respectively. For example, the predicted single-finger patterns
was the average pattern across the five single-finger conditions from the
training data.

Noise-ceiling model. To provide an estimate of how much systematic
variation could be explained in the data given measurement noise, we
included a “noise-ceiling” model. The predictions under the noise-ceil-
ing model were simply the 31 activity patterns from the training data.
Note that this fully saturated model differs from the 4-finger interaction
model only by the addition of a single model term that models the spe-
cific nonlinearities arising during the stimulation of all 5 fingers. The
second-moment matrix for this model was set to the observed group-
averaged estimate �G for the region under analysis.

Model fitting. We fit and evaluated the different models within each
participant, using a leave-one-run-out cross-validation procedure. For
each cross-validation fold, the training data were the activity patterns
from all imaging runs except one, and the test data were the activity pat-
terns from the left-out run.

For a representational model with the assumption that both noise
and signal have multivariate Gaussian distribution (Diedrichsen and
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Kriegeskorte, 2017), the feature patterns for each model can be estimated
from the training data Ytrain as follows:

U ¼ ðXTX1G�1s�1s 2
e Þ�1XTYtrain;

where X is a model-specific design matrix that denoted which feature(s)
were present in each of the rows (activity patterns) in Ytrain, G is the
model-dependent second-moment matrix as specified above, s indicates
the strength of the signal in Ytrain, and s 2

e is the variance of the random
run-by-run noise. Note that this estimation takes the form of linear regres-
sion with Tikhonov regularization. The strength of the regularization to
the model prior was determined by s�1s 2

e . For each cross-validation fold,
we derived the maximum-likelihood estimate of s and s 2

e using the PCM
toolbox. For the linear–nonlinear model, we additionally fitted the scaling
parameters by minimizing the residual sums-of-squares of the model pre-
dicted patterns to the training data.

Model evaluation. The estimated feature patterns (U) were then used
to predict activity patterns under the corresponding model. We com-
pared the predicted 31 condition patterns with the left-out test data. The
model fits were evaluated using Pearson’s correlation. For this, the pre-
dicted and test patterns were first mean-centered (per voxel), then corre-
lated across all voxels and conditions within each cross-validation fold.
We averaged the correlations across cross-validation folds to yield a sin-
gle estimate of model performance per participant per region. We pre-
ferred Pearson’s correlation as our evaluation metric over the coefficient
of determination, as it is less dependent on the exact choice of regulariza-
tion coefficient (Diedrichsen and Kriegeskorte, 2017), and therefore pro-
vides a more robust evaluation.

Finally, the model fits were normalized between 0 and 1, using
the fits of the null and noise-ceiling models. This normalization
approach was necessary because, as illustrated by the fits of the noise
ceiling models, measurement noise varied across regions (raw
Pearson’s r in BA 4a = 0.0546 0.0063, BA 4p = 0.0546 0.0058, BA
3a = 0.0746 0.010, BA 3b = 0.1166 0.013, BA 1 = 0.0746 0.011, BA
2 = 0.0386 0.005). Normalization of the model fits enabled us to
meaningfully compare fits across regions with varying levels of mea-
surement noise. Normalized fits .0 indicated that the model cap-
tured more information than the simple scaling of overall activity
(null model), and fits ,1 indicated that there was structured var-
iance in the activity patterns that remained unaccounted for in the
model(s). The normalization of model fits was done for each region
and participant separately.

Experimental design and statistical analyses
All statistical tests were performed in MATLAB R2019a (The
MathWorks). We set the significance level in our analyses to p= 0.05.
When a test involved multiple comparisons without any specified a pri-
ori hypotheses, we adjusted the significance level by dividing by the
number of comparisons (i.e., Bonferroni correction). For clarity, we
report uncorrected p values in the text. The Bonferroni-corrected statis-
tical threshold is reported as an a value when appropriate. In cases
where we had a priori hypotheses, we did not correct for multiple com-
parisons (i.e., replicating single-finger pattern overlap; Fig. 3C). To com-
pare evoked activity, dissimilarities, or normalized model fits across
regions, we used within-participant repeated measures ANOVAs. We
used two-sided paired t tests to compare the model fits to the fit of the
noise-ceiling in each region. If the model fit did not differ significantly
from the fit of the noise-ceiling model, we considered the model to be as
good as the noise-ceiling. Therefore, to remain conservative, we eval-
uated uncorrected p values and did not correct for multiple comparisons
for this analysis, as this correction would lower the bar for what would
be considered a “good-fitting”model.

Data and code accessibility
The analyses reported in this paper relied on code from the Representational
Similarity Analysis (github.com/rsagroup/rsatoolbox_matlab) and Pattern
Component Modeling (github.com/jdiedrichsen/pcm_toolbox) MATLAB
toolboxes. The preprocessed data and code necessary to reproduce analyses

and plots are available on github (github.com/saarbuckle/finger-sensory-
integration).

Results
Finger stimulation evokes broadly distributed activity in
sensorimotor cortex
Using high-resolution 7T fMRI, we measured the activity pat-
terns evoked by passive finger stimulation in the brains of 10
human participants. Stimulation was delivered independently to
each fingertip of the right hand by indenting the skin with a
small rod pushed by a pneumatic piston. We tested the entire set
of 31 single-finger and multifinger combinations. To keep partic-
ipants engaged during the experiment, they were instructed to
detect rare mismatches between the stimulated combination and
a visual probe presented after finger stimulation (see Materials
and Methods).

Figure 2A shows the group-average percent signal change
(relative to rest) during right-hand finger stimulation on a flat-
tened surface view of the cortical hand regions in S1 and M1 of
the left hemisphere. During single-finger stimulation, evoked ac-
tivity was low, but as more fingers were stimulated, we observed
an increase in overall activity across subregions of the sensorimo-
tor cortex. To statistically evaluate activity, we subdivided the
hand region into six anatomically defined Brodmann areas using
a cytoarchitectonic atlas (Fischl et al., 2008), spanning from
BA 4a to BA 2 (see Materials and Methods). In each BA subre-
gion, activity increased when more fingers were stimulated (all
F(4,36)� 4.730, all p� 0.0036; see Fig. 2B).

This activity increase does not provide a detailed view of how
sensory information from different fingers is integrated in the
human sensorimotor cortex. As a starting point to address this
question, we quantified how dissimilar the local single-finger ac-
tivity patterns were from each other. We used a cross-validated
estimate of the dissimilarity measure (crossnobis, see Materials
and Methods), such that a value of zero indicated that patterns
only differed by noise, and dissimilarity values .0 indicated
that the patterns were distinct. The average dissimilarities
showed that single-finger stimulation evoked distinct finger
patterns in all subregions (Fig. 2C). Indeed, all considered BA
regions showed highly significant finger-specific pattern dif-
ferences (one-sided t test. 0: all t(9) � 3.012, all p� 0.0073,
Bonferroni-corrected a value = 0.0083), which suggests that
each region received information about the stimulated fingers.
Dissimilarities between all 2-, 3-, and 4-finger combinations
showed a similar spatial distribution, although the overall
magnitude of the dissimilarities was reduced compared with
the single-finger patterns (Fig. 2D). This finding is expected
because multifinger combinations also share an increasing
number of fingers.

Increasing overlap of single-finger patterns in sensorimotor
cortex
Based on previous electrophysiological (Hyvärinen and Poranen,
1978b; Sur, 1980; Iwamura et al., 1993) and fMRI (Besle et al.,
2014; Martuzzi et al., 2014) results, we would expect to find rela-
tively focal single-finger activation in BA 3b, with more overlap
between fingers in other parts of the sensorimotor cortex. This
seemed to be the case as shown in the single-finger patterns for
two exemplary participants (Fig. 3A). Each finger activated a
quite distinct region of BA 3b and BA 3a. In contrast, the spatial
patterns for each finger in BA 1 and BA 2, as well as in M1 (BA
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4a and BA 4p) were more complex and involved multiple “hot
spots” per finger, with substantial overlap between fingers.

We quantified this observation by computing a measure of
finger-selectivity for each voxel. We selected voxels from each
region that were significantly responsive to stimulation of any
individual finger (see Materials and Methods), and scaled the
responses of these voxels, such that the activity associated with
the finger that evoked the largest positive response (i.e., the
most-preferred finger) equaled 1, and the activity associated with
the finger that evoked the smallest response (i.e., the least-pre-
ferred finger) equaled 0. If the voxel was only tuned to one finger,
all nonpreferred fingers would have a value of zero. The average
scaled responses for the four nonpreferred fingers therefore can
be used as a measure of the selectivity of that voxel (Fig. 3B). To
then define a selectivity index, we subtracted the averaged scaled
responses for the four nonpreferred fingers from 1, such that 1
indicates maximal selectivity and 0 equals activation for all fin-
gers. We averaged the selectivity coefficients across voxels per
participant in each region.

Before comparing the selectivity coefficients across regions,
we needed to address one last problem: namely, regions with less
reliable data could appear to be more broadly tuned to multiple
fingers simply because higher measurement noise makes the
tuning less clear. This is a concern because the strength of sin-
gle-finger representations, as measured in the average pattern

dissimilarities, varied across regions (Fig. 2D).
Previous imaging work (Martuzzi et al., 2014;
Besle et al., 2014) has not accounted for this
potential confound. Here we addressed this
issue by computing the expected selectivity
index for random tuning and for highly
selective tuning, given the signal reliabil-
ity in each region and each participant
(see Materials and Methods). We then nor-
malized the measured selectivity coefficients
for each participant and region separately,
with 0 indicating random tuning and 1 indi-
cating highly selective tuning for a single
finger only.

After carefully controlling for signal
reliability across regions, we confirmed
that voxels in BA 3b showed strong selec-
tivity for single fingers (Fig. 3C), signifi-
cantly more than expected from random
tuning (one-sided t test .0: t(9) = 8.329,
p = 8.01e-6). In comparison, more poste-
rior subregions of S1 were more broadly
tuned, indicated by significantly lower
selectivity indices compared with BA 3b
(BA 1: t(9) = 3.166, p = 0.0057, BA 2:
t(9) = 4.292, p = 0.0010). Indeed, in BA 2,
the finger selectivity coefficients did not
differ from what would be expected
assuming random tuning curves (t(9) = –
0.029, p = 0.5112). Moving anterior rela-
tive to BA 3b, voxels were less selective
in BA 3a (t(9) = 3.900, p = 0.0018).

Selectivity indices in M1 were signifi-
cantly lower than in BA 3b, for both poste-
rior (BA 4p, t(9) = 6.944, p= 3.366e-5) and
anterior portions (BA 4a, t(9) = 4.177,
p=0.0012). Rathelot and Strick (2009)
proposed that “new M1” (BA 4p) is more
essential for individuated finger move-

ments than “old M1” (BA 4a), from which one may predict that
BA 4p should show more selective single-finger representation.
To test this prediction, we contrasted BA 4p and BA 4a, which
may approximate old and new M1, respectively. Contrary to this
prediction, we found no difference in the average selectivity coef-
ficients between these regions (t(9) = –0.991, p=0.8262). Together,
however, our analyses confirm the idea that sensory information
from individual fingers is spatially quite segregated in BA 3b, but
then continuously intermixes when moving more anterior or pos-
terior in the sensorimotor cortex.

Interactions between finger activity patterns explain spatial
complexity of multifinger patterns
Having established that somatosensory inputs from different fin-
gers heavily overlap in regions of the sensorimotor cortex, we
then asked how somatosensory inputs are integrated across fin-
gers. As a first step, we inspected the spatial activity patterns
evoked during multifinger stimulation. Figure 4A shows the ac-
tivity patterns from two exemplary participants during stimula-
tion of the index finger, the little finger, or during stimulation of
both fingers. The spatial patterns evoked by stimulating each fin-
ger had a relatively focal activation point in BA 3b. For the com-
bined stimulation, we can see two areas of activation: one
corresponding to the region active for the index finger, and the

Figure 2. Activation and representation of fingers in sensorimotor cortex. A, Group-average percent signal change (relative
to resting baseline) across all 31 possible finger combinations, projected to a flattened view of the left cortical sensorimotor
areas around the central sulcus. White dotted lines indicate approximate boundaries of cyctoarchitectonic areas (Fischl et al.,
2008). Gray background represents the average sulcal depth, with gyri in light, and sulci in dark colors. Rectangle represents
the area of averaging in the cross-sections in B and D. Scale bar: flattened surface,;1 cm. B, Cross-sectional profiles of the
average percent signal change (6SEM across participants) within the dashed rectangle in A, grouped by the number of fin-
gers in each combination. x axis indicates the approximate spatial location along the rostral-caudal axis spanned by the rec-
tangular box on the cortical surface. Vertical dashed lines indicate the approximate boundaries between Brodmann areas. C,
Cortical surface map of the average crossnobis dissimilarity between activity patterns evoked by single-finger stimulation. D,
Cross-sectional profiles of the average crossnobis dissimilarity (6SEM across participants) between pairs of single-finger, 2-
finger, 3-finger, or 4-finger combinations.
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other corresponding to the region active for the little finger. This
suggests that the representation of inputs from multiple fingers
in BA 3b may be linear, simply reflecting the superposition of ac-
tivity caused by the stimulation of the individual fingers. We
would expect such linearity if the inputs from different fingers
do not interact with each other.

In contrast, the multifinger spatial pattern in BA 1 and BA 2
appeared more complex, with clusters of activity emerging dur-
ing simultaneous stimulation that were not present when either
finger was stimulated individually. Given that the neural popula-
tions representing each finger appeared to be more overlapping
in these same regions, the complexity of the spatial patterns sug-
gests the presence of an interaction between fingers.

To test this idea formally, we fit a series of representational
models to the activity patterns in each participant and region.
These encoding-style models were fit to the activity patterns
across all voxels in a region during single-finger and multifinger
stimulation, and then evaluated by their ability to predict multi-
voxel activity patterns measured during an independent test run
(see Materials and Methods). To meaningfully compare model
fits across regions with different signal-to-noise levels, we nor-
malized them to the performance of a null model and a noise-
ceiling model. The null model predicted that the overall activity
would increase when more fingers are stimulated, but that the
activity patterns themselves would not differ between finger

combinations. The noise-ceiling model was fit by estimating a
unique pattern for each finger combination from the data (i.e.,
the model allowed for any arbitrary nonlinearity). The model fits
were then normalized between the null model (0) and noise-ceil-
ing model (1), to express how much of the replicable finger-spe-
cific variation in the activity patterns each model could explain.

Based on the observations in BA 3b, we first examined to
what degree multifinger patterns were simply the sum of the
constituent single-finger patterns. The predictive performance of
this linear model was significantly better than that of the null
model across the sensorimotor cortex (region�model ANOVA,
main effect of model: F(1,9) = 590.662, p=1.618e-9; Fig. 4B), indi-
cating that the linear model captured some reliable aspects of the
spatial activity patterns. Furthermore, the normalized linear
model fit varied across regions (region � model ANOVA, inter-
action effect: F(5,45) = 7.308, p= 4.385e-5). The best fit was
observed in BA 3b, with significantly lower fits in all other
regions (all t(9) � 4.139, all p� 0.0025, evaluated at a Bonferroni-
corrected a value = 0.01), except BA 3a (t(9) = 2.822, p= 0.0200),
where the difference was not significant after correction.
Importantly, in all regions, the linear model predicted the data
significantly worse than the noise-ceiling model (all t(9) � 5.318,
all p� 0.0005), indicating that there were systematic nonlinear-
ities in the multifinger activity patterns that could not be
explained by the linear model.

Figure 3. Finger tuning in sensorimotor cortex. A, Activity patterns for each of the five fingers from one participant, projected onto a flattened cortical surface and cut to include BA 3a to
BA 2 in each panel. B, Average scaled voxel tuning curves arranged by most preferred finger (denoted by the gray box). Each color corresponds to different regions. C, Finger selectivity coeffi-
cients per region. Light gray lines indicate selectivity coefficients per participant. Solid black line indicates the average across participants. Bottom dashed line indicates the average expected se-
lectivity if voxels were randomly tuned to fingers. Top dashed line indicates the average expected selectivity if voxels only responded to a single finger. Expected values take into account the
empirical noise variance in each region and participant. A priori paired t tests were conducted between normalized selectivity coefficients (see Materials and Methods) from different regions.
Lines above the plot indicate significant differences. B, C, Error bars indicate SEM across participants in each region.
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To visualize more generally how the linear model fit across
the sensorimotor cortex in a region-blind manner, we applied
the same model fitting to data from regularly tessellated regions
(Fig. 4C; see Materials and Methods). This yielded similar results,
with good fits in BA 3b and increasing nonlinearities in regions
anterior and posterior to it (denoted by the drop in performance
of the linear model).

We then considered the possibility that nonlinearities in how
the activity patterns for single fingers combine would arise from the
interaction of pairs of fingers, perhaps via local surround-inhibition
or divisive normalization between two finger representations.
Therefore, we created a 2-finger interaction model, which explained
all patterns as the sum of the component single-finger patterns, as
well as their 2-finger interactions (see Materials and Methods).
Across all regions, this 2-finger interaction model predicted left-out
data significantly better than the linear model (region � model
ANOVA, main effect of model: F(1,9) = 209.851, p=1.526e-7).

The amount of variance explained by these 2-finger interac-
tions, however, differed across regions (Fig. 4D). While the 2-fin-
ger interactions led to a small gain in predictive performance in
BA 3b (8.446 0.83%), the gain was .4 times larger in BA 2
(37.376 4.41%). Indeed, the region �model interaction effect
was highly significant (F(5,45) = 9.753, p = 2.320e-6). This

indicates that a larger proportion of the pattern variance
could be explained in regions outside of BA 3b when includ-
ing interaction effects between pairs of fingers.

Interactions do not only arise between adjacent fingers
Do the nonlinear interactions between fingers described above
arise mostly between adjacent fingers or do interactions also arise
between spatially distant fingers of the hand? Previous work has
shown that stimulating adjacent fingers leads to lower activity
compared with nonadjacent fingers, which has been interpreted
as evidence that adjacent fingers interact more than nonadja-
cent fingers (Hsieh et al., 1995; Biermann et al., 1998; Ishibashi
et al., 2000; Friedman et al., 2008; Lipton et al., 2010). However,
whether adjacent finger interactions are stronger across all
regions of the sensorimotor cortex is not known. We investi-
gated this by fitting two variants of the full 2-finger interaction
model, either including only the interaction terms for either ad-
jacent or nonadjacent finger pairs. Using only the nonadjacent
pairs resulted in significantly lower model performance in all
regions compared with using all finger pairs (all t(9) � –5.609,
all p� 0.0003; Fig. 4F). When we used the adjacent finger pairs,
the model performance was not significantly reduced in BA 4p
(t(9) = –0.605, p= 0.5600), BA 4a (t(9) = –2.793, p= 0.0210), and

Figure 4. Multifinger activity patterns in sensorimotor cortex. A, Exemplar activity patterns from the participants displayed in Figure 3A. B, Representational model fits were normalized to
the null model (0) and the noise-ceiling (1) in each region in each participant. Dots indicate the mean and error bars indicate SEM across participants per region. C, Surface map of the linear
model fit (median across participants) in tessels where there were significant differences between all finger combination patterns (average paired dissimilarities between finger combination
patterns�0.005). D, Difference between the fits of the 2-finger interaction model and the linear model in each tessel (median across participants). E, Difference between the noise-ceiling and
the fit of the 2-finger interaction model in each tessel. The color scale for C is different from that for D, E. F, The full 2-finger interaction model (red line) was compared with a model that
only contained the adjacent (black markers) or the nonadjacent (white markers) finger pairs. *p, 0.05, significantly lower model fits compared with using all 2-finger interactions (two-sided
paired t test).
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BA 3a (t(9) = –1.318, p= 0.2199) when correcting for multiple
comparisons (a value = 0.0083). In contrast, the fits in BA 3b,
BA 1, and BA 2 were significantly lower (all t(9) � –4.611, all
p� 0.0013). Together, this suggests that, in posterior regions of
the sensorimotor cortex, interactions between both adjacent and
nonadjacent finger pairs were important in explaining the multi-
finger activity patterns. Furthermore, a significant region�model
interaction (F(5,45) = 3.199, p=0.0148) indicated that the effect of
finger adjacency differed across regions. In BA 2, the predictive
power of adjacent or nonadjacent interactions was comparable
(two-sided paired t test: t(9) = –1.403, p=0.1941), whereas nonad-
jacent interactions were significantly less important in all other
subregions (all t(9) � –3.090, all p� 0.0130). This suggests that BA
2 shows strong interactions between finger pairs regardless of fin-
ger adjacency.

Complexity of finger interactions increases along
sensorimotor cortex
Thus far, we have demonstrated that population activity across
sensorimotor cortex strongly represents 2-finger interactions.
However, to provide the neural substrate necessary to skillfully
manipulate an object held in the entire hand, the sensorimotor
system needs to be able to detect specific patterns of stimulation
across all fingers. Therefore, we should find evidence for integra-
tion of information across more than two fingers.

In BA 3b and BA 3a, the 2-finger interaction model provided a
good fit to the multifinger activity patterns. In these regions, the
model performance of the 2-finger interaction model was very
close to the noise-ceiling model, accounting for 98.426 0.38%
and 95.376 2.40% of the reliable pattern variance, respectively.
While a small significant difference remained in BA 3b (two-sided
paired t test: t(9) = 4.162, p=0.0024), the 2-finger interaction
model explained the activity patterns as well as the noise-ceiling
model in BA 3a (t(9) = 1.916, p = 0.0877). Thus, neural popu-
lations in BA 3b and BA 3a do not appear to provide a
unique, and hence linearly separable, representation of all
possible multifinger combinations.

In contrast, the predictive performance of the 2-finger inter-
action model was still lower than the noise-ceiling in the other
regions (all t(9) � 3.142, all p� 0.0119; Fig. 4E). We therefore
considered the interactions of three fingers in our models (see
Materials and Methods). By including 3-finger interactions, we
were able to explain the activity patterns as well as the noise-ceil-
ing model in BA 4a (t(9) = 2.183, p=0.0569). In BA 4p, BA 1, and
BA 2, however, performance was still significantly lower than the
noise-ceiling (all t(9)� 2.731, p� 0.0232). Only after including 4-
finger interactions were we able to fully explain the activity pat-
terns in these remaining regions (all t(9) � 2.154, p� 0.0597).
This suggests that the interactions in the most anterior and pos-
terior regions of the sensorimotor cortex are more complex,
involving nonlinear interactions between three or more fingers.
Therefore, our results appear to indicate that BA 1, BA 2, and
also BA 4 integrate sensory information arriving from multiple
fingers to create a unique representation of specific patterns of
multifinger stimulation.

Finger interactions do not reflect a general suppression of
activity
There is, however, an alternative and relatively simple mecha-
nism that could give rise to the poor performance of the linear
model in subregions of the sensorimotor cortex. Specifically, it
may be the case that the single-finger activity patterns combine
linearly, but that the overall activity in each region is scaled in a

nonlinear fashion. Such nonlinear scaling could arise from divi-
sive normalization of the overall activity within the region, or
from nonlinearities between neural activity and the BOLD
signal.

To test this, we expanded the linear model to allow for non-
linear scaling of overall activity (see Materials and Methods).
Indeed, this linear–nonlinear model provided a significantly bet-
ter fit than the original linear model in all BA regions (two-sided
paired t test: all t(9) � 6.105, all p� 0.0002; Fig. 4B). This alone
should not be too surprising, given that the average activity did
not scale linearly with the number of fingers stimulated (Fig. 2B).
Importantly, however, the predictive performance of the 2-finger
interaction model remained significantly better than that of
the linear–nonlinear model in BA 3a, BA 3b, BA 1, and BA 4 (all
t(9) � 3.395, all p� 0.0079). Although this difference was not sig-
nificant in BA 2 after applying Bonferroni correction for multiple
comparisons (t(9) = 3.291, p= 0.0094, a value= 0.0083), the 2-fin-
ger interaction model still accounted for 15.236 4.63% more
pattern variance in this region. Furthermore, compared with the
higher-order interaction models, the linear–nonlinear model
performed substantially worse in BA 2 (vs 3-finger: t(9) = –2.837,
p= 0.0195; vs 4-finger: t(9) = –3.715, p=0.0048), and more gener-
ally across the sensorimotor cortex (Fig. 4B). Therefore, the non-
linearities captured by our multifinger interaction models likely
reflect complex interactions that arise between specific sets of
finger patterns, rather than simply reflecting a general nonlinear
scaling of activity across the region.

Discussion
In this study, we investigated how somatosensory information
coming from the fingers is integrated in different areas of the
sensorimotor cortex. We hypothesized that to guide skillful
object manipulation, the sensorimotor system needs to be able to
detect relatively arbitrary combinations of sensory inputs across
fingers, requiring nonlinear integration of any pair, triplet, and
quadruplet of fingers. We reported that voxels in BA 3b tend to
be selectively tuned to the inputs from a single finger, whereas
regions anterior and posterior show less finger specificity, even
after we controlled for differences in signal to noise. In previous
work, this broader tuning to multiple fingers has often been
interpreted as evidence for finger integration (Iwamura et al.,
1993; Martuzzi et al., 2014). However, spatial overlap itself only
suggests that individual fingers are represented in overlapping
neural populations, it does not necessarily mean that information
from different fingers is integrated. By using the full set of multi-
finger combinations and representational model analyses, we
could show that the multifinger patterns could not be explained
by a simple linear combination of the single-finger patterns.
Rather, most regions showed clear nonlinearities, which not only
reflected interactions between pairs of finger pairs, but by any
combination of multiple fingers.

An important strength of our experimental design was
that it allowed us to test whether the observed nonlinearities
really reflected integration of information across the fingers.
Alternatively, a relatively simple explanation for our results
is that the activity patterns caused by single finger stimula-
tions are simply summed but that the overall activity is then
suppressed in a nonlinear fashion. Previous studies have
been unable to distinguish between these two explanations,
as they used very few multifinger combinations, making it
difficult to dissociate global nonlinear activity suppression
from unique nonlinear interactions (Gandevia et al., 1983;
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Hsieh et al., 1995; Biermann et al., 1998; Ishibashi et al.,
2000; Hoechstetter et al., 2001; Ruben et al., 2006; Lipton et
al., 2010; Brouwer et al., 2015). Having stimulated all possi-
ble multifinger combinations, we had sufficient leverage to
distinguish between these two possibilities and were able to
rule out simple global suppression. That is, the interactions
we report in this paper likely reflect rich, nonlinear integra-
tion of sensory inputs from the fingers.

The fit of the linear combination model was greatest in BA
3b, where neurons have receptive fields that are largely restricted
to single fingers (Sur, 1980; Iwamura et al., 1993) and preferen-
tially code for tactile features that can be extracted from local
spatial regions such as stimulus edge orientation (Hyvärinen and
Poranen, 1978a; Bensmaia et al., 2008). However, this is not to
say that multifinger integration was entirely absent in BA 3b.
Indeed, consistent with previous work (Reed et al., 2008, 2010;
Lipton et al., 2010; Thakur et al., 2012), we found significant fin-
ger pair integration in BA 3b. Interactions were stronger between
adjacent fingers, indicating that the majority of integration that
occurs in BA 3b is across spatially close distances, as previously
reported (Reed et al., 2008).

Moving posterior from BA 3b to BA 2, we observed progres-
sively more complex multifinger interactions, with evidence for
nonlinear interactions of all possible multifinger combinations in
BA 2. This complexity matches the changes in tactile feature
preference of individual neurons, shifting from local tactile fea-
tures such as edge orientation (Bensmaia et al., 2008) to higher-
order features that span multiple fingers such as object curvature
(Yau et al., 2013). The interactions also occurred for finger pairs
of increasing spatial distance. Indeed, the interactions between
adjacent and nonadjacent fingers were equally strong in BA 2.
Such broad spatial integration is important for extracting spa-
tially invariant higher-order tactile features of an object (Yau et
al., 2016). Together, these observations provide empirical sup-
port for the hypothesis that tactile inputs from the hand are
progressively elaborated along the sensory cortical pathway
(Hyvärinen and Poranen, 1978b; Phillips et al., 1988; Iwamura,
1998).

We also examined sensory processing in the hand area of M1,
which has commonly been ignored in previous work. Although
BA 4 is traditionally viewed as a motor area, it receives substan-
tial inputs from the somatosensory thalamus (Jones, 1975;
Darian-Smith and Darian-Smith, 1993) and from various areas
of S1 (Ghosh et al., 1987). Therefore, neural populations in this
region may also be involved in integrating tactile inputs from the
fingers, perhaps for rapid behavioral responses to object displace-
ments (Crevecoeur et al., 2017; Hernandez-Castillo et al., 2020).
Our results demonstrate that there were finger interactions
in BA 4, and the strength of these interactions was compa-
rable to those in BA 2. However, it is not clear whether
these interactions arose specifically within BA 4 or reflect
inputs from BA 1 or BA 2.

What benefit does nonlinear integration of information
across fingers provide? From an ethological standpoint, nonlin-
ear finger integration allows for a more flexible mapping between
sensory inputs and motor responses. For example, consider the
scenario where you are holding a cup in your hand. Any move-
ment of the cup across your fingers, be it slipping downward out
of your hand or rotating outward out of your hand, needs to be
countered with an increase in grip force if the goal is to stabilize
the cup in your grasp (Cole and Abbs, 1988). However, the
appropriate response at more proximal muscles will be quite dif-
ferent in these circumstances. Downward movement of the cup

will largely require activation of muscles that radially deviate the
wrist and flex the elbow, whereas outward cup rotation will largely
require activation of muscles that deviate the wrist but not flex the
elbow. In general, the appropriate muscle recruitment pattern cannot
be determined by a linear readout of inputs from each individual fin-
ger, since this could produce unnecessary or even counterproductive
responses. Only nonlinear integration of the slip signals would
allow the mapping of these different patterns of sensory inputs to
the appropriate patterns of muscle recruitment.

Our results are in agreement with recent evidence from
multiwhisker stimulation studies in rodents, where specific
combinations across whiskers are uniquely represented by
neural populations in the rodent barrel cortex (Laboy-Juárez
et al., 2019; Lyall et al., 2021). Like the human hand, the
rodent whisker system has evolved to support complex spa-
tial-temporal interactions with the environment. Together
with our current results, this suggests that nonlinear integra-
tion between somatosensory inputs occurs when the detec-
tion of complex sensory patterns is ethologically significant.

In our experiment, we required participants to remain attentive
to the finger stimulation. Processes of selective attention have been
shown to modulate neural firing rates in response to finger stimula-
tion (Hsiao et al., 1993). To what degree are our findings caused by
raw sensory input, and to what degree did our specific mismatch
detection task influence somatosensory processing? Although our
task required the comparison of the pattern of stimulation across
fingers to a visual stimulus, the visual stimulus was only presented
after the somatosensory stimulation. At themoment of finger stimu-
lation, participants had no expectation as to which finger combina-
tion would be stimulated. Therefore, the initial and dominant
response observed in the fMRI data should reflect bottom-up soma-
tosensory processing. More importantly, the mismatch task did not
require integration of sensory information across fingers. Accurate
performance could be achieved by simply judging sensory informa-
tion from each finger in an independent manner. Therefore, if our
mismatch task did induce any bias in the observed finger represen-
tations, the bias is more likely to be toward an independent repre-
sentation of finger-specific inputs.

In general, it is very likely that task demands will influence
how sensory information from the hand is processed (to some
degree). Indeed, neural populations in S1 are modulated by
inputs fromM1 (Goldring et al., 2014), and the neural state of S1
is strongly influenced by the planning of upcoming actions (Gale
et al., 2021; Ariani et al., 2022). Such modulation is important, as
the processing requirements of somatosensory information
depend on the task at hand. For example, the reaction to object
slip depends not only on the direction of the slipping object
(Häger-Ross et al., 1996), but also on the perceived physical
properties of the object (i.e., how “object-like” the simulation is)
(Ohki et al., 2002) and the behavioral goal (Hernandez-Castillo
et al., 2020). We may therefore expect that, to provide support
for flexible sensory-motor mapping, the way that information is
integrated across fingers changes with behavioral context. Thus,
the next challenge is to probe how such top-down influences al-
ter the integration of somatosensory inputs across fingers.
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