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The posterior parietal cortex (PPC) plays a key role in integrating sensory inputs from different modalities to support adapt-
ive behavior. Neuronal activity in PPC reflects perceptual decision-making across behavioral tasks, but the mechanistic
involvement of PPC is unclear. In an audiovisual change detection task, we tested the hypothesis that PPC is required to arbi-
trate between the noisy inputs from the two different modalities and help decide in which modality a sensory change
occurred. In trained male mice, we found extensive single-neuron and population-level encoding of task-relevant visual and
auditory stimuli, trial history, as well as upcoming behavioral responses. However, despite these rich neural correlates, which
would theoretically be sufficient to solve the task, optogenetic inactivation of PPC did not affect visual or auditory perform-
ance. Thus, despite neural correlates faithfully tracking sensory variables and predicting behavioral responses, PPC was not
relevant for audiovisual change detection. This functional dissociation questions the role of sensory- and task-related activity
in parietal associative circuits during audiovisual change detection. Furthermore, our results highlight the necessity to dissoci-
ate functional correlates from mechanistic involvement when exploring the neural basis of perception and behavior.
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Significance Statement

The posterior parietal cortex (PPC) is active during many daily tasks, but capturing its function has remained challenging.
Specifically, it is proposed to function as an integration hub for multisensory inputs. Here, we tested the hypothesis that,
rather than classical cue integration, mouse PPC is involved in the segregation and discrimination of sensory modalities.
Surprisingly, although neural activity tracked current and past sensory stimuli and reflected the ongoing decision-making
process, optogenetic inactivation did not affect task performance. Thus, we show an apparent redundancy of sensory and
task-related activity in mouse PPC. These results narrow down the function of parietal circuits, as well as direct the search for
those neural dynamics that causally drive perceptual decision-making.

Introduction
The construction of context-dependent representations of sen-
sory inputs is required to inform adaptive decision-making. This

process involves multiple functions, such as processing of stimuli
coming from different sensory modalities, evidence accumulation
and integration with past information, and finally transformation of
sensory information into an appropriate motor plan. The parietal
cortex has been identified as a key hub for these functions through
classical lesion studies in humans (Holmes, 1918; Bender and
Teuber, 1947; Denny-Brown et al., 1952), including seminal studies
on hemineglect (Vallar, 1998; Kerkhoff, 2001), and through exten-
sive work in primates (Robinson and Goldberg, 1978; Platt and
Glimcher, 1999; Freedman and Assad, 2006; Cui and Andersen,
2007; Andersen and Cui, 2009; Bisley and Goldberg, 2010). In
rodents, a key animal model to study the circuit-level mechanisms
of cognitive processes, the posterior parietal cortex (PPC) is
located at the nexus of visual, auditory, and somatosensory corti-
ces (Wilber et al., 2015; Hovde et al., 2019) and is bidirectionally
connected to sensory and motor areas, as well as to other associa-
tive cortical areas (Oh et al., 2014; Shadi et al., 2020), homologous
to primate PPC (Whitlock et al., 2008; Wilber et al., 2015).
Neurons in rodent PPC respond to visual, auditory, and
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somatosensory inputs (Wallace et al., 2004; Olcese et al., 2013;
Raposo et al., 2014; Mohan et al., 2018; Nikbakht et al., 2018).
Sensory-evoked PPC responses have been described in naive ani-
mals (Olcese et al., 2013), but PPC is mostly recruited during task
engagement (Pho et al., 2018). Neuronal activity in PPC has been
shown to reflect aspects of perceptual decision-making, such as an
animal’s decision (Funamizu et al., 2016; Goard et al., 2016;
Driscoll et al., 2017; Runyan et al., 2017; Song et al., 2017; Krumin
et al., 2018; Pho et al., 2018), accumulated evidence (Hanks et al.,
2015), trial history (Hwang et al., 2017; Akrami et al., 2018), and
working memory (Harvey et al., 2012). This combination of sen-
sory-, task-, and choice-related activity suggests an important role
in perceptual decision-making, but under which conditions PPC
is causally involved is less clear. Several studies find PPC necessary
for making decisions based on visual stimuli (Harvey et al., 2012;
Goard et al., 2016; Driscoll et al., 2017; Licata et al., 2017), but not
for tactile (Guo et al., 2014) or auditory information (Erlich et al.,
2015; Licata et al., 2017). Other studies have suggested that PPC is
causally involved in both visual and auditory tasks, but only when
additional cognitive processes beyond simple sensorimotor associ-
ations are required (Harvey et al., 2012; Funamizu et al., 2016;
Hwang et al., 2017; Licata et al., 2017; Song et al., 2017;
Akrami et al., 2018; Zhong et al., 2019).

As PPC receives converging inputs from auditory and visual
cortices and is strongly connected to (pre)motor areas, we tested
the hypothesis that PPC is required to solve tasks in which sig-
nals from two different modalities have to be compared to reach
a behavioral decision. We designed an audiovisual change detec-
tion task for which PPC is conjectured to arbitrate between noisy
inputs from different sensory channels and help decide in which
modality a sensory change occurred. In line with our hypothesis,
we found that PPC displayed rich visual, auditory, and decision-
related activity that reflected sensory processing and predicted
task performance. However, optogenetic inactivation of PPC did
not affect either visual or auditory change detection. These
results fundamentally question which function sensory- and
task-related activity in PPC may fulfill, and to what extent the
presence of rich sensory and task correlates reflects the role in
perception and behavior of a cortical area.

Materials and Methods
Data and code availability. The data and code that support the find-

ings of this study are available from authors M.N.O.L., C.M.A.P. and
U.O., on reasonable request.

Animals. All animal experiments were approved by the Dutch
Commission for Animal Experiments and by the Animal Welfare
Body of the University of Amsterdam. A total of 24 male mice was
used from two transgenic mouse lines: PVcre (JAX 008069) and F1
offspring of Pvcre (JAX 008069) and Ai9-TdTomato cre-reporter mice
(JAX 007909). Mice were at least 8 weeks of age at the start of experi-
ments and group-housed under a reversed day-night schedule (lights
were switched off at 8:00 and back on at 20:00). All experimental pro-
cedures were performed during the dark period.

Head bar implantation. Before the start of any experiment, mice
were implanted with a custom-made titanium head bar to allow head
fixation. Mice were anesthetized with isoflurane and fixed in a stereo-
taxic apparatus. A circular head bar was positioned to include V1 and
PPC bilaterally and glued and cemented to the exposed skull. Areas of
interest were located based on stereotaxic coordinates (V1 relative to
lambda: AP 0.0, ML6 3.0, PPC relative to bregma: AP 1.9, ML6 1.6)
(Goard et al., 2016; Song et al., 2017; Le Merre et al., 2018). Mice were
allowed to recover for 2-7 d after implantation and were then habituated
to handling and head-fixation before the start of the training procedure.

Audiovisual change detection task. Throughout experiments, mice
were water-deprived and earned their daily ration of liquid by perform-
ing the behavioral task. Mice were head-fixed, and two lick spouts were
positioned symmetrically on the left and right side within reach of their
tongue. Licks were detected by capacitance-based (training setups) or
piezo-electric-based detectors (recording setup). Upon correct licking, 5-
8ml of liquid reward (Infant formula, Nutrilon) was delivered through
the lick spout using gravitational force and solenoid pinch valves
(Biochem Fluidics).

Stimuli were continuously presented throughout behavioral sessions.
Visual stimuli were drifting square-wave gratings with a temporal fre-
quency of 1.5Hz and spatial frequency of 0.08 cpd at 70% contrast.
Stimuli were presented with a 60Hz refresh rate on an 18.5 inch monitor
positioned at a straight angle with the body axis from the mouse at
21 cm from the eyes. In trials with a visual change, the orientation of the
drifting grating was instantaneously changed (e.g., from 150° to 180°)
while preserving the phase. The auditory stimulus was a stationary
Shepard tone (Shepard, 1964) composed of a center tone and multiple
harmonics (2 lower and 2 higher harmonics). The center tones ranged a
full octave spanning from 213Hz (8372Hz) to 214Hz (16,744Hz). For
each given Shepard tone in this stimulus set, the weight of the center and
harmonic tones are taken from a fixed Gaussian weight distribution over
all center and harmonic tones, in this case centered at 213.5 (11,585Hz).
Stimuli were presented with a sampling rate of 192 kHz. Stimuli were
high-pass filtered (Beyma F100, Crossover Frequency 5-7 kHz) and
delivered through two bullet tweeters (300W) directly below the screen.
Sound pressure level was calibrated at the position of the mouse, and
volume was adjusted per mouse to the minimum volume that maxi-
mized performance (average670dB). In trials with an auditory change,
the stimulus was modified instantaneously from one Shepard tone to
another with a different center frequency and associated harmonics,
while preserving the phase across all compound tones. For example, an
auditory change of ¼ octave would jump from 213 to 213.25. The
amount of change determined stimulus difficulty (see also below).

Animals were trained to respond in a lateralized manner to sensory
changes in each modality: lick to one side to report visual changes, to the
other side for auditory changes (modality-side pairing was counterbal-
anced across mice). In other words, mice were required to simultane-
ously monitor both the auditory and visual modality and identify the
sensory modality in which a change occurred.

Trials were separated by a random intertrial interval (taken from an
exponential distribution with a mean of 6 s, minimum 3 s, and maxi-
mum 20 s). Trial types were pseudorandomly ordered by block-shuf-
fling: every block of 10 trials contained a mixture of trial types in a fixed
proportion but random order (8% catch trials = no change, 46% visual
trials, 46% auditory trials). For instance, each block contained on average
46% of visual trials randomly interspersed among the other trial types.
Directly after stimulus change, a response window of 1500ms followed
in which mice could obtain a reward by licking the correct side (no
reward available in catch trials). The first lick on the correct side during
the response window was immediately rewarded (median reaction time
was 324ms across all auditory hits and 407ms across all visual hits).

It is not likely that mice solved the task using short-term memory or
prolonged evidence accumulation, as mice could respond immediately
and the observed reaction times are shorter than the time windows usu-
ally considered in behavioral tasks explicitly including evidence accumu-
lation or working memory (;1000ms) (Brunton et al., 2013; Akrami et
al., 2018; Odoemene et al., 2018). However, it can still be argued that this
task could be solved, for instance, by keeping the previous orientation in
memory and comparing it with the previous one.

For each trained animal, we presented five levels of auditory and vis-
ual amount of change that spanned the perceptual range. We fitted this
psychophysical data (see below) to establish the perceptual threshold for
the visual and auditory domains for each animal. To sample sufficient
trials per condition in recording sessions, we used two levels of change
(threshold and maximal). For noncontingently exposed (NE) mice, we
used threshold values that matched those from trained animals.

As visual and auditory feature changes were associated with different
motor actions (in trained but not in NE animals), a simultaneous
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auditory and visual change would present the animal with conflicting
signals (the visual change predicts reward for licking left, auditory
change predicts reward for licking right). In a subset of sessions, we
introduced these conflict trials (25% of the trials, replacing unimodal tri-
als) and registered the choice (side of the first lick). Both sides were
rewarded in conflicting trials.

We compared multisensory trained animals (MST, n=17) with NE
animals (n=7). For NE animals, the sensory environment was identical;
both the auditory and visual stimuli were continuously presented with
the same distribution of trial types and temporal statistics as for trained
animals. However, these animals received rewards if they licked during a
hidden response window that was temporally decorrelated from the
stimuli. Spontaneous licks were therefore occasionally rewarded, and
this allowed us to compare intermittent licks, rewards, and stimuli
between trained and NEmice. Each session was terminated after 20 trials
of unresponsiveness, and these last 20 trials were always discarded from
all analyses.

We further excluded a subset of sessions from trained animals with
poor behavioral performance because of (1) a high false alarm rate to au-
ditory or visual spout (.50%, one session excluded), (2) a high lapse
rate on easiest auditory or visual trials (a threshold of .30% hit rate on
both visual and audio trials with a maximal amount of change had to be
met, two sessions excluded for low auditory performance, nine sessions
for low visual performance). In this two-alternative unforced choice
task, performance at chance level is not 50% with three response options
(lick to visual spout, auditory spout, no lick) and depends on spontane-
ous lick rates and trial type distribution.

Viral injection. Once animals were trained to asymptotic perform-
ance, we aimed at optogenetically inactivating PPC by locally express-
ing Channelrhodopsin-2 in a cre-dependent manner in PVcre mice,
therefore driving inhibitory interneurons. Mice were subcutaneously
injected with the analgesic buprenorphine (0.025mg/kg) and main-
tained under isoflurane anesthesia (induction at 3%, maintenance at
1.5%-2%) throughout the surgery. Small craniotomies (;100 mm) were
made over the area of interest (V1 or PPC) using a dental drill. A glass
micropipette backfilled with AAV2.1-EF1a-double floxed-hChR2(H134R)-
EYFP-WPRE-HGHpA (titer: 7� 1012 vg/ml, 20298-AAV1 Addgene) was
slowly lowered in the cortex, and 25 nl was injected at 700mm and 400mm
below the dura each using a Nanoject pressure injection system
(Drummond Scientific). Additional experiments continued after 3
weeks to allow for viral expression. A potential concern is that
expression of ChR2 in deep parvalbumin-expressing (PV) pyrami-
dal neurons (Tanahira et al., 2009) led to an increase rather than a
decrease of activity in deep layers. We observed no such expression
in deep pyramidal neurons of PPC (see Fig. 6B).

Neuronal recordings in PPC.We performed craniotomies on the day
before starting extracellular recording sessions. Mice were anesthetized
with isoflurane and small (;300-500 mm) craniotomies over the areas
of interest were made using a dental drill leaving the dura intact.
Craniotomies were made in the left hemisphere over V1, PPC, as well as
primary auditory cortex, and medial PFC. Only data from V1 and PPC
were analyzed for this study. The data presented from these areas were
partly recorded in the same animals. Data regarding optogenetic manip-
ulations of V1 and PPC activity were gathered in different animals.

Extracellular recordings were performed on consecutive days
with a maximum of 4 d to minimize damage to the cortical tissue.
Microelectrode arrays of 32 or 64 channels (NeuroNexus, A1x32-
Poly2-10 mm-50s-177, A1x64-Poly2-6 mm-23s-160) were slowly
inserted perpendicularly to the cortical surface until all recording
sites were in contact with the tissue. To allow for tissue stabiliza-
tion, the start of the behavioral task commenced at least 15 min af-
ter array insertion. For the recording session on the final day
before perfusion, the array was covered in DiI (Thermo Fisher
Scientific) to facilitate post hoc visualization of the electrode tract.
Neurophysiological signals were pre-amplified, bandpass filtered
(0.1 Hz to 9 kHz), and acquired continuously at 32 kHz with a
Digital Lynx 128 channel system (Neuralynx).

Optogenetics. In sessions with optogenetic interventions, a random
subset of trials (50% of trials) was associated with photostimulation.

Photostimulation started at stimulus onset and continued until the ani-
mal made a choice. Two fiber-optic cannulas (ID 200mm, NA 0.48,
Doric lenses) were connected to a 473 nm laser (Eksma Optics, DPSS
473nm H300) and positioned within 1 mm directly over the thinned
skull at the area of interest. We performed extracellular recordings si-
multaneous with photostimulation in all mice to verify the effectiveness
of inactivation, and we adjusted the laser power for each animal to the
minimum power that maximally inhibited neural activity. The horizon-
tal offset between the fiber tip and insertion site of the microelectrode
array was minimized within the limited space constraints and measured
;200-400mm (for comparison: PPC measures ;1.0-1.5 by 1.0-1.5 mm,
depending on delineation) (Lyamzin and Benucci, 2019). The range of
laser powers used was the same for PPC animals compared with V1 ani-
mals (2-15 mW at the tip of each fiber-optic cannula, corresponding to
15.9-119.3 mWmm�2). This laser power in combination with our opto-
genetic approach was previously shown to lead to effective spatial inhibi-
tion across our infected target area (Li et al., 2019). To allow rapid
control over light delivery, laser beam continuity was controlled by a
shutter (Vincent Associates LS6 Uniblitz). We stimulated with 10ms
pulses at 20Hz (40ms off, 20% duty cycle). For the photoinactivation of
V1, a stimulation scheme was used in which the pulse and interpulse du-
ration was variable with an average of 20Hz and 75% duty cycle. The
higher duty cycle of V1 inhibition versus PPC inhibition (75% vs 20%) is
unlikely to explain the difference in effect on task performance for two
reasons. First, when we investigated spiking activity relative to single
laser pulses, we observed no rebound activity during the interpulse inter-
val (see Fig. 6D). Second, the same stimulation protocol has been used in
the same laboratory to effectively silence higher visual areas to study the
impact on V1 (Oude Lohuis et al., 2021). To prevent light from reaching
the eye of the mouse, the fiber-optic cannulas were sealed with black
tape, leaving only the tip exposed. Furthermore, animals performed the
task in an environment with ambient blue pulsating light.

Pupil monitoring. The left eye was illuminated with an off-axis in-
frared light source (IR-LEDs, 850 nm) positioned to yield high contrast
illumination of both the eye and whisker pad. A near-infrared mono-
chrome camera (CV-A50 IR, JAI) coupled with a zoom lens (Navitar
50 mm F/2.8 2/3 inch 10MP) was positioned at;30 cm from the mouse
to capture a view of the lick spouts and face of the mouse. A frame-grab-
ber acquired images of 752� 582 pixels at 25 frames per second. The pu-
pil size and position were extracted from the obtained videos by labeling
the pupil center and 6 radially symmetric points on the edge of the pupil
using DeepLabCut (Mathis et al., 2018), and pupil size was quantified as
the surface area of an ellipse fit to these points.

Histology. At the end of the experiment, mice were overdosed with
pentobarbital and perfused (4% PFA in PBS). The brains were recovered
for histology to verify viral expression and recording sites. We cut coro-
nal and flattened cortical sections as described previously (Lauer et al.,
2018). For coronal sections, area borders were drawn by aligning and
overlaying the reference section from the atlas (Paxinos and Franklin,
2004). For flattened cortical sections, areas were identified based on cell
densities aligned to reference maps (Gămănut� et al., 2018).

Data analysis. Unless otherwise stated, all data were analyzed using
custom-made software written in MATLAB (The MathWorks).

Behavior: analysis of performance. Behavioral hit rates were fit with a
multialternative signal detection model (Sridharan et al., 2014). This
model extends signal detection theory (Green and Swets, 1966) for mul-
tiple signals and has been designed to accurately and parsimoniously
account for observer behavior in a detection task with multiple signals.
In our behavioral task, these are the auditory and visual signals to be
reported at different lick spouts. In this model, the decision is based on a
bivariate decision variable whose components encode sensory evidence
in each modality, and decision space is partitioned in three regions
(miss: neither evidence is strong enough, auditory response, and visual
response). In a given trial, the observer either chooses to report nothing
(no licking) or report visual or auditory stimuli (by licking left or right)
if the decision variable exceeds a particular cutoff value, the “criterion”
for each signal (the animal’s internal signal threshold for responding, in
terms of signal detection framework). We fit two versions of this model.
In sessions with two levels of change per modality (threshold and
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maximum), we fit the d9 and criterion (c) to the behavioral response
rates for each stimulus difficulty separately. This consists of fitting four
free parameters: the d9 parameters (d9vis, d9aud) and criterion parameters
(cvis, caud). In sessions with four levels of change per modality, we fit the
behavioral response rates by fitting a fixed criterion and a d9 at each
stimulus difficulty that was described by psychophysical function (three-
parameter hyperbolic function). The d9 at each stimulus difficulty fol-
lows from:

d9i ¼ d9max � xni = xni 1 sn50ð Þ (1)

where d9max is the asymptotic d9, s50 is the stimulus strength at 50% of
the asymptotic value, n is the slope of the psychometric function, and xi
is the amount of change. This consisted of fitting a total of 8 free param-
eters: d9max, n, s50, and c for each modality. These eight parameters are
presented in Figure 8.

For a detailed description of how the d9 and criterion subsequently
relate to response rates, we refer the reader to Sridharan et al. (2014).
This analysis was used before the start of experimental sessions to estab-
lish for each animal the perceptual threshold and therefore auditory and
visual stimulus difficulty to use, as well as quantify behavioral perform-
ance on control and optogenetic trials.

Behavior: regression model of choice. To test whether PPC inactiva-
tion affected other factors beyond performance averaged over trial types,
we constructed a regression model of behavioral choice (Busse et al.,
2011; Hwang et al., 2017; Akrami et al., 2018). We selected a multino-
mial logistic regression model, as in our behavioral task the animal was
presented with three discrete choice options (lick to visual spout, lick to
auditory spout, or no-go). In this model, each regressor has two weights,
where positive weights increase the probability of responding relative to
a third reference option. We chose no-go (not licking) as the reference
option, such that the linear sum of weights across regressors determine
the probabilities of the choice on a given trial through the following:

log
paudio
pno�go

� �
¼ baudio 1 b audio � X (2)

log
pvisual
pno�go

� �
¼ bvisual 1 b visual � X (3)

Where b is a bias parameter, b are sets of regression coefficients (or
weights), and X is the matrix with the values of regressor variables for ev-
ery trial. As regressors, we used information from the current and the
previous trial. Only information from up to one trial in the past was
used, as this captured the strongest effects on behavioral choice and
allowed us to test the effects of PPC inactivation. First, to construct a
null model, we included a random predictor with random values
between 0 and 1 (abbreviated to N in Fig. 9). This null model can already
predict behavioral choice above chance by matching choice fractions.
Second, we included the within-session trial number to account for non-
stationarity in behavioral choice because of satiation (T). Third, for sen-
sory information, we used the amount of visual and auditory change
(degree of grating orientation and pitch change, respectively) as a scalar
variable (both log-transformed to account for logarithmic sensitivity in
sensory systems) (Sv, SA), and sensory stimuli on the previous trial (SV-1,
SA-1). Fourth, reward on the previous trial was captured in two binary
regressors per modality (RV-1, RA-1; 0 = not-rewarded, 1 = rewarded).
Fourth, we included choice history (C-1). Because this was a detection
task with sensory stimuli at or near the perceptual threshold, licks out-
side “trials” to the auditory or visual lick spout could be interpreted as
reports of perception. Therefore, we included for choice history a binary
predictor that reflected the side of the last lick (0 = last auditory lick; 1 =
last visual lick). Last, to capture the effect of PPC photoinactivation on
choice, a binary predictor of photostimulation was included (O).

All sessions of single animals were concatenated as if it were one ses-
sion (N= 7.2 sessions on average). The model was fit on this concaten-
ated trial data per animal (N=17 animals, 58.652 trials in total) using

the glmnet package in MATLAB (Friedman et al., 2010) with elas-
tic-net regularization (a= 0.95) and threefold cross-validation.
Regularization parameter l was maximized while not decreasing
cross-validated performance. Model fit quality was assessed as the
fraction of held-out test trials in which the estimated choice
(choice with the highest probability) matched the actual choice.
We term this cross-validated model performance, and it is shown
in the figure in partial models. We used a subset of variables and
performed the same regression procedure: for instance, a model
with and without including photostimulation as a predictor to
assess the effect of PPC inactivation on model performance. The
analysis of the effects of photoinactivation was done on the 5 ani-
mals with PPC inactivation.

Neural data processing. Before spike sorting, the median of the raw
trace of nearby channels (within 400mm) was subtracted to remove com-
mon noise artifacts. Automated spike sorting and manual curation were
done using Klusta and the Phy GUI, respectively (Rossant et al., 2016).
During manual curation, each putative single unit was inspected based
on its waveform, autocorrelation function, and its firing pattern across
channels and time. High-quality single units were included as having (1)
an isolation distance.10 (Schmitzer-Torbert et al., 2005); (2) ,0.1% of
their spikes within the refractory period of 1.5 ms (Vinck et al., 2016;
Bos et al., 2017); and (3) stable presence throughout the session. This lat-
ter was quantified by binning the firing across the entire session
(;50min) in 100 time bins and only including neurons that spiked in
.90 time bins. We recorded a total of 671 neurons from 14 animals
over 32 sessions that met our criteria.

For Figure 1D, F, spike times were binned in 1ms bins, convolved
with a Gaussian window with 50ms SD, and z-scored by subtracting the
mean baseline activity and dividing by the SD of all baseline periods (�1
to�0.2 s before stimulus). For the single neuron encoding model, spikes
were binned in 25ms bins and convolved with a Gaussian window with
a 50ms SD.

Single-neuron encoding model. We constructed an encoding model
that allowed us to model, for single neurons, the time-dependent effects
of all measured variables related to the task and the animal’s behavior
simultaneously on single-trial neuronal activity. This approach is partic-
ularly useful to disentangle the different events that contribute to hetero-
geneous responses in associative regions, such as parietal cortex (Park et
al., 2014).

We included six categories of predictors: visual stimuli, auditory
stimuli, reward, licking movement, pupil size, and trial history. Binary
variables (stimulus present or not, last trial rewarded or not; all variables
except for pupil size were binary) were modeled with a series of temporal
basis functions (raised cosines) that spanned the relevant epoch of influ-
ence to fit time-dependent modulation of neuronal responses by these
predictors.

For the auditory and visual predictors, we used two kernels with
100ms SD that spanned the first 200ms after stimulus to capture the
early spiking activity and 10 kernels with 200ms SD that spanned from 0
to 2000ms after stimulus to capture the late, sustained response. A sepa-
rate predictor set was used per combination of orientation/frequency �
amount of change. For reward variables, we used 10 kernels with 200ms
SD that spanned from 0 to 2000ms relative to stimulus change in hit tri-
als (visual hit, audio hit) and 10 predictors that spanned �500ms to
1500ms relative to reward. We used reward as a single term to refer to
hit-trial specific activity (rewarded visual and auditory hits). This defini-
tion was used also in tensor component analysis (TCA) and population
decoding (see below). This definition captures activity related to correct
detection and report as well as reward-related activity, and this encoding
model dissociated this from other confounds (e.g., licking and arousal)
by exploiting the trial-by-trial variability in timing. For licking move-
ment, we used three kernels that spanned �200 to 400 ms relative to
each lick, split by lick side. To capture arousal effects, the z-scored pupil
area was included in the predictor set: with original timing and two
temporal offsets (�800 and �400 ms). We included three binary
history-dependent predictors, capturing the modality of the previ-
ous trial (visual or auditory), reward (hits or not), and choice (lick
to visual or auditory spout). Last, the trial number was included to
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account for nonstationarity in firing rate across the entire session
because of, for example, motivational signals and electrode drift,
but was not reported in figures.

The number, width, and spacing of temporal basis functions were
selected by optimizing the variance explained on a diverse subset of
representative neurons (Runyan et al., 2017). For example, the use of
trial-spanning history predictors was based on the fact that history had
an offset effect throughout the trial duration in example neurons (Fig.
3). Explained variance (EV) both on trial averages and single trials was
comparable to previously reported studies (Runyan et al., 2017;
Steinmetz et al., 2019).

This resulted in a predictor matrix of size P� T for each neuron, where
P is the number of predictors and T is the number of total time bins. The
encoding model was fit on concatenated single trials, and T is therefore the
number of trials (typically 200-500 trials) multiplied by the number of time
bins per trial (100 time bins; �0.5 to 2 s relative to stimulus change, 25ms
time bins). The encoding model (a GLM) was fit with a Poisson link func-
tion to single neuron activity with the glmnet package in MATLAB
(Friedman et al., 2010). We used elastic-net regularization (a =0.95) and
fivefold cross-validation. To maximally punish weights without losing
model fit quality, l was maximized while keeping the cross-validated error
within 1 SE of the minimum. We quantified model performance by assess-
ing the fivefold cross-validated EV in two ways. First, we computed EV over
all concatenated firing rate bins (over all single trials). Second, we computed
EV on the concatenated firing rate bins of the average firing rate for four
main trial type conditions with most trial counts (visual and auditory hits
and misses) (Runyan et al., 2017; Musall et al., 2019).

To quantify the contribution of subsets of predictors, we calculated the
single-trial EV for a firing rate prediction based on only those predictors. In
other words, we computed howmuch of the firing rate variance is explained
by only considering the weights from, for example, visual variables. This
value was compared with a shuffled distribution where the EV was com-
puted using the predicted firing rate and the actual firing rate from shuffled
trials (N=1000 shuffles). A neuron was deemed to significantly encode this
variable if it exceeded the 99% percentile of this shuffled distribution. This
permutation test approximately labeled variable encoding in single neurons
if at least 1% of the single-trial variance was explained, as we found very
similar results when we simply thresholded on 1% EV.

To quantify whether the joint encoding of variables was significantly
different from a random distribution across neurons, we shuffled
(N= 1000) the vectors of neuron indices that significantly encoded vis-
ual, auditory, and reward variables relative to each other and recom-
puted joint or unique encoding (i.e., recomputing the Venn diagram).
For instance, with 50% of neurons encoding visual and 50% encoding
auditory variables, this shuffling procedure would generate percentages
of joint audiovisual encoding neurons at;25%, against which the actual
percentage was tested (exceeding the 2.5% or 97.5% percentile, corre-
sponding to a two-sided test with p, 0.05).

Population decoding analysis. We tested whether PPC ensembles
were responsive to audiovisual stimuli and reward by training decoders
to classify (1) audio versus catch trials, (2) visual versus catch trials, (3)
visual versus audio trials, and (4) rewarded versus nonrewarded trials. In
1, 2, and 3, we included only trials with large stimulus changes.
Decoding was performed on recordings that contained at least 15 neu-
rons and 15 trials per class. Spikes were binned using a sliding window
of 100ms with 50ms increments, whereas for the insets, showing
broader temporal dynamics, we used a window of 500ms moved with
250ms increments. Trials were aligned to the moment of stimulus
change (Fig. 4A–H) or the timing of the first response lick (i.e., the first
lick occurring at least 100ms after stimulus change, Fig. 4I,J). When tri-
als were aligned to stimulus change, temporal bins containing data
before and after stimulus change (t=0) were excluded from the analysis.
Decoding was performed using a random forest classifier with 200 trees,
as implemented in Scikit-learn (Pedregosa et al., 2011), and we used a
5� 5 cross-validation routine with stratified folds (which preserves the
proportions of samples of the two classes in each fold). The average ac-
curacy obtained in the cross-validation routine was corrected by sub-
tracting the average accuracy on 300 surrogate datasets in which the trial
labels were randomly permuted to obtain the improvement in decoding
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Figure 1. PPC is recruited during audiovisual change detection. A, An auditory stimulus
(Shepard tone) and a visual stimulus (drifting grating) were continuously presented. Head-fixed
mice had to report frequency changes (e.g., lick left on auditory trials) and orientation changes (lick
right on visual trials). Gray lines indicate the psychometric fit of behavioral hit rates for individual
sessions for an example mouse. Colored lines indicate the average across sessions (n=7 sessions).
Dotted lines indicate licks to the incorrect spout. Licks at zero orientation and frequency change are
false alarms (middle of panels). The fraction of trials without a licking response is not shown but
can be inferred from the figure as they sum to 100% together with shown response rates. B, We
recorded single-unit activity in PPC. The image represents histologic verification with DAPI staining
in blue and electrode tract stained with DiI (in red) overlaid with reference section from Paxinos
and Franklin (2004). LTPa, Lateral parietal association area; V2L, lateral secondary visual cortex;
RSA/G, retrosplenial cortex (a)granular part. C, Flattened cortical section in a PvCre-tdTomato mouse
providing landmarks through cell densities in red (Gămănut� et al., 2018), with additional DiI-
stained electrode tracts in V1 and PPC (also red): V1, Primary visual cortex; LM, lateromedial; PM,
posteromedial; A, anterior; AM, anteromedial; RSP, retrosplenial; S1bf, barrel field of primary soma-
tosensory cortex. D, Heatmap of trial-averaged z-scored activity over all recorded neurons aligned to
stimulus change. Each row corresponds to one PPC neuron recorded in NE animals (left panels;
n=218 NE neurons) and MST animals (right panels; n=453 MST neurons), sorted by poststimulus
activity. E, Fraction of neurons with significantly increased or decreased firing rate (Bayesian paired
one-sided t test BF. 3, prestimulus�500 to 0ms, poststimulus 0-500ms; BF corresponds to the
ratio of likelihoods of the alternative and null hypothesis) is increased in MST versus NE animals
(x 2 two-sample tests: visual increase, p, 0.001; visual decrease, p=0.003; auditory increase,
p=0.031; but not for auditory decrease, p=0.998). Top left, Inset, Closeup of the visually respond-
ing fractions in NE mice. F, z-scored firing rate for neurons with increased and decreased rate for vis-
ual and auditory trials separately shows increased amplitude of modulation for trained versus naive
mice. Black tick mark represents median reaction time. ***p,0.001. n.s. not significant.
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accuracy beyond chance level. For every time point, we tested whether
the corrected accuracy was significantly different from 0 using Wilcoxon
signed-rank test; p values were corrected for multiple comparisons using
the Benjamini–Yekutieli method, with a significance level of 0.05. We
additionally trained decoders to classify the orientation of the drifting
gratings and the frequency of the audio tone (Fig. 4G,H). Before decod-
ing visual and auditory stimulus identity, we grouped the two pairs of
orientations/frequencies, to obtain a two-class classification problem,
and included only trials in which the stimulus changed from one pair of
stimuli to the other (max changes).

Tensor component analysis (TCA).We applied TCA (Williams et al.,
2018) to recordings that contained at least 15 neurons. As the objective
and similarity plot did not demarcate a fixed number of components to
decompose our data, we chose a rank of 8 and tested the robustness of
our analysis to different choices of rank (5 and 10 components, data not
shown). As a way of identifying components representing noise and drift
in the recordings, we filtered out components that were expressed in
,20% of units or ,20% of trials. For each component, we measured
with a ROC-AUC score how well the trial factors discriminated (1)
audio trials versus catch trials, (2) visual trials versus catch trials, and (3)
correct trials versus incorrect trials. For each AUC score, we computed
an associated p value by generating a null distribution of AUC values cal-
culated on randomly permuted trial labels and computing the fraction of
values in the null distribution which were equal or larger than the
observed AUC score. AUC scores were considered significant with
p, 0.05. For Figure 5B, C, components were labeled based on the con-
trast associated with the highest AUC score and included if the highest
AUC score had an associated p, 0.05.

Statistics. We used Bayesian statistics throughout the manuscript
(Jeffreys, 1939; Rouder et al., 2009) to facilitate intuitive interpretation of
the strength of evidence as well as establish evidence of the absence
of effects (Keysers et al., 2020). Bayesian statistics assess the likelihood of
the data under both the null and the alternative hypotheses (H0 and H1,
respectively). In most cases, we report the Bayes factor that corresponds
to the ratio of likelihoods p(data|H1)/p(data|H0), abbreviated to BF. For
instance, BF= 10 would mean that the data are 10 times more likely
under H1 than H0 providing very strong support for H1, while BF= 0.1
would mean that the data are 10 times more likely under H0 than H1

providing very strong support for H0. Generally, a BF between 1/3 and 3

indicates that the data are similarly likely under H1 and H0 and that the
data thus does not adjudicate which is more likely. A BF below 1/3 or
.3 is interpreted as supporting H0 or H1, respectively, corresponding
roughly to p, 0.05 for moderate sample sizes (Jeffreys, 1939). Evidence
of absence of an effect, where the null hypothesis is more likely given the
data, is denoted by the hashtag symbol (#) in figures, next to the stand-
ard asterisk symbol (*) for evidence for the alternative hypothesis.

We also performed classical frequentist statistics (i.e., calculating the
probability of observing the data given a hypothesis) for each test and
found nearly identical results, except for one statistical test in Figure 8C,
where the auditory threshold was slightly affected by PPC inactivation.

We made four exceptions and used the classical frequentist test when
we required a significance threshold without an available Bayesian alterna-
tive: (1) x 2 test for fractions for significant increased and decreased fractions
of PPC neurons (Fig. 1D) and (2) AUC values per TCA component versus
a shuffled distribution (Fig. 5), (3) significant time points of decoding per-
formance (Fig. 4), and (4) significant (joint) encoding of stimulus and be-
havioral variables versus shuffled distributions (Fig. 3).

Results
We trained mice to continuously and simultaneously monitor
audiovisual stimuli and respond to one lick spout for changes in
auditory frequency and the other spout for changes in the orien-
tation of a drifting grating (Fig. 1A). In other words, mice were
required to identify the sensory modality in which a change
occurred and could respond as soon as a change was detected.
Behavioral performance was analyzed using a multi-alternative
signal detection model (Sridharan et al., 2014). This model
extends classical signal detection theory to distinguish perceptual
sensitivity from choice bias in detection tasks with multiple sig-
nals (in this case, visual and auditory changes; see Materials and
Methods). Trained animals selectively reported both orientation
and frequency changes and performance increased as a function
of the amount of change (Fig. 1A). Animals were mostly tested
in these unisensory trials, in which either a visual or an auditory
change were presented, but never simultaneously. We also
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Figure 2. Increased auditory and visual responsiveness regardless of modality-side pairing. The modality-reward side pairing (which lick spout was associated with reporting changes in
which modality) was counterbalanced across MST mice, while PPC was always recorded in the left hemisphere. To investigate whether the modality-reward side pairing was associated with dif-
ferent dynamics (e.g., increased auditory responsiveness in PPC if the auditory lick spout was contralateral), we repeated Figure 1E, F for neurons based on the pairing of the animals from
which they were recorded. Data from NE mice were the same, as modalities were not associated with specific lick spouts. Results were qualitatively similar for both sets of neurons. A, Same as
in Figure 1F, but for PPC neurons contralateral to auditory lick spout. B, Same as in Figure 1F, but for PPC neurons contralateral to visual lick spout. C, Same as in Figure 1E, but for PPC neurons
contralateral to auditory lick spout. x 2 two-sample tests: visual increase, p, 0.001; visual decrease, p= 0.0149; auditory increase, p= 0.018; but not for auditory decrease, p= 0.424. D,
Same as in Figure 1E, but for PPC neurons contralateral to visual lick spout (x 2 two-sample tests: visual increase, p, 0.001; visual decrease, p, 0.001; auditory increase, p, 0.001; but not
for auditory decrease, p= 0.143). E, We tested directly whether more neurons were modulated during trials associated with a contralateral response (left PPC neurons during trials rewarded at
the right lick spout) versus ipsilateral trials. The rise in the fraction of significantly responsive neurons was not significantly different based on laterality (n= 8 fractions, BF = 0.35). *p,0.05.
***p,0.001. n.s. not significant.
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presented some truly multisensory trials,
which will be discussed later. Mice later-
alized their licks well, with occasional
licks to the incorrect spout (10.5%
errors at the visual lick spout, 14.9%
errors at the auditory lick spout).

After establishing psychophysical per-
formance, we only used two levels of
change for each modality for subsequent
sessions: threshold (individually titrated per
animal) and maximal. We first wondered
what types of task-relevant activity the PPC
displays. We compared this cohort of MST
mice to another cohort of animals that was
NE to the stimuli. NE mice were not
trained to detect changes but were pseu-
dorandomly rewarded for spontaneous
licks. We recorded single-unit activity in
mouse PPC (Fig. 1B,C), which corre-
sponds to cortical areas also referred to as
mouse lateral parietal association cortex
(Paxinos and Franklin, 2004) or anterome-
dial visual cortex (Driscoll et al., 2017;
Wang and Burkhalter, 2007). We found
that the fraction of neurons responding to
visual stimuli with changes in firing rate
significantly increased from 5% in naive
animals to 29.3% in trained animals, and
from 31.6% to 39.3% for auditory stimuli
(Fig. 1D,E). In contrast to what is com-
monly reported in primary sensory areas,
sensory stimuli both increased and
decreased firing activity of PPC neurons
(Fig. 1F). The coupling between modality
and rewarded lick spout (left or right) was
counterbalanced across mice. We found,
however, no systematic relationship for
both modalities between the associated
lick spout and evoked responses in con-
tralateral PPC (Fig. 2). We therefore show
that, in addition to visual stimuli (Pho et
al., 2018), also auditory stimuli evoke ac-
tivity increments and decrements in PPC
during task performance compared with
passive stimulation.
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Figure 3. Heterogeneous task-related responses in single parietal neurons. A, Peristimulus time histograms (PSTH) for 7
example neurons for visual and auditory trials split by decision (hit or miss; licks to incorrect spout omitted). Dashed line indi-
cates the predicted firing rate based on a kernel-based regression model. Neurons responded to visual (1) and auditory
changes (2), or changes in both modalities (3, 4) and were modulated by decision (1, 5, 6, 7). Black tick marks represent
mean reaction time in that session. B, PSTHs for example neuron (8) aligned to spontaneous licks during intertrial intervals
(or random nonlicking time points). C, PSTHs for two other example neurons conditioned on the previous trial: reward
(Example 9) and choice (Example 10), indicating history effects. We found no clear examples of neurons encoding stimulus
history. D, EV of the trial-to-trial firing rate across 0-500 ms after stimulus (this window includes lick response and reward
delivery) for each category of predictors (Bayesian ANOVA, main effect of predictor group, BF = 7.9� 1013). Data are
mean 6 SEM. E, Venn diagram showing the percentage of all PPC neurons that significantly encoded visual, auditory, or
reward, but also all combinations thereof (tested against random trial permutations, p, 0.01, corresponding roughly to
.1% EV). Gray numbers indicate where example neurons in A–C are located. F, Scatter plot of EV by vision, audition, or
reward. Each dot represents a single neuron, with the RGB color-scaled by the amount of EV for each variable (light repre-
sents high EV; dark represents low EV). Logarithmic axes were used to capture the spread in EV. The absence of clear cluster-
ing indicates heterogeneous mixed selectivity across the PPC population. G, Average variance explained by each predictor for
neurons based on cortical depth, showing that EV was not because of a subset of neurons localized to specific layers. Lines
indicate mean 6 SEM. N= 483 neurons. H, We tested whether the distribution of visual, auditory, and reward encoding

/

across neurons was different from a random distribution
based on chance (given the number of neurons significantly
encoding each of these variables). Each inset in the Venn dia-
gram shows the shuffled distribution and the actual percent-
age (in red if exceeding the 1% or 99% percentile of the
shuffle distribution). The fractions of neurons exclusively
encoding auditory stimulus features (14%) or reward (11%)
were significantly lower than shuffled, while the percentage
of neurons encoding all three variables (11%) was higher
than that expected based on a random distribution of encod-
ing across PPC neurons. So, joint encoding of auditory stim-
uli, visual stimuli, and reward was more common than
exclusive coding of auditory stimulus and reward, and also
more common than what would have been expected from a
random distribution of encoding variables across neurons.
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Figure 4. Parietal ensemble activity suffices to decode stimulus and decision. A, Accuracy of population decoding relative to chance plotted over time for random forest classifiers trained to
discriminate visual versus catch trials (blue) and auditory versus catch trials (red). Trials were aligned to the time of stimulus change. Accuracy above chance was obtained by subtracting from
the decoding accuracy the average decoding accuracy obtained after repeatedly shuffling the trial labels (for absolute decoding accuracies, see Table 1). Diamonds represent time points at
which the distribution of decoding accuracy across recordings was significantly different from chance (Wilcoxon signed-rank test, p, 0.01). Shaded bands represent 95% CIs. Vertical gray dot-
ted line and shaded band represent the median and interquartile range of lick times, respectively. Inset, Same decoding over a longer time window with larger temporal bins (similar in D and
I). B, Decoding of auditory versus catch and visual versus catch at t= 0.25 s (time bin extending from 0 to 0.5 s). Each dot is a session, where the p value for each session was computed as
the fraction of decoding accuracies obtained on shuffled data, which were larger than the observed accuracy (similar in E and H). C, Same as in A, but for individual recording sessions and lon-
ger time windows. Average decoding performance was not driven by a subset of sessions but was possible from nearly all recorded PPC populations. D, Same as in A, but for sensory modality
and reward, that is, discriminating visual versus auditory trials (purple), and rewarded versus unrewarded trials (green). E, Same as in B, but for sensory modality (visual vs auditory trials) and
reward (rewarded vs unrewarded trials). Decoding performance was significantly above chance (p, 0.05) in 13 of 14 sessions for sensory modality, and 14 of 14 for reward. F, Same as in D,
but for individual recording sessions and longer time windows. G, Population decoding of drifting grating orientation (blue) and Shepard tone frequency (red) over time (same as in A, but
with large temporal bins). Decoding aggregated across sessions was not significant overall (Wilcoxon signed-rank test, p. 0.05 for virtually all time points). H, Same as in B, but for decoding
of drifting grating orientation (blue) and Shepard tone frequency (red). Decoding performance was significantly above chance (p, 0.05) in 5 of 13 sessions for visual orientation frequency,
and 5 of 11 for tone frequency. This shows that, in a subset of recordings, not only the presence of an auditory of visual change was encoded, but also the identity of the postchange stimulus.
I, Same as in A, but for decoding rewarded versus unrewarded trials when aligned to first lick (licking activity/reward expectancy allows above-chance decoding before reaction time). Vertical
dashed green line indicates the time point at which decoding accuracy reached half of the maximum accuracy (t = �0.25 s). J, Same as in I, but for individual recording sessions and longer
time windows.
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Table 1. Absolute and shuffled population decoding accuracya

Decoding variable Trial contrast Shuffled accuracy Observed accuracy Figure

Auditory presence Auditory trials vs catch trials 0.603 (0.521-0.660) 0.741 (0.706-0.767) 4A-C
Visual presence Visual trials vs catch trials 0.588 (0.519-0.633) 0.665 (0.638-0.700) 4A-C
Modality Auditory vs visual trials 0.503 (0.503-0.507) 0.697 (0.675-0.754) 4D-F
Reward (stim-aligned) Rewarded vs unrewarded trials 0.548 (0.525-0.579) 0.734 (0.666-0.780) 4D-F
Auditory frequency Postchange frequency AB vs CD 0.528 (0.497-0.584) 0.647 (0.578-0.778) 4G,H
Visual orientation Postchange orientation AB vs CD 0.527 (0.509-0.578) 0.590 (0.551-0.674) 4G,H
aThis table reports the absolute decoding accuracy, in contrast to the performance above accuracy on shuffled trial labels as presented in the main text and Figure 4. For each of the decoded variables (first column), it lists
which two sets of trials were contrasted (second column), the median and interquartile range of the cross-validated classification accuracy on shuffled trial labels (third column), and accuracy when trained and tested on the
true trial labels (fourth column) and to which panel from Figure 4 the analysis corresponds to (fifth and last column). Decoding accuracy is performed at t= 0.25 s (time bin extending from 0 to 0.5 s).
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Figure 5. Latent dimensions of parietal population activity correspond to task-relevant components. To capture, visualize, and quantify the dominant low-dimensional neural dynamics of
population activity in PPC, we used an unsupervised dimensionality reduction technique, TCA (Williams et al., 2018). TCA decomposes population activity into a limited set of components, each
of which corresponds to an assembly of cells with rapid, common within-trial dynamics expressed across a variable set of trials. A, Three selected components from a TCA analysis of two exam-
ple sessions (8-component model; see Materials and Methods). Each row corresponds to a component (#1-3) that captures a subpopulation of neurons (unit factors, left column), that share a
temporal response profile within the trial (temporal factors, central column), which is in turn expressed differently across trials (trial factors, right column). All factors are unitless. Neurons are
ranked based on their contribution to the first plotted component, then the second, etc. Dotted line and the shaded gray (middle) panel indicate the median and interquartile range of reaction
times, respectively. The TCA decomposition is performed with no information about trial types, which are colored a posteriori. Nonetheless, the identified latent components show selective
expression in auditory (#1), visual (#2), and hit trials (#3) in both example sessions, showing that the main dimensions of population activity are task-related. B, AUC scores measure how indi-
vidual components are selectively expressed in auditory versus catch trials (red), visual versus catch trials (blue), and rewarded versus not rewarded trials (green). Darker dots represent compo-
nents whose AUC scores were significantly larger than chance (tested against random trial permutations, p, 0.05). Boxes represent the quartile and 1.5 times the interquartile range of the
significant AUC scores. White-filled dots locate the AUC scores of the three components shown in the top TCA decomposition of A. The donut plot represents the fraction of components that
have a significant AUC score for each contrast, across all recordings. #BF, 1/3. C, Averaging the time factors of all selective components from different sessions (i.e., those with a significant
AUC score, corresponding to the components marked in darker dots in B) showed a distinct temporal profile with a progression of first auditory, then visual, and last, decision components.
Shaded bands represent 95% CIs. Vertical dashed lines indicate the peak time of the averaged temporal factors.
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Sensory and behavioral correlates are heterogeneously
distributed across single parietal neurons
We next focused on characterizing single-neuron responses in
relation to stimuli and behavioral decisions. In trained animals,
these were highly heterogeneous (Fig. 3A–C). We found neurons
that responded specifically to visual (Example 1), or auditory
stimuli (Example 2), or were bimodally responsive (Examples 3,
4). Additionally, the firing rate of many neurons was modulated
during rewarded, but not unrewarded trials (Examples 5, 6) or
showed a mix of stimulus and reward-related activity (Example
7; “reward” refers specifically to hit trials and thus captures activ-
ity related to stimulus detection, report, and reward; see
Materials and Methods). Firing rates were further modulated by
spontaneous licks outside trials (Example 8), as well as by the
previous trial’s outcome (reward or not) and choice (left or right
lick), indicating a history effect (Examples 9, 10). To capture and
quantify the encoding of such heterogeneous sensory and task-
related variables in the firing rate of single PPC neurons, we

implemented a kernel-based regression model (Park et al., 2014;
Runyan et al., 2017). This model accurately predicted single neu-
ron firing rates (Fig. 3A, dashed lines), explaining on average
46.1% of trial-averaged and 11.6% of trial-to-trial firing rate var-
iance during 0-500ms after stimulus. This trial-to-trial variance
was jointly explained by visual (12.1%) and auditory (23.4%)
stimulus features, as well as reward (37.6%), licking movement
(7.8%), pupil size (16.3%), and trial history (stimulus, choice,
and reward on the previous trial; 2.9%) (Fig. 3D). We investi-
gated whether these variables were encoded by distinct or the
same neurons and focused on the variables most relevant to
trial-by-trial performance (vision, audition, and reward). We
found a mixed profile, with some neurons coding a single vari-
able, while other neurons encoded two or all three of these varia-
bles simultaneously (Fig. 3E), in line with the example neurons
shown in Figure 3A. Visual, auditory, and reward coding were
smoothly distributed across the neuronal population, without
any clear clustering or organization (Fig. 3F,G). Moreover, the

Figure 6. Optogenetic inactivation of PPC. A, Coronal section showing viral expression in bilateral PPC and the electrode tract stained with DiI for simultaneous physiological validation. B,
Viral infection was present throughout layers of PPC. No evidence was obtained for infection of deep pyramidal neurons with large somata, as reported for S1 (Tanahira et al., 2009). C, Series
of coronal sections from one mouse showing the extent of viral infection of PPC along the anteroposterior and mediolateral axis (compare Paxinos and Franklin, 2004). Numbers indicate ap-
proximate anteroposterior offset from bregma. When aligning to the Allen Mouse Brain Atlas, expression starts in the anteromedial visual cortex (AM) and ends in the posterior parietal associa-
tion area (PTLp). D, We inactivated PPC by local activation of PV interneurons and photostimulation with an optic fiber (2-10 mW, 10ms pulses at 25 Hz) directly over the thinned skull. Top,
High-pass filtered voltage (.500 Hz) at an example electrode site (recorded at;450mm below dura) with effective inhibition of spiking activity (i.e., multiunit activity) on photostimulation.
Bottom, Closeup of individual pulses during 1 s photostimulation. E, The average waveform was narrower for PPC neurons that showed increased (red) versus decreased (blue) firing rate on
photoinactivation of PPC. This is in line with putative narrow-spiking PV cells being recruited by photoinhibition to suppress broad-spiking pyramidal cells. Inset, Significant difference in the
peak-to-trough delay (0.81 vs 0.70 ms, 90 vs 38 neurons, BF = 4.47). *BF. 3. F, Effectiveness of optical manipulation across cortical depth is shown as the percentage of the baseline firing
rate. Neurons were separated into inhibited (n= 95 neurons; blue) and excited (n= 39 neurons; red) populations. We clipped the range of modulation ratios at 200% (some neurons were
strongly recruited by photostimulation). Lines and shading represent mean 6 SEM. G, Same as in F, but for V1 inhibition (n= 150 inhibited neurons in blue, 68 excited neurons in red).
Compared with PPC, optogenetic inhibition in V1 was more effective in the deeper layers. H, To investigate the spatial extent of PPC inactivation, we analyzed V1 activity during PPC photosti-
mulation. Optogenetic inhibition of PPC had a slight excitatory effect on activity in V1 (Bayesian t test photostimulation vs baseline, n= 213 V1 neurons, Cohen’s d = 0.41, BF = 4.08), as
opposed to the major silencing effect on PPC itself. At the minimum, this suggests that PPC inactivation does not affect V1 in a major way, in line with the extent of viral expression seen in C.
*BF. 3.
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number of neurons encoding all three variables was higher than
expected based on chance (Fig. 3H). Thus, single-neuron corre-
lates of audiovisual change detection were heterogeneously dis-
tributed, and not segregated, across the neuronal population.

Structure and content of parietal ensemble activity
To further investigate how information is globally encoded in
PPC, we focused on how parietal population activity coded task-
relevant variables relative to stimulus onset and decision. We
used population decoding on ensemble activity recorded in indi-
vidual experimental sessions and found that PPC activity sufficed
to decode the presence of a sensory change (Fig. 4A–C; signifi-
cant decoding in 12 of 14 sessions for audition, 8 of 14 for
vision), as well as the sensory modality of this change (Fig. 4D–F;
significant in 13 of 14 sessions for sensory modality). This sug-
gests that parietal activity does not indiscriminately respond to
any sensory change, but that different subspaces encode visual

versus auditory information (Raposo et al., 2014). It was even
possible to decode the sensory feature (specific orientation
or frequency) in a subset of sessions (Fig. 4G,H; significant in
5 of 13 sessions orientation, and 5 of 11 for tone frequency).
Furthermore, population activity sufficed to decode the ani-
mal’s decision (Fig. 4F,I,J, significant in 14 of 14 sessions for
reward), already ;250ms before reaction time (Fig. 4I, dot-
ted line).

In addition to supervised decoding, we also used an unsuper-
vised dimensionality reduction method (Williams et al., 2018) to
test whether the dominant low-dimensional neural dynamics of
PPC activity were task-relevant. This analysis showed that the
distributed patterns of task-related neuronal activity were well
described by latent components that closely corresponded to au-
ditory and visual responses and decision-related behavior (Fig.
5). Thus, well before reaction time, parietal population activity
shows rich visual, auditory, and decision representations, includ-
ing task-relevant information about which sensory modality
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shows a change, which are, theoretically, sufficient for down-
stream areas to execute the motor decision.

Sensory and task-related representations in PPC are not
required for task performance
Together, when animals are trained to detect auditory and visual
changes, PPC multiplexes sensory and task-related variables,
thus suggesting a potential role in linking task-relevant auditory
and visual inputs to adaptive decisions. To investigate the causal
nature of this link, we optogenetically inactivated PPC bilaterally
(by locally enhancing inhibition by PV interneurons). We veri-
fied that viral expression spanned PPC across the anteroposterior
and mediolateral axes and across cortical layers (Fig. 6A–C) and
that photostimulation excited a fraction of PPC neurons (puta-
tive ChR2-expressing PV cells) while effectively suppressing
ongoing activity (Fig. 6D–F). Optogenetic inactivation was less
powerful in the deepest layers compared with more superficial
ones (Fig. 6F), also compared with inactivation of V1 achieved
using the same methodological approach (Fig. 6G). As opposed
to the major silencing effect on PPC itself, optogenetic inhibition
of PPC had a slight excitatory effect on activity in V1 (Fig. 6H).

Surprisingly, optogenetic silencing of PPC had significant
effects on neither visual nor auditory change detection, with evi-
dence for the absence of an effect (Keysers et al., 2020) in both
visual and auditory conditions (Fig. 7A–C). We additionally
inactivated V1 in a separate cohort of animals. Bilateral inactiva-
tion of V1 strongly reduced detection of visual orientation
changes, but not auditory frequency changes, consistent with the

primary role of V1 in visual feature processing (Glickfeld et al.,
2013; Resulaj et al., 2018; Zatka-Haas et al., 2021).

PPC inactivation could affect other aspects of behavioral per-
formance, despite overall preserved visual and auditory hit rates.
However, we found that all tested aspects of behavioral perform-
ance persisted with PPC inactivation. First, we found no effect
on reaction times (Fig. 7D). Second, we tested the hypothesis
that PPC inactivation could be restricted to a subset of animals
showing a particular behavioral strategy. However, we found
both small increases and decreases in task performance in indi-
vidual mice and no relationship between changes in task per-
formance and the bias to report visual or auditory stimuli (Fig.
7E,F). Third, although detection of stimuli at perceptual
threshold (those most sensitive to perturbation) was pre-
served (Fig. 7A–C), psychometric performance could
potentially be affected in other subtle ways. However, when
we inactivated PPC at various levels of auditory and visual
stimulus difficulty levels, hit rates were unaffected (Fig.
8A). We fit each session with a psychometric version of our
signal detection model and found no evidence for an effect,
but also no evidence for the absence of an effect, on sensi-
tivity, threshold, and bias (Fig. 8B,C).

Behavioral choice is history-dependent, but this effect is not
dependent on PPC
Previously, PPC was shown to mediate history-dependent effects
on behavioral choice (Hwang et al., 2017; Akrami et al., 2018).
To investigate this, we constructed a multinomial logistic
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regression model that uses information about the current and
previous trial to predict the animal’s choice (three response
options: lick to visual spout, lick to auditory spout, or no lick).
To test the contribution of individual sensory and behavioral fea-
tures, we constructed 10 models with different regressor combi-
nations (Fig. 9A). Data were fit on concatenated sessions of
individual animals, and model predictions were evaluated on

held-out test data (threefold cross-validation). Relative to a null
model, including sensory history improved model performance
slightly, while including reward history and choice history had
larger effects (Fig. 9B). Including information about the sensory
stimulus of the current trial (amount of visual and auditory
change) boosted performance significantly, confirming animals
mostly base their choice on the current stimulus.

1: Null
2: Trial number
3: Sensory history
4: Reward history
5: Choice history
6: Sensory evidence
7: Sensory + choice history
8: Full
9: Model 7 with PPC inac
10: Model 8 with PPC inac

Models:
N

N    = random
T    = trial number
RV-1 = 1 if reward on visual spout previous trial
RA-1 = 1 if reward on audio spout previous trial
C-1   = 0 if last lick visual spout, 1 if last lick audio spout
SV-1 = log(Δvisual) on previous trial
SA-1 = log(Δauditory) on previous trial
SV    = log(Δvisual) on current trial
SA    = log(Δauditory) on current trial
O   = photostimulation on current trial
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We investigated the regressor weights in the full model, with
positive auditory or visual weights indicating a higher probability
of licking the auditory or visual lick spout, respectively, relative
to not licking (Fig. 9C). Trial number had a small negative weight
on both lick probabilities, in line with growing satiety. The other
weights were modality-specific. Auditory and visual stimuli on
the current trial had strong positive weights, sensory history a
slight negative weight, and previous reward a positive weight.
The previous choice had opposite weights suggesting animals
repeated their choice.

We next tested the effect of PPC inactivation on history-de-
pendent behavioral choice in four different ways but found no
evidence for effects of PPC inactivation on how sensory informa-
tion of the current trial is used, nor how trial history affects
behavior (Fig. 9D–H) (Hwang et al., 2017; Akrami et al., 2018).

In sum, although we found that behavioral choice was influ-
enced by reward and choice history (but not sensory history),
these history effects were unchanged by PPC inactivation.

Last, we presented a subset of multimodal trials in which both
modalities changed simultaneously, which implies a conflicting
situation (i.e., mice could lick either left or right, based on
which sensory modality prevails). In contrast to Song et al.
(2017), who found that PPC inactivation shifted behavioral
choice from auditory to visual report, we observed no such
effect (Fig. 10). Therefore, despite robust encoding of sensory-
and task-related variables well before response onset, we found
no causal relevance of PPC in audiovisual change detection.

Discussion
We tested the hypothesis that PPC is required to arbitrate
between sensory modalities in a change detection task that
required mice to segregate and identify sensory modalities.
Training mice on this task led to qualitatively rich and heteroge-
neous auditory, visual, and decision-related activity changes in
PPC (Figs. 1-5), which was however not causal to performing the
task (Figs. 7-10).

Previous studies reported a similar absence of behavioral con-
sequences despite strong decision-related activity in PPC
(Raposo et al., 2014; Erlich et al., 2015; Hanks et al., 2015; Katz et
al., 2016; Licata et al., 2017). Our results further reveal a surpris-
ing dissociation between rich representations in PPC (preceding
reaction time) and causal involvement in task performance. This
is especially surprising given the dense interconnection of PPC
with both primary sensory cortices (V1 and A1) and nearby

associative areas, such as anterolateral visual cortex (Meijer
et al., 2020), and premotor areas, such as supplementary
motor cortex, which show multisensory task correlates and
are causally involved in task performance (Erlich et al., 2015;
Barthas and Kwan, 2017; Allen et al., 2017; Coen et al., 2021).
Therefore, despite its uniquely suited anatomic and func-
tional properties, at the interface between visual and auditory
processing and premotor cortices, PPC is required for nei-
ther auditory nor visual change detection. A different result
might have been obtained if visual and auditory had to be
integrated. Another possible explanation, however, is that
sensory and decision-related activity in PPC may reflect sec-
ondary processes not directly subserving behavioral deci-
sion-making in our task, or functional processing of an order
of complexity that is not required to solve the task, as this
may be solved by lower-order (e.g., subcortical) structures.
Interestingly, the large increase in auditory responses that we
reported in trained mice conforms with similar reports in
rodent association cortices (Raposo et al., 2014; Zhong et al.,
2019; Meijer et al., 2020) but is different from what has been
reported in primates (Grunewald et al., 1999; Cohen, 2009).
In particular, limited auditory responses have been reported in
primate lateral intraparietal area on engagement in an auditory
task (Grunewald et al., 1999). This may indicate different cir-
cuitry for auditory processing in rodent versus primate PPC,
but also the fact that primate experiments were performed in
an area (lateral intraparietal area) that bears no homolog in
rodents. The increase in visual and auditory responses that we
observed could result both from extensive behavioral training
as well as active task engagement, as both were confounded in
our experimental comparison between trained and naive mice.

Considering the broader literature on rodent PPC, under
which task conditions would parietal circuitry be causally
involved? In recent studies, stimuli and context were fixed
while task demands were varied, and PPC, among other
regions, became necessary only when evidence accumula-
tion, working memory, or in any case an extension in the
time scale of the task were required (Harvey et al., 2012;
Pinto et al., 2019; Arlt et al., 2021). Our results fit with this
view and suggest that PPC is dispensable for tasks that have
fixed one-to-one sensorimotor mappings (but see Arlt et al.,
2021). Along these lines, PPC is thought to participate in a
larger cortical network constructing contextual representa-
tions of multimodal inputs. These representations likely
serve to maintain information across a delay (working
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memory) or across trials (history effects) or integrate informa-
tion with previous experience (learning) and are not crucial for
the detection of sensory stimuli. An interesting parallel inter-
pretation of the richness of neural PPC correlates in the absence
of a causal role in audiovisual change detection relates to the
involvement of the human PPC in hemineglect (Vallar, 1998;
Driver and Vuilleumier, 2001; Kerkhoff, 2001), pointing to a
function of the PPC in generating the multisensory spatial sur-
vey that we associate with consciousness and spatial attention
(Pennartz, 2015; Pennartz et al., 2019). Intriguingly, our results
show that PPC displays classical neural correlates of conscious-
ness (Koch et al., 2016), without being causally involved in the
reportability of sensory stimuli. This indicates the need to crit-
ically evaluate the potential relevance of neuron-level correlates
of sensory detection in the context of consciousness research,
but see Vugt et al. (2018) and Nieder et al. (2020) for recent
studies in which such correlates are interpreted as markers of
consciousness. Overall, based on this functional angle, PPC ac-
tivity may become behaviorally relevant when utilization of this
contextual information is necessary, for example, in guiding
decisions based on unfamiliar sensory stimuli or during learn-
ing (Wander et al., 2013; Wilber et al., 2017; Zhong et al.,
2019), as also reported in primary somatosensory cortex (Hong
et al., 2018) or in a more complex task requiring a multisensory
spatial survey of the subject in its environment.

Another possible interpretation is that choice-related activity
in PPC may reflect, at least to some extent, movement variables
(Whitlock et al., 2012; Mimica et al., 2018), which are increas-
ingly reported as affecting widespread cortical circuits in rodents
(Musall et al., 2019; Stringer et al., 2019; Salkoff et al., 2020).
Indeed, movement variables did explain a fraction of the var-
iance across the PPC population activity (Fig. 3D). Alternatively,
the modality identification task tested here may be solved by a
distributed network of nodes in which the PPC participates in a
causally redundant manner or that PPC’s role is redistributed
through fast-acting compensatory mechanisms (Sigler et al.,
2009; Mejias and Wang, 2019). The inconsistency between our
reported absence of an effect of PPC inactivation on auditory
dominance with Song et al. (2017) may lie in the fact that we
used instantaneous sensory changes, which do not result in an
extended temporal window of conflicting signals. Finally, a
potential concern is that our protocol for optogenetic inactiva-
tion spared a limited functionality of the PPC in its deep layers
sufficient for full task performance (Fig. 6F). Although viral
infection expression encompassed PPC across the full mediolat-
eral axis of PPC and reached the deepest layers (Fig. 6A–C), and
we effectively suppressed visual perception using the same exper-
imental approach in V1, we cannot exclude that a portion of
PPC might have been spared and might have been sufficient to
prevent behavioral impairment.

In conclusion, we showed that neuronal responses in mouse
PPC during audiovisual change detection, despite being multi-
sensory and anticipating task-related responses, are not causally
related to task performance. This sheds light on the function and
architecture of parietal associative circuits and emphasizes the
importance of cautiously interpreting the causal relevance of
neural activity for task performance.
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