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Advances in neuroscience have led to the
emergence of two complementary theories
of neural information processing. First, the
“Bayesian brain hypothesis” proposes that
the brain actively predicts and represents
incoming sensory information as probabil-
ities that are updated in a near-optimal
Bayesian manner (Friston, 2010; Aitchison
and Lengyel, 2017). Second, “predictive
coding” accounts posit that these predic-
tions are generated from higher-level corti-
cal regions and passed down toward early
sensory regions. The difference between
predicted and actual stimulus information
results in a prediction error signal that is
propagated bottom-up along the cortical
hierarchy to update future predictions
(Spratling, 2017). Importantly, predictive
coding assumes that top-down predic-
tions relate not only to the content of the
sensory input, but also to the precision of
such predictions (Heilbron and Chait,
2018). Predictions about precision mod-
ulate the gain of prediction errors so that

surprises are attenuated in high-uncer-
tainty environments.

Predictive processing in the auditory
domain has traditionally been investigated
using oddball paradigms. Typically,
subjects are presented with a continu-
ous stream of repeated sounds (“stand-
ards”). With a given probability, some
sounds (“deviants”) are randomly modi-
fied by changing the pitch, timbre, timing,
or volume. In neural electrophysiological
activity recorded using electroencephalog-
raphy (EEG) or magnetoencephalography
(MEG), deviants evoke an increased nega-
tivity at;100–250ms after stimulus onset
compared with standards (Heilbron and
Chait, 2018). This is known as a mismatch
negativity (MMN) and is thought to
largely reflect precision-weighted predic-
tion errors (Lieder et al., 2013), which are
driven by neural adaptation in lower au-
ditory regions and short-term synaptic
changes between frontal and temporal
cortices (Garrido et al., 2009).

Because the MMN is a function of
both prediction error and precision, sep-
arating the neural mechanisms of preci-
sion estimation from prediction errors
remains challenging. Lecaignard et al.
(2022) sought to address this via compu-
tational modeling of neural responses
evoked by auditory stimulation, recorded
using simultaneous EEG-MEG. To identify
mechanisms underlying precision, the pre-
dictability of deviants was manipulated in

a passive auditory oddball paradigm. In
the low-uncertainty condition, a block
consisted of two standards followed by a
deviant tone, then three standards fol-
lowed by a deviant tone, and so forth until
eight standards were followed by a devi-
ant. In the high-uncertainty condition,
the number of standards preceding a devi-
ant was randomly shuffled in each block.
This manipulation ensured that the devi-
ant probability remained constant, despite
the two conditions affording different lev-
els of predictability.

On the computational level, the authors
used Bayesian model comparison to test
the relative extent to which three model
classes reconstructed the observed neural
responses. Baseline models assume every
tone elicits the same neural response.
Change detector models compute the
difference between incoming and pre-
ceding tones. Learning models predict
deviant probability, recursively update
predictions in a Bayesian manner, and
introduce a learning constant, t , to
govern the weight previous trials have
on current predictions. Lecaignard et
al. (2022) found that learning models
were best able to reconstruct evoked
responses at the MMN time window. In
particular, although the MMN did not
vary for the two conditions given the
same values of t , the estimated value of
t was significantly larger when uncer-
tainty was low.
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On the neurophysiological level, dynamic
causal modeling (DCM) was used to
examine effective connectivity during
the perception of standards and deviants
in the two conditions. The following two
types of connections are distinguished in
DCM: extrinsic connections between
cortical regions; and intrinsic connec-
tions within a cortical region. Extrinsic
connections originate from excitatory
pyramidal cells in infragranular layers
of a source region and drive activity in
a target region, while intrinsic connections
modulate synaptic gain of infragranular
pyramidal cells via local interneurons con-
necting infragranular, granular, and supra-
granular layers (Kiebel et al., 2008).

DCM allows one to infer connectivity
dynamics by selecting the network archi-
tecture that most plausibly generates the
observed neural activity and examining
the coupling strength of extrinsic and
intrinsic connections. In line with previ-
ous work (Auksztulewicz et al., 2017;
Quiroga-Martinez et al., 2021), the most
plausible network found by Lecaignard
et al. (2022) comprised bidirectional con-
nections between Heschl’s gyrus (primary
auditory cortex) and the planum polare,
the planum polare and the inferior frontal
gyrus, and the inferior frontal gyrus and
the superior frontal area. Notably, they
found significantly enhanced self-inhibi-
tion in all nodes of the network in the
high-uncertainty condition. Furthermore,
echoing previous findings, deviants eli-
cited increased top-down and bottom-up
connectivity, as well as reduced self-inhi-
bition, compared with standards.

Results in the study by Lecaignard et
al. (2022) demonstrate the influence of
uncertainty on predictive mechanisms
during auditory perception at the cogni-
tive and neural levels. Cognitively, that
learning models best explain neural ac-
tivity in the MMN time window con-
firms previous work (Ostwald et al.,
2012; Lieder et al., 2013) and supports
the MMN as a neural signature reflect-
ing the ability of the brain to infer and
learn statistically. Importantly, their key
contribution is showing that the learning
constant t in learning models is larger
when uncertainty is low. This demonstrates
that information from previous stimuli—
regardless of whether they were standards
or deviants—is upweighted in a more pre-
dictable context. This implies that the brain
flexibly modulates its temporal integration
window—depending on the uncertainty of
the context—to most efficiently exploit in-
formation in its environment to generate
future predictions. However, because t is

estimated from the data and not explained
by the model, the observed difference in-
dicates only a consequence of and not
evidence for predictions of precision, as
hypothesized in predictive coding. The
precise mechanisms describing the com-
putation of precision remains open.

Nevertheless, Lecaignard et al. (2022)
show that, at the neural level, precision
weighting is manifested as changes in
local synaptic gain. In particular, self-
inhibition is increased when the con-
text is not conducive to making reliable
predictions. Integrating this result with
previous findings on the MMN (for re-
view, see Garrido et al., 2009; Heilbron
and Chait, 2018), a plausible mechanism
could be as follows: upon hearing an au-
ditory deviant, infragranular pyramidal
cells along the cortical hierarchy between
Heschl’s gyrus and frontal regions are
disinhibited by local interneurons, thereby
enhancing the bottom-up propagation of
predictions errors and top-down predic-
tions. However, the extent of disinhibition
is modulated by the uncertainty of the con-
text, with increased disinhibition in more
predictable contexts. This could facilitate
statistical learning via changes in frontal–
temporal coupling strength, which could
result in an altered temporal integration
time window as estimated by the learning
parameter t .

Separating mechanisms behind the
generation of surprise from the uncer-
tainty of the context is not only relevant to
low-level auditory perception, but also to
understanding how complex stimuli such
as music can evoke pleasure in the listener
(Koelsch et al., 2019). Recent work has
shown that chords, melodies, and rhythms
are most pleasing when they strike an opti-
mal balance between the uncertainty of a
prediction and the surprise from what is
actually heard (Cheung et al., 2019;
Gold et al., 2019; Matthews et al., 2020).
Furthermore, current evidence reveals
that the interaction between uncertainty
and surprise in music engages not only
the auditory cortex, but also regions in
the mesolimbic reward network includ-
ing the nucleus accumbens, amygdala,
and hippocampus (Cheung et al., 2019;
Matthews et al., 2020). Although the
dynamic coupling between these brain
regions during music listening have
already been established via correla-
tional approaches (Salimpoor et al.,
2013; Shany et al., 2019), future stud-
ies could use directed approaches such
as DCM to examine the flow of infor-
mation within each region and within
the network. Following results from

the study by Lecaignard et al. (2022),
we would expect auditory and reward-
related regions to show increased intrinsic
connectivity because of enhanced local inhi-
bition during uncertain musical contexts.

There are nevertheless two key distinc-
tions between music and auditory devi-
ants. First, music structure is thought to
be syntactically organized, with hierarchi-
cal relations spanning multiple timescales
and beyond the local context (Rohrmeier
and Pearce, 2018). Second, these relations
are assumed to be established not only on
hearing the stimulus, but also in long-
term memory after extended exposure
to a musical style (Pearce, 2018). Con-
sequently, surprises in musical syntax elicit
an early right anterior negativity, which
is thought to be distinct from the MMN
(Koelsch, 2009; Koelsch et al., 2019).
However, the extent to which predictive
processes integrating short-term acoustic
information (e.g., timbre and pitch) and
long-term abstract relationships (e.g., mu-
sical syntax) overlap remains unclear
(Koelsch, 2009). In particular, neuro-
computational mechanisms distinguishing
the processing of uncertainty and surprise
in musical syntax remains largely unex-
plored. A model-comparison approach
similar to that of Lecaignard et al. (2022)
may prove helpful in this investigation.

In summary, Lecaignard et al. (2022)
provide a holistic account of how uncer-
tainty modulates surprises in auditory per-
ception at the neural and cognitive levels.
Using neurophysiological and computa-
tional modeling of the MMN, they show
that uncertainty influences local inhibitory
synaptic dynamics and integration of past
information when forming probabilistic
predictions. These findings not only fur-
ther support Bayesian inference and pre-
dictive coding as key neural processing
mechanisms, but also provide helpful
insights toward understanding the role
of predictive processing in our apprecia-
tion of complex auditory stimuli that we
call “music.”
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