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The cognitive system applies categorical thinking to facilitate perception of the rich environment around us. In person cogni-
tion, research has focused on the roles of gender, race, age, or appearance in social categorical thinking. Here we investigated
how narrative roles, as portrayed by different cinematic characters, are categorized in the neurocognitive system. Under func-
tional MRI, 17 human participants (7 females) were asked to make different judgments regarding personality traits of 16 re-
nowned cinematic characters representing four roles: hero, sidekick, mentor, and villain. Classification analysis showed a
brain network, comprising the dorsal medial prefrontal cortex, the precuneus and the temporoparietal junction bilaterally,
and the left occipital face area (OFA), to discriminate among the four roles. No such classification was found between other
individual attributes including age or the associated film. Moreover, regions overlapping the default mode network (DMN)
were found to better discriminate between roles, rather than the individual characters, while the OFA was found to better
discriminate between individuals. These results demonstrate the inherent role of roles in person cognition, and suggest an

intimate relation between roles categorization and self-referential activity.
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ignificance Statement

Social categorization, the assignment of different people in our social network to subgroups, is a powerful strategy in social
cognition. How is this managed by the brain? We provide evidence that different characters from different stories, represent-
ing similar roles in their corresponding narrative, elicit similar brain activation patterns, as revealed by functional MRI.
Unlike previous studies of social categorization, these brain activations were similar to those elicited by social cognition rather
than face processing, and included regions at the prefrontal cortex, the precuneus, and the temporoparietal junction. The
identified brain network significantly overlapped the default mode network. We suggest that social categorization by roles is
fundamental to the cognitive system, relying on brain regions related to social cognition.
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Introduction
“Every man acts the part assigned to him—>by himself or others—in
this life” (Six Characters in Search of an Author; Luigi Pirandello,
1921)

As humans, we familiarize ourselves with thousands of people
throughout our lifetimes (de Sola Pool and Kochen, 1978;
Degenne and Forse, 1999; Jenkins et al., 2018). How does the
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cognitive system manage to keep unique representations of so
many individuals? One method is through social categorization;
that is, the sorting of people one encounters into different groups
(Allport, 1954; Bruner, 1957; Fiske and Neuberg, 1990;
Bodenhausen and Macrae, 1998; Goldenberg et al., 2020; Peer
et al,, 2021). Social categories may be governed by various individ-
ual attributes such as gender, age, or association with a particular
group (Lippmann, 1922; Allport, 1954; Tajfel, 1969). This function
appears to be fundamental to human cognition, as evidenced by
its emergence in the early stages of development (Liberman et al.,
2017). Furthermore, social categorization has been shown to be
applied automatically and rapidly when encountering novel faces
(Ito and Urland, 2003; Van Bavel and Cunningham, 2010;
Amodio et al., 2014), to positively affect person memory (Srull
and Wyer, 1989), and to guide decision-making (Macrae and
Bodenhausen, 2000).

Previous neuroimaging studies of social categorization have
mainly focused on visual perception of faces (Freeman et al., 2010;
Hehman et al, 2014; Volpert-Esmond and Bartholow, 2021),


https://orcid.org/0000-0001-6500-8095
mailto:shahar.arzy@ekmd.huji.ac.il

Ron, Dafni-Merom et al. @ Brain System for Categorization by Roles

A B

Hero Sidekick Mentor Villain

~ 4 \
Harry Potter Hermione gt Albus Dumbledore  Lord t
v -
%3 M & A
Luke Skywalker Princess Leia Obi-Wan Kanobi Darth Vader
‘ ﬁ < j
&
Neo Trinity Morpheus Scar
Frodo Baggins Elizabeth Swann Gandalf The Joker
Figure 1.

J. Neurosci., June 29, 2022 - 42(26):5246-5253 - 5247

Personality Trait
Character Name
Harry Potter

(1-4)

Character Name

Darth Vader
(1-4)

Experimental paradigm. A, Stimuli. The 16 characters used in the experiment, categorized by their narrative role. Participants were not exposed to this categorization at any point

during the experiment. B, Experimental design. Participants were presented with a quantitative personality question (e.g., “To what extent is the character smart/impulsive/cynical/etc.?”) fol-

lowed by the names of each of the 16 characters. Response was then given on a scale of 1-4.

though it was shown that social categorization does not require
a visual depiction of the person categorized (Cikara et al.,
2017). Furthermore, most studies investigated the neural sub-
strates of in-group versus out-group representations, usually by
explicit differences, such as race and gender (Contreras et al.,
2013; Ratner et al., 2013; Stolier and Freeman, 2017; Brooks
et al.,, 2018). Interestingly, even ad hoc assignments to arbitrary
groups elucidated similar differences (Cikara et al., 2017). In
another line of work, Hassabis et al. (2014) trained participants
to learn the personalities of four protagonists, varying in two
personality traits (agreeableness and extraversion), thereby con-
structing a 2-by-2 factorial design. Importantly, participants
were unaware of this design and were told that the experiment-
ers were interested in seeing how well they could predict each
protagonist’s behavior. Multivariate pattern analysis (MVPA)
identified brain regions associated with personality-trait proc-
essing, while activity patterns in the medial prefrontal cortex
(mPFC) successfully discriminated between the protagonists’
individual identities. These findings suggest that the brain rep-
resents individuals by combining these traits, enabling the pre-
diction of others behavior. Yet, complex human behavior is not
solely attributed to personality traits, as the context and the
relations to the other individuals in the situation is essential as
well.

Here we investigated social categorization by roles using
narrative information. Narratives can be viewed as simula-
tions of real-life social processes (Mar and Oatley, 2008),
offering a refined, “stripped-down” model for social interac-
tions and roles (Simony et al., 2016; Baldassano et al., 2018;
Nguyen et al., 2019). Fictional characters have been used in
neuroimaging studies to evoke cognitive elements of real-life
social experience in controlled environments (Kumaran et
al., 2012; Hassabis et al., 2014; Tavares et al., 2015). Thus, to
investigate how the human brain processes roles, we turned
to fictional characters representing canonical examples of
these roles that recur in several fictional stories (namely:
hero, villain, sidekick, mentor). We hypothesized that differ-
ent characters from different stories, representing similar
roles in their corresponding narrative will elicit similar brain
activation patterns.

Materials and Methods

Participants. Seventeen right-handed healthy young adults (7 females;
mean * SD age, 25.8 & 2.6 years) with normal or corrected-to-normal
vision and with no history of neurologic or psychiatric disorders partici-
pated in the study. All participants have previously watched each of the
films used in the experiment and were specifically questioned to ensure
high familiarity with each of the films and characters. The study was
approved by the ethical committee of the Hadassah Medical Center, and
all participants provided written informed consent.

Stimuli and procedure. Following consultations with three professio-
nal film critics, 16 well known characters, appearing in blockbuster films
(Fig. 1), were chosen to represent four narrative roles, recurring in
several films: (1) hero; (2) sidekick; (3) mentor; and (4) villain (Fig. 1A).
During the experiment, participants were presented with a question
regarding a personality trait (e.g., “To what extent is this character
smart?”) followed by the name of one of the characters (Fig. 1B). For
each of the 16 characters, participants were instructed to rate how much
this trait characterized the specific character on a scale of 1-4 (Fig. 1B)
(Peer et al., 2021). Thus, participants had to retain a mental image of the
specific character, yet in a manner not directly related to the research
question as examined here. Participants were instructed to respond accu-
rately, but as fast as possible. To ensure that characters did not differ in
these traits, repeated-measures ANOVA was run across traits within
each group (hero, sidekick, mentor, and villain). None of the compari-
sons were found significant (all p-values > 0.2), suggesting that the char-
acters chosen for each role match on different trait dimensions. In
addition, repeated-measures ANOVA was run across participants on the
different rating of traits also in between roles. No differences were found
here as well (all p-values > 0.1). Overall, questions related to 18 traits
were presented, 3 in each of the six experimental runs, giving rise to 288
character presentations during the experiment. Each trial lasted 124 s,
starting with a trait-related question (10 s), followed by 16 consecutive
stimuli (character names) presented in randomized order (4 s each),
with an interstimulus fixation cross (4 s). Preceding the experiment, par-
ticipants underwent a short learning session, which consisted of two full
trials with trait-related questions unused in the actual experiment. The
question sequence was counterbalanced across participants. Stimuli
were presented using the Presentation software (version 18.3;
Neurobehavioral Systems; www.neurobs.com). Following the experi-
ment, participants were asked to rate their familiarity with each film
and character, as well as to specify when they last saw each film.
These ratings were further examined with respect to participant per-
formance in judging the characters’ traits using Pearson correlation.
No significant correlations were found (all corrected p values > 0.26).
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Data acquisition. All participants were scanned at the same site using
a Siemens Skyra 3 T system (32-channel head coil) with the same imag-
ing sequence. Blood oxygenation level-dependent fMRI was acquired
using a whole-brain, gradient-echo echoplanar imaging [repetition time
(TR)=2000ms; echo time (TE)=30ms; flip angle, 75°% field of view,
192 mm; matrix size, 64 x 64; functional voxel size, 3 x 3 x 3 mm; 37
axial slices; descending acquisition order; 10% gap]. In addition, T1-
weighted high-resolution (1 x 1 x 1 mm, 160 slices) anatomic images were
acquired for each subject along the same orientation as the func-
tional images using the MPRAGE protocol (TR=2300ms; TE =
2.98 ms; flip angle, 9°; field of view, 256 mm).

Preprocessing. Preprocessing was performed using the BrainVoyager
QX 20.6.2.3266 software package (R. Goebel, Brain Innovation),
Neuroelf (www.neuroelf.net), and in-house, MATLAB-based soft-
ware (MathWorks). It included slice scan time correction (cubic
spline interpolation), high-pass filtering (cutoff frequency, two cycles
per scan), and 3D motion correction by realignment to the first run
image (trilinear interpolation for detection and sinc for correction),
exclusion of runs with maximal motion above a single voxel size
(3 mm) in any direction. No spatial smoothing was applied (Op de
Beeck, 2010; Weaverdyck et al., 2020). Functional data were coregis-
tered to the anatomic T1 images. Anatomical brain images were cor-
rected for signal inhomogeneity and skull stripped. All images were
subsequently normalized to Montreal Neurologic Institute (MNI)
coordinates (ICBM-152).

General linear model analysis. To assess the selective activations eli-
cited by different experimental conditions, we applied a general linear
model (GLM) analysis. The model predictors were defined by a convolu-
tion of a condition box-car time course with a standard hemodynamic
response function (two-gamma). For each subject, we performed a first-
level analysis for each of the six runs independently, which resulted in 16
B-weights, one for every character used. Six motion parameters were
added to the GLM as covariates of no interest to remove motion-related
noise.

Multivoxel pattern analysis (MVPA). MVPA was performed using
the CoOSMoMVPA toolbox (Oosterhofet al., 2016) in MATLAB. In
CoSMoMVPA, we performed a whole-brain searchlight analysis
(Kriegeskorte et al., 2006) separately for each subject on the voxel-
wise B-weights (GLM). First, B-weights were demeaned to verify
that classification could not be governed by a difference in the
amount of activity by condition across all voxels (simple univariate
difference). Second, a linear discriminant analysis (LDA) classifier
was trained on labeled data from four of the six functional runs.
Following, the trained classifier was presented with naive data
(unlabeled) from the two left-out runs (Lee et al., 2017; Pauli et al.,
2019). This procedure was repeated 15 times, testing different runs
each time (leave-two-out cross-validation). These cross-validated
analyses were performed within overlapping spherical ROIs of 123
voxels tiling the entire brain. This yielded a whole-brain map for
each subject in which the center voxel of each ROI is assigned with
a classification accuracy. To determine whether the classifier per-
formed above chance at the group level, we used random-effects
Monte Carlo cluster statistics corrected for multiple comparisons (as
implemented by the CosmoMVPA toolbox; Maris and Oostenveld,
2007; Oosterhof et al., 2016). Threshold-free cluster enhancement
(TECE; Smith and Nichols, 2009) was used as a cluster-forming statis-
tic. To correct for multiple comparisons, the Monte Carlo technique
used by CosmoMVPA generates 100 null searchlight maps for each
participant by performing a sign-permutation test, swapping the signs
of the classification accuracy results at random at each data point
(voxel). The 1,000,000 null TFCE maps are then constructed by ran-
domly sampling from these null datasets to estimate a null TFCE distri-
bution (Stelzer et al., 2013), obtaining a group level z score map of the
classifier results. The z-score threshold was set to 3.45 (Herrmann et
al,, 2012, see for use of z-score threshold), yielding five distinct clusters
for roles classification (cluster threshold set to 300 voxels). Since the
characters used in this experiment share commonalities in age and
films that are not related to the roles investigated here, we ran the LDA
classifier within each ROI for each participant while assigning balanced
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Table 1. Classification parameters

Condition Samples distribution (%) Training samples Test samples
Role 25,25,25,25 64 32
Age 12.5,37.5, 25, 25 64 32
Film 15,31,31, 23 52 26
Gender 25,75 64 32
Characters 25, 25, 25, 25 16 8

Number and distribution of samples in each condition and class in the training and testing sets (Roles: hero,
sidekick, mentor, villain; Age: adolescents, young adults, middle-aged adults, older adults; Film: Harry Potter,
The Lord of the Rings, Star Wars, and The Matrix; Gender: Females and males; Characters: 4 characters of 16
with 1820 permutations for all possible choices). To avoid potential bias (e.g., film—character pairing), the
film condition consisted of a minimum of two characters per class, resulting in using four films with 13 char-
acters in total. For the characters themselves, to enable equal comparison with roles, four characters were
selected for each comparison (see Materials and Methods). Of the six runs, four were used for training the
classifier, and two for testing classification.

training labels that reflect similarity in age and film (all targets were used
at least once). Classification accuracies were averaged across all partici-
pants after removal of chance level (25%), and a Wilcoxon signed-rank
test was applied for statistical comparisons (p values < 0.01 were consi-
dered significant). The classifier trained on four classes for each of the
conditions (Roles: hero, sidekick, mentor, villain; Age: adolescence,
young adulthood, middle-age, late adulthood; Films: Harry Potter, The
Lord of the Rings, Star Wars, and The Matrix; Table 1). While the
classification labels of the Roles condition followed a strict pattern of
four balanced classes (four characters per class), the Age and the
Film conditions required an additional step since the classes were not
naturally balanced. We applied the minimum-occurrence method of
CosmoMVPA (threshold set to 1), in which each fold consists of a sam-
ple set that includes all samples (training and test combined), where
some samples are duplicated to ensure an equal number of labels for
each class. All Age and Film classes met a requirement of a minimum
of two characters per class. A separate classifier was run for gender
with two classes: male and female. Since the dataset consists of 12 males
and four females, to avoid bias we applied the same balancing scheme
as described above. This balancing method is equivalent to applying
a threefold higher penalty for male false classification errors than
females. In a separate classifier for individual characters, each of the
16 characters was assigned its own class. Importantly, to account for
the difference in number of classes between roles (4) and individual
characters (16), we evaluated classification accuracy for individual
characters by running MVPA separately on subsets of four individuals
at a time. A total of 1820 subsets were tested, accounting for all possi-
ble permutations [16 combinations of 4 (;6C4)]. Results of all permuta-
tions were averaged to yield an overall classification accuracy, and
p-values for each voxel were calculated accordingly. Finally, as an
additional validation measure for the Roles classification, we gen-
erated whole-brain maps through a small-scale version of the pipe-
line depicted here for each alternative subgroup (requiring only
100,000 permutations) and superimposed each of the maps (peak
values) on the original group map.

Comparison of scale-selective activations to large-scale resting-state
networks. A previously published whole-brain parcellation into seven
large-scale brain networks was used as a template for resting-state net-
works location (Yeo et al., 2011). Next, we characterized the involve-
ment of the overlapping resting-state networks in role versus
individual classification to assess whether role and individual classi-
fications are processed by similar brain networks by computing the
Jaccard index (intersection over union) between the group-level map
and a cortical parcellation to seven large-scale brain networks. We
then computed accuracy levels for roles and individual characters in
the default mode network (DMN) and the visual network. To keep
all comparisons on the same level, we have applied a permutation
analysis, which includes four characters in each cycle across all com-
parisons and conditions (1820 potential combinations). The p-value
of each classifier on each voxel was calculated accordingly and was
followed by false discovery rate (FDR) multiple-comparisons correc-
tion. In a second step, overlap was calculated with the 17 network
parcellations available at the above resource (Yeo et al., 2011) to
compute the overlap with the three subdivisions of the DMN.
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MVPA results. A, Color-coded z-score maps (z=3.45, p << 0.0001) illustrating brain areas that discriminate between roles. Clusters were identified in the dmPFC, the precuneus

and the TPJ bilaterally, and the left OFA. B, Confusion matrices yielded by the classifiers at the five aforementioned clusters.

Table 2. Clusters identified in multivariate pattern analysis that discriminate
between roles

Region X y z Z score p value

Left TPJ —57 —58 17 3.81 0.000139
Right TP) 45 —55 28 413 0.000036
Left OFA —30 —97 7 3.88 0.000104
dmPFC 3 56 20 413 0.000036
Precuneus -2 —62 33 4.24 0.000022

Shown are peak coordinates of clusters in MNI space (x, y, 2).

Results

Applying a classification analysis on our fMRI data identified
five clusters that significantly distinguished among the four roles
(p <0.0001, FDR corrected) in the dorsal mPFC (dmPFC), the
precuneus, the superior temporal and inferior parietal cortex
[the temporoparietal junction (TPJ)] bilaterally, and the left occi-
pital face area (OFA; Fig. 24, Table 2).

Classification based on narrative roles performed significantly
better than chance in each of the five identified clusters (p <
0.05, corrected for multiple comparisons), while classifications
for age and film were not above chance level when inspecting
each condition in each cluster separately (all p values > 0.09).

Classification based on gender only discriminated the OFA bilat-
erally. Confusion matrices for the classifiers were calculated for
each of the five identified clusters, exhibiting similar patterns
(Fig. 2B).

Next, we compared the network of brain regions as identified
here, with a parcellation of the brain into seven cortical resting-
state fMRI networks, based on a dataset from 1000 subjects (Yeo
et al,, 2011). Voxelwise quantification showed that the majority
of the voxels significantly decoding categorization according to
roles (71%) overlapped with the DMN. Jaccard index, calculated
between the group-level map and a cortical parcellation to seven
large-scale brain networks (Yeo et al., 2011), showed that most
dominant in its similarity to the current results was the DMN
(0.16), followed by the visual (0.04), frontoparietal (0.03),
and dorsal attention (0.02) networks (Fig. 3A,B). Within the
DMN, we observed higher accuracy levels for the detection
of roles than that of the individual characters (paired t test:
tae) = 3.64, p=0.002; Fig. 3C, left), while a reverse pattern
was found for the visual system (paired ¢ test: t(;5 = 5.5,
p<0.001; Fig. 3C, right). Finally, within the DMN, the
DMN-A subnetwork was found to mostly overlap with the
regions significantly decoding roles (47.7%), more than
DMN-B (18.4%) and DMN-C (9.6%).
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Role-based classification and the DMN. A, Jaccard index (intersection over union) was calculated between the group-level map and a cortical parcellation to seven large-scale brain

networks. Results show that most dominant in its similarity to the group-level map was the DMN (0.16), followed by the visual (0.04), frontoparietal (0.03), and dorsal attention (0.02) net-
works. B, Brain areas depicting role categorization (purple) and the two main networks overlapping it, the DMN in blue and the visual network in pink, are shown on an inflated brain. C,
Accuracy levels for roles (black) and individual characters (gray) in both the DMN and the visual network (*p << 0.05, **p << 0.001). Note that while the DMN is mainly explained by roles, the

visual network is explained more by the characters themselves (“individuals”).

Discussion

This work provides evidence for the neurocognitive implementa-
tion of narrative roles in social categorization. This function is
processed by a brain network that includes the dmPFC, the pre-
cuneus, and the OFA bilaterally, as well as the left TP]. Such
a classification was not found for other factors, including age or
the film involved. The identified brain network significantly
overlapped the DMN. Moreover, while regions that overlapped
visual areas better discriminated between specific characters, the
DMN overlap showed better discrimination for narrative roles.
These results are discussed below with respect to social categori-
zation, person memory, the brain system involved, and the
implication of the DMN.

Our mental capacity to readily deduce abundant social in-
formation from newly acquainted individuals has been exten-
sively studied. One of the most common and efficient processes
that facilitates social knowledge and perception is social categori-
zation (Allport, 1954; Fiske and Neuberg, 1990; Macrae and
Bodenhausen, 2000). Social categorization research has focused
mainly on age, race, and gender (Ito and Urland, 2005; Amodio,
2008; Kubota et al., 2012; Cloutier et al., 2014). More conceptual
categories were examined in studies of person memory; that is, the
ways in which representations of people are organized in and
extracted from one’s memory (Hastie and Kumar, 1979; Hamilton
et al,, 1980; Srull, 1981). Conceptual categories such as occupation
or social classes have been shown to affect the remembering of
people, their attributes, and their actions (Sherman et al., 1998;
Macrae et al., 1999; Klauer et al., 2004). Conceptual information
has also been shown to enhance face recognition, even more
than perceptual information (Schwartz and Yovel, 2016). Self-
reference may play a role in social categorization as well (Lau
et al., 2020; Hayman and Arzy, 2021). Our work highlights a
different, yet not less important, type of social categorization
—that of roles played. Social categorization in general was
found to have important downstream consequences for how
we construe others; for example, stereotyping and prejudice
(Taylor et al.,, 1978; Fiske and Neuberg, 1990; Wheeler and

Fiske, 2005). Our results suggest that this also applies for cate-
gorization by roles.

Social categorization according to race, age, and gender was
found to rely on a network of brain regions, which in most stud-
ies involved areas dedicated to face identification, namely, the
fusiform face area (FFA) and OFA (Cloutier et al., 2008; Feng
etal,, 2011; Wiese et al., 2012; Contreras et al., 2013; Ratner et al.,
2013; Wei et al,, 2014; Stolier and Freeman, 2017). While the
OFA has been shown to process lower-level features such as
detecting faces and categorization by gender or age (Sergent et
al., 1992; Haxby et al.,, 1999; Pitcher et al,, 2011), the FFA has
been associated with higher-level processing such as the recogni-
tion of individual faces (Haxby et al., 1994). Notably, all these
studies have used paradigms that included the presentation of
faces. Our results point to the OFA, but not the FFA, as being
active in social categorization by roles. More specifically, the left
OFA was found here to better identify individuals compared
with identifying different roles, coinciding with the literature,
which emphasizes its role in individual recognition (Solomon-
Harris et al., 2013; Ambrus et al,, 2017). As for the FFA, it may
be suggested that its activation in social categorization tasks is
bound to the stimuli used.

The other regions identified in the present work, namely, the
dmPFC, precuneus, and TP], were less frequently found in previ-
ous studies of social categorization. The dmPFC was involved
in categorization according to group membership (comparison
of “in-group” and “out-group” words; Morrison et al., 2012).
Categorization by race using face images also revealed dmPFC
activation (Feng et al., 2011). Moreover, comparing in-group to
out-group categorization found the precuneus as a main hub of
activity (Bruneau and Saxe, 2010). Precuneus activation was also
elicited by categorization by race in addition to FFA activity
(Wei et al., 2014). Interestingly, these regions were identified in
our previous study (Peer et al., 2015) as being more active during
social orientation judgments compared with spatial and temporal
orientation judgments. To the best of our knowledge, TPJ activ-
ity was not mentioned previously in social categorization studies,
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though it is a key region in Theory of Mind (ToM; Saxe and
Kanwisher, 2003), which may be a basic step in categorization. It
may be the case that faces facilitate categorization according to
gender or race to the extent that ToM is less needed, compared
with more complicated abstract categories such as narrative
roles. These suggest that high-order functions are crucial for
social categorization by roles.

The ensemble activity of dmPFC, precuneus, and TPJ may be
better conceptualized in view of their involvement in the DMN,
which is associated with internal mentation and self-referential
mental activity (Gusnard et al., 2001; Buckner et al., 2008). More
specifically, the DMN was found to be related with social cogni-
tion in the forms of ToM, cognitive distance, and self-projection
in the social domain (Krienen et al., 2010; DiNicola et al., 2020;
Hayman and Arzy, 2021). Voxelwise quantification showed that
the majority of the voxels active for role categorization (71%)
overlapped with the DMN (as demonstrated by the Jaccard
index; Fig. 3A). The involvement of the DMN in social categori-
zation may be related to the mutual relations between self-refer-
ence and social processing, as was previously hypothesized (Feng
et al, 2011). Our data extend the implication of the DMN (spe-
cifically, the core subnetwork or DMN-A) in social cognition to
the concept of social categorization by roles. Furthermore, the
overlap with regions involved in self-projection and cognitive
distance in the social domain may suggest a shared representa-
tional framework, in which unique roles serve as landmarks
within a social feature space (Tavares et al.,, 2015; Kaplan and
Friston, 2019; Arzy and Kaplan, 2022).

According to the social learning theory of Bandura (1986),
characters within fictional narratives serve as models of social
behavior, possibly shaping the way we understand and relate
with others in actual life (Black et al., 2021). Advances in func-
tional neuroimaging have invited researchers to explore the rela-
tionship between films and cognitive neuroscience, capitalizing
on the rich ecological and narrative information they carry
(Hasson et al., 2008b; Baldassano et al., 2018; Lee et al., 2020).
One prominent line of research has focused on intersubject cor-
relation of brain activity in response to film viewing; that is, how
the same film or scene elicits similar responses in the brains
of different individuals (Hasson et al., 2008a, 2010). Other
recent fMRI studies showed that regions within the DMN
accurately classify schematic knowledge of television char-
acters (Vodrahalli et al., 2018; Raykov et al., 2020), a finding
that corresponds with our results. The narratives depicted
in films offer cognitive neuroscientists a more realistic and
naturalistic setting, which may provide important insights
into the neurocognitive mechanisms underlying human
memory, social cognition, and person perception.

Our study was not free of limitations. Since most Hollywood
genre films are vastly inspired by archaic patriarchal myths, and
in view of the homogeneity required by the experimental
settings, the ratio of male and female characters within each
category is uneven. This bias has also prevented us from
comparing social categorization by roles to categorization
by gender. Nonetheless, a separate classifier for the gender
condition showed discrimination in the OFA bilaterally,
suggesting that this classifier relates to gender, a classifica-
tion based on visual face-related features (Chiu et al., 2011;
Wiese et al., 2012). Furthermore, while cinematic characters
mimic to some extent the social roles seen in daily life, the
use of real-life people from the participants’ own life would
have been more ideal. However, such a design would not enable
cross-subject comparison, as analyzed here. Additionally, the
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roles found here may result from a combination of personality
traits. However, no such coherent pattern of traits was found. A
prevailing theory of human social interactions emphasizes the
performative aspects of social behavior (Jones et al., 1961).
This theoretical framework reconceptualizes personal identity
(and subsequently, person perception) as performed in a spe-
cific place or moment, and for a specific audience, thereby
outlining another perspective, complementary to a relatively
stable constellation of traits. In this respect, investigating the
neural mechanisms that underlie the processing of roles could
offer valuable insights, complementary to investigations of
trait-based person perception. Finally, participants’ affect to-
ward the different characters may also play a role in our
results. However, this is not very likely since classical affect-
related regions (e.g., anterior insula, anterior cingulate cortex,
amygdala, ventral striatum; Knutson et al., 2014; Lindquist et
al., 2016) were not elucidated in our results.

In conclusion, this study has shown that the neurocognitive
system intuitively classifies characters according to narrative
roles. The brain network identified here to underlie social catego-
rization by roles was found to be closely related to the DMN,
highlighting the involvement of high-order self-referential proc-
esses in this activity. Together, these findings may help to fur-
ther understand the way our cognitive system classifies other
people according to the roles they play and the narrative they
tell, paving the way to better understand the relations between
internally generated and externally perceived information
(Arzy and Schacter, 2019) in social cognition.
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