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We studied the changes that neuronal receptive field (RF) models undergo when the statistics of the stimulus are changed
from those of white Gaussian noise (WGN) to those of natural scenes (NSs), by fitting the models to multielectrode data
recorded from primary visual cortex (V1) of female cats. This allowed the estimation of both a cascade of linear filters on
the stimulus, as well as the static nonlinearities that map the output of the filters to the neuronal spike rates. We found that
cells respond differently to these two classes of stimuli, with mostly higher spike rates and shorter response latencies to NSs
than to WGN. The most striking finding was that NSs resulted in RFs that had additional uncovered filters compared with
WGN. This finding was not an artifact of the higher spike rates observed for NSs relative to WGN, but rather was related to
a change in coding. Our results reveal a greater extent of nonlinear processing in V1 neurons when stimulated using NSs
compared with WGN. Our findings indicate the existence of nonlinear mechanisms that endow V1 neurons with context-de-
pendent transmission of visual information.

Key words: adaptation; data-driven modeling; primary visual cortex; receptive field; stimulus statistics; visual information
processing

Significance Statement

This study addresses a fundamental question about the concept of the receptive field (RF): does the encoding of information
depend on the context or statistical regularities of the stimulus type? We applied state-of-the-art RF modeling techniques to
data collected from multielectrode recordings from cat visual cortex in response to two statistically distinct stimulus types:
white Gaussian noise and natural scenes. We find significant differences between the RFs that emerge from our data-driven
modeling. Natural scenes result in far more complex RFs that combine multiple features in the visual input. Our findings
reveal that different regimes or modes of operation are at work in visual cortical processing depending on the information
present in the visual input. The complexity of V1 neural coding appears to be dependent on the complexity of the stimulus.
We believe this new finding will have interesting implications for our understanding of the efficient transmission of informa-
tion in sensory systems, which is an integral assumption of many computational theories (e.g., efficient and predictive coding
of sensory processing in the brain).

Introduction
Our understanding of sensory coding in the visual system is
largely based on the stimulus–response characterization of neu-
rons. Traditionally, a basic set of stimuli (e.g., bars or gratings)
was used to parameterize neuronal responses in terms of a re-
stricted choice of stimulus parameters [e.g., orientation, spatial
frequency (SF)]. This analysis allowed the measurement of tun-
ing functions. However, such techniques provide only partial
understanding of the neuronal response function and are partic-
ularly limited when the processing is nonlinear.

Later methodological improvements enabled the recorded
responses of neurons to be characterized using statistically richer
stimuli (Van Steveninck and Bialek, 1988; Schwartz et al., 2001;
Ringach et al., 2002; David et al., 2004; Sharpee et al., 2004;

Received Mar. 29, 2021; revised May 8, 2022; accepted May 11, 2022.
Author contributions: A.A., H.M., and M.R.I. designed research; A.A., S.H.S., M.Y., Y.J.J., H.M., and M.R.I.

performed research; A.A. and H.M. contributed unpublished reagents/analytic tools; A.A. and S.H.S. analyzed
data; A.A., H.M., and M.R.I. wrote the paper.
This work was supported by the Australian Research Council Centre of Excellence for Integrative Brain

Function (Grant CE140100007), the National Health and Medical Research Council (Grant GNT1106390), and
the Lions Club of Victoria.
S.H. Sun’s present address: Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical

School, Boston, MA 02114.
M. Yunzab’s present address: Department of Neurosurgery, Massachusetts General Hospital, Harvard

Medical School, Boston, MA 02114.
*H.M. and M.R.I. contributed equally to this work.
The authors declare no competing financial interests.
Correspondence should be addressed to Hamish Meffin at hmeffin@unimelb.edu.au.
https://doi.org/10.1523/JNEUROSCI.0664-21.2022

Copyright © 2022 the authors

5198 • The Journal of Neuroscience, June 29, 2022 • 42(26):5198–5211

https://orcid.org/0000-0003-4307-6841
mailto:hmeffin@unimelb.edu.au


Touryan et al., 2005; Chen et al., 2007). Recently, appropriate
mathematical tools for a comprehensive neuronal characteriza-
tion under arbitrary stimulus regimes have emerged (Rapela et
al., 2010; Fitzgerald et al., 2011; Williamson et al., 2015; Liu et al.,
2016). A prime example is the probabilistic framework wherein
model estimation is performed by maximizing the likelihood of
the model given the recorded responses and stimuli (Kouh and
Sharpee, 2009; Park and Pillow, 2011; Park et al., 2013). An
example of this framework, which we have adopted, is the non-
linear input model (NIM; McFarland et al., 2013; Almasi et al.,
2020). In this case, characterization is achieved by estimating the
parameters of a receptive field (RF) model. Typically, the model
first applies a cascade of linear filters on the stimulus. In the sec-
ond stage, static nonlinearities map the output of the linear filters
to neuronal spike rates.

How do these characterizations depend on the choice of the
stimulus? To answer this question, first it is essential to control
for artifactual fits, because the fitting method may extract the
statistical regularity inherent in the stimulus rather than the
stimulus–response relationship. This can be overcome by using
maximum likelihood estimation as it provides an unbiased and
consistent estimate. Second, it is possible that the system adapts
to the stimulus statistics such that the stimulus–response rela-
tionship is altered. In this case, it is the system that changes over
some finite period of time because of the ongoing relative pres-
ence of different types of features. Third, stimuli with different
statistics may simply allow us to sample different modes of oper-
ation of a neural circuit (Butts, 2019). For example, some modes
of operation are effectively unobservable if the stimuli that drive
these modes are not included in the set. In this case, including
the missing stimuli would immediately engage the new mode of
the circuit, revealing new types of processing of these stimuli,
while leaving the processing of the previous stimuli, via other
modes, unaltered. Here, our experiments aim to explore the last
two points.

We studied the changes that the cortical RFs undergo when
presented with different image statistics. We applied the NIM to
the recordings of single cells in cat primary visual cortex (V1;
Fig. 1a). Cells were stimulated with two types of stimuli with dis-
tinct statistical properties: white Gaussian noise (WGN) and nat-
ural scenes (NSs), with the same global root mean square (rms)
contrast. WGN has a Gaussian distribution of contrasts, with
a heavy overemphasis on low contrasts. NSs have more high
contrasts and tend to be sparser. The NIM makes minimal

assumptions about the kind of underlying neuronal proc-
essing and fits the RF filters as well as nonlinearities that
neurons use to pool the output of their filters (McFarland et
al., 2013; Almasi et al., 2020). We estimated for each cell the
spatial filters constituting the neuronal RF and their corre-
sponding nonlinearities. The number of spatial filters for
each cell is determined by a validation technique over a test
dataset.

We found that V1 cells respond differently to the two stimu-
lus types, with mostly higher spike rates and shorter response
latencies to NSs than to WGN. Responses of V1 cells to NSs
revealed the presence of more RF filters compared with WGN.
This difference was not related to the higher spike rates of cells
to NSs. Instead, we found that specific feature-contrasts attain
much higher values in NSs compared with WGN and are
believed to be responsible for the differences in the number of
RF filters. Our findings imply that V1 cells adapt to the statistics
of the visual stimulus to improve their coding efficiency, which
enhances their capacity for information transmission.

Materials and Methods
Experimental design

Preparation and surgery. Extracellular recordings were made primar-
ily from area 17 in cat cortex, but some recording locations were on the
border with area 18, making unequivocal identification difficult. As both
areas are retinorecipient, we refer to our recordings as being from V1.
Recordings were made from V1 in six anesthetized cats using methods
described previously (Meffin et al., 2015; Almasi et al., 2020; Sun et al.,
2021). Experiments were conducted according to the National Health
and Medical Research Council Australian Code of Practice for the Care
and Use of Animals for Scientific Purposes. All experimental procedures
were approved by the Animal Care Ethics Committee at the University
of Melbourne (ethics ID 1413312).

Anesthesia was induced in three adult female cats (2–6 kg) with an
intramuscular injection of ketamine hydrochloride (20mg/kg, i.m.) and
xylazine (1mg/kg). The cats were intubated, cannulated, and placed in a
stereotaxic frame. Once intubated, oxygen and isoflurane (1–2%) were
used to maintain deep anesthesia during all surgical procedures. A crani-
otomy was performed to expose cortical areas 17 and 18. Isoflurane was
used during the surgery because it is safe for humans. Anesthesia was
switched to gaseous halothane in a fully closed system during data re-
cording (0.5–0.7%), and the depth of anesthesia was determined bymoni-
toring a variety of standard indicators (Sun et al., 2021). Halothane was
used during recordings because it has been shown to maintain anesthesia
but have a less suppressive impact on cortical responses (Villeneuve and
Casanova, 2003). To avoid eye movements during recordings, muscular
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Figure 1. a, Schematic diagram of the NIM used in this study to characterize the spatial structure of V1 receptive fields. b, Diagram depicts the concept of the feature space of a cell using
its RF filters. The feature space contains any linear weighted sum of the RF filters.
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blockade was induced and maintained with an intravenous infusion of
vecuronium bromide at a rate of 0.1mg/kg/h. Mechanical ventilation was
used to maintain end-tidal CO2 between 3.5% and 4.5%. After an experi-
ment, the animal was humanely killed without regaining consciousness
with an intravenous injection of an overdose of barbiturate (pentobarbital
sodium, 150mg/kg). Animals were then perfused immediately through the
left ventricle of the heart with 0.9% saline followed by 10% formol saline,
and the brain extracted.

Visual stimuli and data recording. Visual stimuli were generated
using a ViSaGe visual stimulus generator (Cambridge Research System)
on a calibrated, g -corrected LCD monitor (1920� 1080 pixels; refresh
rate, 60Hz; response time, 1ms; model VG248QE, ASUS) at a viewing
distance of 57 cm. WGN and NS stimuli comprising 90� 90 pixels over
30° of the visual field were used to estimate the neuronal receptive fields
of V1 cells using the NIM framework (see Materials and Methods
below). The WGN and NS images used in the stimuli had a mean value
equal to the mid-luminance of the display monitor. The WGN images
had an SD chosen to result in a 10% saturation rate for individual pixels
(i.e., the mean had a normalized intensity of 0.5), and 10% of pixels had
a value of either 0 or 1, corresponding to the lowest and highest lumi-
nance of the monitor. The NS stimuli comprised 90� 90 pixels and were
randomly extracted image patches from a database of natural images
(Van Hateren and Van der Schaaf, 1998). Each NS stimulus block con-
tained patches that were drawn from 100 randomly chosen images in the
database, with each image 1536� 1024 pixels. Both WGN and NS stim-
uli had their global rms contrast matched, which was set to;0.3. WGN
and NS stimuli were presented in separate blocks of 12,000 images and
with blocks interleaved to ensure the physiological comparability of the
recordings. Each image frame was presented for 1/30 s, followed by a
blank screen of mean luminance (intensity, 0.5), displayed for the same
duration in blocks of 12,000. The blank period aimed to increase the
overall response of the cell to the stimuli by increasing the temporal con-
trast. The total duration of a block was;14min.

Extracellular recordings were made with single shank probes with
iridium electrodes (linear 32-electrode arrays, 6 mm length, 100mm elec-
trode site spacing; NeuroNexus), which were inserted vertically using a
piezoelectric drive (Burleigh inchworm and 6000 controller, Burleigh
Instruments). Extracellular signals were acquired from 32 channels
simultaneously using a CerePlex acquisition system and Central software
(Blackrock Microsystems) sampled at 30kHz and 16 bit resolution on
each channel. Filtering was performed by postprocessing.

Postprocessing and spike sorting. Spike sorting of recordings was per-
formed using KiloSort (Pachitariu et al., 2016) and the graphical user
interface phy (Rossant et al., 2016). Single units were identified as previ-
ously described in the study by Almasi et al. (2020).

Statistical analyses
Model definition and parameters estimation. We have used an

adapted version (Almasi et al., 2020) of the NIM, originally introduced
by McFarland et al. (2013). The model is depicted in Figure 1a and
describes the firing rate of the cell as a nonlinear function of the input
stimulus, as follows:

r ¼ F
XK

k¼1

gk ckð Þ

0
@

1
A; (1)

where ck ¼ hk � s is termed the feature-contrast of the stimulus s with
respect to the spatial filter hk, which is defined as their inner product.
The model cell conceptually sums inputs from K parallel synaptic input
streams, which are determined as a hyperparameter of the model, to give

a generator potential, � ¼
XK

k¼1
gk ckð Þ. Each input is determined by

an arbitrary function gk �ð Þ of the feature-contrast ck of filter hk, which is
called the input function and captures the processing performed by one or
more presynaptic neurons. The number of input streams K (i.e., RF filters)
for each cell is determined using a statistical significance test described
below. The function F �ð Þ gives the overall spiking nonlinearity of the cell

that converts the generator potential into firing rates and is described using

a parametric representation as F vð Þ ¼ alog 11exp
v� g

a

� �� �
1d .

The model assumes that the responses Robs ¼ fR 1ð Þ; :::;R Tð Þg (inte-
ger spike counts) to the presented set of mutually independent stimuli
S ¼ fs 1ð Þ; :::; s Tð Þg follow a Poisson distribution function:

p RobsjSð Þ ¼ rRobs exp �rð Þ
Robs!

; (2)

where r is the firing rate function described in Equation 1. The spike
counts for each stimulus were obtained by pooling all the spikes that
occurred after the stimulus presentation within a window that had a du-
ration equal to the presentation period (1/30 s) shifted by a certain la-
tency. The latency was estimated for each cell based on poststimulus
time histograms (PSTHs), which clearly revealed the time of response
onset, to maximize the mean response to the NSs and WGN. The esti-
mation of the response latency was achieved by fitting a von Mises func-
tion to the PSTH of the response of the cell to each stimulus block, and
later by averaging across different recordings to give the estimate. The
estimation of the model parameters (spatial filters, input functions, and
spiking nonlinearity) was obtained simultaneously by maximizing the
log-likelihood of the model given the stimuli and their evoked responses.
The reader is advised to refer to the study by Almasi et al. (2020) for
comprehensive details about the model and the simultaneous estimation
procedure, including the steps taken to avoid obtaining only local
optima.

Significance test to determine the number of RF filters. We deter-
mined the number of spatial filters within the receptive field of each cell
using cross-validation. In doing so, the number of filters for each cell
was systematically varied while the statistical significance of each filter
was evaluated by bootstrapping. For this, we divided the data into a
training set, which comprised four-fifths of the data, and a test set, which
comprised the other one-fifth of the data. For each specified number of
filters, we used the training set to estimate the filters, and then assessed
the performance of the model by computing its log-likelihood using
resampling from the test set (this was repeated 500 times). Thus, for
each number of filters, we found a distribution for the log-likelihood
computed on the test set. The optimal number of RF filters was found as
the combination of filters in the model that gave the significantly highest
log-likelihood on the test set (z score. 2; Hastie et al., 2008). We
rejected adding additional filters that did not lead to a significant
improvement in the log-likelihood for two reasons. First, including any
filter that led to a greater log-likelihood value without checking whether
this was significant could result in adding a filter that gave a greater log-
likelihood by chance. Second, we found that beyond a point, additional
filters tended to lie in the same subspace (up to noise) as the model with
fewer filters. This typically coincided with the point at which adding
more filters did not lead to significant improvements in the log-likeli-
hood. Technical details of implementing this test are given in the study
by Almasi et al. (2020).

Estimation of response latency and strength. The latency in the
response to the stimulus was obtained by fitting a von Mises distribution
defined as follows:

R tð Þ ¼ R0 1A exp k cos
2p t � t0ð Þ

T

� �
� 1

� �� �
; (3)

to the response PSTH, for each stimulus recording. Above, T ¼ 67 ms,
and RðtÞ represents the response PSTH t 2 0;T½ �, which indicates the
presentation time of a stimulus image followed by a blank image each
for 1/30 s. A least-square error fit of the above curve to the response
PSTH was found to identify the parameters R0, A, k, and t0. The curve
fitting was performed by the lsqnonlin function in MATLAB.

For the response latency analysis, we defined the latency td as the du-
ration between stimulus onset and when the response PSTH reaches
a ¼ 0:1 of the difference between the maximum (Rmax ¼ R t0ð Þ) and the
minimum (Rmin ¼ R t0 � T=2ð Þ) responses. Solving for td, it is found as
follows:
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td ¼
t0 � T

2p
cos�1 c1ð Þ if t0 .

T
2p

cos�1 c1ð Þ
T1 t0 � T

2p
cos�1 c1ð Þ otherwise

;

8>><
>>: (4)

where

c1 ¼ 11
1
k
log

c2 � R0

A

� �
;

and

c2 ¼ aA 1� exp �2kð Þ� �
:

As described previously in the Model definition and parameters esti-
mation section, the response of V1 cells to each image was obtained by
counting the number of spikes that occurred during a window of the
same duration as the image was presented on the screen and to the cell
(i.e., T/2 = 1/30 s). Knowing when the maximum response occurred, and
assuming that the response curve is symmetric around its maximum (as
it is in a von Mises distribution), we aimed to collect the maximal num-
ber of spikes for model estimation that fell within a 1/30 s window after
stimulus onset. This can be done by collecting all spikes that fall within
1/60 s of the maximum response. Therefore, only for the purpose of RF
estimation, we obtained the responses of cells by (1) finding when the
maximum response occurred in the response PSTH, which is equivalent
to t0 in the von Mises function, and (2) go back and forth T/4 = 1/60 s in
time and collect spikes within [t0 – T/4, t0 1 T/4].

The parameters of the von Mises fit were obtained by minimizing
the mean squared error between the fitted and actual response PSTHs of
each stimulus recording. For each ;14min block of WGN or NS stim-
uli, a separate PSTH fit was performed. The quality of the fitted curves
was assessed using an r2 goodness-of-fit measure. Fits with r2,0:8 were
excluded from the latency and spike rate analysis. Overall, all cells had
good fits for at least two blocks for both NSs andWGN, and the r2 of the
fits formed a distribution with a mean of 0.96 and a median of 0.97. The
response latency was averaged across different stimulus presentations to
account for the change in the response latency because of any change in
the neuronal physiological states. The response strength is defined as the
maximum firing rate in impulses per second (ips) in the response PSTH
to each stimulus, averaged across different stimulus blocks, and was
obtained as Rmax ¼ R t0ð Þ.

Feature-contrast. The output of the linear filtering stage in the model
indicates the similarity between the visual input and the spatial structure
of the filter. The authors have previously demonstrated that the output
of the filter can be described in terms of rms or Michelson contrast of
the spatial structure (the feature) of that filter embedded in the visual
stimulus, hence defined as the feature-contrast (Almasi et al., 2020).
Furthermore, the feature-contrast corresponding to the RF filter of a cell
can be interpreted as the local contrast of the stimulus when projected
onto that filter.

Feature-contrast range. Feature-contrast is defined as the output of
the spatial RF filters. If the cell has only one RF filter uncovered by
WGN, the feature-contrast of RF filters on WGN follows a univariate
normal distribution with an SD of swn. In this case, the range of feature-
contrast on WGN stimuli is measured as Rwgn ¼ �3swn; 3swn½ �. If the
cell has two RF filters uncovered by WGN, their feature-contrast on
WGN follows a bivariate normal distribution. Since there is no ortho-
gonality constraint on RF filters in the NIM, this distribution can
in general have an elliptical (correlational) form. We decorrelated
this distribution by performing singular value decomposition analy-
sis and obtained a canonical distribution. We then found SDs of this
distribution along its two canonical axes swn

1 , swn
2 . These two values

are not necessarily the same, but in our experience they were found
to be very close. We define the range of feature-contrast on WGN as
Rwgn ¼ �3swn; 3swn½ �, where swn ¼ max swn

1 ;swn
2ð Þ. This measure

can be easily generalized to WGN RF dimensions greater than two,
wherein the WGN feature-contrast follows a multivariate Normal
distribution.

To find the distribution of the feature-contrast for NS RF filters
when using NS stimuli, we performed the same procedure that was
explained above. After obtaining the canonical (decorrelated) dis-
tribution of NS feature-contrast, we found NS stimuli that lie
inside a ball (or hyperball) with a radius equal to Rwgn. This subset
of NS stimuli is referred to as matched-feature contrast-NS stimuli,
and results in a distribution of feature-contrast for NS RF filters
that are within the range of feature-contrasts of the WGN RF fil-
ters on WGN stimuli.

Neuron feature space. The RF filters of a neuron identified using the
NIM framework will span a space that is termed the feature space of a
neuron (Fig. 1b). Mathematically, this feature space is equal to the col-
umn space (H) of the matrix collecting all the RF filters as its columns
H ¼ h1 � � � hm½ �, where m denotes the number of RF filters. The feature
space, by definition, contains all possible linear combinations of the RF
filters of the neuron, as follows:

H ¼
Xm
k¼1

akhk

( )
; 8ak 2 R:

Results
We studied the spatial structure of V1 receptive fields in anesthe-
tized cats identified using both WGN and NSs as stimuli. The
recorded neurons were visually stimulated with interleaved
blocks of WGN and NSs to increase the biological comparability
of the recordings made with both stimuli (six blocks of 12,000
stimuli per block for each stimulus type). The spatial RFs were
uncovered using the NIM framework by maximizing the log-
likelihood of the model given the pairs of stimuli and responses,
which was done over the set of all model parameters simultane-
ously. The temporal RF of cells was left out in the modeling
framework as (1) we wanted to investigate the changes that are
brought about in the visual feature selectivity of cells, and (2) the
used stimuli did not have enough temporal correlation to allow
decent estimation of the temporal RF.

Differences between the V1 response profiles to WGN and
NSs
Although we did not study here the temporal aspects of the
neuronal RFs, we observed major differences in the way
that neurons responded to WGN and NS stimuli in terms of
their response strength and latency (Fig. 2a). Generally, V1
cells responded more strongly to NS stimuli (;78% higher
spike rates) than to WGN (Fig. 2b; mean 6 SD: 7.86 4.9 vs
4.46 3.3 ips). Furthermore, almost all cells showed longer
response latencies to WGN than to NS stimuli, with an av-
erage difference of ;14.26 6.0 ms (Fig. 2c; mean 6 SD:
WGN = 28.26 6.3 ms vs NSs = 13.96 4.7 ms).

V1 RFs unveiled by NSs are typically higher dimensional
compared with those withWGN
We successfully uncovered spatial RFs for 92 orientation-selec-
tive V1 cells using either NSs or WGN. Among these 92 cells, 87
cells had RFs uncovered using NSs, 58 had RFs uncovered using
WGN, and 53 cells had RFs uncovered successfully using both
stimulus types (of 70 cells that were driven by both stimulus
types). In addition to the 92 cells with oriented RFs, we also
uncovered RFs for 58 other cells whose RFs were nonoriented.
According to a recent study (Sun et al., 2021), these cells might
be of thalamic origin and whose axons terminate in V1. Hence,
since we were not certain about the cortical origin of these addi-
tional 58 cells with nonoriented RFs, we excluded them from our
RF analysis.
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Figure 3a presents the spatial RFs of an example V1 cell
uncovered using the NIM framework under both NSs and
WGN. The most striking difference between these two model fits
emerges in the number of spatial filters. Using the same number

of stimulus images, the RF characterization using WGN and NSs
identified one versus three spatial filters, respectively. This was
typical in our population of V1 cells, with a majority of cells
(78%) having more spatial filters identified using NSs than WGN

Figure 3. a, Spatial RF structures of a V1 cell uncovered using the NIM and with NSs (top) and WGN (bottom). For each model characterization, only the spatial filters and input functions
are shown as the spiking nonlinearity has a parametric log-exponential form. The abscissa in the input functions denotes the percentage of feature-contrast in terms of Michelson contrast. The
scale on the ordinate is the same across all nonlinearities, but the values omitted as they are in units of input to the spike nonlinearity (log(11 exp(x))). Red and blue in the filters indicate
ON and OFF subregions of the filters, respectively. b, Distribution of the number of spatial filters per each V1 cell, for the RFs uncovered using WGN and NS stimuli. c, Scatter plot shows the
number of RF filters uncovered using NS versus WGN stimuli, for each V1 cell. Data points are jittered so as to provide a clearer view. The inset superimposed bar graph gives the distribution of
the difference between the number of RF filters between NSs and WGN.
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Figure 2. a, PSTH of a V1 cell in response to WGN (magenta) and NSs (green). There is a noticeable difference in the response delay between WGN and NSs, with NSs having faster rise
time and therefore shorter delay. b, c, Scatter plots compare response profiles of V1 cells to WGN and NS stimuli in terms of firing rate (b) and response latency (c). Gray data points indicate
cells for which the difference between WGN and NSs was not statistically significant (unpaired t test, p. 0.05). All cells that had a significant difference between their WGN and NS response
patterns showed higher firing rates and shorter response latency to NSs than to WGN. The plots show the results of cells whose response PSTHs were modulated by both WGN and NS stimuli
(n= 70).
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(Fig. 3b,c). On the contrary, only a small fraction (8%) of cells
had more uncovered spatial RF filters using WGN than NSs. The
distribution of the difference between the number of uncovered
spatial filters using WGN and NSs (no. of NS filters – no. of
WGN filters) for the same cells varied from �1 to 4 (Fig. 3c,
inset) but is asymmetric and heavily skewed to positive values.
We investigate possible causes for having identified more spatial
filters for RFs using NSs thanWGN in the following sections.

Comparison of the feature spaces uncovered with WGN and
NSs
How does the identified spatial feature sensitivity of each cell
depend on the type of stimulus (WGN or NSs) used to estimate
the model? For a given model, the set of spatial features to which
the cell is sensitive is determined by its RF filters. The diagram in
Figure 1a represents the RF model of a cell with multiple spatial
filters. This cell is sensitive to any feature in an image corre-
sponding to one of its RF filters, but also any feature that is a lin-
ear weighted sum of its RF filters. This can be understood
because such a summed feature would drive each RF filter and
hence neural response. The set containing all possible linear
weighted sums (i.e., linear combinations) of the RF filters is
referred to as the feature space of the cell (see Materials and
Methods). Figure 1b shows how we represent the feature space
of the model cell. Different linear combinations of the features,
corresponding to RF filters, are represented as distinct points
in the feature space. (Note that, mathematically, the original RF
filters could, in principle, be replaced by any other filters that
span this space, provided that the nonlinear function that is
applied to the subspace to predict spike rate remains unchanged.
The new filters will be weighted sums of the original filters. In
this sense, the choice of RF filters is not unique, but the space
they span is.)

As most cells had at least as many RF filters uncovered using
NSs compared with WGN, we investigated whether the WGN
feature space (Hwgn) was a subspace of the NS feature space
(Hns). In general, the WGN feature space can take any of the
three illustrated forms in Figure 4a–c relative to the NS feature
space. Namely, the WGN feature space (1) resides completely in
the NS feature space, (2) is orthogonal to the NS feature space,
and (3) neither sits completely within nor is orthogonal to the
NS feature space. In the first case, the WGN feature space is a
proper subspace of the NS feature space, while in the second case
there is no overlap between WGN and NS feature spaces. In
practice, even if the WGN feature space of a cell is essentially a
subspace of its NS feature space, it is unlikely that the estimated
feature spaces will precisely coincide because of noise in the
model estimation process. In our data, initial estimates of feature
spaces for all cells fell into the third category described above.
However, it is necessary to determine whether the part of the
WGN feature space that is not in the NS feature space is statisti-
cally significant. To do this, for each cell we first decomposed
each WGN RF filter into the following two components: (1) a
component that was the projection of the WGN RF filter onto
the NS feature space, termed the projected component, which
lies in the NS feature space Hns (Fig. 4c, black-colored vector),
and the space spanned by these projected components is termed
the WGN-projected feature space, denoted by Hproj

wgn; and (2) a
component that is orthogonal to both the first component and
Hns (i.e., it sits outside the NS feature space Hns), termed the re-
sidual component (Fig. 4c, gray-colored vector).

Our visual inspection of the above components showed that
in most cases the residual components of WGN RF filters, while
nonzero, were noisy and had no meaningful structures (Fig. 4d).
This suggests that they may not contribute significantly to model
predictions. If this was so, then Hwgn may be considered to be
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Figure 4. a–c, The relationship between the uncovered WGN and NS feature spaces. d, The first row shows the four RF filters of a V1 cell identified using NSs. The second row from left to
right shows the single RF filter of the same cell uncovered using WGN, its projection onto the NS feature space spanned by NS RF filters (shown in the first row), and its residual component
that does not lie into the NS feature space. e, Bar plot shows fractions of V1 cells for which WGN feature space is equal to a proper subspace or is not a subspace of the NS feature space.
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effectively a subspace of Hns. To determine whether this was the
case, we compared the predictive ability of the original WGN
model with that of a model that was restricted to operate on only
WGN-projected feature space, Hproj

wgn (i.e., with the residual com-
ponents removed; see Materials and Methods). After refitting the
RF nonlinearities of this model on the WGN-projected feature
space, we evaluated the performance of both models on a with-
held WGN dataset. For a majority (90%) of cells in our V1 popu-
lation, the test showed an insignificant change in the model’s
predictive ability, indicating that Hwgn may be replaced byHproj

wgn,
which is a subspace of Hns (Fig. 4e; unpaired t test; p . 0.05).
Hence, these cells had their Hwgn equal to (17% of units) or a
proper subspace (73% of units) of Hns. For these cells, the resid-
ual components can be principally regarded as estimation errors.
However, for the remaining minority (10%) of cells their
response was predicted significantly less well by the new model
usingHproj

wgn, indicating thatHwgn could not be considered to be a
subspace ofHns in these cases.

Different dynamic range of V1 RF filters on NSs andWGN
The spatial filter’s output quantifies the contrast level of the cor-
responding feature as it appears embedded in the WGN or NS
stimuli, which is termed the feature-contrast (see Materials and
Methods). It is a way of quantifying the contrast of those features
within an image that drive a particular cell. While the overall rms
contrast of the WGN and NSs was matched for our stimuli, the
distribution of contrast of particular features could differ

between WGN and NSs because of their inherent statistical
structure. For those features to which cells were sensitive, we of-
ten noticed considerable differences between the levels of fea-
ture-contrast between WGN and NSs. This is evident from
Figure 5a, in which graphs show the distributions of feature-con-
trast of a typical V1 RF filter (inset) for WGN (magenta) and
NSs (green). The abscissa indicates the feature-contrast that is
computed as the output of a normalized (unit norm) filter when
applied on the stimuli. The presented distributions differ signifi-
cantly in their spread. Defining a range of feature-contrast to
span 63 SDs (see Materials and Methods), the range of feature-
contrast of the filter in Figure 5a on WGN and NS stimuli was
measured as 1.7 and 5.9, respectively. It can be shown that these
amounts correspond to;10% and ;35% of the Michelson con-
trast of the feature.

The distribution of the range of feature-contrasts for the pop-
ulation of V1 RF filters uncovered using WGN and NSs is given
in Figure 5b, which demonstrates significant differences between
these two stimulus types across the V1 population. Here, feature-
contrast is computed as the output of normalized (unit norm)
RF filters when applied on the stimuli. Such a pronounced differ-
ence arises because of the nature of the stimuli in relation to the
feature sensitivity of V1 cortical neurons. As stated before, the
differences between WGN and NS stimuli are in terms of sec-
ond-order and higher-order statistical dependencies between
pixels, which are ubiquitous in NSs but do not exist in WGN.
The higher-order statistics of NSs mainly account for structures
like edges, curves, and contours in these images. Of course, many

Figure 5. a, The graphs show the empirical distribution of feature-contrasts of an example V1 RF filter (inset) obtained on WGN (magenta) and NSs (green). a.u., arbitrary units. b, Bar
graphs plot distributions of the range of the feature-contrast for the population of V1 RF filters on WGN (magenta) and NSs (green). c, Strong resemblance between the Gabor-like filters and
the patterns that occur ubiquitously in NSs indicate significantly larger values for the output of these filters (i.e., feature-contrast) on NSs compared with WGN. Gabor filters are depicted as
bands of red (ON) and blue (OFF) that are superimposed on parts of the scene that show a perfect match with their spatial structures.
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V1 cells are highly responsive to these features because they have
Gabor-like-oriented RF filters. Accordingly, numerous occasions
can occur in natural scenes in which a Gabor-like RF filter of a
V1 cell is partially or highly matched with a feature in the scene
(like the ones illustrated in Fig. 5c). This results in large values at
the output stage of V1 RF filters, namely, the feature-contrast of
the filter. This provides an intuitive explanation for the higher
range of feature-contrasts of V1 RF filters on NSs than on WGN
(Fig. 5b). Further, this considerable difference between the distribu-
tions of feature-contrast for V1 RF filters on WGN versus NSs
implies that the dynamic range of RF filter outputs that drive V1
cells is significantly larger when operating on NSs than onWGN.

Difference in the feature-contrast response functions
We examined how the nonlinear response of each cell to feature-
contrast depended on stimulus type (i.e., WGN vs NSs). In the
case of cells with multiple spatial filters, this feature-contrast
response function determines how the cell pools those corre-
sponding features in the visual input to give a response. For cells
with equal numbers of RF filters between WGN and NSs, we use
the feature directions that are shared between the uncovered
WGN and NS feature spaces to compare the response functions
between the two stimulus regimes. The shared dimensions
between the two feature spaces correspond to the WGN RF fil-
ters projected onto the NS feature subspace (i.e., Hproj

wgn). As we

showed earlier, for most V1 cells (90%) the uncovered WGN fea-
ture space resides within the NS feature space. For cells that had
more NS feature dimensions than WGN, we compare response
functions on the feature directions that were shared between the
two feature spaces, and also on NS feature directions that were
orthogonal to the shared dimensions.

For simplicity, we begin by presenting the comparison of the
response functions of cells that have a single RF filter using both
WGN and NSs. For these cells Hproj

wgn is the same as Hns (since
there is only one filter dimension). For most cells, such as that
illustrated in Figure 6, the WGN and NS feature-contrast
response functions did not coincide and were significantly differ-
ent (Fig. 6b, bottom, filled symbols; unpaired t test; p , 0.001).
Note that the comparison of feature-contrast response functions
can only be made on the smaller shared domain of these func-
tions, which corresponds to the range of feature-contrast for
WGN (Fig. 6b). Cells often exhibited a change in their response
functions between WGN and NSs that were akin to the pattern
shown in Figure 6b. Qualitatively, the changes were often charac-
terized by an increase in spike rate in response to WGN over
NSs at the same low level of shared feature-contrast (Fig. 6b, bot-
tom). Note that despite this, the overall mean spike rate to NSs
was often higher than to WGN, presumably because the level of
feature-contrast was higher for NSs.

Figure 7a–c presents the response functions for a cell that had
multiple but equal feature dimensions on both WGN and NSs.
Here, the comparison is similarly performed on the WGN-pro-
jected filter dimensions. Figure 7d–f shows the response func-
tions for a cell that had more NS feature dimensions than
WGN. In this case, the comparison is performed on the feature
dimensions that were shared between the two feature spaces
(WGN-projected filter dimensions; Fig. 7e) and the NS feature
dimensions that were orthogonal to the shared dimensions
(NS-orthogonal dimensions; Fig. 7f).

We quantified these changes using an index of normalized
difference between area under the curve (nD-AUC) of the
WGN and NS feature-contrast response functions (Fig. 8a).
This index was calculated for the polarity of feature-contrast
to which the cell showed the strongest response dependency.
The difference between the area under the curve of WGN
and NS response functions is depicted using the yellow high-
lighted area in Figure 8a, which indicates how different the
WGN response function is from the NS response function
within the WGN feature-contrast range (Rwgn). To obtain a
normalized index (nD-AUC) that varies between �1 and 1,
we divided the yellow highlighted area by the gray-shaded
area, which is determined by the WGN feature-contrast
range (Rwgn), the maximum response of the cell within this
range to either WGN or NSs (Rmax), and the response of the
cell at zero feature-contrast (R0). We computed this normal-
ized index for the cells whose feature-contrast response func-
tions featured a significant difference between WGN and
NSs (unpaired t test; p , 0.001). Positive and negative values
of nD-AUC indicate that the WGN response function sits ei-
ther significantly above or below the NS response functions,
respectively, within the WGN feature-contrast range. Across
our population of V1 cells, 52 of 53 cells (98%) showed a pos-
itive value of nD-AUC, indicating that for them the NS fea-
ture-contrast response functions sit below the WGN
response functions across the shared (projected) feature
directions between NSs and WGN (Fig. 8b, blue bars). For
only one cell, the change between the NS and WGN response
functions was statistically indistinguishable (at p = 0.001
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Figure 6. The changes observed in the feature-contrast response functions of V1 cells
because of the change in the stimulus statistics from WGN and NSs. a, RF filters estimated
using the NIM and with NS (left) and WGN (right) stimulation for an example V1 cell. b,
Top, Comparison of feature-contrast response functions identified using WGN (magenta) and
NSs (green) for the same V1 cell. Bottom, Comparison of the same functions with zoom
images into the range of WGN feature-contrast.
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confidence level). For cells whose dimensionality of WGN
feature space was less than that of NS feature space, we con-
sidered and compared the response nonlinearities on the
shared dimensions as well as the NS feature dimensions that
were orthogonal to the shared dimensions. In contrast to the
shared feature dimension, for orthogonal feature dimensions
the nD-AUC indices were negative (Fig. 8b, gray bar), which
is related to the trivial (i.e., constant) dependency of WGN
response functions. Most positive nD-AUC indices vary between
0.1 and 0.4, with a peak at 0.3. Most negative nD-AUC indices
vary between�0.2 and�0.4.

Similar nonlinear phenomena in response functions have
been previously reported in motion-sensitive cells in the visual
system of a fly in response to statistical changes in the stimulus
(Fairhall et al., 2001).

Explaining the observed changes between the two stimulus
regimes
For most V1 cells, the uncovered RF using NS stimuli
reveals a larger repertoire of feature sensitivity compared
with the RF structure revealed with WGN (Figs. 3a, 4d).
The larger repertoire can be an indication of more complex
feature selectivity and also the capacity for invariance
(Almasi et al., 2020).

Here, we postulate different hypotheses that might explain
the observed differences between the identified RFs of V1 cells
using NS andWGN stimulus regimes.

The observed changes are not artifactual nor methodological
One may suspect that the observed changes are methodologically
related to our RF identification technique, because the fitting
procedure may extract statistical regularities inherent in the stim-
ulus, rather than the stimulus–response relationship. This has
been long considered to be a strong possibility for some RF iden-
tification techniques such as spike-triggered average and covari-
ance when used in conjunction with statistically rich stimuli such
as NSs (Paninski, 2003; Sharpee et al., 2004; Schwartz et al., 2006;
Kouh and Sharpee, 2009). However, this is not an issue here
since we used maximum likelihood estimation, which is an
unbiased and consistent estimation method, thereby, minimiz-
ing the possibility of artifactual RF filters obtained using NSs
(Paninski, 2004).

Greater number of RF filters using NSs are not because of higher
spike rates
We found that neurons in V1 were usually more responsive to
NSs than to WGN. One theory is that the larger number of
uncovered RF filters with NSs is related to the higher spike rates,
because more spike data are available for the NIM fitting. The
logic behind this suggestion is that having more spikes for fitting
might lead to better fits, which might identify more significant
filters. We assessed this hypothesis by performing a control anal-
ysis to understand the effect that spike count (number of spikes
per stimulus image) might have on the number of uncovered
spatial filters. This analysis was performed for the cells that met
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Figure 7. a, RF of a V1 cell that resulted in an equal number of filters identified using the NIM and with NSs (left) and WGN (right). b, c, Top panels, Comparison of the feature-contrast
response functions of the same cell estimated using WGN and NSs, on the presented WGN-projected filters. Bottom panels, Comparison of the same functions with zoom images into the range
of WGN feature-contrast. d, e, RF of a V1 cell that had two filters identified using NSs but had one filter using WGN. e, f, Comparisons of the feature-contrast response functions are given with
the same conventions as in b and c.
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the following three criteria (n= 32): (1) they responded to NSs
with a higher spike rate than to WGN stimuli; (2) they had their
RF uncovered using both WGN and NSs; and (3) they had more
RF filters uncovered using NSs than using WGN stimuli. This
control analysis corrected for the higher spike rates on NSs by
matching the NS spike rate to the spike-rate recorded on WGN
stimuli. This was done by randomly sampling spikes from the
spike train of the cell in response to NS stimuli until the speci-
fied spike count for WGN was reached. After matching the
spike counts of the cells between WGN and NSs, we performed
our statistical significance test (z score. 2; see Materials and
Methods) to determine the number of spatial filters within the
RF with the matched (controlled) spike count for NSs. Most
cells (83%) still had more filters within the RF identified using
matched spike count-NSs than using WGN (Fig. 9a), indicating
that for most cells identifying a larger numbers of RF filters
using NSs is not attributed to there being more spikes for these
stimuli compared with WGN.

As an additional check that our model fitting procedure cor-
rectly estimated the number of filters for WGN compared with
NSs, we refitted the model nonlinear functions to WGN, but
provided the larger set of RF filters estimated for NSs as fixed pa-
rameters in the model fitting. This test considered the possibility

that our model-fitting procedure might fail to estimate the full
set of filters obtained for NSs because of some flaws. If this was
true, the refitted model with all the NS RF filters should have bet-
ter predictive ability on a withheld WGN dataset, compared with
the original WGN model with fewer RF filters. Nonetheless, our
analysis proved that the models with the full set of NS RF filters
never provide a better predictive ability than the simpler WGN
models when tested on a withheld WGN test set. This supports
the conclusion that a model fitted to NS data typically had a
higher dimensional feature space compared with those fitted to
WGN.

The observed changes cannot be fully explained by a small signal
effect
Another possible explanation for the smaller number of RF fil-
ters typically found for WGN compared with NSs could be a
small signal effect. In summary, when the stimulus is changed
from NSs to WGN, the small signal effect hypothesis proposes
the following: (1) there is a restriction in the range of feature-
contrast; (2) there is a reduction in the number of RF filters;
and (3) the response functions of WGN and NSs in the re-
stricted range of feature-contrast present in WGN are statisti-
cally indistinguishable.
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Figure 8. a, Quantitative characterization of the difference between the feature-contrast response functions of an example cell uncovered with WGN (magenta) and NSs (green) using the
introduced index of normalized difference between the area under the two curves (yellow colored area). b, Bar graphs present the fraction of V1 cells whose feature-contrast response functions
during WGN stimulation was significantly above (nD-AUC. 0) or below (nD-AUC, 0) their response functions during NS stimulation, on feature dimensions that were shared (projected, blue
bars) between the two feature spaces, or were orthogonal to the shared feature space (orthogonal, gray bars). No change corresponds to those that did not show any significant changes in
their feature-contrast response functions between WGN and NSs.

Figure 9. Results of the control analyses performed to investigate the greater number of RF filters for NS RFs. The blue bars show the difference between the number of RF filters uncovered
using NSs and WGN for cells that had more filters present in their NS RF. a, Cells included also responded with higher spike counts to NSs than they did to WGN. a, b, The orange bar graphs
show the difference between the uncovered filters for the controlled NS RF and WGN as cell spike counts to NSs were matched to WGN stimuli (a), and cell NS RFs were stimulated with WGN
stimuli that were presented to the same cells during the actual experiment and filters were recovered based on the simulated experiment (b). c, The same as in b but the simulated spike
counts for each model cell in the WGN stimulation were fixed to the actual experimental values.
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The argument in support of this effect is that stimuli with dif-
ferent statistics allow us to sample different operational regimes
or modes of the visual system. Some modes might be effectively
unobservable or cannot be estimated using some stimulus types
because there are insufficient stimuli containing particular fea-
tures to allow reliable estimation. Recall from the “Different
dynamic range of V1 RF filters on NSs and WGN” section that
the range of feature-contrast withWGN was significantly smaller
than that for NSs. It could be that within the more restricted
range of feature-contrast present in WGN that the two models
(NSs and WGN) are not significantly different from each other.
In particular, if this were the case for the extra dimensions of a
model fitted to NSs, the feature-contrast response functions
should be statistically indistinguishable from the feature-contrast
response functions of the model fitted to WGN, which is equal to
zero in these dimensions. In this hypothesis, the additional filter
dimensions present in the model fitted to NSs are only able to be
identified because the feature-contrast in NSs becomes sufficiently
large to identify a response that departs significantly from zero.

In our population of V1 data, we found no cell that showed
any such small signal effect based on the criteria set out by the
small signal effect hypothesis. For every cell where we found a
reduction in the number of RF filters when the stimulus was
changed from NSs to WGN, we also found a significant change
in their feature-contrast response functions within the restricted
range of feature-contrast of WGN.

To further address the small signal effect, we performed an
additional set of control analysis as follows. If the additional fil-
ters recovered with NSs relative to WGN are the result of adapt-
ive (or other physiological) changes, and not simply a small
signal effect, then it should be possible to recover the full set of
filters from the simulated responses of the NSs-fitted model,
even when the feature-contrast signal is small, as per WGN.
Thus, for each cell, we stimulated the NSs-fitted model with the
same WGN stimuli presented to the cell and repeated the RF re-
covery process for that model neuron. This recovery process typ-
ically resulted in fewer RF filters than the original NSs fitted
model, most frequently giving no additional filters or just one
additional filter. This might be indicative of a small signal effect
for some cells (Fig. 9b). However, we also noticed that for most
cells, the simulated responses to WGN with the NSs fitted model
gave far fewer spikes than those elicited during the actual WGN
stimulation in our experiment. These significantly reduced spike
counts can bias the RF recovery process to give fewer RF filters
than the true number. The number of spikes in the simulated
WGN stimulation were reduced because, within the range of fea-
ture-contrast of WGN, the feature-contrast response functions
of the NSs fitted models were significantly smaller than the mod-
els fitted to WGN (Fig. 6b, compare green curves, magenta
curves). This demonstrates that the difference between the mod-
els uncovered using NSs and WGN is not only in the number of
RF filters, but also in significant changes between the feature-
contrast response functions. To control for this, we repeated the
same analysis by fixing the spike count to that obtained for
WGN during the experiment. For most cells, the number of
uncovered RF filters using WGN stimulation of the NSs fitted
model was found to be greater than the number of filters uncov-
ered during the actual WGN stimulation in the experiment (Fig.
9c), although the number of filters was sometimes not as great as
the number in the original NSs fitted model. Together, these
analyses indicate there is a substantial increase in the number of
RF filters uncovered with NSs relative to WGN, even after small
signal effects are accounted for.

Adaptation among other nonlinear phenomena to explain the
changes
Based on our analyses, it appears that the changes in the RFs of
V1 cells as a result of changes in the stimulus from NSs to WGN
are brought about by nonlinear phenomena. A possible explana-
tion for these results may be the adaptation of cells to stimulus
statistics. This is a potential explanation for the changes that we
have observed in the RFs of V1 cells under WGN and NS stimu-
lation. That said, our analyses cannot entirely rule out the possi-
bility of other effects influencing the RFs, such as surround
suppression, or end-stopping, which have been found for V1
cells when probing with basic visual stimuli such as bars and
gratings.

In our V1 data, all cells underwent nonlinear effects in their
response functions manifested as a significant amplification in
their feature-contrast response functions across the restricted,
shared feature dimensions when the stimulus changed from NSs
to WGN. However, across the feature dimensions that were or-
thogonal to the shared space (i.e., NS-orthogonal), WGN fea-
ture-contrast response functions exhibited trivial dependencies,
resulting in a significant reduction in the response function
when the stimulus was switched from NSs to WGN (Fig. 8c).

Changes in the characteristics of RF filters
A thorough comparison between the WGN and NS feature
spaces can be achieved by sampling features from these spaces
and calculating the range of characteristics (e.g., orientation,
spatial frequency, and spatial phase) of those sampled features
(Almasi et al., 2020). However, this is a very significant project
and is beyond the scope of the present article. One issue that
hinders direct comparison of the characteristics of RF filters
between WGN and NSs is the change in the number of RF fil-
ters. This can be particularly problematic when comparing the
orientation characteristics between filters as we occasionally
observed cells whose extra NS RF filters showed misalignment
in their orientation preferences. To allow comparison with pre-
vious work (Sharpee et al., 2006), here we will consider spatial
frequency. We found that changes in spatial frequency were less
problematic. We computed and compared the peak spatial fre-
quency and spatial frequency bandwidth of filters within the same
cell between the WGN and NS RFs. Preferred spatial frequency was
preserved (Fig. 10a; r ¼ 0:58). The spatial frequency bandwidth
showed a lesser degree of correlation (Fig. 10b; r ¼ 0:24). While the
overwhelming finding for most cells was a similarity in spatial fre-
quency tuning, at the population level there was a statistically signif-
icant bias toward filters with higher spatial frequency and narrower
spatial frequency bandwidth during NS stimulation (unpaired t test;
p, 0.01).

Discussion
We studied cat V1 RFs, estimated using the NIM, when V1 cells
were stimulated with WGN and NSs. For most V1 cells, we
found that the RFs uncovered using NSs resulted in more filters
than did WGN. The use of NSs led to an increase in spike rate,
but this was not the cause of the increased number of filters.
Rather, we believe it is attributed to the wider range of feature-
contrasts generated by RF filters when using NSs.

Contrast
The WGN and NSs used in our experiments, though matched in
global rms contrast, are different in their local contrast because
of their different statistical regularities (Frazor and Geisler,
2006). WGN lacks any second-order and higher-order statistics
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and is spatially stationary (i.e., local statistics of random patches
are independent of where in the scene the patches are sampled).
Unlike WGN, NSs have strong second-order and higher-order
statistics and are highly spatially nonstationary. Our findings
indicate that the larger range of feature-contrasts of V1 RF filters
using NSs, compared with WGN, is because of the differences in
the statistics of the two stimulus types that are generated by dif-
ferences in their local contrasts. In this context, feature-contrast
can serve as an indication of local contrast in a scene.

Adaptation
Our results suggest the existence of nonlinear phenomena affect-
ing V1 RFs (e.g., adaptation in the visual system), which may
occur because of changes in stimulus statistics. Additional non-
linear phenomena such as surround suppression (Jones et al.,
2001; Webb et al., 2005; Wissig and Kohn, 2012) or end-stopping
(Bolz and Gilbert, 1986; DeAngelis et al., 1994) outside the classi-
cal RF may also contribute to the observed changes. Although
our RF characterization technique does have the ability to reveal
the latter effects, it is possible that they were very subtle or not
localized enough to be identified.

Adaptation is often defined and charac-
terized using a model-dependent approach
(Baccus and Meister, 2002). In general,
any change in the model parameters
describing neuronal RFs, or any change in
the description of the model is considered
to be an adaptation effect. In the latter
case, the model is no longer capable of
describing the neuronal responses to the
original scene after adaptation to a new
scene. Since merely adjusting the parame-
ters of our model when transitioning from
WGN to NSs, or vice versa, is inadequate
for describing the neural data, our results
reveal that a change in stimulus statistics
necessitates using a different model.

A number of studies have investigated
the adaptation caused by image statistics
in the visual system (David et al., 2004;
Felsen et al., 2005; Sharpee et al., 2006;

Lesica et al., 2007; Tka�cik et al., 2014). Pronounced changes to
RF structure can occur, particularly to inhibition, when the tem-
poral statistics of the stimuli are altered from naturalistic to ran-
dom (David et al., 2004). However, our stimuli differed primarily
in spatial, not temporal, statistics. Shapley (1997) argued that
contrast and scene statistics for a given spatiotemporal pat-
tern are tightly related, suggesting that adaptation to scene
statistics is equivalent to contrast adaptation. This is perti-
nent to the present study in which differences between the
statistics of WGN and NSs led to differences in the con-
trasts of the corresponding features in the RF of each cell,
which accordingly altered the feature-contrast response
function of the cell (but see also Lesica et al., 2007). David
et al. (2004) also noted changes in suppressive components
of spatial RFs, consistent with the role of contrast gain con-
trol when presenting NSs compared with WGN.

The dimensionality of the feature space of a cell directly
relates to the complexity of its RF. The RFs of simple cells often
comprise a single filter (Almasi et al., 2020). A shift from multi-
ple to single filters has been inferred experimentally using grating
stimuli when reducing contrast (Crowder et al., 2007; Henry and
Hawken, 2013; Cloherty and Ibbotson, 2015; Meffin et al., 2015;
Yunzab et al., 2019). Cell responses shifted from those expected
frommultifilter RFs (complex-like) to those expected from a sin-
gle filter (simple-like). A possible explanation for this switch is
adaptation to image contrast (or statistics). When presented with
WGN, RGCs adapt to the low feature-contrasts of their RF fil-
ters. This adaptation introduces a change in the feature-contrast
response functions of RGCs, known as contrast gain control
(Smirnakis et al., 1997). This leads to a reduction in the contrast
gain and consequently the threshold of the feature-contrast
response function (Fig. 11). The effect is to increase the sensi-
tivity of cells to the low feature-contrast of the stimulus by
adapting the dynamic range of the feature-contrast response
function to the stimulus contrast regime. However, this effect
might be insignificant in some RGCs and, as a result, the
change in the feature-contrast threshold may be inadequate to
improve the sensitivity of these cells to the low feature-con-
trast of WGN. Hence, some RGCs (or possibly the subsequent
cells in the lateral geniculate nucleus) might not be activated
during WGN stimulation. These cells would, accordingly,
drop out from the feedforward visual stream. The aggregate
effect on visual cortical cells could be a reduction in the

Figure 10. a, b, Scatter plots compare spatial frequency preferences (a) and spatial frequency bandwidths (BW) of the RF
filters uncovered using WGN and NSs for each cell in our population of V1 cells (b). The means of the distributions were
found to be significantly biased toward the directions indicated by the red arrows. cpd, cycles per degree.

Figure 11. Contrast gain control and response gain control adaptation phenomena, which
are often reported for visual neurons. The gray curve illustrates contrast response function
that is typical of a V1 cell. In the event of a contrast gain control effect, the contrast response
function shifts rightward (orange curve), resulting in an increase in the contrast gain (red
arrow). In the event of a response gain control effect, the contrast response function
depresses downward (blue curve), resulting in a decrease in the response gain (cyan arrow).
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number of RF filters, which indicates the effective dimension-
ality of the feature space of the cell.

An alternative explanation for the increased number of filters
revealed with NSs is that these may reflect the context depend-
ence between features that occur in natural scenes. The present
model is limited to capture such dependencies as a sum of non-
linear functions of the filters’ outputs [gk ckð Þin Eq. 1]. It is possi-
ble that other models that include explicit context-dependent
mechanisms, such as divisive gain control, may capture the
effects of the additional filters seen here in other ways (Schwartz
and Simoncelli, 2001).

Strictly for V1 simple cells, Sharpee et al. (2006) reported an
amplification in the higher SF components of the uncovered RF
filters when stimulus statistics changed from WGN to NSs. They
interpreted their results to mean that the visual system was com-
pensating for the under-represented higher SF components in
NSs to improve the efficiency of neuronal information transmis-
sion. Our results corroborate the findings of Sharpee et al.
(2006); with NS stimulation, our V1 cells tend to have RF filters
with higher SF preferences and narrower SF bandwidths (Fig.
10). However, we extend beyond simple cells as we recorded
from cells with multiple filters. Our data unveil increased num-
bers of filters and changed response functions as well as
increased SF tuning. These modifications optimize the dynamic
range of most recorded V1 cells for the given image statistics.

Such modifications may be explained by contrast adaptation.
The effects of contrast gain control for ON cells are more pro-
nounced than the effects for OFF cells in the early visual pathway
(Chander and Chichilnisky, 2001; Felsen et al., 2005; Zaghloul et
al., 2005; Ratliff et al., 2010). When switching from high to low
contrast, the response functions of OFF cells show little adapta-
tion to changes in contrast, thereby the shift to sensitivity for low
contrasts is less pronounced than in ON cells (Bonin et al.,
2006). Furthermore, OFF cells are more selective to high SF fea-
tures (perhaps because of their small dendritic fields) in the vis-
ual scene than ON cells (Ratliff et al., 2010; but see Chichilnisky
and Kalmar, 2002). The less pronounced contrast adaptation
effect in OFF cells indicates that, when switching from high to
low contrast (e.g., from NSs to WGN), some OFF cells likely ex-
hibit little contrast gain control. Therefore, the reduction in their
contrast gain is insufficient to improve their sensitivity to the
low-contrast stimulus. The reduction in the activity of such OFF
cells would propagate in the feedforward stream of the visual sys-
tem. Therefore, the reduced OFF cell input might explain the sig-
nificant reduction in the SF preferences and broadening of SF
bandwidths of cortical RF filters during WGN, because OFF cells
tend to be selective for high SFs.

Function
In most V1 cells in our study, the changes in the RFs between
WGN and NSs can be interpreted as a mechanism to increase
the amount of information encoded by the cell. Cells adapt their
feature-contrast response functions to the dynamic range of the
stimulus, and this change seems to be related to the range of fea-
ture-contrasts in the stimulus. There are changes that appear in
the shape of the response functions. Higher response gains are
allocated to the stimuli that are rare in the image, which belong
to both the positive and negative tails of the feature-contrast dis-
tributions. Such an encoding mechanism carries more informa-
tion about the stimulus (Felsen et al., 2005).

The changes in feature-contrast response functions reported
here are consistent with the contrast adaptation phenomena
reported in V1, described as both contrast gain and response

gain control (Albrecht et al., 1984; Ohzawa et al., 1985; Fig. 11).
Both effects result in a change in the response functions to match
the prevailing visual environment.

Overall, our findings conclude that V1 extracts image features
from the input in a flexible manner based on the nature of the
stimulus.
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