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Spreading depolarization, usually termed cortical spreading depression has been proposed as the pathophysiological substrate
of migraine aura and as an endogenous trigger of headache pain. The links between neurovascular coupling and cortical cra-
niofacial nociceptive activities modulated by SD were assessed by combining in vivo local field potential (LFP) recordings in
the primary somatosensory cortex (S1) with functional ultrasound imaging of S1 and caudal insular (INS) cortices of anesthe-
tized male rats. A single SD wave triggered in the primary visual cortex elicited an ipsilateral, quadriphasic hemodynamic
and electrophysiological response in S1 with an early phase consisting of concomitant increases of relative cerebral blood vol-
ume (rCBV) and LFPs. A transient hypoperfusion was then correlated with the beginning of the neuronal silence, followed by
a strong increase of rCBV, whereas synaptic activities remained inhibited.
LFPs and rCBV recovery period was followed by a progressive increase in S1 and INS baseline activities and facilitation of
cortical responses evoked by periorbital cutaneous receptive field stimulation. Sensitization of cortical ophthalmic fields by
SD was bilateral, occurred with precise spatiotemporal profiles, and was significantly reduced by pretreatment with an
NMDA antagonist. Combined high-resolution assessing of neurovascular coupling and electrophysiological activities has
revealed a useful preclinical tool for deciphering central sensitization mechanisms involved in migraine attacks.
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Significance Statement

A crucial unsolved issue is whether visual aura and migraine headache are parallel or sequential processes. Here, we show
that a single spreading depolarization wave triggered from the primary visual cortex is powerful enough to elicit progressive,
sustained increases of hemodynamic and sensory responses to percutaneous periorbital noxious stimuli recorded in S1 and in-
sular ophthalmic fields. Sensitization of cortical ophthalmic fields by SD was bilateral, occurred with precise spatiotemporal
profiles, and was significantly reduced by pretreatment with an NMDA antagonist. Combined high-resolution assessing of
neurovascular coupling and electrophysiological activities has revealed a useful preclinical tool for deciphering central sensiti-
zation mechanisms involved in migraine attacks.

Introduction
Although the exact pathogenesis of migraine remains to be deter-
mined, several clinical neurophysiological studies suggest the ex-
istence of a hyperexcitable state characterized by abnormal
cortical processing that can be detected interictally (Aurora and
Wilkinson, 2007; Coppola et al., 2007). Spreading depolarization,
also known as cortical spreading depression, has been proposed
as the pathophysiological substrate of migraine aura and as a
possible endogenous trigger of headache pain (Charles and Baca,
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2013; Noseda and Burstein, 2013; Dreier and Reiffurth, 2015;
Brennan and Pietrobon, 2018). Spreading depolarization, which
in animals can be induced by focal stimulation of the cerebral
cortex, is a slowly propagating wave of neuronal depolarization
and glial activation (Piilgaard and Lauritzen, 2009; Dreier and
Reiffurth, 2015; Parker et al., 2021). Early functional imaging
studies during migraine attacks showed a propagation of cortical
oligemia followed by hyperemia, involving widespread areas of
the cortex (Olesen et al., 1990; Woods et al., 1994). Also, a
temporal correlation has been observed between changes in
blood oxygenation level-dependent (BOLD) signals of the
occipital cortex and the aura perception (Hadjikhani et al.,
2001). These studies strongly suggest a neurovascular link
between migraine aura and SD, but its influence on migraine
headache triggering remains unclear.

Animal studies suggest that SD waves trigger bottom-up
mechanisms by the release of pro-inflammatory mediators,
enhancing meningeal nociceptors excitability following local
neurogenic inflammation (Bolay et al., 2002; Zhang et al.,
2010). SD also regulates the activities of medullary trigemi-
novascular neurons that convey messages to thalamocortical
areas involved in headache processing via top-down de-
scending cortico-trigeminal modulation originating in pri-
mary somatosensory (S1) and insular (INS) cortex (Noseda
et al., 2010). S1 and INS cortices are major targets of medul-
lary trigemino-thalamic nociceptive afferents (Noseda et al.,
2008; Vierck et al., 2013; Craig, 2014) and have been involved
in migraine attacks (Borsook et al., 2016; Youssef et al., 2017;
Jia et al., 2020). However, the precise role of peripheral ver-
sus central sensitization mechanisms in migraine headache
processing remains to be determined.

Here, we examined simultaneously the impact of SD on bot-
tom-up and top-down craniofacial trigeminal processing by
assessing hemodynamic and synaptic mechanisms at the S1 and
INS levels. For this, we used in vivo functional ultrasound (fUS)
imaging of relative cerebral blood volume (rCBV) with high spa-
tial and temporal resolution (Deffieux et al., 2018) for detection
of transient hemodynamic changes in the brain (Macé et al.,
2011; Sieu et al., 2015; Boido et al., 2019). We paired these neuro-
vascular changes with local field potential (LFP) recordings to
evaluate cortical excitability within the ophthalmic trigemi-
nal field of S1 while percutaneous calibrated stimulation is
applied in its peripheral receptive field (contralateral perior-
bital region). We found an NMDA-dependent mechanism
linking SD-induced changes of rCBV and electrophysiologi-
cal markers of cortical excitability. These findings may con-
tribute to understanding the role of central sensitization
mechanisms in migraine headache triggering.

Materials and Methods
Experimental design
Adult male Sprague Dawley rats (Janvier Labs) weighing 200–350 g were
used in this study. All protocols were approved by our animal ethics
committee at Paris V University (Authorization of Projects Using
Animals for Research 24492 No. 202004211454660 v1), conducted in ac-
cordance with directives of the International Association for the Study of
Pain (Zimmermann, 1983).

Rats were anesthetized with 3% isoflurane (Vetflurane, 1 � g/ml
solution; Virbac) mixed in a vaporizer with 100% room air delivered
at 0.5 l/min. Once the animals were deeply anesthetized, cannulas
were inserted into the trachea and a jugular vein. After the animals
were intubated, 2% isoflurane in 100% room air was delivered at a
rate of 100 ml/min. Rats were paralyzed by intravenous injection
of gallamine triethiodide (10mg/h; Sigma-Aldrich) and artificially

ventilated at a rate of 52 strokes/min. A normal acid-base equilibrium,
respiratory frequency, end-tidal, inspired, and expired CO2, O2, and iso-
flurane levels were monitored and maintained using a compact monitor
(Datex-Ohmeda, GE Healthcare) through a catheter inserted in the tra-
chea. A heating blanket was placed under the animal during surgery to
maintain the body temperature at 37°C (ATC1000 Temperature
Controller, World Precision Instruments). Each animal was fixed in a
stereotaxic frame, the head was shaved and then the scalp removed over
the entire dorsal skull. The skin was trimmed laterally, and the temporal
muscles were gently detached from the bone on both sides of the skull.
For coronal imaging, a bilateral thinned skull was performed over the
S1/INS cortex region (bregma �2.00 to �4.00 mm and 65.00 mm lat-
eral to the midline) according to Paxinos atlas coordinates (Paxinos and
Watson, 1998) using a low-speed dental drill and a 1.4 mm burr (Fig. 1).
For sagittal imaging, only the right hemisphere bone was removed from
bregma 14.00 to �8.00 mm and laterally from 2.00 to 5.00 mm. To
avoid overheating of the brain, cold Ringer lactate (CMD Lavoisier) was
added continuously during the drilling sessions. A second 1.00-mm-di-
ameter craniotomy was performed on the right lambdoid suture for KCl
(1 M) topical application on the dura surface over the primary visual cor-
tex (V1) region (bregma �9.00 mm, 3.00 mm lateral to the midline).
Special attention was paid to avoid damaging the meninges.

Electrophysiological setup
Once the surgical procedures were finished, the level of anesthesia was
lowered to 1.5% isoflurane. One hour after the end of the surgery, extrac-
ellular single units and LFPs were recorded using quartz-insulated, plati-
num tungsten microelectrodes, custom ground to impedances of 2–4
MV. Five electrodes were positioned 300mm apart in the anteroposterior
axis on the right S1 cortex (bregma �3.60 mm, 7.00 mm lateral to the
midline with a coronal angle of 16°) and advanced independently using
a five-channel Eckhorn mini matrix microdrive system to allow record-
ings in the somatosensory receptive fields over a large extent in the coro-
nal plan (Thomas Recording). This device allows smooth movements
performed with independently adjustable electrodes that are quite thin
(60mm shaft, 10mm tip diameter) but strong enough to penetrate the
dura, thus reducing the damage to the neural tissue (Eckhorn and
Thomas, 1993). Once S1 neurons driven by periorbital receptive fields
were identified, a layer of 2% Ringer’s lactate-agarose was applied to
cover the coronal or sagittal craniotomy. Microelectrode signals were
amplified, digitized, and notch filtered. Raw electrophysiological signals
were played through an audio speaker, displayed on an oscilloscope for
additional inspection and recorded with Spike 2 software (version 7,
Cambridge Electronic Design). Waveforms were stored on a computer
for off-line analysis.

fUS imaging procedure
The fUS imaging was performed using a custom 15 MHz ultrasonic
probe prototype (15MHz, 128 elements, 0.110 mm pitch, Vermon)
connected to an ultrafast research ultrasound scanner (128 chan-
nels, 62.5MHz sampling rate) with real-time Neuroscan neuroimag-
ing software (Technological and Research Accelerator in Biomedical
Ultrasound, Institut National de la Santé et de la Recherche
Médicale U1273 and Iconeus). The prototype implements real-time
transcranial functional ultrasound imaging. Briefly, each single CBV
image was obtained from recording 200 compounded ultrasonic
frames acquired at a 500 Hz frame rate, each frame consisting of the
coherent summation of backscattered echos from 11 tilted plane
wave transmissions separated by a 2° angle (�10, �8,�6,�4,�2, 0,
2, 4, 6, 8, 10°) acquired at a 5500 Hz pulse repetition frequency.
Imaging sessions were performed by real-time continuous acquisi-
tions of successive blocks of 400ms of compounded plane wave
imaging with no dead time. Each block was processed using a SVD
spatiotemporal clutter filter (Demené et al., 2015) to separate tissue
from blood flow signals using a cutoff value of 60 and then time
averaged to obtain a new power Doppler image. The combination of
ultrafast imaging, coherent compounding, and spatiotemporal clut-
ter filtering allows high spatial (less than 100 mm � 100 mm in the
imaging plane, slice thickness of 400 mm, penetration depth .2 cm)
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and temporal (start at ;0.3 s and peak at ;1 s in response to ultra-
short 300 ms stimuli) resolution imaging of CBV changes measured
with fUS (Macé et al., 2011; Deffieux et al., 2018; Boido et al., 2019).
fUS images were acquired at 1 Hz during electrical stimulation peri-
ods, whereas a frequency of 2.5 Hz was used during SD acquisitions.

All images were processed online and stored on a computer for off-
line analyses.

The ultrasound probe was mounted on four motors (three
translation plus one rotation, Physik Instrumente) for easy position-
ing and was oriented either in coronal or sagittal planes according
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Figure 1. Experimental setup. A, Simultaneous coronal plane fUS and LFP recordings of right S1 cortex ophthalmic fields. A small 1-mm-diameter craniotomy was performed above the right
V1 cortex for triggering SD by a topical application of 1 M KCl. Repetitive (1 Hz) periorbital percutaneous electrical stimuli (30 single 3 mA, 1 ms square pulses) were delivered on the right or
left receptive fields. B, Coronal plane fUS images at bregma�3.6 mm, showing cortical microvasculature and imaging during left periorbital stimulation. C1, Example of conversion of sponta-
neous LFPs to single events; the dashed line represents the LFP amplitude thresholding set to.5 SDs from baseline. C2, Single and average examples of SEPs evoked by repetitive periorbital
stimulations. SEP amplitude changes were measured on the N2 phase as the voltage difference between the two dashed lines. D, Experimental design for assessments of rCBV and SEP
responses. M, Motor.
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to the craniotomy. A layer of isotonic gel (Uni’Gel US, Aspet
InMed) ensured acoustic coupling between the probe and the brain.
Rats were imaged without contrast agents on an antivibratory table
(TMC).

Single SD wave induction
SD was induced by a topical application of 50ml of 1 M KCl on the dura
over the right V1 cortex. KCl was cleaned and washed with Ringer’s lac-
tate 30 s after detection of the first electrophysiological burst triggered by
SD. We confirmed previous findings (Parker et al., 2021) showing that
in all our experiments, this procedure elicits only a single SD wave. No
systematic in vivo studies of diffusion mechanisms following topical me-
ningeal application of KCl have been reported. However, because the
dural membrane is not primarily a lipid barrier, relevant mechanisms
involve probably a concentration gradient diffusion process. This is sup-
ported by our early trials showing the triggering of multiple spreading
depolarization waves (;5 up to 10 spreading waves in a 90 min period)
when the KCl solution was left over the dura without washout. It could
be assumed that in addition to its molecular shape, lipophilicity, and
degree of ionization, the transdural transfer of KCl is due mainly to dif-
fusion gradients, with a strong, early impact on superficial cortical layers.
Moreover, control experiments using the topical application of saline on
the dura over the V1 cortex showed a lack of effects on both baseline
periorbital-evoked hemodynamic and synaptic activities over a 90 min
period after saline application.

Percutaneous periorbital stimulation and rCBV images acquisition
A first search of cell clusters responding to tactile stimulation of the oph-
thalmic dermatome of the trigeminal nerve was performed. Once these
clusters were encountered, a systematic search was performed for neu-
rons responding to electrical stimulation through a constant current
generator (DS3, Digitimer) using two needle electrodes inserted under
the periorbital skin. Once a cell cluster responding to periorbital stimuli
was found, a 10–20 min resting period was left, allowing the neurons to
return to their steady-state baseline activity. This protocol is suitable for
accurate measurements of control baseline activities.

For combined fUS imaging and electrophysiological data recordings
(Fig. 1), each trial consisted of a 30 s prestimulus baseline recording pe-
riod followed by a 30 s percutaneous, periorbital stimulation period
(1ms square pulse width, 1Hz) and finally a poststimulus fUS period of
30 s, resulting in a total duration of 90 s. A 5min recovery period was
left after each trial. Three trials of control responses at 3mA intensity
were obtained before cortical application of KCl. Post-SD tests of left-
and right-side periorbital stimulation of cutaneous receptive fields at dif-
ferent time windows were applied during a 150 min period as shown in
Figure 1D.

LFPs, somatosensory evoked potentials, and rCBV signals, off-line
analysis

Electrophysiology. Raw data were downsampled at 1 kHz, bandpass
filtered at 0.1–120Hz with Spike 2 software for specific LFP analyses.
This bandpass was chosen based on the literature showing that hemody-
namic signals are more strongly coupled to LFP activities than to firing
rates (Mathiesen et al., 2000; Logothetis et al., 2001; Lauritzen et al.,
2012). LFPs do not reflect the action potentials carried by the output
neurons but rather varied aspects of the input signal within the recorded
area. As reviewed by Logothetis andWandell (2004) LFPs reflect primar-
ily a weighted average of synchronized dendrosomatic components of
the synaptic signals of a neuronal population, including after potentials
and voltage-gated membrane oscillations. At the cortical level, LFPs
include local intracortical processing mediated by the subthreshold sig-
nals of interneurons. In general, as also observed under our experimental
conditions, LFPs and multiunit activities vary in a similar manner;
hence, at those sites where LFPs predict the BOLD response, the multiu-
nit does too. This is likely to be the case in most studies of bottom-up
sensory processing where both afferent and efferent activity increase
proportionally (Logothetis and Wandell, 2004). However, even in such
cases there is a tendency for the LFP-based estimate to perform better
than the multiunit. Also, the best match of LFPs and hemodynamic

signals during visual processing has been found in the gamma frequency
range of the LFPs (Kayser et al., 2004; Niessing et al., 2005).

A direct validation of neurovascular coupling under similar experi-
mental conditions as the present work has been shown by Urban et al.
(2014). fUS was revealed to be sensitive enough to detect hemodynamic
and neuronal responses in S1 evoked only by a single pulse of percutane-
ous electrical stimulation applied on the hindpaw. Moreover, when
measuring the rCBV response function following repetitive percutane-
ous electrical stimuli, ranging from 1 (200 ms) to 25 pulses (5 s), rCBV
parameters including the peak amplitude, time-to-peak, full-width at
half-maximum, and the spatial extent of the activated area are confined
to S1 hindpaw representation, which increases with stimulus duration.
Important also, RLFPs (the sum of LFPs), representing the product of
LFP amplitude response, was proportional to the number of pulses, as
expected from the literature.

Other proofs of concept of the usefulness of assessing neurovascular
coupling using simultaneous EEG and fUS recordings was reported by
Sieu et al. (2015) in awake mobile rats. They found a high spatiotemporal
resolution/correlation between fUS and electrophysiological cerebral
hemodynamics in a behavioral study on theta rhythm activation in a
maze running task and a disease-related study on spontaneous epileptic
seizures. More recently, Provansal et al. (2021) showed the possibility to
detect deep optogenetic activations in anesthetized rats expressing the
red-shifted opsin ChrimsonR in V1 cortex using fUS imaging. They
demonstrate the optogenetic specificity of these activations and their
neuronal origin with electrophysiological recordings.

As illustrated in the individual examples of spontaneous LFP record-
ings in Figure 2, A1–A2, thresholding of spontaneous LFP amplitude
changes to.5 SDs was set for detecting changes in cortical baseline activity.
This activity was counted during 60 s recording periods at different times af-
ter KCl infusion. The negative peak frequency was normalized with regard
to the background activity values calculated from a 60 s period before KCl
application.

As shown in Figures 1C2 and 2B, somatosensory evoked potential
(SEP) changes evoked by repetitive periorbital stimuli were measured on
the N2 phase as the voltage difference between two dashed lines. SEP
amplitude was calculated as the difference between the negative peak
and baseline. As control, three trials of 30 s electrical stimulation were
applied with the same intensity and then averaged. Post-SD tests were
also averaged the same way for each stimulation time. This resulted in
single averaged SEP data at each stimulation time in each animal. The
sum of SEPs (RSEPs) was then calculated as the product of SEPs ampli-
tude (mV) and the stimulus rate (Hz; Masamoto et al., 2007). The
RSEPs values are expressed regarding the mean values obtained on con-
trol stimulation sequences, this mean representing 100%.

rCBV signal processing
The rCBV signal was extracted from a 370 pixel regions of interest (ROIs)
in right S1, INS, and left S1 and averaged. Because the ultrasonic probe pro-
totype was not large enough to include the whole left hemisphere, it was
impossible to record rCBV signals from the left INS. For each animal, ROIs
were manually defined according to the most periorbital-activated voxels in
the right S1, INS cortices, and left S1 cortex. The area under curve (AUC)
was calculated for rCBV signals during the baseline and the stimulation
periods (30–60s) for each stimulation time (pre- and post-SD). The AUC
values were normalized to the baseline level. For rCBV responses to perior-
bital stimulation, the baseline corresponded to the 30 s period before electri-
cal stimulation. For the SD imaging, the baseline corresponded to the 30 s
period before KCl application.

Pharmacological treatments
We tested the effects of the intravenous injection of the NMDA antago-
nist Memantine (n = 6) 15mg/kg in ‘s lactate, Sigma-Aldrich). To assess
the effects of SD induced by KCl, periorbital stimuli were applied before
injection, then 1 h after injection, and during 150min after SD (Fig. 1D).

Statistical analysis
For LFP and rCBV studies, statistical analyses were performed using
Prism 8 software (GraphPad). Evoked SEP amplitude and spontaneous
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LFP negative peak frequency cumulative data are expressed as the mean
6 SEM of the percentage changes of the mean values obtained before
SD induction. A D’Agostino–Pearson normality test (omnibus K2) was
performed for each dataset. Analyses were performed by comparing pre-
and post-SD scores using one-way ANOVA with repeated measures
based on a two-factor general linear model (GLM).

A two-way ANOVA with repeated measures based on the GLM fol-
lowed by Sidak’s multiple comparisons test were used for comparisons
between drug treatments. One-way ANOVA with repeated measures
based on the two-factor GLM followed by Dunnett’s multiple compari-
sons test was performed to determine significance in RLFPs between
control and over a 150 min post-SD period in saline control rats.
Statistical significance was defined as p, 0.05.

For rCBV signal analyses, cumulative AUCs of rCBV data were
expressed as the mean 6 SEM of the percentage changes with regard

to the mean baseline values obtained during the control time. A
D’Agostino–Pearson normality test (omnibus K2) was performed for
each dataset. To assess variation of rCBV baseline or rCBV responses to
periorbital stimulations within the same group, a one-way ANOVA with
repeated measures based on a two-factor GLM was applied in case of
normal distribution, and a one-way ANOVA with repeated measures
based on a Friedman test was applied in case of non-normal distribution.
One-way ANOVA test was followed by a Dunn’s or a Dunnett’s multiple
comparisons test.

Two-way ANOVA with repeated measures based on GLM followed
by a Sidak’s multiple comparisons test were performed to compare base-
line activities and activation after contralateral periorbital stimulation
before and after SD between right S1 and left S1 cortices and right S1
and right insular cortices. Finally, comparisons of rCBV signals induced
by SD between nontreated and treated groups were conducted with a

Before SD SD +10min SD +150min

N2

N2

N2

N1

N1

N1

0.05V
20ms

Cortical spontaneous LFPs 

20s

0.1V

Before SD SD +30sec SD +10min SD +150min

A1

Cortical periorbital-evoked SEPs 

A2

B

0.02mV
1s

Before SD SD +10min SD +150min

Figure 2. Individual examples of spontaneous LFPs and periorbital-evoked SEP local field potentials recorded in the right S1 cortex before and after SD triggered in the ipsilateral V1 cortex.
A1, S1 LFP activities before and after SD. A2, S1 LFPs shown in expanded time scale. B, Single periorbital-evoked (arrows) S1 SEPs before and 10 and 150 min after SD.
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Figure 3. Spatiotemporal hemodynamic and neuronal activities observed following a single SD wave elicited by KCl application in the V1 cortex. A, Frames extracted at dif-
ferent time points from fUS imaging movies depicting rCBV changes elicited by a spreading depolarization triggered in V1 cortex. Sagittal and coronal views showed a quad-
riphasic wave with consecutive increases (yellow) and decreases (blue) of rCBV during 6 min. Probes were placed in either coronal or sagittal planes. Hip, Hippocampus; M,
motor. B, time course of the rCBV (red plot) and neuronal activity (LFPs, black plot) recorded in S1 during a spreading depolarization. The red box in the coronal mDoppler
image in A represents the ROI from where the rCBV signal was extracted. Initial rCBV increases (phase I) were correlated with a strong neuronal burst followed by a brief hy-
poperfusion (phase II) associated with the starting of a long-lasting complete neuronal depression. SD then elicited a strong increase in rCBV (phase III) followed by a pla-
teau (phase IV). The rCBV recovery was followed by a slow recovery of neuronal activity. C, Cumulative results showing the detailed quadriphasic rCBV profile of SD waves
recorded in S1 (n = 8), expressed as mean 6 SEM of the percentage changes regarding the mean values obtained before KCl application. D, Individual example showing a
quadriphasic rCBV response triggered by SD.
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two-way ANOVA with uncorrected Fisher’s least significant difference.
Statistical significance was defined as p, 0.05.

Results
SD originating from V1 cortex triggers neurovascular waves
spreading in the cortical pain matrix
High spatiotemporal resolution images of the brain microvasculature
with fUS imaging allowed us to assess the spatial spread of SD waves
in lateral and sagittal directions, including S1 and INS (Fig. 3A).

As previously observed (Dreier and Reiffurth, 2015; Sawant-
Pokam et al., 2017; Parker et al., 2021) a calibrated, single SD
originating within V1 causes a brief synaptic activation wave fol-
lowed by a strong depression of basal activity (Fig. 3B). The neu-
ronal SD is accompanied by a hemodynamic wave including
four phases (I to IV) of rCBV increases and decreases that propa-
gate in the ipsilateral hemisphere with a velocity of 4.0 6 0.4
mm/min (n = 8), whose effects persisted during the whole
150min post-SD period of imaging.

The propagation of SD from V1 elicited a brief, moderate
increase of rCBV in S1 (126.7 6 5.3%) associated with a strong
increase in the number of LFPs (664.41 81.8%), which may cor-
respond to the strong depolarization spreading from posterior
to anterior cortices (phase I; Fig. 3B). The initial increase was
followed by a slight rCBV decrease (�18.2 6 6.2%) of short du-
ration associated with the depression (�68.2 6 11.1%) of elec-
trophysiological activities (phase II). Then, a massive rCBV
increase (202.2 6 46.9%) associated with a strong depression of
electrophysiological activities (�74.1 6 13.5% of control value)
was observed in S1 (phase III; Fig. 3B,C,D). Finally, after the
peak of neurovascular uncoupling observed in phase III, the pro-
gressive decreasing phase of rCBV was followed by a plateau
(phase IV, 170.36 32.8%) then a decay coincident with the start-
ing of LFPs recovery.

The SD wave triggered from V1 propagated first to S1 and
then spread to caudal INS regions. As shown by the mean latency
values of phase III spread, it was found that compared with INS,
phase III occurs at a significant shorter latency in S1(221 6
22 s in S1 and 261 6 37 s in INS). Compared with the right
S1 cortex, the left S1 was not directly affected by SD during
the 600 s that followed KCl application (600 s post-KCl,
right S1 cortex, AUC, 18,770 6 573.6 a.u.; left S1 cortex,
AUC, 5147 6 425.6 u.a., n = 12).

The rCBV basal signal increased progressively in S1 and INS
regions containing the periorbital receptive fields (Fig. 4).
Compared with the right hemisphere directly affected by SD,
rCBV increases of lower magnitude were observed in the left S1
side (Fig. 4A). Increases of similar magnitude and time course
were observed for rCBV and LFPs signals in the right S1 area
(Fig. 4B). rCBV increases in INS were of lower magnitude but
followed a similar time course compared with S1(Fig. 4C).

Control data obtained following a topical application of CSF
(50ml drop) on the dura mater over the V1 cortex showed no
changes in both basal rCBV signal and spontaneous LFPs in S1 cor-
tex during the 100min that followed its application (10.02 6
0.01%, p = 0.18 and 114.1 6 10%, p = 0.27 of presaline values,
respectively; n = 5).

Sustained facilitation of periorbital-evoked hemodynamic
and electrophysiological responses in cortical ophthalmic
fields after triggering SD from V1 cortex
As shown by the individual example in Figure 5, periorbital stim-
ulation applied on the left cutaneous receptive field (Fig. 5C)

elicited concomitant increases of rCBV and SEP responses
recorded in the right S1 that were strongly amplified following
SD triggering in the ipsilateral right V1 cortex. SD elicited pro-
gressive changes of rCBV and RSEPs in S1 and INS rCBV with
precise spatiotemporal profiles (Fig. 6). SD induced an initial ip-
silateral significant reduction of periorbital-evoked rCBV and
RSEPs in S1 (Fig. 6C) and periorbital-evoked rCBV in INS (Fig.
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Figure 4. Spatiotemporal hemodynamic and neuronal basal activities following a single
SD elicited in the right V1 cortex. Time course of the basal rCBV in the S1 and INS cortices ip-
silateral (right) and contralateral (left) to the SD focus, before and 10–150 min after SD. A,
SD significatively increased the basal rCBV in both ipsilateral and contralateral S1 cortices. B,
Basal rCBV changes (red plot) and spontaneous LFP negative peak frequency (black plot)
recorded in the ipsilateral S1 before and 10–150 min after SD. C, Time course of the basal
rCBV in the ipsilateral S1 (red plot) S1 and insular (purple plot) cortices before and 10–150
min after SD. SD significantly increased the basal rCBV in all cortices. Basal rCBV and sponta-
neous LFPs negative peak frequency data are expressed as mean 6 SEM of the percentage
changes regarding the mean value obtained before KCl infusion (*, $p , 0.05; **, $$p ,
0.01; ***p, 0.001, ****p, 0.0001). Asterisks indicate statistical significance between the
before and after SD values. Dollar signs indicate statistical significance between S1 or S1 and
INS cortices.

Bourgeais-Rambur et al. · Spreading Depolarization and Migraine Headache J. Neurosci., August 10, 2022 • 42(32):6295–6308 • 6301



6D). Periorbital-evoked S1 and INS rCBV increases reaching val-
ues similar to those of controls were observed 40min after SD,
then were significantly facilitated at 70min, reaching their maxi-
mum at 130min (S1, 290 6 34.6%, *p , 0.001; INS, 254.8 6
58.9%, *p = 0.03; n = 8) and remaining facilitated until the end of
the 150min imaging period. S1 periorbital-evoked RSEPs were
also significantly decreased during the first 30min following SD,
with a pronounced drop observed;10min (60 6 7% of control
value, F(2.725,29.98) = 5,69, p � 0.01; n = 11). This large decrease
was followed by a progressive recovery of evoked RSEPs, reach-
ing baseline levels ;30min after SD (Fig. 6C). The RSEPs

evoked by periorbital stimuli were facilitated at 70min (141.9 6
18.6%, F(2.725,29.98) = 5,69, p = 0.04; n = 11) and remained facili-
tated until the end of the 150min testing period.

In the opposite side of SD triggering (left S1), rCBV perior-
bital-evoked activities were initially unaffected by SD then were
significantly facilitated (145.96 14.7% of control value at 30min
post-SD, p = 0.015; n = 7) but at a significant lower magnitude
compared with the SD triggering side (Fig. 6B).

Cumulative data obtained from a control CSF topical applica-
tion (50ml drop) on the dura mater over the V1 cortex showed
no changes during 100min recordings in both periorbital-
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Figure 5. Individual example of the temporal evolution of rCBV and SEP responses evoked by 3 mA repetitive percutaneous periorbital stimulations applied on the left side, before and after
SD. A, Percutaneous periorbital stimuli elicited rCBV responses spatially restricted to the contralateral S1 and INS cortices before (pre-SD) and between 10 and 150 min after SD. B,
Corresponding SEP recordings in S1 ophthalmic fields of periorbital-evoked responses before and 10 and 150 min after SD. C, Experimental setup.
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evoked rCBV and RSEP responses in S1 cortex (�0.8 6 6.8%,
p = 0.9 and 112 6 8.1%, p = 0.16 of presaline values, respec-
tively; F(2.406,14.44)=1890; n = 5).

Cortical neurovascular activities following SD are modulated
by an NMDA antagonist
Changes in S1 and INS activities associated with the spread of
the SD wave originating in the ipsilateral right V1 cortex were
compared with nontreated rats after systemic administration of
the NMDA antagonist Memantine (Figs. 7, 8, 9).

Memantine did not affect the propagating speed of the
SD wave (4.0 6 0.2 mm/min pre-Memantine; 4.3 6 0.4
mm/min post-Memantine, p = 0.61; n = 5) and phases I and
III. In contrast, it blocked the hypoperfusion occurring dur-
ing phase II and the plateau observed during phase IV (Fig.
7A,B).

Before SD induction, Memantine did not affect significantly
S1 basal rCBV signals (60min post-Memantine, right S1 cortex,
�0.6 6 8.5% of pre-Memantine values, p = 0.95, F(1,5) = 0,004;
n = 6). In contrast, Memantine significantly reduced basal LFPs
activities recorded in S1 (�31,2 6 9,5% of pre-Memantine val-
ues, p = 0.02, F(1,5) = 10.8; n = 6).

Before SD induction, both spontaneous LFP- (Fig. 7C1) and
rCBV periorbital-evoked responses (Fig. 7C2) were reduced by
Memantine in S1 cortex (60min post-Memantine; SEP,�48.86
7.3% of pre-Memantine value, p = 0.03; rCBV, �30.7 6 6.9% of
pre-Memantine value, p = 0.006; F(1,5) = 20.99; n = 6).

After SD induction, Memantine blocked SD-induced increases
in basal rCBV in S1 and INS cortices (Fig. 8A1,C1) and SD-induced
basal LFP increases in the right S1 (Fig. 8A2).

Changes elicited by SD in rCBV and SEP periorbital-evoked
responses were compared in rats with and without Memantine
administration.

A significant increase of S1 rCBV periorbital-evoked re-
sponses was observed 70min after SD in nontreated rats, out-
lasting the whole 150min recording period (Fig. 8B1). In
Memantine-treated rats an increase of rCBV periorbital-evoked
activity in the right S1 was observed 80min after SD but
occurred at significantly lower levels compared with control
nontreated rats during the whole stimulation time (increases at
150min post-SD, 264.8 6 21.3% in nontreated rats, n = 8;
180.4 6 23.5% in Memantine-treated rats, p = 0.005, F(1,12) =
10.92, n = 6). In contrast, the increases in S1-evoked RSEPs eli-
cited by periorbital stimulation after SD (Fig. 8B2) observed in
nontreated rats were not reduced by Memantine administration
(increases at 150min after SD, 192.4 6 29.6% in nontreated
rats, n = 11; 231.6 6 38.8% in Memantine-treated rats, F(1,16) =
0,06, p = 0.29, n = 6). Before SD induction, Memantine did not
affect significantly INS basal rCBV activities (60min post-
Memantine, �6.06 5.3% of pre-Memantine values, F(1,5) = 1.3,
p = 0.31, n = 6). In contrast, Memantine significantly increased
rCBV periorbital-evoked responses recorded in INS before SD
induction (60min post-Memantine, 192.6 6 32.54% of pre-
Memantine value, p = 0.04, F(1,4) = 8,1, n = 6).
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Figure 6. Spatiotemporal changes in hemodynamic and neuronal percutaneous periorbital-evoked activities following a single SD elicited in the right V1 cortex. A, Schematic representation
of the periorbital stimulation sites, fUS imaging, LFP, SEP recordings, and SD induction. B, Time course of the periorbital-evoked rCBV in the ipsilateral (right, red plot) and contralateral (left,
black plot) S1 cortices to the SD focus, before and 10–150 min after SD. C, Periorbital-evoked rCBV (red plot) and RSEP amplitude (black plot) recorded in the right S1 before and 10–150 min
after SD. D, Time course of the periorbital-evoked rCBV in the right S1 (red plot) and INS (purple plot, n = 8) before and 10–150 min after SD. SD significatively increased the periorbital-evoked
rCBV in both cortices. rCBV and SEP count data are expressed as mean 6 SEM of the percentage changes with regard to the mean value obtained before KCl infusion (*, $p , 0.05; **,
$$p, 0.01; ***, $$$p, 0.001; ****p,0.0001). Asterisks indicate statistical significance between the before and after SD values. Dollar signs indicate statistical significance between S1 and INS cortices.
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The increase of INS rCBV basal responses by SD was abol-
ished by Memantine injection (Fig. 8C1; 150min after SD,
1159.36 7% of pre-SD value in nontreated rats, n = 8;196.36
7.7% of pre-SD value in Memantine-treated rats, n = 6; p =
0.0003, F(1,192) = 222.8). The increase of INS rCBV periorbital-
evoked responses in nontreated rats was also blocked by
Memantine (150min after SD, 254.86 58.8% of pre-SD value in
nontreated rats; 115 6 24.6% of pre-SD value in Memantine-
treated rats; p = 0.001, F(1,12) = 12.42; Fig. 8C2).

In the left hemisphere (opposite to SD triggering; Fig. 9)
before SD induction, Memantine administration did not modify
S1 basal rCBV signal (60min post-Memantine, �8.96 9.75% of
pre-Memantine value, p = 0.40, F(1,5) = 0,8, n = 6) and signifi-
cantly decreased the rCBV periorbital-evoked responses (60min
post-Memantine, �39.3 6 12.8% of pre-Memantine value, p =
0.04, F(1,4) = 9.4, n = 6). In contrast, Memantine blocked the basal
rCBV activity increases in S1 elicited by SD (Fig. 9A). On the
other hand, SD-evoked rCBV increases in periorbital-evoked ac-
tivity in the left S1, opposite to SD triggering, were unaffected by
Memantine administration (Fig. 9B).

Discussion
Sequential changes of hemodynamic and sensory cortical
activities elicited by SD
Our findings show that a single SD wave originating in V1 trig-
gers a cascade of time-locked hemodynamic and sensory changes
affecting S1 and INS ophthalmic fields.

The quadriphasic time course and global profile of the early
changes observed on cortical basal activities are similar to those
reported in previous studies (Piilgaard and Lauritzen, 2009;
Chang et al., 2010). Immediately after SD, it was possible to
detect an early phase of neurovascular coupling in S1, consisting
of concomitant increased LFPs and oligemia. Such post-SD oli-
gemia is closely associated with changes in the capillary bed asso-
ciated with constriction of pial capillaries as well as penetrating
arteries (Anzabi et al., 2021). Similar rCBV decreases were
detected before the large rCBV increase following SD in an fUS
study (Rabut et al., 2019). Phases I and III were unaffected by the
previous administration of the NMDA antagonist Memantine.
In contrast, phases II and IV depend on NMDA-related activities
as rCBV changes were blocked by Memantine, reducing the time
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for recovery from phase IV. Memantine was probably too
weak to counteract the large rCBV increases observed in phase
III because of its uncompetitive NMDA antagonist profile
with moderate affinity, strong voltage dependency, and rapid
unblocking kinetics (Parsons et al., 1999). It is also possible
that the large CBV signals detected in phases III and IV are
caused by a mixture of initial strong neuronal depolarization

followed by glial activation, not depending only on glutamate
signaling. The possibility to antagonize simultaneously, in a
preventive fashion, metabolic and neuronal mechanisms trig-
gered by SD is complex as our findings show that NMDA an-
tagonist action on neurovascular versus electrophysiological
responses is not always unidirectional. As suggested by previ-
ous studies, the early phase of strong depolarization and the
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Figure 8. SD triggers spatiotemporal changes in hemodynamic and neuronal activities that are modulated by the intravenous injection of 15mg/kg Memantine, an NMDA antagonist. A,
Basal rCBV (A1) and spontaneous LFP (A2) counts in S1 following an ipsilateral SD in controls (red plot) and pretreated rats with Memantine (black plot). Memantine significantly blocked the
basal increases of hemodynamic and neuronal activities elicited by SD. B, Periorbital-evoked rCBV (B1) and RSEP amplitudes (B2) in S1 following an ipsilateral SD in controls (red plot) and
pretreated rats with Memantine (black plot). Memantine administration significantly decreased the periorbital-evoked hemodynamic response increases following SD but did not affect the neu-
ronal evoked responses. C, Basal (C1) and periorbital-evoked (C2) rCBV activities following a SD in ipsilateral V1 cortex in controls (red plot) and pretreated rats with Memantine (black plot).
Memantine administration significantly blocked the periorbital-evoked increases of hemodynamic responses. rCBV data are expressed as mean6 SEM of the percentage changes with regard
to the mean value obtained before KCl infusion (*, $p, 0.05; **, $$p, 0.01; ***, $$$p, 0.001; ****, $$$$p, 0.0001). Asterisks indicate statistical significance between the before and
after SD values. Dollar signs indicate statistical significance between S1 and INS cortices.
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neuronal silence that follows are probably interdependent
phenomena caused by excessive release of glutamate, involv-
ing complementary presynaptic and postsynaptic mechanisms
(Sawant-Pokam et al., 2017). This results in strong local energy
needs, as shown by the long-lasting increases observed in he-
modynamic phases III and IV, probably resulting from astro-
cyte buffering action aimed at counteracting the dramatic
changes in ionic gradients involved in excessive neuronal depo-
larizations at the origin of SD (Dreier and Reiffurth, 2015;
Parker et al., 2020). Attempts to suppress SD by simultaneous
NMDA and glial activity antagonism might thus produce the
opposite action, namely, an increase of SD because of impaired
clearance of glutamate by astrocytic blockade.

SD, cortical ophthalmic fields sensitization, and its possible
relationship with migraine headache
A crucial question remains about how to establish a direct link
between migraine, visual aura, and the resulting trigeminovas-
cular dysfunction that generates headache pain. Our findings
show that the sequential sensitization process underlying
facilitation of cortical activities of the ipsilateral (right) hemi-
sphere directly affected by SD differ from those observed in
the opposite one. After SD, significantly larger increases in
both the magnitude and progression of rCBV baseline activ-
ities occur in the right hemisphere, with similar time courses
for increases in basal LFPs in S1 and rCBV in S1 and INS. An
initial immediate reduction of S1 rCBV, SEP, and INS rCBV
periorbital-evoked responses was only observed on the SD
triggering side, probably mediated by a direct action of the SD
wave. A 30 min recovery period was followed by a progressive
facilitation of S1 RSEPs elicited by periorbital stimuli, with
significant increases starting 70min after SD. Interestingly,
facilitation of periorbital rCBV-evoked responses starting
on similar 70min time frames was observed for both S1 and
INS, suggesting a common, precise sequential process of cen-
tral sensitization. According to the literature (Noseda and
Burstein, 2013) this increased responsiveness could corre-
spond to a late phase of nociceptive sensitization reaching
third order thalamocortical neurons, relevant to the typical

delay between the onset of visual aura, the onset of migraine
headache, and the central sensitization that follows.

Rodent studies suggest that the hemisphere directly affected
by SD triggers bottom-up signaling mechanisms via the release
of pro-inflammatory mediators that activate and sensitize
meningeal nociceptors (Bolay et al., 2002; Zhang et al.,
2010), followed by a sensitization spread to cutaneous periorbital
nociceptors, then medullary and thalamocortical neurons located
in the opposite hemisphere (Noseda and Burstein, 2013). Such
bottom-up mechanisms could mediate the enhanced basal and
periorbital-evoked activity observed in the left S1 (contralateral to
SD). Mirror-like transcallosal connections established between S1
and INS ophthalmic fields (Noseda et al., 2010, their Suppl. Fig. 3)
could also contribute to modulate left S1 excitability.

The strong sensitization observed in the right cortices could
be triggered by crossed, descending corticotrigeminal outflow
from INS and S1 ophthalmic fields to left medullary Sp5C neu-
rons. SD initiated within S1 or INS ophthalmic fields elicits inhi-
bition and facilitation of meningeal over cutaneous nociceptive
inputs onto Sp5C neurons, respectively. Also, SD initiated in V1
interrupts earlier S1 and then INS activities, eliciting inhibition
followed by enhancement of meningeal-evoked responses of
Sp5C neurons (Noseda et al., 2010). Interestingly, the present
study showed that SD affects first S1 then INS activities, suggest-
ing that such lateralized corticotrigeminal outflow could contrib-
ute to specific tuning of headache pain during a migraine attack.

The bilateral effects of SD observed in the present study
would thus result from complex interactions between top-down
corticotrigeminal influences acting as modulators on Sp5C neu-
rons, once the triggering of migraine pain was produced by bot-
tom-up direct activation of meningeal nociceptors.

We used here percutaneous periorbital instead of meningeal
stimulation for avoiding sensitization of meningeal nociceptors
by the surgical procedures necessary to access to the dura. This
stimulation procedure was also chosen because animal and
human studies showed that the progressive increases of re-
sponses of thalamic neurons to periorbital and extracephalic
skin stimulation reflect an index of central sensitization
related to sustained headache pain (Burstein et al., 2010).
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Figure 9. Spatiotemporal basal and periorbital-evoked hemodynamic activities in the left S1 cortex following a single SD wave elicited in the contralateral right V1 cortex are differentially
modulated by Memantine. A, Basal rCBV recorded in the left S1 cortex (red plot) following a contralateral (right) SD elicited in controls (red plot) and pretreated rats with Memantine (black
plot). Memantine significantly blocked the basal increases of hemodynamic activities elicited by SD. B, Increases of periorbital-evoked activity in the left S1 cortex by contralateral SD in controls
(red plot) are unaffected by Memantine pretreatment (black plot). rCBV data are expressed as mean6 SEM of percentage changes with regard to the mean value obtained before KCl infusion
(*, $p, 0.05; **, $$p, 0.01; ***, $$$p, 0.001; ****, $$$$p, 0.0001). Asterisks indicate statistical significance between the before and after SD values. Dollar signs indicate statistical
significance between S1 and INS cortices.
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The preventive effects of the NMDA antagonist Memantine
on rCBV increases elicited by SD also support the idea that these
changes could represent a relevant marker of central sensitiza-
tion of nociceptive origin as this phenomenon is dependent on
glutamatergic transmission (Basbaum et al., 2009; Latremoliere
and Woolf, 2009). This is suggested also by our findings showing
that before SD. Memantine is unable to modify basal rCBV, but
it fully antagonizes the increases in basal S1 and INS activities
after SD. Memantine reduces also periorbital-evoked rCBV
increases in S1 and INS elicited by SD. S1 RLFP increases in
basal activities by SD were also completely antagonized by
Memantine. These findings suggest that facilitation of basal and
periorbital rCBV-evoked activities in both S1 and INS by SD
are highly dependent on NMDA-related mechanisms. On the
other hand, the effects on neuronal periorbital-evoked activities
have been revealed to be more complex. Before SD induction,
SEP periorbital-evoked activities were reduced by Memantine
in S1, in agreement with the well-known NMDA-dependent
neuronal activation following repetitive percutaneous electrical
stimulation (Basbaum et al., 2009; Latremoliere and Woolf,
2009). However, after SD, Memantine administration was
unable to depress the increases in periorbital-evoked SEP activ-
ities. This could be because of its uncompetitive NMDA antag-
onist profile with moderate affinity (Parsons et al., 1999) or to
the emergence of additional, non-NMDA sensitization mecha-
nisms that are probably brought into play.

Memantine was chosen for its inhibitory effects on SD onset
in the neocortex (Peeters et al., 2007) brainstem of rats (Jansen et
al., 2019) and isolated chick retina (Kertesz et al., 2010). Clinical
studies showed that compared with other NMDA antagonists,
Memantine is well tolerated in preventive trials and signifi-
cantly reduces aura and migraine headache with few side effects
(Charles et al., 2007; Bigal et al., 2008; Afridi et al., 2013;
Noruzzadeh et al., 2016). Also, the recent use of Memantine for
NMDA antagonism targeting SD inhibition in brain slices and
in a clinical case suggest that Memantine could be considered
for future clinical trials as an alternative to ketamine in brain
injury patients because of its lack of ketamine side effects limit-
ing its use (Reinhart et al., 2021).

Cortical pain matrix sensitization following SD appears here
as a sequential maladaptive plasticity process that progressively
turns trigeminovascular nociceptive networks into a novel, dys-
functional state. Although the single SD wave triggered from V1
exhibits a unilateral spread, our findings show that its effects
in cortical plasticity are bilateral but not identical, involving
NMDA processing mechanisms. It is possible that during mi-
graine headache a complex interplay occurs between bottom-up
peripheral activation and top-down cortical modulation mecha-
nisms. As previously argued (Dreier and Reiffurth, 2015), such
complexity and the clinical observations make a simple cause-
effect relationship between SD and migraine headache further
unlikely.

Our findings support the operational usefulness of combining
fUS imaging with electrophysiological studies as a tool for assess-
ing nociceptive maladaptive plasticity mechanisms at different
levels of the cortical pain matrix. This model provides a wide-
spread observation post for assessing craniofacial neurovascular
coupling and uncoupling mechanisms involved in headache sig-
naling. Further studies in awake rodents are necessary for avoid-
ing artifacts introduced by the acute surgical procedures and
general anesthesia used here, and experiments including neuro-
nal, glial manipulation, females, and genetic models of migraine
are also necessary.
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