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The ability to make decisions based on external information, prior knowledge, and evidence is a crucial aspect of cognition and
may determine the success and survival of an organism. Despite extensive work on decision-making mechanisms/models, under-
standing the effects of alertness on neural and cognitive processes remain limited. Here we use EEG and behavioral modeling to
characterize cognitive and neural dynamics of perceptual decision-making in awake/low alertness periods in humans (14 male,
18 female) and characterize the compensatory mechanisms as alertness decreases. Well-rested human participants, changing
between full-wakefulness and low alertness, performed an auditory tone-localization task, and its behavioral dynamics were
quantified with psychophysics, signal detection theory, and drift-diffusion modeling, revealing slower reaction times, inattention
to the left side of space, and a lower rate of evidence accumulation in periods of low alertness. Unconstrained multivariate pat-
tern analysis (decoding) showed a ;280 ms delayed onset driven by low alertness of the neural signatures differentiating
between left and right decision, with a spatial reconfiguration from centroparietal to lateral frontal regions 150-360 ms. To
understand the neural compensatory mechanisms with decreasing alertness, we connected the evidence-accumulation behavioral
parameter to the neural activity, showing in the early periods (125-325 ms) a shift in the associated patterns from right parietal
regions in awake, to right frontoparietal during low alertness. This change in the neurobehavioral dynamics for central accumu-
lation-related cognitive processes defines a clear reconfiguration of the brain networks’ regions and dynamics needed for the
implementation of decision-making, revealing mechanisms of resilience of cognition when challenged by decreased alertness.
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Significance Statement

Most living organisms make multiple daily decisions, and these require a degree of evidence from both the environment and
the internal milieu. Such decisions are usually studied under sequential sampling models and involve making a behavioral
choice based on sensory encoding, central accumulation, and motor implementation processes. Since there is little research
on how decreasing alertness affects such cognitive processes, this study has looked at the cognitive and neural dynamics of
perceptual decision-making in people while fully awake and in drowsy periods. Using computational modeling of behavior
and neural dynamics on human participants performing an auditory tone-localization task, we reveal how low alertness mod-
ulates evidence accumulation-related processes and its corresponding compensatory neural signatures.

Introduction
The question of how decisions are made has shaped the world’s
systems of government, justice, and social order (Buchanan and
O’Connell, 2006). Studies on how the brain implements simple
decisions have revealed several neurocognitive processes at the
perceptual, central integration, and motor implementation levels
(Sigman and Dehaene, 2005; O’Connell et al., 2018). However,
the modulatory effects of the internal milieu, homeostasis, alert-
ness, and circadian influences on such processes have received
less attention (Knowles, 1993; Hull et al., 2003). Specifically, the
effect of low alertness has only been tackled by sleep deprivation
and brain injury studies but hardly by normal variations of wake-
fulness (Goupil and Bekinschtein, 2012).

Perceptual decision-making in cognitive sciences has been
successfully studied (Link and Heath, 1975; Gold and Shadlen,
2007) under sequential sampling models (SSMs), and consists of
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the following: (1) perceptual stage, a sensory system that trans-
forms physical stimulus intensities to deliver decision-infor-
mation; (2) central integration stage, a decision system that
integrates and accumulates such decision-information varia-
bles and makes an optimal choice based on relative evidence;
and (3) motor stage, a motor system that implements the
appropriate motor plan/action. According to SSMs, accurate
perceptual decisions separate the noise from the signal by
repeatedly sampling and integrating evidence until there is
enough in favor of one of the decision choices. The preferred
concept to understand and develop a hypothesis is called the
decision variable, and it is an accumulation of priors, evi-
dence, internal milieu, and value into a quantity that is inter-
preted by the decision rule to produce a choice (Gold and
Shadlen, 2007). This study aims to investigate how alertness
modulates such decision mechanisms in spatial auditory
perception.

To understand how alertness modulates perceptual decision-
making, we need to first define the specific aspect of wakefulness
to be used as the experimental manipulation (Bekinschtein et al.,
2009b). Changes in alertness can be classified into “tonic” that span
multiple trials/time periods, and “phasic” moment-to-moment
changes produced in response to an ongoing task. A few recent
studies have shown that alertness, measured by brainstem systems
indirect markers (pupil response), modulates individual decision-
making in moment-to-moment fluctuations (phasic) (McGinley et
al., 2015; de Gee et al., 2017). Further to this, van Kempen et al.
(2019) showed that lower tonic and higher phasic alertness via pupil
measurements predicted shorter reaction times and was associated
with a centroparietal positivity in EEG space. However, these studies
have used pupil responses, which in neural terms is an indirect
marker for alertness, and can also be influenced by stimulus fea-
tures, such as visual contrast and several other parameters (Wang et
al., 2018).

Studies in stroke patients have also revealed the effect of alert-
ness on cognitive processes, such as spatial attention (Robertson
et al., 1998). In particular, lesions on one side of the brain create
a difficulty in localizing and paying attention to information on
the side opposite to the lesion, a condition referred to as unilat-
eral spatial neglect and usually more persistent after a stroke in
the right hemisphere (Karnath and Zihl, 2003). We have also
shown a while back, mimicking the behavior of hemispatial
neglect patients (Langner and Eickhoff, 2013), that during
drowsy periods, even healthy participants show more errors to
the left side of the space in an auditory task (Bareham et al.,
2015). However, these alertness-related effects have not been
studied in a perceptual decision-making framework which fur-
ther motivated this study. Hence, we took the opportunity to
merge the questions on spatial attention and perceptual deci-
sion-making modulated by alertness by implementing an audi-
tory spatial attention task that we developed previously. This
paradigm is well defined for this alertness modulation design,
and robust and systematic results have been replicated with it.
Further, the auditory stimuli can be delivered with eyes closed,
and finally it has a simple response option which is appropriate
for drowsy participants.

Thus, we designed a study to directly measure tonic alertness
and understand its effect on decision-making. Here, we also uti-
lised a recently developed computational method (Jagannathan
et al., 2018) to measure alertness directly from EEG, and in com-
bination with multi-level modeling and psychophysics, to under-
stand its effect on behavior. Next, we used a drift-diffusion
model (DDM) to parametrise the different elements of the

decision-making process, neural decoding for data-driven char-
acterization, and finally, connected the DDM to the neural
markers to reveal the compensatory mechanisms of decision-
making and spatial attention.

Materials and Methods
Participants
Forty-one healthy human participants (no auditory, neurologic, or psy-
chiatric abnormalities) were recruited. Data from 8 participants were
discarded because of technical problems with headphone amplifiers (bat-
tery issue was only discovered post hoc) and 1 participant for not follow-
ing task instructions (switching response hand halfway through the
experiment). Thus, only data from 32 participants (14 males, age:
24.466 3.72 years old) were considered for further analysis. All partici-
pants were self-reported to be right-handed. This was also established by
using Edinburgh Handedness Scale (Oldfield, 1971), and each partici-
pant had a score of .0 (right-handed) with mean 80.266 23.59. Only
easy sleepers (as per self-report) were recruited, and further they were
administered with the Epworth Sleepiness Scale (Johns, 1991) on the day
of the experiment. Twenty-nine participants had a sleepiness score �7
(classified as easy sleepers), and 3 of them had a sleepiness score �4.
All participants were asked not to consume any stimulant, such as
coffee/tea, before the experiment that day. The study and the experi-
mental protocol were approved by the Cambridge Psychology
Research Ethics Committee, and written informed consent was pro-
vided by all participants. A monetary compensation of £30 was pro-
vided for participation.

Experimental task
Each participant underwent two experimental sessions: alert and drowsy
(Figure 1). The alert session lasted ;8min in duration, with the partici-
pants seated upright and lights on. Further, they were instructed to stay
awake throughout this session, followed by which the drowsy session
was done, which lasted ;1.5-2 h in duration, with the participants
reclined to maximum in a chair and lights off to promote drowsiness.
Further, they were provided with a pillow for neck support and were
allowed to fall asleep. It is critical to note that the intertrial interval in the
alert session is 2-3 s, whereas in the drowsy session it is 4-5 s. This
increase in intertrial interval, longer duration of session was intended to
promote drowsiness in the drowsy session (Kosslyn and Andersen, 1995;
Bareham et al., 2014). Before the start of the experiment, the participants
were allowed a practice session to become familiar with the task. The
trial details for individual session are given below:

Alert session. Participants were presented with 124 complex har-
monic tones (guitar chords) that fell on the left or right side of their
veridical midline (0°) ranging from �59.31° to 59.31°. These tones were
recorded using in-ear microphones in free-field (Bareham et al., 2014).
Six tones from�59.31° to�39.26° were presented 2 times each; 12 tones
from �35.24° to �1.86° were presented 4 times each. A similar pattern
was repeated on the right side with 12 tones from 1.86° to 35.24° pre-
sented 4 times each, 6 tones from 39.26° to 59.31° presented 2 times
each. The tones in the midline (0°) were presented 4 times, resulting in a
total of 124 tones. The order of tones presented was randomized per par-
ticipant. Further, participants were instructed to keep their eyes closed
and respond (as quickly and as accurately as possible) with a button
press (using left/right thumb) indicating the location of the tone (left or
right). Each trial began after a random interval of 2-3 s; and if the partici-
pant did not respond for 5 s, the next trial was started.

Drowsy session. Participants were presented with 740 complex har-
monic tones (as above) that fell on the left or right of their veridical mid-
line (0°) again ranging from �59.31° to 59.31°. Six tones from �59.31°
to �39.26° were presented 20 times each; 12 tones from �35.24° to
�1.86° were presented 20 times each. A similar pattern was repeated on
the right side with 12 tones from 1.86° to 35.24° being presented 20 times
each, 6 tones from 39.26° to 59.31° presented 20 times each. The tone in
the midline (0°) was presented 20 times, resulting in a total of 740 tones.
The order of tones was again randomized per participant. Participants
were again instructed to keep their eyes closed and respond (as quickly
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and as accurately as possible) with a button press (by left/right thumb)
indicating the direction of the tone (left or right). Each trial began after a
random interval of 4-5 s; and if the participant did not respond for 5 s,
the next trial was started. The participants were gently awoken if they
did not respond to.3 trials consecutively.

EEG recordings and preprocessing
EEG data were acquired with 128 Ag/AgCl electrodes (Electrical
Geodesics) using Cz as the reference electrode. The impedances of all
electrodes were kept ,100 kV (to ensure higher signal-to-noise ratio),
and data were acquired at a sampling rate of 500Hz. EEG data were pre-
processed with custom-made scripts in MATLAB (The MathWorks)
using EEGLAB toolbox (Delorme and Makeig, 2004). The preprocessing
steps are as follows: First, the peripheral electrodes that covered the
regions of forehead, cheeks, and neck were removed to reduce artifacts
related to eye and muscle movements, thus retaining only 92 channels
that covered the scalp. Second, the data were bandpass filtered with zero
phase shift between 1 and 40Hz using hamming windowed-sinc FIR fil-
ter and further resampled to 250Hz. Third, pre-trial and post-trial
epochs per trial were created. For the pre-trial epochs, the data were
epoched from –4000 to 0ms before the onset of the stimuli. The pre-trial
epochs were created only in the drowsy session and not in the alert ses-
sion (details below). For the post-trial epochs, the data were epoched
from –200 to 800ms to the onset of the stimuli for both the alert and
drowsy sessions. Fourth, the trials that exceeded the amplitude threshold
of 6250mV were removed in a semiautomatic fashion. Fifth, the bad
channels were detected in a two-step fashion: (1) channels are consid-
ered bad (zero activity) if channel variance is ,0.5; and (2) the normal-
ized power spectrum of the remaining channels was computed and any
channel that exceeded the mean power spectrum by63 SDs was marked
bad. Sixth, to remove further artifacts related to eye-blink and muscle
movement, independent component analysis was performed on the
channels not marked as bad in the previous step. Independent compo-
nent analysis components that correspond to artifacts were rejected by
manual inspection. Seventh, the bad channels were now interpolated
using spherical interpolation. Eighth, the bad trials were detected again
using an amplitude threshold of 6250mV, and bad electrodes (those
exceeding the threshold) in such trials were interpolated in a trial-by-
trial fashion. Ninth, the post-trial epochs were rereferenced to the aver-
age of all channels (whereas the pre-trial epochs were maintained with
the recorded reference, Cz).

Alertness level classification
The preliminary step in both behavioral and neural analysis is to classify
trials into “alert” and “drowsy.” The data from the pre-trial epochs were
used to classify each trial into alert or drowsy. For the alert session, all
pre-trial periods were considered to be alert as participants were explic-
itly instructed to stay awake with short intertrial intervals of 2 s and
overall shorter duration of session (both promote wakefulness) and
lights switched on, with upright seating. Consequently, none of the par-
ticipants failed to respond to any of the trials in the alert session, which
supported our assumption. In the drowsy session, the participants were
allowed to fall asleep with longer intertrial intervals of 4-5 s and lights
switched off, with seating reclined to maximum with a pillow for the
head support. Hence, several participants failed to respond to some trials
in the drowsy session. For each trial in the drowsy session, pre-trial
epochs were analyzed using the micro-measures algorithm (Jagannathan
et al., 2018). Briefly, the micro-measures algorithm operates on 4 s
epochs in a two-step fashion. In the first step, alert(relaxed) trials are
separated from the drowsy trials (subdivided into mild and severe) by
using a combination of features as follows: variance explained by differ-
ent frequency band predictors and coherence at different frequency
bands (for details, see Jagannathan et al., 2018). For predictor variance,
the different features were computed by first generating predictors based
on spectral variation in different frequency bands A: 2-4Hz; B: 8-10Hz,
C: 10-12Hz; D: 2-6Hz in the occipital electrodes (E75, E70, E83) and
then fitting them per electrode per epoch. For coherence, the frequency
bins: d :[1-4Hz], theta:[4-7Hz], alpha:[7-12Hz], sigma:[12-16Hz], g :
[16-30Hz] were used at the occipital: E75 (Oz), E70 (O1), E83 (O2),

frontal: E33 (F7), E122 (F8), E11 (Fz), central: E36 (C3), E104 (C4), tem-
poral: E45 (T3-T7), E108 (T4-T8), E102 (TP8), E115, E100 (TP10) sites.
These electrode numbers can be identified using the GSN Hydrocel 128
channel map from EGI, and corresponding locations in the standard 10-
10 system are given in brackets wherever identified (Luu and Ferree,
2005). In the second step, drowsy(severe) trails were further computed
using a combination of grapho-element identification, such as vertex
waves, spindles etc. We only used the drowsy(mild) trials for identifying
drowsy trials, as the participants usually do not respond under drowsy
(severe) trials. We similarly excluded the alert(relaxed) trials in the
drowsy session to instead compare the drowsy trials of the drowsy ses-
sion to all of the trials in the alert session. It should be noted that we
could not use the micro-measure algorithm on the alert session as
mainly the pre-trial duration was only 2 s, which precludes its applica-
tion (as 4 s is the recommended for the algorithm). However, none of
the participants failed to respond in the alert session as mentioned
before. Finally, to cross-validate our assumptions, we performed a t test
on the distributions of reaction times of the alert versus the drowsy trials
per participant. Twenty-eight of the 32 participants significantly differed
in reaction time distributions, which is a direct effect of alertness
(Ogilvie, 2001), as participants tend to be slower and produce more vari-
able reaction times when drowsy.

The details of this analysis are available at https://github.com/
SridharJagannathan/decAlertnessDecisionmaking_JNeuroscience2021/
blob/main/Scripts/notebooks/Figure1supplement_RT_persubject.ipynb.

Behavioral analysis
Error proportion. In order to understand how the rate of errors dif-

fers across different stimuli (left or right tones) and how it is modulated
by alertness levels (alert or drowsy), we performed the following analysis.
First, we computed the proportion of errors made by each participant
under each alertness level (alert, drowsy) and under each stimulus type
(left or right tone). If the total number of trials for any participant under
any condition is ,5, then the corresponding error proportion (for that
condition) is ignored in the analysis. We decided to use multilevel mod-
els for this analysis over traditional repeated measures of ANOVA
because different participants had different levels of alertness (specifi-
cally differing number of alert, drowsy trials per condition). We defined
four different multilevel models to understand the modulation of error
proportion by state of participant (alert, drowsy) and stimulus (left,
right). In the null model, the error proportion depends only on the
mean per participant (fixed effect) and the participant ID (random
effect). In the second model (state model), the error proportion depends
only on the state of the participant (fixed effect) and the participant ID
(random effect). In the third model (stimulus model), the error propor-
tion depends only on the stimulus (fixed effect) and the participant ID
(random effect). In the fourth model (state-stimulus model), the error
proportion depends on a combination of the state of the participant and
the stimulus, both used as fixed effects and the participant ID (random
effect). These four models were fitted using the lmer function (lmerTest
package) in R (Kuznetsova et al., 2017), and the winning model is identi-
fied as the one with the highest log-likelihood by comparing it with the
null model and performing a likelihood ratio x 2 test. Finally, the top two
winning models were compared against each other using anova function
in R (Fox and Weisberg, 2018), to validate whether the winning model
(if it is more complex) is actually better than the losing model (if it is
simpler). The state-stimulus model emerged as the winning model.

The details of this analysis are available at https://github.com/
SridharJagannathan/decAlertnessDecisionmaking_JNeuroscience2021/
blob/main/Scripts/notebooks/Figure2a_errorproportion.ipynb.

The different models along with their log-likelihood values are
shown in Tables 1 and 2.

The state-stimulus (winning model) was further analyzed with the
anova function, and it was found that there was a reliable main effect of
both state (p, 0.001) and stimulus (p, 0.001) on error proportion and
also the interaction between state and stimulus also had a reliable effect
(p, 0.01) on error proportion. Further, we performed post hoc tests
using Tukey adjustment (for multiple comparisons) to identify differen-
ces between pairs that are significant.
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Reaction times. In order to understand how the reaction times differ
across different stimuli (left or right tones) and how it is modulated by
alertness levels (alert or drowsy), we performed a multilevel modeling
analysis similar to the analysis on error proportion as above. First, we
computed the reaction times of each participant under each alertness
level (alert, drowsy) and under each stimulus type (left or right tone).
We defined four different multilevel models to understand the modula-
tion of reaction times by state of participant (alert, drowsy) and stimulus
(left, right). In the null model, the reaction time depends only on the
mean per participant (fixed effect) and the participant ID (random
effect). In the second model (state model), the reaction time depends
only on the state of the participant (fixed effect) and the participant ID
(random effect). In the third model (stimulus model), the reaction time
depends only on the stimulus (fixed effect) and the participant ID (ran-
dom effect). In the fourth model (state-stimulus model), the reaction
time depends on a combination of the state of the participant and the
stimulus, both used as fixed effects and the participant ID (random
effect). The state-stimulus model emerged as the winning model.

The details of this analysis are available at https://github.com/
SridharJagannathan/decAlertnessDecisionmaking_JNeuroscience2021/
blob/main/Scripts/notebooks/Figure2supplement_RT.ipynb.

The different models along with their log-likelihood values are
shown in Tables 3 and 4.

The state-stimulus (winning model) was further analyzed with the
anova function, and it was found that there was a reliable main effect of
only state (p, 0.001) on reaction time.

Subjective midline shifts. The change in subjective midline was quan-
tified by fitting psychometric functions to the responses produced by
each participant under alert and drowsy conditions. The proportion of
rightward responses for each participant under each stimulus condition
from�60° to 60° was fitted with a cumulative normal function using the
quickpsy (Linares and López-Moliner, 2016) package in R. In order to
evaluate the different parameters involved in the modulation of psycho-
metric functions, we evaluated two different models. The first model was
where only the mean of the function shifted for individual participants

across alert and drowsy conditions. The second model was where both
the mean and the slope shifted across conditions. Model selection was
performed using the Akaike Information Criterion; model fits from 9
subjects favored the first model, and 23 subjects favored the second
model. Thus, we used the model where both the mean and the slope var-
ied across alert and drowsy conditions. The mean of the cumulative nor-
mal function (the point where the curve crosses 0.5 in the y axis) is also
referred to as the subjective midline (bias). The subjective midline is the
stimulus (angle) at which the participant performs at chance (0.5), which
in an ideal world would be closer to the veridical midline (0°). The slope
of the cumulative function represents the sensitivity of the system. In
general, large variations in the bias point tend to reduce the sensitivity of
the system. Further, for performing a paired t test on the change in the
parameters across alert and drowsy conditions, we also ignored 13 par-
ticipants that had a bias point outside660° (as the overall stimulus angle
can vary only between�60° and 60°) and SD of.30°.

The details of this analysis are available at https://github.com/
SridharJagannathan/decAlertnessDecisionmaking_JNeuroscience2021/
blob/main/Scripts/notebooks/Figure2c_d_e_psychophysics_biasshift.
ipynb.

Drift-diffusion modeling. The different elements of the decision-
making process can be teased apart by using the DDM. The parameters
of this model include the following: drift rate (v), rate of evidence accu-
mulation, boundary separation distance (a), distance between the two
decision boundaries, non-decision time (t), for accounting other proc-
esses, such as stimulus encoding (before the start of evidence accumula-
tion process), and response execution (after the end of evidence
accumulation). Further, the different sources of bias that can be modeled
are as follows: bias point (z), bias in the starting point or drift criterion
(dc), a constant factor (slope) added to the drift rate. We implemented
the drift diffusion process using a hierarchical DDM (HDDM) (Wiecki
et al., 2013) that allows for a hierarchical Bayesian procedure to estimate
the model parameters. The principal reason for using such hierarchical
procedures is because different participants fall asleep in different ways
(differing number of alert and drowsy trials); hence, usage of hierarchical
Bayesian procedure allows for robust estimation of model parameters
under such limited conditions of trials (Zhang et al., 2016). We used the
response of each participant (left or right button press) instead of accu-
racy (correct or incorrect) to fit the HDDM. Such a procedure is referred
to as stimulus coding and allows for robust estimation of sources of bias
without being affected by accuracy. In the first step, we decided to iden-
tify the sources of bias (with z or dc). Several studies across auditory and
visual modalities (Stelmach and Herdman, 1991; Benwell et al., 2014)
have shown existence of an initial spatial bias, which is modulated by dif-
ferent factors like time-on-task and alertness levels. Hence, it is impor-
tant to identify and parametrize the source of this bias to either response
driven (changes in z) or stimulus driven (changes in dc) by using model
comparison techniques (e.g., x 2 or based on information criterion) as
done in previous studies (Leite and Ratcliff, 2011; White and Poldrack,
2014). For this, we implemented 8 different models that allowed the pa-
rameters (z,v) to vary depending on state (alert or drowsy) or stimulus
(left or right). Similarly, we implemented 8 different models that allowed
the parameters (dc,v) to vary depending on state or stimulus. In each
model, 15,000 samples from the posterior distribution were estimated
using Markov chain Monte Carlo methods; 5000 samples were further
discarded as burn-in to discard the effect of initial values on the posterior
distribution estimation. We then choose the best model among the bias
models using the one with the lowest deviance information criterion
(DIC). DIC allows for computing model accuracy while penalizing for
model complexity (Spiegelhalter et al., 2002). The best model among the
bias models was where the v varied with state, stimulus and z varied with
stimulus alone. In the next step, we used this best model and developed
a set of combined models that allows variation in the parameters (a, t)
with state or stimulus. We then choose the best model among the four
different combined models. The final best model was one where v varied
with state, stimulus and z varied with stimulus and a varied with state
and t varied with stimulus alone. This final best model checked for
model convergence using the Gelman-Rubin statistic. The convergence
statistic was computed for 5 different runs and was found to be closer to

Table 3. Model comparison

Model Parameter Log-likelihood p (.x 2)

Null Fixed: mean, Random: subj ID �79.95 —
State Fixed: state, Random: subj ID �33.00 ,0.001
Stimulus Fixed: stimulus, Random: subj ID �79.78 .0.05
State:Stimulus Fixed: state � stimulus, Random: subj ID �32.06 ,0.001

Table 4. Type III ANOVA with Satterthwaite’s method of the winning model
(state-stimulus)

Model elements Sum Sq Mean Sq NumDF DenDF F p (.F)

State 9.1412 9.1412 1 96 162.463 ,0.001
Stimulus 0.0514 0.0514 1 96 0.9138 .0.05
State:Stimulus 0.0557 0.0557 1 96 0.9899 .0.05

Table 2. Type III ANOVA with Satterthwaite’s method of the winning model
(state-stimulus)

Model elements Sum Sq Mean Sq NumDF DenDF F p (.F)

State 0.23832 0.23832 1 95.08 15.6560 ,0.001
Stimulus 0.33053 0.33053 1 93.70 21.7136 ,0.001
State:Stimulus 0.13489 0.13489 1 93.70 8.8612 ,0.01

Table 1. Model comparison

Model Parameter Log-likelihood p (.x 2)

Null Fixed: mean, Random: subj ID 57.55 —
State Fixed: state, Random: subj ID 63.33 ,0.001
Stimulus Fixed: stimulus, Random: subj ID 65.39 ,0.001
State:Stimulus Fixed: state � stimulus, Random: subj ID 76.39 ,0.001
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0.99 (values closer to 1 but ,1.2 indicate convergence) (Spiegelhalter et
al., 2002; Gelman et al., 2013).

The details of this analysis are available at https://github.com/
SridharJagannathan/decAlertnessDecisionmaking_JNeuroscience2021/
blob/main/Scripts/notebooks/Figure3d_k_suppl_hddm.ipynb.

Neural analysis
Decoding. We used multivariate pattern analysis techniques to ana-

lyze the divergent patterns in EEG data. Specifically, we used decoding
in which patterns of brain activity are analyzed to predict the experimen-
tal condition under which it was generated. Traditional ERP analyses
rely on using a priori identified spatial locations or temporal segments in
the data to measure the differences across conditions. However, decod-
ing techniques do not rely on a priori definitions and perform much bet-
ter in detecting differences across experimental conditions (Fahrenfort
et al., 2018). Temporal decoding involves using EEG data (X) composed
of size: [electrodes � time points � trials] to predict the stimuli pre-
sented (Y). The first step consists of fitting an estimator (w) to a subset
of the data (Xtrain) to predict a subset of the experimental condition
(Ytrain). The second step involves using this trained estimator on another
subset of the data (Xtest) to predict a subset of the experimental condition
(Ytest). The third step involves evaluating the performance of this estima-
tor using a validation measure by comparing the prediction (Ŷtest) with
the actual label (Ytest).

Estimator construction. First, the EEG data are subjected to a stand-
ard scaler (using StandardScaler() from scikit-learn) that removes the
mean of the data and scales it by its variance. Second, we used logistic
regression to estimate the model parameters for maximally separating
the different experimental conditions. Third, we implemented temporal
decoding by using the sliding estimator (using SlidingEstimator() from
scikit-learn) to fit the logistic regression model per time point.

Cross validation. The EEG data were first downsampled to 100Hz,
and further binary classification was performed between two conditions
(left and right stimuli) separately across alert and drowsy conditions per
individual participant. As the target of the classification was stimuli
being presented, we only considered the trials where the participant
made the correct decision. Each participant was considered for classifica-
tion only if they had at least 25 trials under each condition. Further, five-
fold cross validation was performed such that four folds were used for
training and the last fold was used as a testing set. The classifier perform-
ance was evaluated using area under the curve (AUC) of the receiver-
operating characteristic. It is implemented using roc_auc in the sliding
estimator function in scikit-learn. When AUC is;0.5, the classifier per-
forms at chance, while the AUC score of 1 has a very good separability
across classes. We computed the AUC–receiver-operating characteristic
score per participant as the average of the score across all the cross-vali-
dation folds. Further, we smoothed the scores using a 3 point moving av-
erage to smooth out spurious fluctuations. In order to identify the
reliability of the AUC score at the group level, we performed a cluster
permutation test (participants � time points) using MNE (spatio_tem-
poral_cluster_1samp_test) (Gramfort et al., 2013), thus producing p val-
ues per time point at the group level, from which time points where we
can infer those regions where AUC is reliably different from chance
(0.5) at the group level.

Coefficients of patterns. The parameters of the decoding (performed
above) are not neurophysiologically interpretable in a straightforward
way (Haufe et al., 2014). Hence, the parameters of the backward model
(decoding) need to be transformed to produce the forward model. This
is done by obtaining the coefficients of the estimator model per partici-
pant using the get_coef function from MNE (patterns_). For performing
group statistics in electrode space, we used the same cluster permuta-
tion-based approach as described earlier.

Decoding of responses. To tease apart the process related to evidence
accumulation from motor implementation, we decided to decode the
response hand of the participant. The EEG data for the response decod-
ing were created by epoching the data from –800 to 200ms before the
onset of the response from the participant. The response-locked trials
were preprocessed in a similar fashion to the stimulus-locked trials. The
alertness level for the corresponding response-locked trial was obtained

from the labels of the stimulus-locked trial. The decoding and other
methods used are similar to the stimulus-locked trials, except that the
target of decoding is the response hand being pressed (left or right
thumb).

The details of the stimulus decoding are available at https://github.com/
SridharJagannathan/decAlertnessDecisionmaking_JNeuroscience2021/
blob/main/Scripts/notebooks/Figure4_5_temporaldecodingstimuli.ipynb.

The details of the response decoding are available at https://github.com/
SridharJagannathan/decAlertnessDecisionmaking_JNeuroscience2021/
blob/main/Scripts/notebooks/Figure6_temporaldecodingresponses.ipynb.

Neuro-behavioral analysis
Regression with DDM. To identify the correlates of the evidence

accumulation process, we used the model parameters generated by the
DDM (combined best model). First, the ERP data (post-trial epochs)
were z-scored per electrode per trial. Second, the ERP data were base-
line-corrected with pre-trial data from �200 to 0ms. Third, the ERP
data were averaged every 50ms per electrode per trial to create 20 time
points (�200 to 800ms) per electrode per trial. Fourth, the ERP data
were entered into a trial-by-trial regression with the drift rate using the
HDDMRegressor from the HDDM toolbox (Wiecki et al., 2013). The
model parameters are allowed to vary as per the combined best model.
We estimated the influence of ERP data on the drift rate, as it was the
only parameter shown to vary with respect to both the direction of stim-
ulus and the alertness of the participants. Thus, we use drift parameter v
as a dependent variable and regressed the same against ERP data as
follows:

v; b 0 1 b 1ðERPÞ

The above equation can be written in patsy form as below.

v;ERP : Cðstate; TreatmentðAlertÞÞ : C ðstim; TreatmentðRightÞÞ

Here, the drift rate covaries with the ERP value and depends on a
combination of state with a reference value at Alert and of stimulus with
a reference value at Right.

The other model parameters are same as in the best model:

z; stim; a; state; t; state;

Here, v represents drift rate, ERP represents z-scored ERP data per
trial per time point per electrode, state represents alertness levels (alert
or drowsy), and stim represents stimulus types (left or right).

Fifth, the traces were computed per condition (state and stimuli
combination). All the regressor models (1840 = 20 � 92= time points �
electrodes) for each participant were checked for convergence using the
Gelman-Rubin statistic. The convergence statistic was computed for
three different runs and was found to be closer to 0.99 (indicating con-
vergence). Sixth, the differences in drift rate (between left and right stim-
uli) per time point per electrode were computed in both alert and
drowsy condition. This difference represents the discriminability of the
electrode in identifying the left and right stimuli at that time point.
Thus, this analysis yielded differences in drift rate per electrode, per
time point, per condition, per participant. The differences can then
be considered similar to the classifier patterns and can be analyzed
both in electrode and source spaces. Further, we also computed
group-level differences using the cluster permutation techniques
described earlier.

The details of this analysis are available at https://github.com/
SridharJagannathan/decAlertnessDecisionmaking_JNeuroscience2021/
blob/main/Scripts/notebooks/Figure7_hddmregression.ipynb; and com-
parison of patterns analysis is available at https://github.com/
SridharJagannathan/decAlertnessDecisionmaking_JNeuroscience2021/
blob/main/Scripts/notebooks/Figure7_8_hddmregressionpatterns_
comparison.ipynb.

Source reconstruction of the regression patterns. The coefficients cre-
ated above can be projected into the source space to infer the brain
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regions involved in the pattern activity. Source reconstruction was
achieved using a combination of Freesurfer (Fischl, 2012) and MNE.
First, the surface was reconstructed using recon-all (Freesurfer) using
the default ICBM152 template for the structural MRIs. Next, the
Boundary element model was created using make_watershed_bem
(MNE). Further, scalp surfaces for the different element boundaries
were created using make_scalp_surface (MNE). Second, we performed
the registration of the scalp surface with the default EEG channel loca-
tions (with fiducials as markers) manually using coregistration (MNE).
Third, the forward solution was computed using make_bem_model
(MNE). Fourth, to test whether the source reconstruction of the elec-
trode data is accurate, we projected the ERP data of a sample participant
into source space and analyzed data from different regions of interest to
confirm its validity. The patterns of each participant were then projected
into source space in the following manner. First, we computed the noise
covariance using the baseline data from �0.2 to 0ms. Second, we used
the forward solution and the noise covariance to create an inverse opera-
tor using minimum_norm.make_inverse_operator from MNE. Third,
we used the individual pattern per participant and applied the inverse
operator on it to produce the source reconstruction of the patterns per
participant. For performing group statistics in the source space, we used
the same cluster permutation-based approach (after moving them to the
fsaverage space) as described earlier.

The details of this analysis are available at https://github.com/
SridharJagannathan/decAlertnessDecisionmaking_JNeuroscience2021/
blob/main/Scripts/notebooks/Figure9_hddmregressionpatterns_sources.
ipynb.

Dataset availability
The raw dataset associated with this study is available at https://doi.org/
10.5281/zenodo.5655443.

Results
We organized the results from direct and model-free, to theoreti-
cally constrained. Error proportion, reaction times, and subjec-
tive midline shifts are described as direct measures to evaluate
the effects of alertness, whereas signal detection and DDMs theo-
retically constrain the interpretation of its parameters to percep-
tual, central, and motor processes sequentially occurring during
perceptual decision-making. We further organized the brain
analyses similarly, using multivariate decoding to widely charac-
terize the spatiotemporal neural signatures of the decision; and
constrained by the modeled behavioral results, we map the neu-
ral dynamics of evidence accumulation in full wakefulness and
low alertness. This approach allowed for both open and explora-
tory neurobehavioral characterization and hypotheses-driven
evaluation of the effects of low alertness on perceptual decision-
making in spatial attention.

Error proportion modulated by alertness
First, we used multilevel modeling to understand how the errors
made by each participant in the auditory tone-localization task
were influenced by the stimulus presented (left or right tone)
and the state of the participant (alert or drowsy). We defined
four different multilevel (linear mixed) models where errors
were modulated by various combinations of stimulus and alert-
ness states (see Materials and Methods). The analysis of the var-
iance table of the winning model shows that both alertness
(F(1,95.08) = 15.65, p, 0.001) and stimulus type (F(1,93.70) = 21.71,
p, 0.001) have an effect on error proportion. Further, there was
a reliable interaction between alertness levels and stimulus type
(F(1,93.70) = 8.86, p, 0.01). Next, post hoc analysis revealed a reli-
able difference between alert and drowsy conditions for left stim-
uli (p, 0.001), and not for right stimuli (p=0.899). These
behavioral results (Fig. 2A) replicate the findings of Bareham et

al. (2014) in an independent study, task design, alertness measure
(and laboratory), reporting an increase in location assignment
errors on tones from the left side of the midline when people
became drowsy.

Reaction times are modulated by alertness
Second, we aimed to quantify the modulation in the response pro-
files (reaction times) of individual participants by alertness levels.
A paired-sample t test with t(31) =�7.79, p, 0.001 revealed a reli-
able effect of alertness on reaction time distributions. Further, to
this we also used the framework of the multilevel modeling to
understand how the reaction times of participants was influenced
by the stimulus presented (left or right tone) and the state of the
participant (alert or drowsy). We defined four different multilevel
(linear mixed) models where errors were modulated by various
combinations of stimulus and alertness states (see Materials and
Methods). The analysis of the variance table of the winning model
shows that only alertness (F(1,96) = 162.46, p, 0.001) has an effect
on reaction times (convergent with the t test before). These behav-
ioral results (Fig. 2B) converge with the original findings from
Hori et al. (1994) indicating slower reaction times under lower lev-
els of alertness, and in agreement to all our previous work (Goupil
and Bekinschtein, 2012; Comsa et al., 2019; Canales-Johnson et al.,
2020; Noreika et al., 2020).

Subjective midline modulated by alertness
Third, we used psychophysics to quantify the modulation of the
subjective midline per participant by alertness levels. For this, we
fit a cumulative normal function (see Materials and Methods) to
the proportion of rightward responses (per participant) under
each stimulus condition from �60° to 60° from the midline
under both alert and drowsy periods. The mean of the function
referred to as bias is the subjective midline or spatial bias (where
participants have 0.5 chance of pressing left or right responses)
and the slope represents the sensitivity. Example fits of individual
participants are shown in Figure 2C. Most participants (Fig. 2D)
had their bias point shifted to the left (as they became drowsy),
indicating more left errors (overestimating the right side of
space). A small proportion of participants had bias points shifted
to the right. Overall, a paired-sample t test t(18) = 3.53, p, 0.01,
revealed a reliable difference in bias points between alert and
drowsy periods. Next, we performed a paired-sample t test t(18) =
�5.52, p, 0.001, which revealed a reliable difference in slope
between alert and drowsy periods. Further, we also plotted (Fig.
2E) the mean of the psychometric fits of individual participants
to show that the overall subjective midline has shifted to the left
at the group level.

Signal detection parameters modulated by alertness
Fourth, we used signal detection theory to understand the factors
that modulate decision-making under varying levels of alertness
(Fig. 2F). d9(sensitivity) showed extreme evidence in favor of the
alternative hypothesis (being modulated by alertness) with a
Bayes factor = 101,100 while criterion (response bias) only
showed anecdotal evidence in favor of the null hypothesis (being
not modulated by alertness) with Bayes factor = 1.17. This suggests
that internal representations in the brain in terms of sensory/per-
ceptual and noise distributions are modulated by alertness levels.
Further, no evidence for response bias also suggests that partici-
pants were not arbitrarily pressing right responses for uncertain
stimuli with drowsiness.

To summarize, the behavioral results hint that the first two
stages of perceptual and evidence accumulation processes are
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Figure 1. A, Auditory spatial attention task. Participants had to localize the direction of auditory tones coming from left and right side of the midline. B, Session details. Each participant
underwent an alert and drowsy session. In the alert session of;8 min in duration, participants are instructed to stay awake and seated upright with lights on. The shorter intertrial interval of
2-3 s and shorter duration of the session ensured that none of the participants failed to respond in any of the trials. In the drowsy session of;1.5-2 h in duration, participants are allowed to
fall asleep with the seat reclined to maximum with a pillow for head support. The longer intertrial interval of 4-5 s and longer duration of the session ensured that most participants became
drowsy. C, D, Alert and drowsy trial identification. All the trials in the alert session are considered to be alert (124), whereas among the 740 trials in the drowsy session, we used the micro-
measures algorithm (Jagannathan et al., 2018) and divided the pre-trial periods into different categories, among which we choose the mild drowsy trials. Here we can see that, in the drowsy
session, this sample participant failed to respond several times (purple dots in RT plot) and the drowsy trial labels coincide in the nearby periods, whereas in the alert session the participant
systematically responds. E, Cross-validation of alert and drowsy trial labels per participant. For each participant, we then performed a t test comparing the distribution of reaction times of alert
versus drowsy trials and found that, for 28 of 32 participants, the distributions reliably differed, validating the approach (Jagannathan et al., 2018).
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Figure 2. Behavioral analysis. A, Proportion of errors committed in alert and drowsy periods across left and right stimuli. Multilevel modeling reveals that error rates depend on stimulus
and state of the participant. Post hoc tests indicate that error proportion is reliably modulated by alertness but only for left stimuli. ***p, 0.001. ns, Not significant (or not reliable). Error bars
indicate SEM. B, Mean reaction times for individual participants. Reaction times are variable and slower under drowsy conditions; further, a paired-samples t test indicates reliable difference
(p, 0.001) in reaction times across alert and drowsy periods. C, Example fits of two different participants are shown. For each participant under each condition (alert, drowsy), the proportion
of rightward responses was fitted to the stimulus angle varying from�60° to 60°. The size of the dots represents the normalized (per condition) number of trials under each angle. Here, we
notice that the bias point (dotted line) shifts toward the left side as the participant becomes drowsy. In other words, as the participant becomes drowsy, they overestimate the right side of
space. For another participant, we notice the opposite effect. D, Spatial bias. Slope parameter per participant (from psychometric fits). Bias level shifts toward the left side (indicating more left
errors) for most participants. Negative bias values indicate shifts in the subjective midline toward the left, and positive values indicate shift toward the right. Further, a paired-sample t test indi-
cates reliable difference (p, 0.01). Slope values of the psychometric fits also increased as participants became drowsy, indicating shallower slopes. Further, a paired-sample t test indicates reli-
able difference (p, 0.001). E, Group-level psychometric fits indicate the shift in subjective midline (dotted lines). Shaded regions represent CI bounds. Arrows indicate a gap in the asymptotes
at �60° compared with 60° between alert and drowsy state, further evidence of inattention to the left side. F, Signal detection analysis shows that d9 (sensitivity) is strongly modulated by
alertness compared with c (criterion) using Bayes factor.
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affected by decreasing alertness and that the final stage of motor
implementation (response bias/criterion) may be less affected.

Alertness modulates SSM parameters of evidence
accumulation
Next, we aimed to quantify the different elements of the deci-
sion-making process using drift-diffusion modeling. The DDM
captures the optimal procedure involved in performing a 2-

alternative forced choice task under sequential sampling frame-
work. It assumes that the observer accumulates evidence for one
or other alternative in every time step (Ratcliff et al., 2016), until
integrated evidence reaches a threshold to decision (Fig. 3A).
The localization of tones to the left and right side of space is
essentially a 2-choice task with the participant always forced to
make a decision on the location of the tone. The model was
implemented with a hierarchical Bayesian procedure using

Figure 3. Evidence accumulation models. A, DDM accounts for the reaction time distributions of responses across left and right stimuli (stimulus coding). v(drift) indicates evidence accumula-
tion rate, a indicates the boundary separation, z indicates the bias point (usually z= 0.5 for unbiased responses), and t indicates non-decision time composed of stimulus encoding and response
execution. B, C, Changes in response distributions can be explained by different sources of bias. Shift in starting point (z) or constant offset added to drift rate (drift criterion). Gray lines indicate
unbiased condition. D, In the first step, the appropriate source of bias (either z or dc) was identified. In our case, the source of bias was identified as z based on the lowest DIC. Further, this
bias (z) was combined with different variations in t, a, and v, and the best model with the lowest DIC was identified (see Materials and Methods). E, F, Posterior densities of t in the best model,
and their differences indicate there is no reliable change (based on proportion of posterior overlap, here 20.0%) across alert and drowsy periods. G, H, Posterior densities of z in the best model,
and their differences indicate there is a reliable change (based on proportion of posterior overlap, here 0.8%) across left and right stimuli. I, J, Posterior densities of a in the best model, and
their differences indicate there is a reliable change (based on proportion of posterior overlap, here 0%) across alert and drowsy periods. K, L, Posterior densities of v for left and right stimuli
across alert and drowsy periods in the best model. M, Differences in the posterior densities of changes in drift rate indicate strong evidence (overlap reduces to 0.1% from 29.4%) in favor of
change in drift rate across stimuli in the drowsy period compared with alert periods.
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HDDM (see Materials and Methods). For the HDDMs, we fit the
response of each participant instead of accuracy. This procedure
is referred to as stimulus coding, allows for the testing of several
decision-making parameters, and is critical to uncover different
sources of bias (de Gee et al., 2017).

We examined models with different sources of bias: starting
point (z) (Fig. 3B) or constant slope (dc) (Fig. 3C) and identified
the best model as one with the lowest DIC (see Materials and
Methods). The best model showed that drift rate (v) varied
according to state (alert or drowsy) and stimulus (left or right),
bias point (z) varied according to stimulus (left or right) but not
state, non-decision time (t) varied according to state (alert or
drowsy), and decision threshold (a) varied according to state
(alert or drowsy). This furthers the claim that the changes in
alertness place a higher burden in the evidence accumulation
process (drift rate), and less on the motor implementation or
stimulus encoding of the task (non-decision time). The best
model was then analyzed for differences in posterior densities of
parameters. For this purpose, we used a Bayesian estimate, which
is more informative and avoids the arbitrary choices of signifi-
cance level implemented for specific statistical tests used by the
frequentist-based methods (Kruschke, 2013).

In the best model, the proportion of posterior overlap in the
non-decision time (between alert and drowsy states) was 20.0%
(Fig. 3F). This indicates that the non-decision time was not reli-
ably different between the different states. Next, the proportion
of posterior overlap in the bias point (between left and right
stimuli) was 0.8% (Fig. 3H). This indicates that the bias point
was reliably different between the different stimuli. Next, the
proportion of posterior overlap in the boundary (between alert
and drowsy states) was 0% (Fig. 3J). This indicates that the
boundary was reliably different between the different states.
Importantly, only the drift rate varied with respect to both the
stimuli and the state, suggesting that the difference in evidence
accumulation (indicated by the drift rate) is responsible for the
difference in error rates between left and right stimuli in the low
alertness state, as shown in the previous analyses. Here, the pro-
portion of posterior overlap (between left and right stimuli) in
the drift rate for alert trials was 29.4% and reduced to 0.1% for
drowsy trials (Fig. 3M). Thus, the drift rate (evidence accumula-
tion rate) was reliably different between left and right stimuli on
drowsy trials compared with the alert trials.

To summarize, the behavior modeling results hint that only
the central evidence accumulation process (indicated by drift
rate) is affected by decreasing alertness, whereas processes re-
sponsible for perceptual encoding and response execution may
not be modulated.

Spatial and temporal signatures involved in spatial
localization across alert and drowsy periods
Here, we were interested in identifying the neural signatures
involved in the performance of this task. For this purpose, decod-
ing involves identifying the stimulus (Y, left or right tone) pre-
sented from the EEG data (X). This process involves the
identification of the W (classifier weights) that can produce the
transformation, Yt = WtXt where t represents time (Fig. 4A,B).
The performance of the classifier (W) is evaluated by training
and testing the data at each time point (t) using AUC as mea-
sure. In Figure 4C, the shaded region represents those periods
reliably decoded (p, 0.05) (for more details, see Materials
and Methods).

We found that, when participants were alert, the reliable
decoding of stimuli (Fig. 4D) started at 160ms after the stimulus

and lasted until 730ms (cluster permutation, p, 0.05) with
mean AUC of 0.57. The peak discriminatory power was at
280ms (AUC=0.60). The average AUC between 200 and 300ms
was 0.586 0.007, p, 0.05, between 300 and 400ms was
0.576 0.002, p, 0.05. However, when the participants became
drowsy, the decoding of stimuli (Fig. 4E) shifted to 440ms after
the stimulus was presented and lasted until 740ms (reliable with
cluster permutation, p, 0.05) with mean AUC of 0.53. The peak
discriminatory power was at 590ms (AUC=0.55). The average
AUC between 440 and 500ms was M=0.536 0.001, p, 0.05,
between 500 and 590ms was M=0.546 0.003, p, 0.05. This
suggests that the processes related to the discrimination between
left and right stimuli under drowsy conditions may cease to be
directly informative to the decision in the early processes of sen-
sory encoding and would only start later, at ;400 ms, to show
neural differentiation.

Further to this, the lower discriminatory power points to a
potentially less efficient (lower decodability, longer time dura-
tion, higher variability) process of central evidence accumulation,
or to a different neural implementation of the processes during
low alertness.

Next, we plotted the coefficients of the classifier patterns
(derived from classifier weights W) in the scalp electrode space
for further neurophysiological interpretation. We decided to
compare the classifier patterns across early (,300 ms) and later
(.400 ms) time periods. To compare patterns in the early time
periods across alert and drowsy periods, we plotted the same for
every 40ms between 180 and 420ms in Figure 4F. For the alert
periods, the pattern between 180 and 220ms indicates a strong
involvement of signal in the frontocentral electrodes, whereas in
the corresponding time periods under drowsy, the pattern seems
to have shifted to more frontal electrodes, although its con-
tribution may be minimal as it was not reliably decodable.
Under alert periods, the pattern shifts to more posterior
regions (centroparietal electrodes in the right side of the
scalp) between 220 and 260ms, whereas under drowsy the
pattern stays in the frontal electrodes itself, still not reliably
decodable in the unconstrained voltage decoding. Further,
from 260 to 300 ms, the pattern shifts to more parietal and
occipital sites under alert periods and is only weakly parie-
tal in the drowsy periods.

The comparison of the classifier patterns across alert and
drowsy periods (in early time periods) reveals different topogra-
phies that point to a clear differential processing of information
that would further map onto shifted perceptual and central evi-
dence accumulation stages of cognitive processing (Sigman and
Dehaene, 2005), possibly affecting the central accumulation. To
compare patterns in the later time periods across alert and
drowsy periods, we plotted the same for every 40ms between
420 and 660ms in Figure 4G. Particularly, the patterns in the
alert periods have a lower frontal activity and higher posterior
activity, whereas in the drowsy periods, the activity in both the
frontal and posterior sites is much more localized, although
decodability is overall lower. Although only suggestive, this
change in the decodability intensity and distribution suggests a
delayed processing dynamics and/or a change in the way of proc-
essing as alertness decreases.

The descriptive analysis of the classifier patterns indicates dif-
ferences between alert and drowsy periods. To establish the spa-
tial and temporal signatures of such differences, we performed a
cluster permutation test and identified regions where activity
patterns in alert periods are different from drowsy periods. This
analysis resulted in the identification for four clusters (Fig. 5).
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1. Cluster #1 (alert activity . drowsy activity): indicates
early periods (150-330 ms), where activity is concen-
trated in parietal, central, posterior electrode sites. These
spatial patterns are likely to be involved in early percep-
tual/evidence accumulation processes during the alert
periods, as the majority of responses only start occurring
from 400 ms onward.

2. Cluster #2 (alert activity . drowsy activity): indicates later
periods (430-650 ms), where activity is concentrated in occi-
pital, parietal, central, posterior electrode sites. These spatial
patterns are difficult to interpret as the reaction times overlap
with the corresponding time periods. Hence, this decoding
pattern could be an amalgamation between central evidence
accumulation and motor implementation processes.

Figure 4. Temporal decoding (stimuli). A, Decoding consists of identifying Y (stimuli) from X (EEG). The model thus consists of Yt = WtXt, where t represents time and Wt represents transfor-
mation (classifier weights). Here, the predicted output Y consists of categorical labels (left/right tone) predicted from brain activity (X). B, Classifier weights Wt are determined by the optimal
separation of different classes (here left, right stimuli). C, Decoding performance is assessed using the AUC where shaded regions represent reliably different time periods (p, 0.05). D, E, AUC
under alert and drowsy periods, where the classifier was trained to discriminate between targets of left and right stimuli. Shaded regions represent time periods with reliable (p, 0.05) dis-
criminatory power, computed with a cluster-based permutation test. The mean reaction times (RT) of participants are plotted below. F, Comparison of coefficients of classifier patterns in the
early time periods. The early time periods highlight topographical differences in the frontal, posterior parietal, and central electrodes. G, Comparison of coefficients of classifier patterns in the
later time periods. The later time periods highlight topographical differences in the frontal and central electrodes. **Reliably discriminatory in the corresponding period in temporal decoding.
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3. Cluster #3 (drowsy activity. alert activity): indicates early peri-
ods (170-360 ms), where activity is concentrated in frontal elec-
trode sites. These spatial patterns are likely to be involved in
early perceptual/sensory encoding processes during the drowsy
periods, as the majority of responses only start occurring from
900 ms onward. The temporal neurodynamics show delayed
patterns in drowsy compared with awake.

4. Cluster #4 (drowsy activity . alert activity): indicates later
periods (380-650 ms), where activity is concentrated in left
frontal electrode sites. These spatial patterns are likely to be
involved in central evidence accumulation-related processes.
However, it is difficult to interpret as the corresponding time
periods during alert mildly overlap with response-related
activity.

Figure 5. Classifier pattern differences. To identify differences between the classifier patterns in Figure 4F, G, we performed spatiotemporal clustering using a permutation test. A, Cluster #1
indicates early periods (150-330 ms after stimulus) where alert activity is higher than drowsy periods. B, Cluster #2 indicates later periods (430-650ms after stimulus) where alert activity is
higher than drowsy periods. In terms of spatial locations, the early and later clusters differ in right parietal sites, central, middle electrode sites. C, Cluster #3 indicates early periods (170-
360 ms after stimulus) where drowsy activity is higher than alert periods. D, Cluster #4 indicates later periods (380-650 ms after stimulus) where drowsy activity is higher than alert periods. In
terms of spatial locations, the early and later clusters differ in left frontal sites, middle electrode sites.
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To summarize, these results indicate differences in spatial pat-
terns related to early sensory/evidence accumulation-related pro-
cess (cluster #1, cluster #3) across alert and drowsy periods. The
next step is to identify and tease apart motor preparation-related
processes occurring during later time periods.

Spatial and temporal signatures of motor implementation
across alert and drowsy periods
In classic cognitive processing model frameworks, motor imple-
mentation occurs after the central evidence processes, when in-
formation of the decision is routed to the premotor network, this
is assumed to be mostly; a serial process. We preprocessed the
EEG data now locked to responses (see Materials and Methods)
and decoded the response hand itself (regardless of the stimulus
presented). These response-related patterns thus would depict
information related to the motor implementation process
regardless of the decision related processes.

The decoding performance: AUC (Fig. 6A,B) starts ramping
up from –210 ms (alert), –150 ms (drowsy) from the response
time, and increases when the button is actually pressed at 0 s,
reaching the peak soon after. In both cases, awake and drowsy,
the neural decoding results last until 190ms. These results are in
line with motor implementation-related processes commonly
reported ;200ms before the actual motor response, gradually
ramping up to produce the response itself. It is also interesting to
note that the AUC for alert is always higher than drowsy, indicating
less variability in neural concerted activity; leading to better classifier
performance without time span differences, this may indicate a
more efficient motor implementation in the awake state.

To establish the spatial and temporal signatures of differences
in motor-related processes, we performed a cluster permutation
test of classifier patterns and identified regions where activity
patterns in alert periods are different from drowsy periods. This
analysis resulted in the identification of two clusters (Fig. 6C,D).

1. Cluster #1 (alert activity. drowsy activity): indicates periods
(–220 to 190 ms), where activity is concentrated in premotor,
parietal, posterior electrode sites.

2. Cluster #2 (drowsy activity. alert activity): indicates periods
(–350 to 190 ms), where activity is concentrated in premotor,
frontal electrode sites.

The existence of a single cluster (in time) across both alert
and drowsy periods further indicates that motor-related proc-
esses do not necessarily vary in time with modulations in alert-
ness levels. Furthermore, for both alert and drowsy periods, the
start of the decoding happens during similar time periods at ;–
200 ms and lasts until similar time periods;190 ms.

In summary, these results indicate that motor preparation-
related processes are similar during both alert and drowsy trials,
suggesting that this process may not be critical to the changes in
decision-making in low alertness compared with evidence accu-
mulation-related processes. Although the efficiency of the imple-
mentation may be lower in drowsy, this could be because of
differences in signal-to-noise with alertness or to changes in the
neural implementation of the action itself.

The above analysis related to decoding of stimuli, and
responses indicate that most likely only central evidence accu-
mulation-related processes are modulated by alertness. However,
the decoding analysis in the late clusters could be confounded by
response-related processes occurring during alert periods.
Hence, we devised the next step of the analysis where we use pa-
rameters derived from the drift diffusion modeling to under-
stand how different elements of the evidence accumulation are

represented in the neural domain. This analysis is determined by
the DDM as a mathematical implementation of decision-making
theory, and it guides neural exploration to capture the brain dy-
namics echoes of the evidence accumulation process.

Neural signatures of evidence accumulation of decision-
making modulated by alertness
To take advantage of the information gained by the drift diffu-
sion modeling, we decided to capture the neural implementation
of the evidence accumulation parameters in the decision-making
process, and how it might differ in wakefulness and low alertness
periods. We specifically aimed at capturing the change in the
neurobehavioral dynamics of the evidence accumulation process
in the awake and drowsy periods. To establish this, we developed
a novel method based on the drift-diffusion analysis shown ear-
lier. We used the best model (from the drift diffusion analysis
earlier) and computed trial-by-trial influence of a brain covariate
(ERP) on the DDM parameters (see Materials and Methods).
Further, we compute the proportion of the overlap of the poste-
rior distributions of the trace obtained for both left and right
stimuli separately under alert and drowsy conditions (Fig. 7A).
This analysis is repeated for each participant; and we obtain
regression patterns, similar to the classifier patterns but guided
by the drift rate, per participant.

Next, we plot the regression patterns in alert and drowsy peri-
ods. The patterns in the alert periods (Fig. 7C,D) indicate that the
topography focuses initially in the frontocentral electrodes (150-
250ms), which then shifts to centroparietal electrodes (250-350ms),
similar to the classifier analysis (decoding patterns from Fig. 4F,G).
The patterns in the drowsy periods (Fig. 7C,D) indicate that the to-
pography initially focuses on the frontal electrodes (though weaker
compared with alert periods) in the interval from 150 to 250ms.
Further, the patterns shift to more central electrodes (again weaker
compared with alert periods) in the interval from 250 to 350ms.

The descriptive analysis of the regression patterns indicates
differences between alert and drowsy periods. To establish the
spatial and temporal signatures of such differences, we per-
formed a cluster permutation test and identified regions where
activity patterns in alert periods are different from drowsy peri-
ods. This analysis resulted in the identification of two clusters
(Fig. 8).

1. Cluster #1 (alert activity . drowsy activity): indicates early
periods (125-275 ms), where activity is concentrated in parie-
tal and central electrode sites. These spatial patterns are likely
to be involved in early perceptual and evidence accumulation
processes.

2. Cluster #2 (drowsy activity . alert activity): indicates early
periods (175-325 ms), where activity is concentrated in fron-
tal/central electrode sites. These spatial patterns are likely to
be involved in early perceptual/sensory encoding processes
during the drowsy periods.

These analyses indicate spatial/temporal regions where the
alert and drowsy periods differ in terms of sensory encoding and
central evidence accumulation-related processes. Furthermore,
we have also teased apart these differences from motor-related
processes by directly using a parameter (drift rate) from the hier-
archical drift diffusion modeling.

Alertness modulates frontoparietal cortical neural patterns
in perceptual decision-making
Next, we performed an exploratory analysis to identify the puta-
tive neural sources of these differences (Fig. 9) using a source
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reconstruction procedure to project the classifier patterns of the
different clusters back to their neural sources separately. In the
source space, we performed cluster permutation tests to identify
where in the cortex the activity in alert periods is higher than in
drowsy periods. We used the actual value of the source activity
(instead of absolute values), as we are interested in the distance
between the two different patterns and not in overall activity
levels.

1. Cluster #1: This cluster corresponds to regions where ac-
tivity in alert periods is higher than drowsy periods.
These regions are putative locations for early sensory,
evidence accumulation-related processes in alert peri-
ods. The analysis reveals regions (inferior parietal
lobule) previously associated with the ventral attention
network (Corbetta and Shulman, 2011; Yeo et al., 2011)
in the right hemisphere. The analysis further reveals

Figure 6. Temporal decoding (responses). To identify differences in motor preparation (response-related), we decoded the left and right button press events regardless of stimuli presented.
A, B, AUC under alert and drowsy periods, where the classifier was trained to discriminate between targets of left and right button presses. Shaded regions represent time periods with reliable
(p, 0.05) discriminatory power. The time point of 0 corresponds to the actual button press event. The ramp up of the AUC under both conditions starting from 210 ms (alert), 150 ms (drowsy)
before the actual response indicates the ability of the decoder to detect neural signatures related to responses. Spatiotemporal clustering of differences in classifier patterns produces two clus-
ters with similar time periods in contrast to the clusters (with early and later time periods) produced by stimuli-related classifier patterns. C, Cluster #1 indicates periods (�220 to 190 ms)
where alert activity is higher than drowsy periods. D, Cluster #2 indicates periods (�350 to 190 ms) where drowsy activity is higher than alert periods. In terms of spatial locations, the clusters
differ in frontal, central, middle, parietal electrode sites. The presence of a single cluster with similar time periods across alert and drowsy periods indicates that motor-related processes start
appearing at similar time periods and hence do not change with modulations in alertness levels.
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regions (superior parietal) that are part of the dorsal
attention network (Corbetta and Shulman, 2011; Yeo et
al., 2011) and central processing of flexible information
(Fedorenko et al., 2013).

2. Cluster #2: This cluster corresponds to regions where activity
in drowsy periods is higher than alert periods. These regions
are putative locations for early sensory-related processes in
drowsy periods. The analysis reveals regions (superior tem-
poral gyrus, inferior frontal gyrus, supramarginal gyrus,
transverse temporal, temporoparietal, frontoparietal, middle
frontal gyrus) regions in the right hemisphere also associated
with the ventral attention network (Corbetta and Shulman,
2011; Yeo et al., 2011).

To summarize, these results indicate that, during alert peri-
ods, the early sensory/central accumulation-related processes
(until 300ms from stimulus presentation) are located in the
regions corresponding to the dorsal attention network (which is
specialized for spatial attention). For the drowsy periods, the
early sensory encoding-related processes (until 300ms from
stimulus presentation) are located in the regions corresponding
to the frontoparietal, ventral attention network, further during
later periods (after 300ms) evidence accumulation-related pro-
cess are located in the regions corresponding to frontoparietal
network. This indicates that frontoparietal regions of the brain
are further recruited for the late decision-making processes
implemented in the drowsy periods, pointing to a cortical

Figure 7. Regression patterns. A, B, EEG data (z-scored and averaged per 50ms) was regressed against drift rate (v), the difference in the posterior of regression rate was quantified per elec-
trode per time point per participant. C, D, Mean regression patterns in alert and drowsy periods projected in electrode space show a classic centrofrontal to parietal progression from 150 to
750 ms. The early time periods highlight topographical differences in the frontal, middle, central parietal electrodes.
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network reconfiguration in the evidence accumulation between
normal and low alertness periods.

Discussion
In this study, we characterize cognitive and neural dynamics of
perceptual decision-making while participants are falling asleep.
First, we established, using multilevel modeling, that errors for
left-sided stimuli (compared with right) increased as participants
become drowsy, in convergence with Bareham et al. (2014) but
with a different study design, analysis methods, and participants
sample. Further, we fitted the proportion of rightward responses
of individuals and identified the subjective midline, showing that
shifts to the left (more rightward responses) as people become
drowsy. These echo line-bisection studies (Jewell and McCourt,
2000), showing that healthy individuals bisect lines to the left of
the veridical midline, and further support meta-analysis studies
suggesting rightward shift in attention with lower levels of

alertness (Chandrakumar et al., 2019). Additional studies
(Benwell et al., 2014) have also identified possible neural origins
of such bias as task-independent activity in the ventral attention
network; however, they did not examine whether trial-to-trial
alertness of individuals was modulated and how the different
aspects of the decision-making process were affected. Several
studies (Corbetta and Shulman, 2011) have shown that activity
in the ventral attention network interacts with the alertness sys-
tem, and that low alertness, as shown directly here, could be the
root cause.

Next, using signal detection theory (SDT), we found that sen-
sitivity (d9) had strong evidence of modulation by low alertness,
whereas criterion showed anecdotal evidence in favor of no mod-
ulation, complementing early deprivation studies in vigilance
tasks (Deaton et al., 1971). This suggests that the sensory/percep-
tual representations have indeed been modulated by alertness,
and that participants were not arbitrarily pressing more right-
ward responses (in the face of uncertain stimuli) as alertness

Figure 8. Regression pattern differences. Spatiotemporal clustering of differences in regression patterns shown in Figure 7C, D between alert and drowsy periods. A, Cluster #1 indicates early
periods (125-275 ms after stimulus) where alert activity is higher than drowsy periods. In terms of spatial locations, cluster #1 identifies electrodes in right parietal sites, central, middle elec-
trode sites. B, Cluster #2 indicates early periods (175-325ms after stimulus) where drowsy activity is higher than alert periods. In terms of spatial locations, cluster #2 identifies electrodes in
left/right frontal sites, right middle electrode sites.

Figure 9. Regression patterns projected into source space. To identify the putative regions/networks in the brain related to perceptual decision-making and its modulation by alertness, we
projected the regression patterns in Figure 8 to source space. A, Average regression patterns in the alert periods (125-325 ms) projected into source space. B, Average regression patterns in the
drowsy periods (125-325ms) projected into source space. C, Cluster #1 (alert. drowsy) identifies differences in regions related to the dorsal and ventral attention network in the right superior
and inferior parietal regions, respectively. Cluster #2 (drowsy. alert) reveals differences in regions related to the ventral attention network in the superior-temporal, frontoparietal regions.

Jagannathan et al. · Decreasing Alertness Modulates Perceptual Decision-Making J. Neurosci., January 19, 2022 • 42(3):454–473 • 469



decreases. Further, using the SSM framework, we showed that in
the best model, only the drift rate was reliably modulated by
both alertness and stimuli, whereas starting point was only
affected by stimuli (reliable), and boundary (reliable) and non-
decision time (not reliable) were affected by alertness. This shows
that alertness indeed differentially modulates evidence coming
from the left side of space compared with the right. Decision-
making studies in the visual modality (Smith and Ratcliff, 2009)
have shown that drift rates are closely related to the strength of
stimulus encoding, partially affected by attentional strength and
evidence accumulation to a decision threshold. Further studies
have also shown neural correlates of such parameters in the EEG
(O’Connell et al., 2012; Nunez et al., 2017) and its relationship
with stimuli strength. Hence, we interpret the effect of alertness
modulation on drift rate as acting specifically on spatial attention
affecting the stimulus encoding, as well as in central processes of
evidence accumulation. Finally, it is important to compare the
parameters of the SDT with the DDM (Jun et al., 2021). The
changes in sensitivity (d9) in SDT could be directly related to
the changes in the boundary parameter (a) and drift rate (v) in
the DDM. Here the changes in d9 are in agreement with both v
and a as both are shown to be modulated by alertness levels. The
changes in criterion (c) in the SDT correspond to sources of bias
and they could be originating from the stimulus: corresponding
to drift criterion (dc) in the DDM or originating from the
response: corresponding to starting point (z) in the DDM. With
the evaluation of competing models we show that models with z
outperforms the models with dc, further z varies only stimulus
direction (left or right) and is not modulated by alertness. This
agrees with previous studies showing an initial spatial bias
(Benwell et al., 2013; Learmonth et al., 2015) even before any ex-
perimental modulation (like time on task or alertness). Here the
evidence for the modulation of z in the DDM across stimuli
direction and not alertness levels agrees with the non-modula-
tion of criterion in the SDT across alertness levels.

Next, using time-multivariate decoding, we showed that
under alert conditions the decoding started early, at 160ms and
lasted until 730ms; however, under drowsy conditions, this was
delayed to 440ms and lasted until 740ms. This ;280ms delay
may indicate that, under lower alertness, the brain requires a lon-
ger time to decipher, or process, the direction of stimuli as sug-
gested by slower reaction times and a change in the drift rate, or
alternatively, that the neural code in this window is too noisy to
be captured by this neural decoding. Furthermore, the overall
strength of decoding was systematically higher in alert than
drowsy, suggesting that the brain processes responsible for deci-
sion-making are less variable under the alert compared with the
drowsy condition, or that there is less efficient decision process-
ing during low alertness (for an account on sleep deprivation on
cognition, see Killgore, 2010).

The different neural time clusters potentially point to a first
stage of information encoding and second of central evidence
accumulation (Kelly and O’Connell, 2015) that others have
mapped to perceptual/central decision processes (Sigman and
Dehaene, 2008). If that is the case, the first neural signal cluster
in drowsy (cluster #3 in Fig. 5C), showing changes in the spatial
pattern and a lack of reliable decoding may be interpreted as less
efficient encoding and transfer of information in low alertness or
may be using different network dynamics that are not captured
by the direct time-voltage decoding. The second cluster (cluster
#4 in Fig. 5D), more similar between states, may signal a lower
efficiency of central evidence accumulation, as it happens around
the time the central decision process occurs in cognitive control

(Ho et al., 2009). Furthermore, the second window of processing
may also show part of the motor implementation processes at
least for the awake condition (cluster #2 in Fig. 5B), where the
responses overlap for several participants (Fig. 4D). The overlap-
ping processes from;400 ms in awake, a mixture of central evi-
dence accumulation and motor implementation of the decision,
depending on the participant, are easily dissociated when
drowsy, when the motor plan is implemented ;500 ms later
(;900ms). This is complemented by the response-locked analy-
ses that seem to confirm a common motor implementation, and
it further guides the subsequent analysis.

Further analyses of the classifier patterns suggested specific
signatures of early perceptual and late central cognitive proc-
esses. In the alert condition, the early pattern (180-220ms) indi-
cates activity over frontocentral electrodes, further shifting to
more central and parietal sites later on. In the drowsy condition,
the pattern initially starts at frontal sites (though not strong
enough to be decoded) and shifts to central and parietal sites,
later on from 380ms onward. Thus, the formation of central, pa-
rietal patterns (possibly related to the first stage of encoding, evi-
dence accumulation) takes longer or starts later in drowsy
periods compared with alert. The spatial and temporal distribu-
tion of this centroparietal decoding pattern resembles both a
classic P2 and early P3, which has been dubbed as the build-to-
threshold signal (Twomey et al., 2015), and the centroparietal
positivity, a more specific signal of evidence accumulation
(Loughnane et al., 2016), respectively. To disambiguate the neu-
ral implementation of the evidence accumulation, we developed
a novel method using regression patterns that identified differen-
ces in drift rate across alert and drowsy periods and further
tested neural differences between alertness conditions.

Cluster #1 (alert.drowsy) showed activity in inferior parietal
source regions that resemble the patterns of the ventral attention
network. Although we cannot directly differentiate between early
perceptual encoding and central accumulation processes, this
cluster most likely corresponds to both in the alert periods. This
part of the process of the spatial decision shows the early involve-
ment of regions that have been linked, in several studies
(Shulman et al., 2010; Dietz et al., 2014), to lesions in the inferior
parietal lobule resulting in egocentric neglect. Furthermore,
lower activity in the ventral attention network was also reported
for neglect patients suffering from deficits in arousal (Corbetta
and Shulman, 2011). This agrees with the higher activity
observed in the regression patterns for the alert periods com-
pared with the drowsy periods of lower alertness. Further, it also
revealed regions in superior parietal that have been associated
with the dorsal attention network (Shulman et al., 2010; Dietz et
al., 2014). Again, these regions most likely correspond to the cen-
tral evidence accumulation that is directly involved in evaluation
of the spatial attention information.

Cluster #2 (drowsy.alert) showed activity in the transverse
temporal, superior temporal gyrus, temporoparietal junction,
frontoparietal regions (inferior frontal, middle frontal gyrus) in
the right hemisphere that can also be considered part of the ven-
tral attention network. Several studies (Heilman et al., 1987;
Corbetta et al., 2005) have reported lesions in the right ventral
frontal cortex in patients suffering from both arousal related defi-
cits and neglect to the right side of space. The highlighting of
these regions in our study indicates that they are different from
the alert periods and their higher activity in the regression pat-
terns points to a potential source of spatial neglect caused by
alertness deficits, which is similar to that observed in patient and
studies in healthy volunteers with causal manipulation (Paladini

470 • J. Neurosci., January 19, 2022 • 42(3):454–473 Jagannathan et al. · Decreasing Alertness Modulates Perceptual Decision-Making



et al., 2017). This could be dissociated in further studies, either
with lesion meta-analysis or with virtual lesions in normal volun-
teers as we recently suggested (Bareham et al., 2018). We think
this cluster corresponds to a combination of sensory encoding
and evidence accumulation in the drowsy periods, highlighting
an early cortical reconfiguration of the evidence accumulation
process.

When participants are fully alert, we think the information is
processed initially by the ventral attention network, followed by
the dorsal (specialized in spatial attention), whereas when partic-
ipants are drowsy the ventral attention network, although dispro-
portionately affected in the right hemisphere (Heilman et al.,
1987; Corbetta et al., 2005; Corbetta and Shulman, 2011), is still
involved in sensory encoding and early evidence accumulation
processes. This reconfiguration in the ventral attention network
is further propagated in the next stage, the dorsal attention net-
work. This second part of the decision closely tallies with the
proposal by Corbetta and colleagues to account for spatial
neglect found in stroke patients suffering from lesions in right-
hemispheric regions. But further, this network shows temporal
and spatially extended recruitment of the parietal and frontopo-
lar cortices to compensate for the direct effects of lower alertness,
and that reconfiguration of the brain networks to relatively
maintain performance may be a common and expected mecha-
nism (Canales-Johnson et al., 2020).

As we lose consciousness, the neural system responsible for
decision-making adapts to the internal challenge of decreasing
arousal and shows its resilience, exerting homeostatic regulations
at the cognitive level to maintain performance. The attention
and wakefulness fluctuations experienced in humans (and char-
acterized in other animals) are common during the day; and they
are not only dependent on the circadian and sleep-wake regula-
tion pressure (Borbély et al., 2016), but also on genetic, epige-
netic, environmental, and life history factors that shape the
alertness aspects of attention as well as the alertness aspect of
arousal (Bekinschtein et al., 2009a; Mitchell, 2020).

From a decision-making perspective, we have added a miss-
ing level of description by characterizing possible mechanisms of
resilience of the neurocognitive processes elicited by decreases in
tonic alertness. When moving from fully alert to a lower alertness
state the brain tries to recruit and expand evidence accumula-
tion-related processes to frontoparietal regions instead of tem-
poroparietal regions, consistent with an increase in cognitive
demand proposed by the Multiple Demand system (Duncan,
2010). We interpret that the neural reconfiguration occurring in
the transition from fully awake to decreased alertness brings dif-
ferent neural dynamics and changes the nature of the noise in
the brain, forcing the cognitive system to exchange information
differently. We put forward that low alertness negatively impacts
the efficiency of the evidence accumulation processes, and differ-
entially impacts performance, and the response of the system is
to compensate by extending its neural processes in time and
space to attempt to maintain performance. These findings high-
light the neural dynamics of decision-making when the external
world remains unaltered, physical evidence held constant, but
the internal milieu fluctuates exerting a modulatory influence on
the cognitive decision-making systems that caused them to
reconfigure to solve the task at hand.

Transition of consciousness in the near-awake to light-
decrease of alertness is emerging as a model for internally caused
interactions (Tagliazucchi and Laufs, 2014; Comsa et al., 2019;
Canales-Johnson et al., 2020; Noreika et al., 2020; Song and
Tagliazucchi, 2020). With lesion and pharmacological challenges,

neuropsychology and cognitive neuroscience have tried to define
the necessary and sufficient brain networks, areas and dynamics
of the brain to implement cognition, revealing compensation,
reconfiguration, and plasticity (Adolphs, 2016; Valero-Cabré et
al., 2017; Yeung et al., 2018). Semicausal effect of the internal in-
terference exerted by the relative independence of the arousal
system on the cognitive process paves the way for the use of
wakefulness, alertness, and arousal challenges in a principled
manner, adding new tools for cognitive brain research. Cognitive
neuroscience uses models, correlational and causal methods to
reach consensus about the underlying mechanism of thought
(Krakauer et al., 2017). Here, we have followed a theoretically
motivated question about perceptual decision-making systems,
using behavioral modeling to understand the system, but at the
same time causally modulating the neural networks with alert-
ness decreases to uncover the mechanisms of brain function.
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