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Exploring Information Flow from Posteromedial
Cortex during Visuospatial Working Memory:
A Magnetoencephalography Study
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The posteromedial cortex (PMC) is a major hub of the brain’s default mode network, and is implicated in a broad range of
internally driven cognitions, including visuospatial working memory. However, its precise contribution to these cognitive proc-
esses remains unclear. Using MEG, we measured PMC activity in healthy human participants (young adults of both sexes) while
they performed a visuospatial working memory task. Multivariate pattern classification analyses revealed stimulus-related infor-
mation during encoding and retrieval in a set of a priori defined cortical ROIs, including prefrontal, occipital, and ventrotempo-
ral cortices, in addition to PMC. We measured the extent to which this stimulus information was exchanged between areas in
an information flow analysis, measuring Granger-causal relationships between areas over time. Consistent with the visual nature
of the task, information from occipital cortex shaped other regions across most epochs. However, the PMC shaped object repre-
sentations in occipital and prefrontal cortices during visuospatial working memory, influencing occipital cortex during retrieval
and PFC across all task epochs. Our findings are consistent with a proposed role for the PMC in the representation of internal

content, including remembered information, and in the comparison of external stimuli with remembered material.
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The human brain operates as a collection of highly interconnected regions. Mapping the function of this interconnectivity, as
well as the specializations within different regions, is central to understanding the neural processes underlying cognition. The
posteromedial cortex (PMC) is a highly connected cortical region, implicated in visuospatial working memory, although its
precise contribution remains unclear. We measured the activity of PMC during a visuospatial working memory task, testing
how different regions represented the stimuli, and whether these representations were driven by other cortical regions. We
found that PMC influenced stimulus information in other regions across all task phases, suggesting that PMC plays a key role
in shaping stimulus representations during visuospatial working memory.
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Introduction

The posteromedial cortex (PMC) encompasses the posterior cin-
gulate cortex and precuneus, and is widely held to support a variety
of internally driven forms of cognition (Andrews-Hanna, 2012). As
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a hub of the brain’s default mode network, the PMC demonstrates
extensive connections with the medial temporal lobe, as well as
frontoparietal brain regions associated with cognitive control
(Leech et al., 2012). fMRI studies delineating subdivisions within
the PMC point to distinct patterns of connectivity with other areas
during the resting state (Margulies et al., 2009; Bzdok et al., 2015;
Kernbach et al., 2018; Khan et al,, 2020) as well as divergent task-
related functional connectivity as task difficulty increases (Leech
et al., 2011, 2012; Bzdok et al., 2015). Given the richness of these
connections, and the heterogeneity of PMC subregions (Margulies
etal., 2009; Leech et al,, 2011), the PMC is, perhaps unsurprisingly,
implicated across a diverse range of cognitive functions. Such
functions include self-referential processing, visual imagery, trans-
lating egocentric to allocentric representations, and modulating
internally versus externally directed forms of cognition (for review,
see Bzdok et al., 2015).
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Despite no direct connections to sensory cortex, the PMC
appears ideally positioned to receive converging sensory-perceptual
input, largely visual in nature, to support the integration of visuo-
spatial information (Conti and Irish, 2021). These representations
can be maintained online and operated on (i.e., working memory)
(Kravitz et al., 2011; Hunsaker and Kesner, 2018), or integrated into
contextually rich reconstructions of past experiences (i.e., episodic
memory) (Lega et al., 2017; Natu et al,, 2019). A consistent finding
in the memory literature is that of significant PMC activation
during tasks that require the reinstatement of contextual infor-
mation (Bird et al., 2015). Moreover, activity within PMC subre-
gions has been shown to parametrically scale with the vividness
of retrieved information, suggesting an important role in mem-
ory phenomenology, while other subregions of PMC have been
suggested to represent unique configurations of event features
(Cooper and Ritchey, 2019). Collectively, these studies indicate a
central role for the PMC in representing and integrating different
types of information in the service of memory (for review, see
Ritchey and Cooper, 2020).

Studies exploring the evolving time course of PMC activity
across task phases have consistently demonstrated an “encoding/
retrieval flip,” where successful remembering is associated with
attenuated PMC activity during encoding but increased activity
during retrieval (Daselaar et al., 2004, 2009; Huijbers et al., 2012,
2013). Importantly, by comparing the locations of voxels driving
associations between performance and attenuation, then facilita-
tion, Vannini et al. (2011) demonstrated that the same PMC sub-
regions modulate the encoding/retrieval flip. Patterns of functional
connectivity with PMC have also been shown to evolve across
memory task phases (e.g., Piccoli et al., 2015). For example, theta
phase medial temporal lobe-neocortical synchrony reliably pre-
dicts the degree of visual imagery recollected during autobio-
graphical memory retrieval, correlating specifically with activity
in the precuneus (Fuentemilla et al., 2014), resonating with the
proposed role of the PMC in the reinstatement of visuospatial
sensory-perceptual details. Thus, while there is evidence to sug-
gest information transfer between the PMC and other brain
regions during memory performance (Canolty et al., 2006;
Fell and Axmacher, 2011; Sauseng et al., 2019), the direction
of this information exchange remains poorly understood.

The objective of this study was to leverage the temporal preci-
sion of MEG to establish the patterns of information flow between
the PMC and other brain regions during visuospatial working
memory performance. We used a novel measure of Granger-causal
information exchange to test for evidence that PMC encodes
stimulus attributes within different task phases and to determine
whether any such information is transferred from the PMC to
other brain regions. We predicted that, if connectivity between
PMC and other regions reflects information exchange that is
crucial for memory performance, we should find evidence that
the PMC encodes the remembered stimulus and drives the
encoding of this information in other regions.

Materials and Methods

Participants. We collected psychophysical, MEG and MRI data from
12 participants (10 female, 2 male, age 19-31 years, mean = 23.8 years).
Each participant completed the psychophysical experiment in a 1 h ses-
sion, followed a week later by the MEG experiment in a 2 h session. The
anatomic MRI images were acquired in a half hour session on a separate
day. One participant withdrew from the MEG study early because of a
headache, so their data were excluded. All participants were healthy with
no history of neurologic and/or psychiatric disorders and provided
informed consent. Each participant had normal or corrected-to-

J. Neurosci., July 27,2022 - 42(30):5944-5955 - 5945

normal visual acuity. Participant recruitment and experiments were
conducted with the approval of the Macquarie University Human
Research Ethics Committee, and in accordance with the Declaration
of Helsinki.

Display apparatus and setup. Visual stimuli were presented using
MATLAB (version R2014b) and routines from Psychtoolbox (Brainard,
1997; Pelli, 1997; Kleiner et al., 2007).

During MEG sessions, stimuli were projected through a customized
window by an InFocus IN5108 LCD back-projection system (InFocus)
located outside the Faraday shield, onto a screen located above the par-
ticipant, with a display width of 12 degrees visual angle. Participants,
lying supine, viewed the screen from 113 cm.

For the psychophysical experiment, stimuli were displayed on a Dell
OptiPlex 9010 desktop computer driving an AMD Radeon HD 7570
graphics card to draw stimuli to a 60 x 33cm Samsung SyncMaster
SA950 Full HD 3D LED monitor, refreshed at 120 Hz. Experiments took
place in a darkened room, and participants were seated and viewed the
screen from a distance of 64 cm.

Visual stimuli and task. During the psychophysical and MEG ses-
sions participants completed a visuospatial working memory task. We
based the task and stimuli on a working memory challenge task used
previously (Kochan et al.,, 2010, 2011). For our task, we used 8 of the
abstract pattern images used in previous work (Fig. 1A). Each encoding
and retrieval stimulus comprised one of these 8 images, at one of 9 loca-
tions (Fig. 1B). Each image was a square, 2.5 degrees visual angle in di-
ameter, and each of the 9 locations was centered on a position 4 degrees
visual angle from the center of the screen. A dark gray cross (see Fig. 1,
width 1 degree) was always present at the center of the screen. All images
were presented on a background of mean gray.

Every trial followed the sequence illustrated in Figure 1C. During
encoding, four stimuli were presented, sequentially, with the same dura-
tion. The encoding stimuli were always four different images, at four dif-
ferent locations, and the participant was required to remember these
four conjunctions of image identity and location. Following the encod-
ing stimuli, dynamic white noise was presented for 800 ms (the mainte-
nance period): the noise pattern was 20% contrast, centered on mean
gray, updated at 120 Hz. We included dynamic noise during mainte-
nance to reduce any visual afterimages caused by the encoding stimuli.
After the maintenance period, a retrieval stimulus was presented, and
participants indicated whether the retrieval stimulus was included in the
encoding stimulus set for that trial. Following their response (via button
press), participants received feedback: the fixation cross changed to
green if they were correct and red if incorrect. After 200 ms of feedback,
the fixation cross returned to dark gray and, after a variable intertrial
interval of 300-800 ms (randomly varied across trials), the next trial
began. The buttons used to respond target present/absent were swapped
on each block.

Participants completed the task in blocks of 72 trials. To aid with the
classifier analysis based on MEG signals (below), the stimuli used for
each encoding stimulus was fully counterbalanced within each block.
The 8 images at 9 locations gave 72 unique stimuli, and for every block
of trials these 72 stimuli were used once each as the first, second, third,
and fourth encoding stimuli. Sets of encoding stimuli were chosen so
that they always contained four different images at four different loca-
tions, with no repeated images or locations. We preallocated half of
these trials, randomly selected, to be “target present” trials, and the re-
mainder to be “target absent” trials. For each trial, we selected a retrieval
stimulus according to whether it was designated a “target present” trial
(retrieval stimulus was one of the encoding stimuli) or a “target absent”
trial (retrieval stimulus was not included during encoding). Unlike the
encoding stimuli, the retrieval stimuli did not necessarily contain each of
the 72 unique stimuli on every block, but all images and locations were
used an equal number of times across the block.

We used the initial psychophysical session to both train participants
on the task and to calibrate the task difficulty according to their perform-
ance. During the psychophysical session, the duration of the encoding
and retrieval stimuli were varied across trials. On each trial, the encoding
stimuli each had the same duration, and the retrieval stimulus was twice
as long as this. Across each block, a range of 9 durations were used. Each
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participant completed four initial training
blocks, where encoding durations were 150-
400 ms. We used each participant’s behavior
on the first four training blocks to choose a
smaller range of durations for a second set of
four task blocks. Data were used from this sec-
ond set of four blocks to estimate the duration at
which each participant reached 75% correct task
performance. Sample data from 1 participant
are shown in Figure 2A. For each participant, we
fit their data with a sigmoidal function (Eq. 1),
where proportion correct (P) varied with encod-
ing duration (10) according to an intercept pa-
rameter («, defining the duration, x, where
p=0.75), a slope parameter (3), and a lapse rate
(r), according to the following:

P=05+05%(r/2+ (1 —r/2).

[(1+ e tm/E) 1)

We found the best fitting function (shown
in red in Fig. 2A) using the MaTLAB function
nlinfit. Based on this psychophysical data, we
chose a single encoding stimulus duration for
each participant for their MEG session, aiming
for overall performance of ~75% correct. This
target was chosen to ensure that no participant
was at ceiling or floor task performance, and to
make the task sufficiently challenging for each
participant, since the results of Kochan et al.
(2011) suggest that PMC is particularly
involved in demanding visuospatial working

Figure 1.
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Stimuli and participant’s task. In the visuospatial memory task, each stimulus was 1 of 8 abstract images (4) at
1 of 9 locations (B). On each trial, the participant was presented with 4 stimuli, serially presented, that were to be encoded
in memory, followed by a dynamic noise screen for 800 ms (maintenance period) and then a single retrieval stimulus (C). The
participant then responded via keypress whether the retrieval stimulus was present in the encoding stimulus set.

memory challenges. During the MEG session, A B °
each participant completed 8 blocks of trials _09 Bogl®
with this single encoding stimulus duration, 8 o s
and a retrieval stimulus duration of twice this S g 08 e ® 8. e
value. The durations used for each participant, 5 0.7 I e ettt .
and their overall performance across the MEG §0.6 go7 * s .
session, are shown in Figure 2B. ne_ 05 L|— N ;
MEG and MRI scanning protocols. MEG data 235ms z 08
were collected with a whole-head MEG system 04 os
(model PQ1160R-N2, KIT) at Macquarie 150 200 250 300 350 "175 200 225 250 275 300 325

University consisting of 160 coaxial first-order
gradiometers with a 50 mm baseline (Kado
et al., 1999; Uehara et al., 2003). Before MEG
measurements, five marker coils were placed
on the participant’s head. Marker positions,
nasion, left and right preauricular points, and
participant head shape were recorded with
a pen digitizer (Polhemus Fastrack), using a
minimum of 2000 points.

Each participant’'s MEG data were collected in a single session of
~90 min, at a sampling frequency of 1000 Hz. On each trial, participants
responded using a Fiber Optic Response Pad (Current Designs).

MRI took place at the Macquarie University Hospital on a 3T
Siemens Verio system. We acquired 3D T1-weighted images using
an MP-RAGE sequence (slice thickness 1.0 mm, resolution 1.0 x 1.0
mm).

MEG data analysis: source reconstruction. The automatic segmenta-
tion processes from Freesurfer 6.0 (Dale et al.,, 1999; Fischl et al.,
1999) was applied to each participant’s structural MR to define their
gray/white matter and pial/gray matter boundaries. Brainstorm
(neuroimage.usc.edu/brainstorm, January 2019 version) (Tadel et al,
2011) was used to preprocess the MEG signals and perform source
reconstruction. We imported the anatomic images and Freesurfer
segmentations and defined head models based on each participant’s
pial/gray boundary (cortical surface). We aligned MEG datasets to
the head model by aligning the anatomy based on the MRI to the

Figure 2.

value of 75% correct.

Encoding stimulus duration (ms)

Encoding stimulus duration (ms)

Behavioral performance. A, lllustration of a single participant’s data (blue line) with fitted psychometric function,
showing fitted point of 75% correct (235 ms). Error bars indicate 95% Cls on the average performance across trials. B, Each
participant’s performance in the MEG experiment against the encoding stimulus duration. Red dashed line indicates target

recorded nasion, preauricular points, and head shape data from the
MEG session. We generated a forward model for each of the 8
blocks of trials by applying a multiple spheres model (Huang et al.,
1999) to their cortical surface at the measured head location during
the block.

MEG data were preprocessed in Brainstorm with notch filtering (50,
100, and 150 Hz), followed by bandpass filtering (0.2-200 Hz). Cardiac
and eye blink artifacts were removed using signal space projection:
cardiac and eye blinks events were identified using default filters in
Brainstorm, manually verified, and then used to estimate a small number
of basis functions corresponding to these noise components, which were
removed from the recordings (Uusitalo and Ilmoniemi, 1997). From
these functional data, we extracted two epochs for each trial: (1) a mea-
sure of baseline activity (—100 to —1 ms relative to the onset of the first
encoding stimulus); and (2) the evoked response (0-4000 ms). We used
the baseline measures to estimate the noise covariance for each block
and then applied a minimum norm source reconstruction to the
evoked data. For each source reconstruction, we used a 15,000 vertex
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cortical surface (standard mesh, with atlas information imported
from the Freesurfer segmentation). Dipole orientations in the source
model were constrained to be normal to the cortical surface, the noise
covariance was regularized using the median eigenvalue, and all other
options were set to their default values.

ROIs. We defined four ROIs: occipital cortex (OC), ventrotemporal
cortex (VTC), PMC, and PFC, based on atlas data aligned with each par-
ticipant’s anatomy during the Freesurfer segmentation process. We used
the Destrieux atlas from Freesurfer to define our ROIs (see Destrieux
et al,, 2010). Our ROIs included the following parcellations from
Destrieux et al. (2010, their Table 1): OC included the entire OC
(indices 2, 11, 19, 20, 22, 42, 44, 51, 57, 58, 59); VIC included the inferior
temporal gyri and sulci (indices 37, 72); PMC included the middle-posterior
part of the cingulate gyrus and sulcus, the precuneus, the marginal branch
of the cingulate sulcus, and the subparietal sulcus (indices 8, 30, 46, 71);
and PFC included the entire PFC (indices 1, 5, 6, 24, 31, 62, 63, 64, 70).
These four ROIs are displayed on an uninflated cortical surface in the
legend in the top right of Figures 3 and 4. All ROIs comprised continu-
ous parts of the cortical surface: the two separate parts of PMC in these
figure legends were joined within the sulcus. For each ROI, we extracted
the MEG data corresponding to the subset of the 15,000 sources which
were located within the ROI, and used these datasets in the analyses
below.

Classification analyses. For each ROI, we performed a series of mul-
tivariate pattern classification analyses, within each 5ms bin across the
trial duration. Each classification asked how well the source data from a
single ROI in a single time bin could be used to differentiate between
trials of two classes: for example, trials with the first encoding
stimulus at Location 1 versus Location 2. We trained classifiers
(linear support vector machine) to discriminate the location and
image of each stimulus (four encoding stimuli + 1 retrieval stimu-
lus): for 9 locations, there were 36 pairwise comparisons; and for 8
images, there were 28 pairwise comparisons. For these classifica-
tions, we created “pseudo-trials” by averaging across trials with the
same value on the dimension of interest, but with differing values
along the other dimension.

Pseudo-trials were always balanced across the irrelevant dimension
of interest for the same stimulus. When classifying stimulus location for
the first encoding stimulus, each pseudo-trial was the average of 8 trials
where the first encoding stimulus was at the same location: one trial of
each stimulus image. Similarly, pseudo-trials for classifying stimulus image
were balanced across location of that stimulus. To ensure that our results
did not depend on a particular assignment on trials to pseudo-trials, we
generated 20 sets of pseudo-trials for every pairwise classification, updating
the random assignment of trials for each set, and averaged classification
performance across these. In each case, we trained the classifier on 90% of
the data and tested its performance on the held-out data (10%) to avoid
circularity. We repeated this process 10 times (10-fold cross-validation)
so that every partition of the pseudo-trials was included in the test set
once; then we averaged classifier performance across these.

Since the duration of the stimuli varied across participants (180-
320 ms for the encoding stimuli), when averaging classifier accuracy across
participants, we first aligned their data at each stimulus onset, meaning
that, in Figures 3-6, there are time bins (shaded in gray) where the
average includes <11 participants. In these figures, the x axis is la-
beled for a 320 ms stimulus.

Statistical testing. To evaluate whether classifier performance was
significantly above chance, we used a combination of permutation test-
ing and bootstrapping to generate nonparametric null distributions. For
each participant, we took the original MEG trial data but randomly shuf-
fled the trial labels across trials within the participant’s data. Using this
shuffled-label data, we performed the same classification analyses as for
the original data, including pseudo-trials and 10-fold cross-validation.
We repeated this process 10 times, randomly shuffling the trial labels
each time, resulting in 10 estimates of chance-rate classifier performance
for each classification at each time. Since this process was computation-
ally intensive, we did not repeat this entire process 10,000 times, but
instead we used a Monte Carlo estimation of the distribution (Efron and
Tibshirani, 1994), randomly sampling these 10 estimates (with
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replacement) to generate a sample of 10,000 estimates of each mean for
each ROI of each participant. We performed this resampling procedure
separately for each pairwise comparison, at each time sample, so that
there were different combinations of the original 10 estimates in each
case. This resulted in a null distribution of 10,000 datasets against which
to compare the observed classifier performance. In the results figures, we
plot the range of the central 95% of null values as a gray shaded region
along with the results to which they correspond. In each case, we per-
formed all analyses on the null datasets as for the original data (e.g.,
including averaging across participants) and then sorted the values sepa-
rately for each time sample; from these, we defined the bounds of the
central 95% as the 251st to the 9750th value.

To generate p values, we compared the observed value with the rele-
vant null distribution. For instance, to assess whether classifier perform-
ance is above chance (one-sided test), we defined the p value as the
proportion of equivalent null means which were above the observed
mean (Maris and Oostenveld, 2007). To correct for multiple compari-
sons across time bins, we applied a false discovery rate (FDR) correction
of ¢ <0.05 (Benjamini and Hochberg, 1995) to these p values. In addi-
tion to the nonparametric tests based on the null distribution, we used a
Bayes factor (BF) analysis: an alternative to the traditional frequentist
approach (Kass and Raftery, 1995; Morey and Wagenmakers, 2014) that
is increasingly being applied to MEG decoding studies (Teichmann
et al., 2021). A BF compares evidence for competing hypotheses;
here we report where there is moderate (BF > 3) or strong (BF > 10)
evidence in favor of the alternate hypothesis, or at least moderate
(BF < 1/3) evidence in favor of the null hypothesis. We implemented
all BF analyses using a MATLAB package (Krekelberg, 2021).

Information flow analysis (IFA). From the pairwise classification of
each of the 9 locations (36 pairs) and the 8 images (28 pairs), for each of
5 stimuli (4 encoding stimuli and the retrieval stimulus), we had classi-
fier accuracy over time for (36 +28) x 5=320 classifications. Within
5 distinct epochs, corresponding to the time from the presentation of
each stimulus until the earliest presentation of the next stimulus (or, in
the case of retrieval stimulus, until the end of the trial data), we used the
64 classifier accuracy values from the most recent stimulus as a dissimi-
larity matrix (DSM) at each time bin. We used these DSMs to test for
Granger causal relationships between each pair of ROIs (IFA; for this
and similar analyses, see Ince et al, 2015; Goddard et al.,, 2016, 2022;
Karimi-Rouzbahani, 2018; Kietzmann et al., 2019). ROI A is said to
“Granger cause” the pattern of classification performance in a second
ROI (B) if the past of the first ROI can be used to predict future perform-
ance of the second ROI better than the past of the second ROI alone.
We performed a sliding-window analysis of a simplified (special case)
of Granger causality, using the partial correlations (Spearman’s p) in
Equation 2 to define the information flow (IF) from ROI A to ROI B
(IF 4 ) for each time bin (¢).

IFA B(t.aw) = P DSMp,) DSM (4 1.d,1)-DSM(5 1.4.w) (2)

where DSM,..») is the DSM based on the sources in ROI loc at time ¢ ms
after stimulus onset, and DSM(jo.1,4,) is the DSM based on the sources
in ROI loc, averaged across all time bins from #-d ms to t-(d + w) ms af-
ter stimulus onset. We calculated FF and FB for 30 overlapping windows:
for 5 window widths (w =10, 20, 30, 40, or 50 ms) for each of 6 delays
(d=50, 60, 70, 80, 90, or 100). As in previous work (Goddard et al,
2022), since the results were broadly similar across values of w and d, we
report IF, g values averaged across all values of w and d.

In addition to reporting IF, 5 and IFg 4 for each pair of ROIs, we
report the difference between these, as shown in Equation 3, to assess
the times at which information flow between ROI A and ROI B is domi-
nated by one direction over the other.

Diff(A.B) = IFA.B - IFBAA (3)

To assess whether each information flow was significantly >0, and
whether each difference was significantly different from zero, we
repeated the information flow analyses on each of the 10,000 datasets
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Time (ms)

Classifier performance decoding item location, for each of the 4 encoding items (4-D) and the retrieval item (E), for each ROI. Shaded error bars indicate 95% Cls of the between

subject mean (n = 11). Shaded gray distribution represents the 95% Cls of a bootstrapped null distribution (see Materials and Methods). Vertical dashed lines indicate the onsets of each stimu-
lus, with the stimulus being decoded highlighted in red in each plot. Shaded regions of the plot represent times where the data are averaged across <<11 participants because of the individu-
alized stimulus durations (see Materials and Methods). Dots along the 4 colored lines below the x axis represent the statistical results for the data from each ROI. In each case, colored dots
above the line represent times where the mean was significantly greater than the bootstrapped null distribution (FDR-corrected, g << 0.05), and there was a moderate or strong effect indicated
by the BF (BF > 3, small dots, or BF > 10, large dots, respectively). Small gray dots below each line represent times at which there was at least moderate evidence against the presence of
above-chance decoding (BF << 1/3). Top right, Legend shows each ROl as a shaded region on an uninflated cortical surface from a medial (top) and lateral (bottom) view.

generated from shuffling trial labels (described above). For each pair of
ROIs, this generated null distributions of information flow (IF) and dif-
ferences (Diff) against which to compare the observed values. We used
these to define the central 95% of the null distribution, in an analogous
method to that described above for classifier performance. Similarly, we
also obtained p values from these null distributions: for IF, we asked

whether the observed value was greater than the null (one-sided test, as
above); and for Diff, we asked whether the absolute value of the observed
difference was greater in amplitude than the absolute value of the null
distribution, defining the p value as the proportion of null values with a
greater absolute value than the observed (two-sided test). As before, we
applied an FDR correction of g < 0.05 to these p values to correct for
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Figure 4.

multiple comparisons across time points. To complement these analyses,
we performed a BF analysis as an index of the relative strength of the
observed effects.

Last, we took the average information flow between each pair of
ROIs across three functionally relevant epochs, corresponding to the
encoding, maintenance, and retrieval task phases, and asked whether the
intersubject variability in information flow was correlated with variabili-
ty in task performance. The “encoding” epoch included the first 180 ms
after onset of each of the four encoding stimuli onset, the “maintenance”
epoch included the maintenance period from 180 ms after the onset of
the fourth encoding stimulus until the earliest onset of the retrieval

2000 2500 3000 3500 4000

Time (ms)

Classifier performance decoding item identity, for each of the 4 encoding items (A-D) and the retrieval item (E), for each ROI. Plotting conventions as in Figure 3.

stimulus, and the “retrieval” epoch corresponded to the onset of the re-
trieval stimulus until the end of the trial. For the participant with the
shortest encoding stimulus duration (180 ms), these three epochs cov-
ered the first 3440 ms from the trial onset; while for the participant with
the longest encoding stimulus duration (320 ms), the final epoch finished
at 4000 ms. Across participants, the median reaction time was 1.99 s after
the onset of the retrieval stimulus (lower to upper quartiles: 1.69-2.27 s),
meaning that the “retrieval” epoch covered approximately the time until
the participant’s response. Across each of these epochs, for each pair of
ROIs, we averaged data from time points for which there was at least
moderate evidence of information flow (i.e., BF >3, ¢ < 0.05) in at least
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Figure 5.  IFA between PMC (magenta) and occipital (4, blue), ventrotemporal (B, green), and frontal (C, orange) cortices. In each case, the uppermost plot represents the information flow
to and from PMC to the other area, and the middle plot represents the difference between these information flows. The background of the plot is colored according to the dominant informa-
tion flow (e.g., darkest magenta represents times of strongest bias from PMC to the other area). Dots below the uppermost plots, and above and below the middle plots represent the BF
results. Vertical dashed red lines indicate the onsets of each stimulus; for each time sample, information flow was calculated using classifier decoding of only the most recent stimulus. Shaded
regions of the plot represent times where there were data for <<11 participants because of the individualized stimulus durations (see Materials and Methods). In the bottom part of
each plot, the scatter plots represent the relationship between participant’s performance on the task (d') and the information flow bias (Diff). For each participant, we calculated their
average Diff value by averaging across time samples within the epoch where there was at least a moderate effect (BF > 3) of information flow in at least one direction between the
pair (i.e., time samples with at least one colored dot in the uppermost plot). Each scatterplot includes a line of best fit (in red); and beside each correlation plot, the correlation value
(Pearson’s r) is given, along with the range of the central 95% of null r values, and the p value derived from this null distribution (none of these survived FDR correction at
g < 0.05). Backgrounds of the scatter plots are colored according to the slope of the line of best fit (e.g., darkest magenta represents the strongest positive relationship between par-
ticipant performance and information flow from PMC).

one direction between the pair of ROIs. We excluded data from In each case, we report the average difference in information flow
remaining time points to minimize the contribution of data from (Diffa p), and the linear (Pearson’s) correlation (r) between participants’
times where there was weak or no evidence of information flow  average behavioral performance during the MEG session and the av-
between the ROIs. erage difference in the information flow Diff, 5 during the relevant
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Figure 6.
(Q). Plotting conventions are as in Figure 5.

epoch. We repeated this analysis (average Diff, 5 and its correlation
with behavior) for each of the 10,000 samples of the bootstrapped
null data, resulting in a distribution of 10,000 null means and r values.
As for other results, we report the central 95% of these null values,

0.66 Prop. correct 0.92

0.66 Prop. correct 0.92

IFA between remaining cortices (excluding PMC). IFA between occipital and ventrotemporal cortices (A), occipital and frontal cortices (B), and ventrotemporal and frontal cortices

and we used this null distribution to define p values, in this case
defining the p value as the proportion of null means or r values with a
greater absolute value than the observed value (two-sided test).
Finally, we applied FDR correction to these p values to correct for
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multiple comparisons across epochs, and calculated the BF for each
mean and correlation.

Data availability. Data from MEG experiments are freely available
online from the Open Science Framework (https://doi.org/10.17605/OSF.
IO/MW3]J2). This online repository includes deidentified raw data from
the MEG experiments, details of the stimulus timing for each participant,
and the MATLAB code used to perform the analyses reported here.

Results

Classification analyses

We used a series of classification analyses to test for times at
which the MEG signals in OC, VTC, PMC, and PFC contained
information about the location and image of each stimulus dur-
ing visuospatial working memory performance. Decoding of the
location in each stimulus is shown in Figure 3, and decoding of
the image at each location is shown in Figure 4. Decoding of
stimulus location was higher than decoding of stimulus identity;
but for decoding of both location and identity, there was evi-
dence of periods of above-chance decoding of each stimulus in
all ROIs.

For decoding stimulus location, we found periods of above-
chance decoding of location and identity for each of the four
encoding stimuli as well as the retrieval stimulus based on signals
from OC, VTC, PMC, or PFC [g < 0.05, with FDR correction for
multiple comparisons across time bins, including moderate
(BF > 3) and strong (BF > 10) effects]. For decoding of stimulus
image identity (Fig. 4), we found weaker classifier performance
overall, with the proportion correct an order of magnitude lower
than for decoding location. Despite the lower overall accuracy,
statistical analyses showed that decoding of each stimulus
identity was robustly above chance for some time points in
all ROIs.

Across all ROIs, the decoding of stimulus location and iden-
tity followed a similar evolution over time, with an initial peak,
then decay, consistent with signals primarily driven by the visual
response to the stimulus. We expected stimulus information in
OC to precede that in other ROIs, but the early peaks in decod-
ing in OC, VTC, and PMC occurred at approximately the same
time. This suggests that there may be some “signal leakage”
between ROIs in our source localization (we return to this
question when considering the results of the IFA, below).
Nonetheless, the differences between ROIs suggest that these
analyses have also captured signals that are nonoverlapping
across ROIs. For instance, for decoding stimulus location, the
relative accuracy at ~100 ms versus ~300 ms after the onset
of the relevant stimulus varies across ROIs.

In Figures 3A-D and 4A-D, there tends to be a brief period of
above-chance decoding during the processing of the retrieval
stimulus. It is possible that this reflects some neural process com-
paring the retrieval stimulus with the remembered locations and
identities, especially where this persists to later (e.g., ~300 ms)
after the onset of the retrieval stimulus. However, we cannot rule
out that decoding at these times could be driven by the neural
response to the retrieval stimulus if there is a slight imbalance in
the counterbalancing of trials. For instance, brief periods of
above-chance decoding before the onset of the relevant stimulus
(e.g., around the time of the first encoding stimulus in Figs. 3B-E
and 4B-E) clearly cannot be driven by a response to the decoded
stimulus. This may have arisen since each trial was defined to
include four different locations and four different identities during
encoding; so, for example, decoding Location 1 versus Location 3
for encoding Stimulus 2 is equivalent to decoding “not Location 17
versus “not Location 3” for other encoding stimuli. Either way,
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our results suggest that signals based on remembered stimulus
locations or identities were very weak compared with the robust
signals comprising the visually driven response.

IFA

We next considered Granger-causal interactions between each
pair of ROIs using an IFA. Even when classifier performance is
low, overall there may be small, genuine signals that drive differ-
ences in the pattern of classifier performance across the many
different pairwise classifications for each time bin. However, to
ensure our measures of information flow were not driven by any
spurious effects, we performed this analysis using classifications
of only the most recent stimulus for each trial epoch (see Materials
and Methods). IFA specifically tests for differences between ROIs
and the temporal structure of these differences, rendering it poten-
tially more sensitive than average classifier performance for detect-
ing differences between ROIs. The results of our IFAs between
PMC and all other ROIs are shown in Figure 5, with interactions
between the remaining ROIs shown in Figure 6.

The IFAs revealed periods of significant Granger-causal inter-
actions between each pair of ROIs [¢q < 0.05, with FDR correc-
tion, including times of moderate (BF > 3) and strong (BF > 10)
effects] across all trial phases (encoding, maintenance, and re-
trieval). The information flows (uppermost plots in each case for
Figs. 5 and 6) were strongest in each direction near periods of
higher classifier performance; but within each pair of ROIs, the
relative strength of each ROI in influencing the other varied over
time, as reflected in the difference plots. When OC was paired
with any other ROI, information flow from OC tended to be
higher than information flow to OC immediately after each stim-
ulus onset, consistent with a stimulus-driven response. This was
particularly pronounced for the encoding epoch, where average
difference in information flow between OC and any other ROI
(avg Diffoc «) varied from 0.094 to 0.127, and the BF indicated a
series of strong effects in favor of greater information flow
from OC to the other area (¢ <0.05, BF > 10 in each case).
There was also a moderate effect of information flow from
OC to PMC exceeding the reverse direction during mainte-
nance (avg Diffoc.payc=0.042, ¢ <0.05, BF =3.19).

We were particularly interested in whether there was evidence
of information flow from PMC shaping responses in other areas.
The strongest evidence for this was between PMC and PFC.
Average information flow from PMC to PFC tended to exceed
the reverse direction over all epochs, with a strong effect during
encoding (avg Diffpprcprc=0.056, ¢ < 0.05, BF=18.70), and a
moderate effect during maintenance (avg Diffppscprc=0.025,
q < 0.05, BF=7.33), but this bias did not reach significance dur-
ing retrieval (avg Diffppicprc=0.014, g > 0.05, BF=0.77). The
time courses in Figure 5C show that, across all trial epochs, infor-
mation flow from PMC to PFC was strongest around the time of
the early, stimulus-driven response to each stimulus. With OC,
PMC showed evidence of greater information flow in the latter
part of the retrieval epoch (Fig. 5A). Averaged across the re-
trieval epoch, this difference was biased toward PMC driving
OC, but this was a small effect (avg Diffppic.prc=0.029, ¢ < 0.05,
BF=1.59).

Across remaining ROI pairs, the only cases with a moderate or
greater effect (BF > 3) were between VT and PFC (Fig. 6C), during
encoding (avg Diffyr prc=0.057, ¢ < 0.05, BF=4.00) and retrieval
(avg Diffyrprc=0.040, g < 0.05, BF =57.79). As for OC, the times
where VT dominated information flow with PFC were consistent
with the early stimulus-driven response (e.g., compare times of
dominance of VT in Fig. 6C and OC in Fig. 6B). Overall,
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there was little evidence of PFC dominating information
flow to other areas.

Last, for each trial epoch, we correlated the average informa-
tion flow between each pair of ROIs with behavioral accuracy
across participants. None of these correlations reached statistical
significance once corrected for multiple comparisons, and no
correlation reached the level of a moderate effect (BF > 3). This
suggests that our relatively small sample size was insufficient to
detect any predictive power of information flow for task per-
formance. However, we believe such correlations could be a
fruitful direction for future research adopting these methods, so
we include these preliminary results as reference for future work.

Discussion

Despite the demonstrated importance of the PMC during mem-
ory retrieval, the causal influence of PMC over other regions has
remained unclear. Specifically, the direction and content of in-
formation exchange between PMC and other brain regions dur-
ing memory processes have not been tested. Here, we used MEG
recordings from MRI-defined ROIs to evaluate information flow
between PMC and other regions during a visuospatial working
memory task. Results suggest that PMC object representations
show Granger-causal influence on stimulus information in other
regions, most notably in its influence on PFC across all task
phases. There was also the suggestion that PMC shapes responses
in OC during retrieval.

PMC shapes stimulus representations in prefrontal areas

Our most striking finding concerns the influence of PMC on
remembered stimulus information in PFC. Across all task phases,
information flow from PMC to PFC tended to be more dominant
than the reverse direction. Since our measure of information flow
is based on classification performance, rather than response
amplitude, this finding suggests that the stimulus-related in-
formation in PMC was predictive of stimulus representations
that were about to emerge in PFC. This was most evident for
the encoding and maintenance phases; however, PMC was also
found to shape responses in PFC during the retrieval phase. The
fact that this effect occurred shortly after the retrieval stimulus
onset resonates with PMC relaying information on which the
participant’s decision is based, to PFC to support successful
recall.

Prefrontal regions are reliably implicated in attentional con-
trol and the flexible coding of task-relevant information (Duncan,
2010; Freedman and Assad, 2016). Patterns of anatomic connec-
tivity between the hippocampus and frontal visuo-oculomotor
systems (i.e., dorsolateral PFC and frontal eye fields) (Shen et al,,
2016) suggest that frontal regions are particularly well situated to
integrate visual memory information to guide behavior (Conti
and Irish, 2021). The frontoparietal regions implicated in atten-
tional control are also involved in working memory, especially
during encoding and maintenance periods (Gazzaley and Nobre,
2012). Additionally, prefrontal regions are known to drive
changes in visual cortex; for instance, microstimulation of
the frontal eye fields produces changes in visual cortex con-
sistent with shifts of attention (Moore et al., 2003; Premereur
et al., 2013).

Our results suggest that PMC shapes prefrontal representa-
tions of remembered visuospatial information throughout task
performance and including the beginning of the retrieval period.
Previous fMRI work has demonstrated increased frontoparietal
activation during encoding and maintenance whether retrieval
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was required or not, while posterior cingulate cortex showed
response patterns consistent with a role in retrieval (Rahm et al.,
2014). Functional connectivity between PMC and prefrontal
regions, such as ventromedial PFC, lends further support to the
importance of frontoparietal coupling during episodic retrieval
(for review, see Andrews-Hanna, 2012; Ritchey and Cooper,
2020). Our findings extend previous work by suggesting that this
observed pattern of connectivity includes PMC influencing task-
relevant information in prefrontal networks.

As with any correlation, it is possible that our partial correla-
tions in the IFA reflect associations with another (untested) area.
Another possibility is that our ROIs were not fully isolated dur-
ing source reconstruction and include signals from nearby
regions. If PMC signals were present in the PFC ROI or vice
versa, this would increase the shared variance between the ROIs.
Shared variance might reduce the extent to which signals in one
ROI contribute information above that already present in the
other ROI, which could decrease the measured information flow.

PMC influences early sensory cortex during retrieval

Our results further suggest that, during retrieval, PMC shapes
responses in sensory cortex. Across all task phases, and for each
ROI pairing, the OC tended to dominate information flow, influ-
encing other regions more than it was influenced by these
regions, consistent with the visual nature of the task. However,
the dominance of OC in our measures of information flow may
have been amplified by the generally transient classifier perform-
ance observed. Across all ROIs, above-chance decoding was
largely restricted to brief epochs after the stimulus presentations,
suggesting that any neural representation of the maintained in-
formation made minimal contribution to classifier performance.
Notably, we found some evidence of significant information
flow from PMC to OC in the latter part of the retrieval period
(BF =1.59). Whether this information flow is functionally rele-
vant remains unclear. Any functional influence of PMC on OC
must be mediated by indirect connections, since there are no
direct projections between PMC and primary sensorimotor
regions (Parvizi et al,, 2006; Leech and Smallwood, 2019).
Candidate indirect pathways by which PMC could influence
occipital regions include the parieto-medial temporal path-
way, which is proposed to contribute to visuospatial processing
(Kravitz et al., 2011).

Implications for understanding PMC function

Overall, our results suggest that the PMC has a specific role in
relaying stimulus-related information to other regions. This then
begs the question of what exactly the PMC is doing. While our
results suggest a directionality of PMC influence to other brain
regions, the precise function of the PMC in this context remains
unclear. The PMC represents one of the major hubs of the
brain’s default mode network, defined by its “task negative”
response profile (Buckner et al., 2005). However, we demonstrate
here that PMC does not show a simple task negative contribution
to visuospatial memory. PMC engagement during encoding and
maintenance is associated with poorer task performance (Piccoli
et al.,, 2015; Santangelo and Bordier, 2019), yet the PMC “encod-
ing/retrieval flip” suggests that increased activity during retrieval
is associated with better recall (Daselaar et al., 2004, 2009). While
activity alone may reflect content-unspecific contributions, our
measures of stimulus representations, using classifier performance,
suggest that PMC actively shapes representations of stimulus-
related information in other regions during task performance.
Accordingly, PMC is not engaged in the processing of purely
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external sensory stimuli, but actively involved in the representa-
tion of internal content, including remembered information
(Leech and Smallwood, 2019). Our study, however, was under-
powered to delineate how information flow between PMC and
other brain regions is predictive of behavioral accuracy, and we
suggest this will be a critical avenue to explore in future work.

Future directions

As the first study, to our knowledge, to explore the exchange of
stimulus-related information between PMC and other regions,
our study raises several directions for future research. While we
focused here on four a priori ROIs, and used a relatively small
sample size, it will be important to comprehensively map the
flow of information between PMC and other brain regions dur-
ing visuospatial memory with larger cohorts of participants.
Time-resolved methods, such as MEG/EEG, could also be com-
plemented with imaging methods, such as fMRI, to test finer par-
cellations within these regions.

We had low overall decoding during maintenance, and so, a
limited ability to detect information flow during this task phase.
We chose visually similar stimuli to increase task difficulty and
reduce verbal labeling. However, this may have decreased clas-
sifier performance for task identity. Decoding was higher for
stimulus location, where the retinotopic organization of visual
cortical areas would yield larger-spatial scale response differ-
ences, yet even for location, beyond the stimulus-induced
response, we found little evidence of decoding based on remem-
bered values. Conversely, in decoding EEG signals during a sim-
pler visual memory task, Bocincova and Johnson (2019) report
above-chance decoding of stimuli during a delay period, albeit
weaker than during encoding. Thus, while high task difficulty
appears necessary to isolate the specific role of the PMC (Kochan
et al, 2011; Leech et al., 2011; Vannini et al., 2011), a less
demanding task might yield better classifier performance, to
better detect information flows across all task phases.

Efforts to delineate the functional relevance of PMC subre-
gions may also offer crucial insights into the early and accurate
diagnosis of Alzheimer’s disease (Buckner et al., 2005; Xia et al.,
2014; Wu et al., 2016; Khan et al., 2020). Emerging evidence sug-
gests that healthy young adults carrying the APOE-£4 allele ex-
hibit inefficiencies modulating PMC activity during scene (but
not face and object) working memory and perception (e.g., Shine
et al., 2015), while functional deactivation of PMC during visuo-
spatial working memory performance is predictive of subsequent
cognitive decline in older adults with mild cognitive impairment
(Kochan et al,, 2011). Given that visuospatial dysfunction
because of PMC dysfunction has been proposed as an early
harbinger of Alzheimer’s disease (Pihlajamiki et al.,, 2010;
Irish et al., 2012; Salimi et al., 2018), future studies investigat-
ing functional changes in the PMC may improve the early
identification of individuals at risk of dementia.
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