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Multifaceted microglial functions in the developing brain, such as promoting the differentiation of neural progenitors and contributing
to the positioning and survival of neurons, have been progressively revealed. Although previous studies have noted the relationship
between vascular endothelial cells and microglia in the developing brain, little attention has been given to the importance of pericytes,
the mural cells surrounding endothelial cells. In this study, we attempted to dissect the role of pericytes in microglial distribution and
function in developing mouse brains. Our immunohistochemical analysis showed that approximately half of the microglia attached to
capillaries in the cerebral walls. Notably, a magnified observation of the position of microglia, vascular endothelial cells and pericytes
demonstrated that microglia were preferentially associated with pericytes that covered 79.8% of the total capillary surface area.
Through in vivo pericyte depletion induced by the intraventricular administration of a neutralizing antibody against platelet-derived
growth factor receptor (PDGFR)b (clone APB5), we found that microglial density was markedly decreased compared with that in con-
trol antibody-treated brains because of their low proliferative capacity. Moreover, in vitro coculture of isolated CD11b1 microglia and
NG21PDGFRa– cells, which are mostly composed of pericytes, from parenchymal cells indicated that pericytes promote microglial
proliferation via the production of soluble factors. Furthermore, pericyte depletion by APB5 treatment resulted in a failure of micro-
glia to promote the differentiation of neural stem cells into intermediate progenitors. Taken together, our findings suggest that peri-
cytes facilitate microglial homeostasis in the developing brains, thereby indirectly supporting microglial effects on neural progenitors.
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Significance Statement

This study highlights the novel effect of pericytes on microglia in the developing mouse brain. Through multiple analyses using an
in vivo pericyte depletion mouse model and an in vitro coculture study of isolated pericytes and microglia from parenchymal cells,
we demonstrated that pericytes contribute to microglial proliferation and support microglia in efficiently promoting the differentia-
tion of neural stem cells into intermediate progenitors. Our present data provide evidence that pericytes function not only in the
maintenance of cerebral microcirculation and blood brain barrier (BBB) integrity but also in microglial homeostasis in the develop-
ing cerebral walls. These findings will expand our knowledge and help elucidate the mechanism of brain development both in
healthy and disease conditions.

Introduction
Microglia, the resident immune cells in the central nervous sys-
tem (CNS), are seeded in the developing mouse brain at em-
bryonic day (E)9 (Ginhoux et al., 2010; Goldmann et al.,
2016) and are distributed in the cerebral wall with a stage-
dependent localization pattern (Swinnen et al., 2013). In
mice, the intrapallial microglial distribution is initially ho-
mogenous until E14, but these cells are temporarily absent
from the cortical plate (CP) from E15 to E16 and prefer to
colonize the ventricular zone (VZ), subventricular zone
(SVZ), and intermediate zone (IZ). We previously reported
that this transient microglial disappearance from the mid-
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embryonic CP is a result of microglial bidirectional migra-
tion occurring at E14 (Hattori et al., 2020).

Multiple functions of microglia in the embryonic stage have
been progressively revealed in recent decades (Thion and Garel,
2017; Hattori, 2021). In the VZ/SVZ, microglia phagocytically
regulate the number of intermediate progenitors (Cunningham
et al., 2013; Barger et al., 2019). A previous study showed that
microglia induce neural stem cells to differentiate into intermediate
progenitors (Arnò et al., 2014), and this function is efficiently medi-
ated by their extensive migratory activity (Hattori and Miyata,
2018). In addition, microglia have been demonstrated to regulate
the entrance of interneurons generated in the subpallium into the
CP and to orchestrate the proper intra-CP positioning of these neu-
rons (Squarzoni et al., 2014). On the other hand, the temporal ab-
sence of microglia from the mid-embryonic CP is crucial for proper
neuronal differentiation and maturation (Hattori et al., 2020).
Although microglia account for only a minor population of the cells
constituting the parenchyma, they provide diverse functions that
are required in specific regions with optimal positioning through
their extensive migratory activity.

Previous works revealed that vasculogenesis first occurs in the
yolk sac at E7.5 (Gama Sosa et al., 2021). Although the detailed
mechanism underlying vascular development in the brain
remains unclear, a previous study reported that clusters of vascu-
lar endothelial-like cells were dispersed throughout the brain pa-
renchyma at E7.5–E8.5 (Walls et al., 2008). Subsequently, the
extensive branching and arborization of the vascular structure
proceed toward the late embryonic stage (Mancuso et al., 2008).

In the capillary walls, vascular endothelial cells are covered with
pericytes (Zimmermann, 1923). Although pericytes were previously
thought to have merely a structural role, recent studies have high-
lighted their multifaceted functions in the postnatal and adult
brains. For example, these cells play critical roles in angiogenesis,
vascular stability and blood brain barrier (BBB) maintenance for
CNS homeostasis under physiological conditions (Bell et al., 2010;
Daneman et al., 2010; Teichert et al., 2017; Brown et al., 2019) and
contribute to neuroinflammation, injury, and repair in CNS disor-
ders (Armulik et al., 2010; Cheng et al., 2018; Rafalski et al., 2018).

An increasing number of studies have shown the relation-
ships between vascular endothelial cells and microglia in the
CNS. In the pathologic context, microglia are rapidly attracted to
the vasculature following breakdown of the BBB (Barkauskas et
al., 2015; Dudvarski Stankovic et al., 2016). Microglia also
respond to the inflammation and then disrupt the BBB integrity,
thereby permeabilizing the BBB barrier (Dudvarski Stankovic et
al., 2016; Zhao et al., 2018; Haruwaka et al., 2019). In the healthy
brain, microglia regulate vascular formation and complexity in
the developing brain and retina (Checchin et al., 2006; Fantin et
al., 2010; Rymo et al., 2011; Dudiki et al., 2020). Furthermore,
microglia use the blood vessels as scaffolds to migrate through-
out the CNS structure (Grossmann et al., 2002; Checchin et al.,
2006; Monier et al., 2007; Fantin et al., 2010; Mondo et al., 2020).
However, the importance of the association of pericytes with
microglia has received little attention to date. In this study, we
attempted to elucidate the effect of pericytes on microglia
through multiple analyses using an in vivo pericyte depletion
model and in vitro coculture of isolated pericytes and microglia.

Materials and Methods
Mice and cell line
ICR mice were purchased from Japan SLC. CX3CR1-GFP mice (stock
#005582, RRID: IMSR_JAX:005582) were purchased from The Jackson
Laboratory (Jung et al., 2000). For CX3CR1-GFP1 embryos (heterozygous),

male homozygous CX3CR1-GFP mice (8–24weeks) were mated with
female ICR mice (8–24weeks). The day when the vaginal plug was detected
was considered E0. Both male and female embryos (E12–E14) were used
for analysis. All mice were maintained under specific pathogen-free condi-
tions and were housed at 22–24°C temperature with 40–60% humidity at
Nagoya University. A 12/12 h light/dark cycle was used. The animal experi-
ments were conducted according to the Japanese Act on Welfare and
Management of Animals, Guidelines for Proper Conduct of Animal
Experiments (published by Science Council of Japan), and Fundamental
Guidelines for Proper Conduct of Animal Experiment and Related
Activities in Academic Research Institutions (published by Ministry of
Education, Culture, Sports, Science and Technology, Japan). All protocols
for animal experiments were approved by the Institutional Animal Care
and Use Committee of Nagoya University (No. 29006).

Administration of APB5 and clodronate liposomes into the mouse
ventricle
After pregnant ICR mice were anesthetized by intraperitoneal injection
of pentobarbital sodium, somnopentyl (Kyoritsu Seiyaku), rat anti-
mouse PDGFRb mAb (clone APB5; Uemura et al., 2002) or rat IgG2a
isotype control antibody (catalog #BE0089, BioXCell, RRID: AB_
1107769) dissolved in saline was injected into the lateral ventricle of
male and female mouse embryos at E13 (3.6mg). After 24 h, the brains of
embryos (E14) were perfused with 4% paraformaldehyde (PFA) and
subjected to immunohistochemistry. When necessary, empty or clodro-
nate liposomes (Macrokiller V300, catalog #MKV300, Cosmo Bio) were
administered (3mg) to the ventricle of embryos at E12 to remove micro-
glia in the cerebral walls (Fig. 9D–H).

FACS analysis
Freshly isolated E14 pallial walls were treated with trypsin (0.05%, 3min
at 37°C). Dissociated pallial cells were filtered through a 40-mm strainer
(Corning) to eliminate all remaining cell debris and then resuspended in
DMEM/nutrient mixture F-12 (DMEM/F12; Invitrogen) containing 5%
fetal bovine serum (FBS; Invitrogen), 5% horse serum (HS; Invitrogen),
and penicillin/streptomycin (50 U ml�1, each; Meiji Seika Pharma Co,
Ltd.). Single cells were stained with rat anti-PDGFRb mAb (1:100, cata-
log #16-1402-82, Thermo Fisher Scientific, RRID: AB_469070), which
was labeled by FITC using an Ab-10 Rapid Fluorescein Labeling kit
(LK32, Dojindo), or rat FITC IgG2a isotype control Ab (1:200, catalog
#400505, BioLegend, RRID: AB_2736919), rat anti-NG2 mAb (1:200,
catalog #MAB6689, R&D Systems, RRID: AB_10890940), which was la-
beled by PE using an Ab-10 Rapid R-Phycoerythrin Labeling kit (LK34,
Dojindo), or rat PE IgG1 isotype control Ab (1:200, catalog #400408,
BioLegend, RRID: AB_326514), and rat BV421 anti-PDGFRa mAb
(1:200, catalog #135923, BioLegend, RRID: AB_2814036) or rat BV421
IgG2a isotype control antibody (1:200, catalog #407117, BioLegend,
RRID: AB_2687343) for 1 h on ice. Data collection was performed using
FACSDiva software version 8.0 on FACS Canto II (BE Biosciences) and the
data were analyzed using FlowJo software version 7.6. Approximately
20,000 cells, which were gated on a forward scatter (FSC)/side scatter (SSC)
plot for debris exclusion, were analyzed for each sample (Fig. 6A).

Cell sorting
Dissociated E14 pallial walls were filtered through a 40-mm strainer
(Corning) to eliminate all remaining cell debris and then resuspended in
DMEM/F12 media (Invitrogen) containing 5% FBS (Invitrogen), 5% HS
(Invitrogen) and penicillin/streptomycin (50 U ml�1, each; Meiji Seika
Pharma Co, Ltd.). Single cells were stained with rat FITC rat anti-mouse
CD31 mAb (1:200, catalog #102405, BioLegend, RRID: AB_312900) or
rat FITC IgG2a isotype control Ab (1:200, catalog #400505, BioLegend,
RRID: AB_2736919), rat anti-NG2 mAb (1:200, catalog #MAB6689,
R&D Systems, RRID: AB_10890940), which was labeled by PE using an
Ab-10 Rapid R-Phycoerythrin Labeling kit (LK34, Dojindo), or rat PE
IgG1 isotype control Ab (1:200, catalog #400408, BioLegend, RRID: AB_
326514), and rat BV421 anti-PDGFRa mAb (1:200, catalog #135923,
BioLegend, RRID: AB_2814036) or rat BV421 IgG2a isotype control
antibody (1:200, catalog #407117, BioLegend, RRID: AB_2687343) for
1 h on ice. NG21PDGFRa– cells and CD311 cells were sorted through a

Hattori et al. · Pericytes Promote Microglial Functional Activity J. Neurosci., January 19, 2022 • 42(3):362–376 • 363

https://scicrunch.org/resolver/IMSR_JAX:005582
https://scicrunch.org/resolver/AB_1107769
https://scicrunch.org/resolver/AB_1107769
https://scicrunch.org/resolver/AB_469070
https://scicrunch.org/resolver/AB_2736919
https://scicrunch.org/resolver/AB_10890940
https://scicrunch.org/resolver/AB_326514
https://scicrunch.org/resolver/AB_2814036
https://scicrunch.org/resolver/AB_2687343
https://scicrunch.org/resolver/AB_312900
https://scicrunch.org/resolver/AB_2736919
https://scicrunch.org/resolver/AB_10890940
https://scicrunch.org/resolver/AB_326514
https://scicrunch.org/resolver/AB_326514
https://scicrunch.org/resolver/AB_2814036
https://scicrunch.org/resolver/AB_2687343


100-mm nozzle using FACSDiva software version 8.0 on FACS Melody
(BD Biosciences). The drop delay was optimized using BD Biosciences
Accudrop beads (catalog #345249, BD Biosciences) according to the
manufacturer’s recommendations. Cerebral wall cells were gated on a
FSC/SSC plot (Fig. 6B). Debris and dead cells were excluded, and then,
NG21PDGFRa– cells and CD311 cells were further gated for sorting.
For preparation of microglia, CD11b1 cells were collected from cerebral
wall cells using a magnetic bead separation (MACS) system (catalog
#130-093-634, Miltenyi Biotec).

Coculture of microglia and pericytes
For the coculture to perform immunocytostaining, CD11b1 cells iso-
lated by the MACS system were seeded at a density of 8.3� 104 cells per
cm2 on glass coverslips (5-mm diameter; Matsunami Glass) coated with
polyethylenimine (Sigma-Aldrich). Each coverslip was placed in a well
of 24-well plate. After cells adhered to the cover glass, culture media
were added to 500ml to achieve the adequate volume for culturing.
FACS-isolated NG21PDGFRa– pericytes (1.0� 105 cells) were sepa-
rately cultured on a Transwell membrane (catalog #3413, Corning) in
Pericyte growth medium 2 (catalog #D12138, TaKaRa). After 24 h, the
Transwell insert on which pericytes were cultured was placed on the
microglial cultures, and coculture was started in a mixture of 10%
FBS-containing DMEM/F12 and pericyte growth medium 2 (1:1), which
contains 2% FBS and supplements for pericyte culture. Under these con-
ditions, we confirmed that both of microglia and pericytes were success-
fully cultured (data not shown). After culture for 48 h, microglia were
fixed, and then immunocytochemistry was performed. For the 5-bromo-
2’-deoxyuridine (BrdU) proliferation assay, BrdU was added to the cul-
ture of microglia (10mM) 1 h before fixation to detect proliferating cells.

For the preparation to perform RNA-Sequencing (RNA-Seq),
NG21PDGFRa– pericytes and CD311 cells were first isolated by flow-
cytometry. Endothelial cells (1.0� 105 cells) and/or pericytes (1.0� 105

cells) were cultured on a Transwell membrane in 10% FBS-containing
DMEM/F12 for 24 h. On the other hand, CD11b1 cells were isolated by
the MACS system, and 2.0� 105 cells of these cells were seeded on 24-
well plate coated with polyethylenimine (Sigma-Aldrich). Twenty-four
hours after culturing pericytes and endothelial cells, the Transwell insert
on which endothelial cells and/or pericytes were seeded was placed on
the microglial cultures, and coculture was started. In the dual coculture
experiment with microglia and pericytes (Fig. 6), we used conditioned
medium composed of half of the pericyte medium, which includes sup-
plements and is optimal for pericyte culture. However, we thought that
the artificial factors should be avoided as much as possible for RNA-Seq
analysis. Thus, this triple cell-type coculture was performed in normal
media (Figs. 7, 8).

We also tested the effect of pericytes on microglial proliferation using
direct-contact culture system of microglia and pericytes. However,
RNA-Seq analysis demonstrated that the genes related to phagocytosis
were exclusively upregulated in microglia cultured with pericytes (data
not shown). Since many kinds of gene expression were altered by phago-
cytosis activation and it seemed hard to understand the molecular mech-
anism by which pericytes induce microglial proliferation, we selected to
use bilayer culture instead of direct-contact culture system.

RNA-Seq analysis
After coculturing for 24 h, total RNA from CD11b1 microglia was
extracted using the RNeasy Micro kit (catalog #74004, QIAGEN). The
culture was performed in triplet. Libraries were prepared using the
SMART-Seq v4 Ultra Low Input RNA kit and TruSeq RNA Sample Prep
kit v2 (Illumina) and then further sequenced on the Illumina
NovaSeq6000 platform using a 100-bp paired-end strategy at Macrogen.

Analysis was performed on the paired-ends fastqs using the
FASTQC tool on Galaxy before proceeding with read mapping. Fastq
reads were mapped to the mouse genome assembly (mm10) using
TopHat version 2.1.1 with the corresponding sample’s mean inner dis-
tance between mate pairs. mRNA read counts were quantified during
transcript assembly with Cufflinks version 2.2.1.2. For individual gene
plots, we calculated fragments per kilobase of exon per million mapped
reads (FPKM).

For the heat map, the count data were transformed using the
DESeq2 algorithm. Among 24,889 genes, 11,763 genes were selected as
valuable genes under the requirement of an FPKM value .1 read and
detection in more than three samples among a total of nine samples.
Furthermore, the top 10% of genes (1200 genes) were identified by
calculating the standard deviation of the log2-transformed normalized
mRNAmolecules (Fig. 8A).

To generate dynamic Venn diagrams, Cuffdiff (version Galaxy
Version 2.2.1.6) differential gene expression data obtained from bulk
RNA-Seq experiments were transformed into the diagrams using the
web tool Vennt (v0.8.4; http://drpowell.github.io/vennt/; Fig. 8B). The
average FPKM value of genes of each group was calculated, and then
categorized into two groups, “upregulated” and “downregulated,” by
judging whether the average value was upregulated or downregulated in
Tr3 compared with Tr2. Next, the genes were categorized based on the
statistical threshold (FDR, 0.3) in the comparisons of Tr1 versus Tr2,
Tr2 versus Tr3, and Tr1 versus Tr3. Furthermore, the genes that cleared
the statistical threshold in both Tr1 versus Tr3 and that of Tr2 versus
Tr3 were identified (upregulated: 136 genes, downregulated: 133 genes)
as candidates for the next clustering analysis.

Next, driving segment clustering was conducted using k-means for
these 269 genes, and 225 genes passed the threshold (FPKM. 1,
expressed in at least two of three replicates; Fig. 8C). Fold-change profile
clusters were selected for enrichment analysis based on annotations pro-
vided by Gene Ontology (GO) biological processes (Fig. 8D). Heatmap
visualizations of the number of genes per ontology term was conducted
using complete linkage hierarchical clustering. The raw data have been
deposited in the DNA Data Bank of Japan (DDBJ) under the DRX acces-
sion number: DRX309613–DRX309621. For all other inquiries, please
contact the corresponding author.

Immunofluorescence
Brains were fixed in 4% PFA, immersed in 20% sucrose, and then frozen
sectioned (16mm). Cultured cells were fixed in 4% PFA for 10min at
room temperature, washed in PBS, and then immunostained. Sections
or cells were treated with the following primary antibodies: rat anti-
BrdU mAb (1:1000, catalog #NB500-169, Novus Biologicals, RRID: AB_
10002608), rabbit anti-cleaved Caspase 3 (Cl-Casp3) pAb (1:500, catalog
#9661S, Cell Signaling Technology, RRID: AB_2341188), goat anti-
CD31 pAb (1:600, catalog #AF3628, R&D Systems, RRID: AB_2161028),
APC mouse anti-CX3CR1 mAb (1:100, catalog #400408, BioLegend,
RRID: AB_326514), rat anti-ERG mAb (1:1000, catalog #ab92513,
Abcam, RRID: AB_2630401), chicken anti-GFP pAb (1:1000, catalog
#GFP-1020, Aves Labs, RRID: AB_10000240), rat anti-GFP mAb (1:500,
catalog #GF090R, Nacalai Tesque, RRID:AB_2314545), rabbit anti-Iba1
pAb (1:2000, catalog #019-19741, Fujifilm Wako Pure Chemical Corp.,
RRID: AB_839504), rabbit anti-Ki67 pAb (1:1000, catalog #ab15580, Abcam,
RRID: AB_443209), rabbit anti-NG2 pAb (1:1000, catalog #AB5320, Merck
Millipore, RRID: AB_11213678), rat anti-NG2 pAb (1:200, cata-
log #MAB6689, R&D Systems, RRID: AB_10890940), rabbit anti-
P2RY12 pAb (1:500, catalog #AS-55043A, AnaSpec), rat APC
anti-PDGFRa mAb (1:100, catalog #135908, BioLegend, RRID:
AB_2043970), rat anti-PDGFRb mAb (1:100, catalog #16-1402-
82, Invitrogen), rabbit anti-Sox2 pAb (1:500, catalog #ab97959,
Abcam), and rat eFluor 660 anti-Trb2 mAb (1:100, catalog #50-
4875-82, Thermo Fisher Scientific, RRID: AB_469070). After
washing, the sections were treated with secondary antibodies con-
jugated to Alexa Fluor 488, Alexa Fluor 546, or Alexa Fluor 647
(1:1000, catalog #A10040, #A11029, #A11030, #A11039, #A11055,
#A11056, #A11081, #A21202, #A21206, #A21208, #A21245,
#A21247, #A21447, Invitrogen; 1:1000, catalog #150155, Abcam)
and then stained with DAPI (catalog #D9542, Sigma-Aldrich).
After staining, the sections were mounted with mounting solu-
tion. When necessary, antigen retrieval was performed by heating
samples at 70°C in HistoVT One (catalog #06380-05, Nacalai
Tesque) for 20 min (Cl-Casp3, Sox2, and Tbr2) or by treatment at
RT in 5N HCl for 10 min (BrdU and Ki67). Image data were col-
lected using FV10-ASW software version 4.1 on Fluoview FV1000
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(Olympus) and NIS-Elements software AR Analysis version
5.01.00 on TiEA1R (Nikon) and A1Rsi (Nikon).

Evaluation of vascular permeability and endothelial cell
proliferation
To evaluate vascular permeability, EZ-Link Sulfo-NHS-Biotin (catalog
#21217, Thermo Fisher Scientific), diluted in PBS at 1mg/ml concentration,
was perfused from the hearts of E14 or E15 mice, which were treated with
control antibody or APB5 at E13 in advance (Fig. 4C). Mouse brains were
fixed with 4% PFA in PBS 10min after tracer administration. Biotin was
immunohistochemically detected with mouse monoclonal Cy3-conjugated
anti-biotin antibody (1:500, catalog #C5585, Sigma-Aldrich, RRID: AB_
258901).

To detect proliferating endothelial cells, BrdU (50mg/kg, catalog
#B5002, Sigma-Aldrich) was administered intraperitoneally to a dam 1 h
before fixation. The proportion of BrdU1ERG1 cells per total ERG1

cells was evaluated through an immunohistochemical analysis (Haber et
al., 2015; Ogura et al., 2017; Fig. 4D–G).

Real-time qPCR
APB5 or rat IgG2a isotype control antibody dissolved in saline was
injected into the lateral ventricle of embryos at E13 (3.6mg). After 24 h,
the brains were pooled to make three groups: nine brains for APB5-
treated samples and six brains for isotype control antibody-treated sam-
ples. Cells were isolated from cerebral wall cells by the MACS system,
and then, total RNA was extracted. First-strand cDNA was synthesized
from 100 ng of total RNA and reverse-transcribed into cDNA using
SuperScript III reverse transcriptase (catalog #18080044, Invitrogen) in
the presence of RNase OUT Recombinant Ribonuclease Inhibitor (cata-
log #10777019, Invitrogen). Quantitative real-time PCR (qRT-PCR) was
performed with THUNDERBIRD SYBR qPCR Mix (catalog #QPS-201,
Toyobo) using Thermal Cycler Dice Real Time System TP800 (TaKaRa).
For amplification of specific transcripts, samples were heated at 95°C for
15min and subsequently underwent a melting curve analysis from 60°C
to 95°C. The threshold cycle number (Ct) of the target was calculated
and expressed relative to that of GAPDH, and then, DDCt values of the
target were calculated and presented as relative fold induction. Primers
were as follows: 59-ACT TCG GGC CAT GTT TCT CT-39 (sense) and
59-GCT GGT AGG TTG ATT GTC GT-39 (antisense) for Cd68; 59-GTC
CTC ATC GTC CTC ATT GC-39 (sense) and 59-CTG ATA GCC GGC
GTG ACT-39 (antisense) for Lamp1; 59-AAG GTG CAA CCT TTT
AAT GTG AC-39 (sense) and 59-TGT CAT CAT CCA GCG AAC AC-
39 (antisense) for Lamp2 and 59-GTT GTC TCC TGC GAC TTC A-39
(sense) and 59-GGT GGT CCA GGG TTT CTT A-39 (antisense) for
Gapdh.

Statistics and reproducibility
Quantitative data are presented as the mean value 6 SD of representa-
tive experiments. Statistical differences between groups were analyzed
using the Mann–Whitney U test for two-group comparisons and the
Steel–Dwass test for multiple comparisons in R software version 3.6.0.
All statistical tests were two-tailed, and p, 0.05 was considered signifi-
cant (**p, 0.01, *p, 0.05, or n.s., not significant). For qRT-PCR analy-
sis, the samples were evaluated by Welch’s t test. Individual values were
plotted as circles in bar graphs. The number of samples examined in
each analysis is shown in the corresponding figure legend. No random-
ization was used. The mice analyzed were littermates whenever possible.
No samples were generally excluded from the analysis. We excluded
only the data obtained from failed experiments for several reasons, e.g.,
failure in sample preparations. No statistical methods were used to pre-
determine the sample size owing to experimental limitations. The sam-
ple size was determined to be adequate based on the magnitude and
consistency of measurable differences between groups. Basically, investi-
gators were blinded during experiments. We confirmed that replicate
experiments were successful by repeating all experiments at least three
times. Representative micrographs are shown in the figures.

Results
Microglia were preferentially attached to pericytes
surrounding capillaries
First, we categorized microglia in the cerebral wall according to
whether they were associated with capillaries or existed apart
from the vascular structure. Immunohistochemistry of the vascu-
lar endothelial marker CD31 and microglial marker CX3CR1 of
the cerebral walls of E14 CX3CR1-GFP mice (Jung et al., 2000)
showed that 52.9% of microglia were attached to capillaries, and
the proportion of these classified cells was slightly but signifi-
cantly greater than that of cells positioned independently from
capillaries (Fig. 1A,B).

Vascular endothelial cells are covered with mural cell pericytes
(Daneman, et al., 2010; Teichert et al., 2017). Coimmunostaining of
CD31 and platelet-derived growth factor receptor b (PDGFRb ),
which is exclusively expressed in pericytes (Hellström et al., 1999),
revealed that the PDGFRb -positive area overlapped with CD31-
positive vascular structures (Fig. 1C). The proportion of pericyte
coverage calculated by the CD31-merged and PDGFRb -merged
area per the entire CD31-positive area in the E14 mouse cerebral
wall was 79.8%. Importantly, magnified observations to detect the
positioning of vascular endothelial cells, pericytes and microglia
demonstrated that most of the microglia, which were associated
with vascular structures, selectively attached to the regions that were
covered with pericytes (Fig. 1D). Among the microglia that were in
contact with vascular endothelial cells, the cells associated with vas-
cular endothelial cells via pericytes accounted for 98.4%, while the
cells directly touching endothelial cells (without pericytes) consti-
tuted a very minor population (1.6%; Fig. 1E). This result motivated
us to test the hypothesis that pericytes might facilitate microglial de-
velopment and/or distribution.

Intraventricular administration of anti-PDGFRb antibodies
resulted in the loss of pericytes surrounding the capillaries
PDGFRb , which is expressed on pericytes, recognizes platelet-
derived growth factor-BB (PDGF-BB) released from vascular en-
dothelial cells (Heldin et al., 1998). Once PDGF-BB binds to
PDGFRb , PDGFRb dimerization, which activates subsequent
autophosphorylation of cytoplasmic tyrosine residues, is induced,
thereby initiating a multitude of signal transduction pathways stim-
ulating the proliferation, migration and recruitment of pericytes to
the vascular walls of newly formed blood vessels (Lindahl et al.,
1997; Heldin et al., 1998; Hellström et al., 1999). Previous studies
reported that administration of a rat monoclonal blocking antibody
to PDGFRb (clone APB5), which blocks PDGFRb signaling by in-
hibiting PDGFRb dimerization (Sano et al., 2002), can selectively
deplete pericytes in the mouse retina in the postnatal stage (Uemura
et al., 2002; Ogura et al., 2017). To examine whether blockade of the
PDGFRb signal transduction pathway could effectively deplete
pericytes in the embryonic mouse brain, we administered APB5 or
isotype control antibodies to the E13 mouse ventricles (Fig. 2A).
Twenty-four hours after intraventricular injection of antibodies, the
E14 mouse brains were fixed and analyzed for immunostaining of
neural glial antigen 2 (NG2), another pericyte marker, to evaluate
the effectiveness of APB5 treatment for pericyte depletion. Since
NG2 is also expressed on oligodendrocyte progenitor cells (OPCs),
which emerge at around E14 in the lateral cortex and gradually
increase their number toward the late embryonic stage (Hill and
Nishiyama, 2014; Takebayashi and Ikenaka, 2015), we need to
distinguish these cells from pericytes. Of note, OPCs have the fol-
lowing characteristics: they are positive for PDGFRa, a specific
marker for OPCs, and are ramified-shaped cells located apart
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from capillaries; thus, OPCs and pericytes can be distinguished
(Fig. 2B). Immunohistochemical analysis for CD31 and NG2 dem-
onstrated that the regional pericyte coverage of capillaries, which
was calculated by the CD31 and NG2-merged area per CD31-pos-
itive area, was comparable between the saline-treated and isotype
control antibody-treated brains (79.3% and 79.0%, respectively).
In contrast, this area was markedly reduced in the APB5-treated
brains (9.89%) compared with the control brains (Fig. 2C,D).

To determine the cause of pericyte loss when APB5 was
administered to the mouse ventricle, we examined whether peri-
cytes might undergo apoptosis in the brain soon after (8 h) an in-
traventricular injection of saline, isotype control antibodies or
APB5 at E14. We rarely found cells positive for Cl-Casp3, a
marker of the early phase of apoptosis, in the saline-treated or
control antibody-treated brains, while many Cl-Caps31 cells sur-
rounding the capillaries in the APB5-treated brains were
detected (Fig. 2E), indicating that APB5 induced apoptosis in
pericytes. These results indicate that the blockade of PDGFRb
signaling via intraventricular APB5 administration could suc-
cessfully deplete pericytes by inducing apoptosis in the embry-
onic brain.

Pericyte depletion reduced the density of microglia in the
cerebral cortex
To investigate whether pericytes affect microglial dissemination
in the developing cortex, we first examined the density of micro-
glia in the cerebral wall of the E14 CX3CR1-GFP mice treated
with saline, isotype control antibody or APB5 at 24 h after injec-
tion (Fig. 3A). The microglial density was comparable between
the saline-treated and control antibody-treated brains, while it
was markedly decreased in the APB5-treated brains (Fig. 3B,C).

Next, to investigate how pericyte depletion affects microglia
in the cerebral walls, we stained Ki67 to detect proliferating cells.
Ki67 is present during all active phases of the cell cycle (G1, S,
G2, and M) but is absent in resting cells (G0). We found that the

proportion of CX3CR11 microglia that were positive for Ki67
was significantly decreased in the APB5-treated brains (Fig. 3D,
E). To enhance the reliability of the result obtained from Ki67
labeling, we performed further staining with BrdU, another pro-
liferative marker that labels replicating cells during the S phase of
the cell cycle (Fig. 3F). We found that the proportion of BrdU1

cells among all CX3CR11 microglia was significantly lower in
the APB5-treated brains (Fig. 3G).

However, APB5 administration might affect vascular struc-
tures, thereby causing low microglial density in the cerebral wall.
Previous studies reported that pericyte loss caused vascular dys-
function through a failure of tight junctions between endothelial
cells (Bell et al., 2010; Sengillo et al., 2013). To test whether APB5
treatment might immediately affect endothelial cells, we eval-
uated vascular dilation, permeability, and endothelial cell prolif-
eration in APB5-treated brains compared with saline-treated or
isotype control antibody-treated brains at 24 or 48 h after admin-
istration (Fig. 4A–G). We did not observe any significant differ-
ences between the APB5-treated group and the control group at
24 h after injection, which is the time schedule applied in our
experiments. However, vascular dilation was detected only at
48 h after treatment (Fig. 4A,B). These data suggest that the vascular
structure may still remain stable within 24 h after intraventricu-
lar APB5 injection, although the effects appear 48 h after admin-
istration. Thus, a decrease in microglial density in APB5-treated
brains at 24 h after injection may be directly caused by pericyte
depletion.

Pericyte depletion did not affect microglial cell viability and
phagocytotic activity
Next, to test whether APB5 administration might induce micro-
glia to undergo apoptosis, we performed coimmunostaining of
CX3CR1 and Cl-Casp3 in the brains 24 h after intraventricular
injection of APB5. We found that Cl-Caps31 nuclei did not
merge with CX3CR11 microglia, indicating that pericyte
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depletion did not induce microglia to undergo apoptosis (Fig.
5A) but caused a decrease in their proliferative activity (Fig. 3).

Since a previous report showed that apoptotic uptake
profoundly inhibits macrophage proliferation (Reddy et al.,
2002), we next investigated whether microglia decreased
the proliferative capacity as a result of their enhanced phag-
ocytic activity to engulf apoptotic cells because of APB5

treatment. Therefore, we collected
pallial walls from E14 mice treated
with isotype control antibody or
APB5 at E13, and then microglia
were isolated from pallial wall cells
based on their surface expression of
CD11b using a magnetic separation
system (MACS). Total RNA was
extracted from harvested CD11b1

microglia and tested for the expres-
sion levels of some molecules rele-
vant to phagocytic activity and
markers for microglial subtypes by
qRT-PCR (Fig. 5B). We investigated
the mRNA expression of general
markers of activated phagocytic micro-
glia, such as Cd68 and lysosomal-asso-
ciated membranes 1 and 2 (Lamp1 and
Lamp2; Paolicelli et al., 2017; Liu et al.,
2021). Cd68mRNA expression was up-
regulated in the APB5-treated brains
compared with the isotype control anti-
body-treated brains, while no signifi-
cant differences were detected in the
mRNA expression levels of Lamp1 and
Lamp2 (Fig. 5C), suggesting that micro-
glial phagocytic activity was not strongly
increased in the cells derived from the
APB5-treated brains, but this result
prompted us to test whether pericytes
contribute to microglial proliferation by
another approach.

An in vitro coculture study
demonstrated that pericytes induced
microglia to proliferate
To test whether pericytes might be
directly involved in microglial prolifer-
ation and/or survival, we established an
in vitro coculture system of microglia
with or without pericytes. Cerebral wall
cells were collected from E14 mice
injected with isotype control antibody
or APB5 at E13, and microglia and
pericytes were isolated. Microglia were
similarly sorted using the CD11b
MACS system. For pericyte isolation,
we used an anti-NG2 antibody for peri-
cyte detection and did not use an anti-
PDGFRb antibody (APB5) because our
results showed that APB5 might induce
pericytes to undergo apoptosis. Since
OPCs also express NG2, we stained the
cells with anti-PDGFRa antibody to
exclude OPCs from NG21 cells. Before
the experiment, we performed a prein-
vestigation for pericyte sorting using

anti-PDGFRb antibody (APB5) and anti-NG2 antibody. Flow
cytometry (FACS) analysis of the pallial cells showed that
almost all PDGFRb1 cells were positive for NG2, and the
PDGFRb1NG21 cells were PDGFRa negative (Fig. 6A).
Thus, we assumed that these NG21PDGFRa– cells were com-
posed mostly of pericytes (Fig. 6B).
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Isolated microglia were seeded on the bottom of the dish and
cultured with NG21PDGFRa– pericytes placed in the Transwell
insert above the microglial culture or without pericytes for 48 h
(Fig. 6C). We found that the density of CX3CR11 microglia was
significantly increased in the microglia cocultured with pericytes
compared with the microglial cultures without pericytes (Fig.
6D,E). To test whether pericytes affect the microglial cell cycle,
we stained Ki67 to detect proliferating microglia. The propor-
tion of Ki671 cells among CX3CR11 microglia, which are in
the active phases of the cell cycle, was significantly increased
in the cells cocultured with NG21PDGFRa– cells (Fig. 6D,F).
Furthermore, we found that the proportion of replicating
BrdU1 cells was significantly greater in the CX3CR11 micro-
glia in cocultured samples than in the microglia-only cultures
(Fig. 6G,H). These results suggest that pericytes likely promote
microglial survival and proliferation through the production
of soluble factors.

RNA-Seq analysis revealed the influence of pericytes on the
gene expression of microglia
To test whether pericytes affect the gene expression pattern of
microglia, and if so, to investigate the mechanisms involved in
microglial proliferation and/or survival, we performed RNA-Seq
analysis on microglia cocultured with pericytes. In the brain,

pericytes coexist with vascular endothelial cells. To better simu-
late physiological microglial responses to pericytes than is possi-
ble in the dual cell-type coculture system, a triple cell-type
coculture system was established by adding endothelial cells (Fig.
7A). CD11b1 microglia isolated by MACS were seeded on the
bottom of the dish, and FACS-sorted CD311 endothelial cells
with or without NG21PDGFRa– pericytes were placed in the
Transwell insert above the microglial culture. We confirmed that
the density of microglia and the proportion of BrdU+ proliferat-
ing microglia were increased in cultures with both pericytes and
endothelial cells compared with cultures only with endothelial
cells after 24 h (Fig. 7B–E). Thus, twenty-four hours after cocul-
turing, total RNA was extracted from microglia.

A heatmap revealed a transcriptional change in microglia
cocultured with endothelial cells (Tr2) and those cocultured with
both endothelial cells and pericytes (Tr3), compared with the
control (only microglia) culture (Tr1; Fig. 8A). We found a vari-
ous pattern of alteration in gene expression among these three
groups. To investigate the kind of genes directly affected by peri-
cytes, first, the upregulated or downregulated genes in the Tr3
group compared with the Tr2 group were listed. Next, these
listed genes were further categorized based on the statistical
threshold in the comparisons of Tr1 versus Tr2, Tr2 versus Tr3,
and Tr1 versus Tr3 (Fig. 8B). Furthermore, the genes were
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selected by judging whether they cleared the statistical threshold
of the comparisons of Tr1 versus Tr3 and Tr2 versus Tr3. This
classification identified the genes that were valuably upregulated
or downregulated in the Tr3 group compared with the Tr1 and
Tr2 groups (upregulated: 136 genes, downregulated: 133 genes),
implying that these genes were directly modulated in the pres-
ence of pericytes.

Among these 269 candidate genes, 225 genes passed the
threshold for k-means clustering. These 225 genes were catego-
rized into three groups by the expression pattern (clusters A to
C; Fig. 8C). GO analysis showed that families of genes that
encode proteins characteristic of protein metabolic process (cate-
gorized as “regulation of protein metabolic process,” “positive
regulation of protein metabolic process,” and “positive regulation
of catalytic activity”) were highly and specifically induced in Tr3
(cluster C; Fig. 8D; Extended Data Fig. 8-1). The link between
metabolic processes and cellular proliferation and/or survival has
been well studied (Zhu and Thompson, 2019). Cell proliferation
requires the synthesis of intracellular biomass, such as proteins
and lipids to generate daughter cells. Such biosynthetic processes
were achieved through a network of cellular metabolic pathways.
Thus, these data might suggest that pericytes contribute to
microglial proliferation and survival by activating pathways of
metabolic processes in microglia.

In contrast, the families of genes belonging to response to
stimulus (categorized as “response to external stimulus” and
“regulation of response to stimulus”) were downregulated (clus-
ter A). These GO terms include any process that results in a
change in the state or activity of cells, therefore, interpretation by
these responses alone is difficult. However, the genes of microglia
were affected by pericyte addition.

Gene families for immune response (categorized as “immune
system process” and “response to cytokine”) were also observed
to be upregulated in Tr2 compared with Tr1, and augmented in
Tr3 compared with Tr2 (Cluster B). For example, the mRNA
expression of genes involved in the immune response, such as
Ccl2, Ccl3, Ccl7, Ifitm3, Oas2, and Bst2, was upregulated. Further
studies are needed to elucidate the detailed molecular mecha-
nism by which pericytes induce microglial proliferation and sur-
vival with a focus on these molecules.

Taken together, these RNA-Seq results suggest that pericytes
directly modulate the gene expression pattern of microglia, and
may trigger microglial proliferation and/or survival through the
upregulation of genes that are involved in metabolic processes.

Pericytes indirectly support microglia to efficiently promote
the differentiation of neural stem cells into intermediate
progenitors
Finally, we tested whether neural lineage cells would be affected
by microglial reduction because of pericyte depletion (Fig. 9A).
Since previous studies revealed that microglia promote the differ-
entiation from neural stem cells into intermediate progenitors
(Arnò et al., 2014; Hattori and Miyata, 2018), we examined the
numbers of Sox21 neural stem cells and Tbr21 intermediate
progenitors in each bin (40-mm height vertically to the apical sur-
face) numbered from the apical surface among the saline-treated,
isotype control antibody-treated, and APB5-treated groups. We
found that the number of Sox21 cells was significantly increased
in the APB5-treated brains compared with the control brains,
especially in the region near the apical surface (bins 1–3).
However, we did not detect a significant difference in the more
distant region (bins 4 and 5; Fig. 9B,C). Moreover, the number of
Tbr21 cells located in bins 1–3 was significantly diminished in
the APB5-treated brains compared with the control brains.
These results suggest that microglia could not fully promote the
differentiation of neural stem cells into intermediate progenitors
when pericytes were depleted.

However, we could not exclude the possibility that such alter-
ations in the number of Sox21 cells and Tbr21 cells were because
of other factors, such as the direct effect of APB5 on neural line-
age cells or vascular endothelial cells. To assess whether the
increase in Sox21 cells and the decrease in Tbr21 cells were
caused by microglial loss because of pericyte elimination, we
combined APB5 administration with an injection of clodronate
liposomes, which can selectively remove microglia. At E12,
clodronate or empty liposomes were injected into the ventricles,
followed by the administration of APB5 or isotype control anti-
bodies at E13 (Fig. 9A). Twenty-four hours after antibody treat-
ment, the density of P2RY121 microglia was markedly lower in
the groups treated with clodronate liposomes than in the empty
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test; n= 3 samples; p= 0.049 for Cd68, 0.439 for Lamp1, and 0.310 for Lamp2). Data are presented as the mean value6 SD. The white broken line indicates the apical surface.
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liposome-injected groups, in which microglia were abundantly
distributed in the brains (Fig. 9D). To determine whether clodro-
nate might affect pericyte proliferation, we investigated pericyte
coverage and the ratio of the PDGFRb and CD31-merged area
to the CD31-positive area (Fig. 9E). However, no overt pheno-
types were detected between the control and clodronate-admin-
istered brains (Fig. 9F). Immunohistochemical analyses of Sox2
and Tbr2 expression in the control antibody-treated groups,

which were pretreated with empty or clodronate liposomes,
showed that the number of Sox21 cells was greater but that of
Tbr21 cells was fewer in the region near the apical surface in the
clodronate-treated brains than in the empty liposome-treated
brains (Fig. 9G,H), which is consistent with a previous report
examining the impact of microglial removal by clodronate lipo-
some injection on neural lineage cells (Hattori and Miyata,
2018). Notably, in a comparison of the clodronate-treated groups
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between the control antibody and APB5 treatment groups, no
obvious changes were observed, indicating that the increase in
Sox21 cells and the decrease in Tbr21 cells in the APB5-treated
brains were induced by microglial loss as a result of pericyte
depletion.

Taken together, pericytes indirectly support microglia to effi-
ciently promote the differentiation of neural stem cells into inter-
mediate progenitors.

Discussion
This study revealed that blockade of PDGFRb signals by intra-
ventricular APB5 injection induced pericytes to undergo apopto-
sis, leading to the loss of pericytes surrounding the capillaries in
the cerebral walls. In pericyte-depleted brains, the density of
microglia in the pallium was markedly decreased. An in vitro co-
culture study of microglia and NG21PDGFRa– cells, which were
mostly composed of pericytes, suggests that pericytes likely

promote microglial survival and proliferation through the pro-
duction of secretory molecules. Furthermore, pericytes facilitate
microglial homeostasis, thereby indirectly supporting microglial
effects on neural progenitors.

Emerging evidence has highlighted the relationship
between vascular endothelial cells and neural lineage cells in
the developing brain. Javaherian and Kriegstein reported that
neural progenitors are closely associated with cortical vessels
(Javaherian and Kriegstein, 2009). Tata and colleagues found
the essential roles of vascular structures in regulating the
expansion and differentiation of neural progenitor cells (Tata
and Ruhrberg, 2018). Komabayashi-Suzuki an colleagues
demonstrated that cortical vessels provide different niches to
support ongoing neurogenesis and gliogenesis (Komabayashi-
Suzuki et al., 2019). Moreover, multiple in vitro studies under-
scored the association of the vasculature and neural stem cells.
Shen and colleagues proposed that vascular endothelial cells
induce neurogenesis by stimulating neural stem cells to proliferate
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in the developing brain (Shen et al., 2004). Other groups also
showed that when cocultured with embryonic neural progenitors,
endothelial cells promoted stem cell maintenance via unknown
soluble factors (Gama Sosa et al., 2007; Vissapragada et al., 2014).
Hence, vascular endothelial cells likely regulate neurogenesis in
the developing brain; however, whether pericytes collaboratively
function in these aspects together with vascular endothelial cells
remains to be elucidated. On the other hand, increasing evidence

has demonstrated the interaction between vascular endothelial
cells and microglia in the developing brain. Cortical vessels have
been suggested to serve as a route of microglial entry into the cor-
tex (Rezaie and Male, 1999). More recent studies have reported
that microglia use blood vessels as scaffolds to migrate throughout
the CNS structure (Grossmann et al., 2002; Checchin et al., 2006;
Monier et al., 2007; Fantin et al., 2010; Mondo et al., 2020).
Microglia also regulate vascular formation and complexity in the
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developing brain and retina (Checchin et al., 2006; Fantin et al.,
2010; Rymo et al., 2011; Dudiki et al., 2020). Although vascular en-
dothelial cells and microglia mutually regulate or promote appro-
priate brain development, how or whether pericytes impact these
phenomena is not well understood. Pericytes might act as an inter-
face among vascular structures, microglia and neural lineage cells.
Additional experiments to test such possibilities are needed and
will provide new insights into pericyte function.

We demonstrated that pericyte removal by APB5 treatment
inhibited microglial proliferation, thereby resulting in a lack of
microglia in the parenchyma. Moreover, the numbers of Sox21

neural stem cells and that of Tbr21 intermediate progenitors

were increased and decreased in the cerebral wall of pericyte-
depleted brains, respectively. We found no obvious change in the
number of Sox21 neural stem cells and Tbr21 intermediate pro-
genitors in the microglia-depleted brains when comparing the
APB5-treated and isotype control antibody-treated brains, sug-
gesting that pericyte loss because of APB5 treatment would not
affect the numbers of Sox21 or Tbr21 cells, but microglial loss
may be involved in the alterations in these cell numbers.
However, we did not rule out the possibility that pericytes con-
tribute to neurogenesis in embryonic brains. Previous reports
have shown that pericytes support neurogenesis using in vitro
culture and in vivo experiments in adult mice. For example,
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pericytes derived from adult brains have been reported to exhibit
a multipotential neural stem cell capability and were demon-
strated to differentiate into neural stem cells in the presence of
basic fibroblast growth factor (Dore-Duffy et al., 2006). In an is-
chemic mouse model, pericytes promoted neurogenesis by
secreting CXCL12, nerve growth factor and neurotrophin-3
(Sato et al., 2016). In our study, the effect of pericyte depletion
on neural lineage cells was evaluated in a relatively short term
(24 h after treatment) because we thought that whether the phe-
notypes observed in the APB5-treated brains are caused by peri-
cyte loss or vascular dysfunction would be difficult to judge from
experiments with long-term APB5 treatment. In fact, a previous
study reported that the correct development of the vascular
structure is crucial for neuronal formation and function
(Eichmann and Thomas, 2013). Therefore, additional experi-
ments to address these problems should be conducted to deter-
mine whether pericytes are directly involved in neurogenesis in
embryonic brains.

In summary, our findings provide new insights into the link
between pericytes and microglia in developing embryonic brains.
Pericytes play critical roles not only in cerebral microcirculation
maintenance and BBB integrity but also in microglial homeosta-
sis support in the developing cerebral walls. We found that peri-
cytes directly modulated the gene expression pattern in
microglia, and induced the upregulation of genes involved in the
metabolic process. Further studies on which molecules released
from pericytes contribute to this phenomenon are needed. A
deeper understanding of the roles of pericytes may help elucidate
brain development in both healthy and pathologic conditions.
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