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p140Cap Regulates the Composition and Localization of the
NMDAR Complex in Synaptic Lipid Rafts
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The NMDARs are key players in both physiological and pathologic synaptic plasticity because of their involvement in many aspects of
neuronal transmission as well as learning and memory. The contribution in these events of different types of GluN2A-interacting pro-
teins is still unclear. The p140Cap scaffold protein acts as a hub for postsynaptic complexes relevant to psychiatric and neurologic dis-
orders and regulates synaptic functions, such as the stabilization of mature dendritic spine, memory consolidation, LTP, and LTD.
Here we demonstrate that p140Cap directly binds the GIuN2A subunit of NMDAR and modulates GluN2A-associated molecular net-
work. Indeed, in p140Cap KO male mice, GluN2A is less associated with PSD95 both in ex vivo synaptosomes and in cultured hippo-
campal neurons, and p140Cap expression in KO neurons can rescue GluN2A and PSD95 colocalization. p140Cap is crucial in the
recruitment of GluN2A-containing NMDARs and, consequently, in regulating NMDARs’ intrinsic properties. p140Cap is associated to
synaptic lipid-raft (LR) and to soluble postsynaptic membranes, and GluN2A and PSD95 are less recruited into synaptic LR of
pl40Cap KO male mice. Gated-stimulated emission depletion microscopy on hippocampal neurons confirmed that pl140Cap is
required for embedding GIuN2A clusters in LR in an activity-dependent fashion. In the synaptic compartment, p140Cap influences
the association between GluN2A and PSD95 and modulates GluN2A enrichment into LR. Overall, such increase in these membrane
domains rich in signaling molecules results in improved signal transduction efficiency.
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Here we originally show that the adaptor protein p140Cap directly binds the GluN2A subunit of NMDAR and modulates the
GluN2A-associated molecular network. Moreover, we show, for the first time, that p140Cap also associates to synaptic lipid
rafts and controls the selective recruitment of GluN2A and PSD95 to this specific compartment. Finally, gated-stimulated
emission depletion microscopy on hippocampal neurons confirmed that p140Cap is required for embedding GluN2A clusters
in lipid rafts in an activity-dependent fashion. Overall, our findings provide the molecular and functional dissection of
p140Cap as a new active member of a highly dynamic synaptic network involved in memory consolidation, LTP, and LTD,
which are known to be altered in neurologic and psychiatric disorders. /
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Introduction

The dendritic spines (DSs) are specialized structures representing
the locus of neuroexcitatory transmission and plasticity (Sala and
Segal, 2014). The postsynaptic density (PSD) is housed on the
top of the DS and consists of a thick electron-dense membrane-
associated protein complex specialized for postsynaptic signaling
and remodeling (Dosemeci et al., 2016). p140Cap is a scaffold
protein of the PSD involved in the regulation of actin dynamic in
the DS (Jaworski et al., 2009; Hayashi et al., 2011). Indeed, acute
p140Cap silencing in vitro impacts on DS morphology by
increasing the number of filopodial immature DS (Tomasoni
et al.,, 2013). Accordingly, hippocampal neurons derived from
p140Cap KO mice show reduced number of mature DS and
increased number of filopodial DS (Repetto et al.,, 2014). The
alteration in the phenotype of the DS observed in p140Cap
KO mice correlates in the electrophysiological analysis with
defective synaptic plasticity processes, namely, the LTP and
the LTD, and with impaired memory consolidation in novel
object recognition test (Repetto et al., 2014). LTP and LTD
are believed to play a major role in learning and memory
formation (Caroni et al., 2012; Holtmaat and Caroni, 2016),
and alterations in these processes could be the result of
alterations in ionotropic glutamate receptor (iGluR) activ-
ity (Moretto et al., 2018). At the molecular level, LTP and
LTD are mediated by the NMDARs, a heterotetrameric
iGluR composed of two obligatory GluN1 subunits and two
modulatory GluN2 (A-D) subunits (Cull-Candy et al., 2001;
Paoletti et al., 2013). The cytoplasmic tails of NMDAR sub-
units impart considerable bulk to the PSD (Tomasetti et al.,
2017). Indeed, a specific set of molecules bind to the C-ter-
minal region of GluN2 subunit of NMDAR forming a large
multiprotein complex (Husi et al., 2000; Fan et al., 2014),
which includes scaffold molecules, as the MAGUK family
protein PSD95 (Zhu et al., 2016), signaling proteins as well
as molecules associated to the lipid raft (LR) domains of the
plasma membrane, such as Flotillin-1 (Swanwick et al.,
2009).

LRs are membrane microdomains enriched in cholesterol
and sphingolipids, endowed with signaling molecules (Brown
and London, 1998; Simons and Toomre, 2000; Ikonen, 2001).
Recent studies describe that NMDARs trafficking to LR are
dynamically enhanced during both synaptic plasticity process
and memory formation (Delint-Ramirez et al., 2008, 2010)

p140Cap is an adaptor protein; therefore, its role in the
PSD could be explained by its ability to interact with specific
partners. To identify such putative partners, we recently gen-
erated a pl40Cap interactome in synaptosomes, and we
found that GluN2A and GluN2B subunits of the NMDAR
were comprised among the high-fidelity binding partners,
indicating a potential involvement of p140Cap in glutama-
tergic transmission (Alfieri et al., 2017). The association of
p140Cap with the NMDAR could thus impact on both LTP
and LTD as well as on learning and memory, providing a
molecular framework for the cognitive defects observed in
p140Cap KO mice.

Here we show that p140Cap is a novel direct binding
partner of the GluN2A subunit and that their association
impacts on the composition of the GluN2A-associated mo-
lecular complex in synaptosomes. Moreover, p140Cap can
modulate GluN2A-containing receptor recruitment and
clustering into synaptic LR in an activity-dependent fash-
ion, suggesting the relevance of p140Cap as a new molecule
able to influence the GluN2A-containing NMDAR localiza-
tion and activity into LR.
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Materials and Methods

Animals. Mixed 129Sv x C57BL/6] p140Cap heterozygous mice
were used for breeding and generation of WT and p140Cap KO litter-
mates, as previously described by Repetto et al. (2014). All experiments
were approved and performed in accordance with the current Italian law
in relation to animal use and protection in scientific research. Male, 3- to
4-month-old WT and p140Cap KO littermates were used for synapto-
somes preparations. WT animals from p0 to p60 were used to perform
time course experiments on telencephalon extracts. Animals were killed
by cervical dislocation.

Antibodies. For Western blot (WB) analysis, the following antibodies
were used: mouse monoclonal antibody (mAb) a-p140Cap (1:1000, 0.5
pug/ml), a-GFP polyclonal antibody (1:1000 pAb), a-GST (1:1000 mAb),
a-MBP (1:1000 mAb) are home made in our Dept Antibody facility.
a-Camk2 3 rabbit pAb antibody (1:1000 Abcam ab34703), a-CDC42
rabbit pAb antibody (1:1000 Cell Signaling 2462), a-Flotillin-1 rabbit
pAb antibody (1:1000 Santa Cruz Biotechnology H-104), a-GAPDH
mAD (1:8000 Millipore MAB374), a-GluN1 rabbit pAb (1:700 Thermo
Fisher Scientific PA3-102), a-GluN2A rabbit pAb (1:1000 Thermo Fisher
Scientific PA5-35377), a-GluN2B mAb (1:1000 NeuroMab 75-097),
a-phospho-Ser 845-GluR1 (1:1000 Abcam ab76321), a-GluR1 (1:1000
Thermo Fisher Scientific), a-Gria2 rabbit pAb antibody (1:1000 Abcam
ab20673), a-PSD95 mAb (1:1000 Abcam 2723), @-Racl mAb (1:2000
clone 23A8 Millipore), a-Src mAb (1:1000 Santa Cruz Biotechnology
Bi»), a-Tiaml rabbit pAb (1:1000 Santa Cruz Biotechnology C-16),
a-transferrin receptor-1 CD71 mAb (1:1000 Thermo Fisher Scientific
H68.4), and a-Tubulin mAb (1:8000 Sigma-Aldrich T5168). Secondary
antibodies conjugated with peroxidase were purchased from GE
Healthcare. For immunofluorescence, slides were stained with
a-p140Cap and a-p140Cap-647-conjugated mAb (1:500, see above), a
GFP mAb (1:1000 Abcam), a-GIluN2A rabbit pAb (1:300 Thermo
Fisher Scientific PA5-35377), a-Bassoon (1:500 SynapticSystem
141003), @-PSD95 mAb (1:500 Abcam 2723), and a-Map2 chicken
(1:1000 Abcam ab5392). Phalloidin-FITC or -647 was purchased
from Sigma. Secondary antibodies conjugated with AlexaFluor-
488, -568, or -647 (1:1000) were purchased from Invitrogen, Thermo
Fisher Scientific.

DNA constructs. For expression in mammalian cells, full-length
mouse p140Cap cDNA was cloned into the BamHI site of pPCDNA3.1/
Myc-Hys expression vector (Thermo Fisher Scientific) and sequenced.
Full-length mouse p140Cap cDNA was cloned into the EcoRI-Kpnl
sites of pEGFP-N2 vector (BD Biosciences Clontech) and sequenced.
Constructs expressing pl40Cap domains were cloned as described:
full-length p140Cap cDNA was digested with Xhol. A DNA fragment
of 2310 bp and a fragment of 1100 bp, corresponding to p140Cap aa 1-
770 and aa 770-1140, respectively, were obtained and cloned into the
Xhol site of pPCDNA3.1/Myc-Hys expression vector. p140Cap aa 219-
477 was obtained by full-length p140Cap digestion with Pstl and
cloned into the PstI site of pPCDNA3.1/Myc-Hys. p140Cap aa 351-691
was obtained by specific amplification from full-length mouse
p140Cap. Forward primer was designed to incorporate a restriction
site for Nhel (1158 bp) (primer sequence: GCTGGCTAGCTGCAAT
GGACTCCCCGCCT), reverse primer was designed to incorporate a
restriction site for HindIII (2175bp) (primer sequence: GCAGAAGC
TTGACAGCAGTGGGCTG). The amplified region was cloned into
pCDNA3.1/Myc-Hys expression vector (Thermo Fisher Scientific).
p140Cap aa 667-866 was obtained by specific amplification from full-
length mouse p140Cap. Forward primer was designed to incorporate
a restriction site for Xbal (primer sequence: AGATCTCCTCGGC
CAGCAGCACCCCTGCA), reverse primer was designed to incorpo-
rate a restriction site for HindIII (primer sequence: AAGCTTCTAAC
CCTCATCCACTTGCCTTCG), and the amplified DNA was cloned
into Xbal/HindIII sites of pCDNA3.1/Myc-Hys expression vector
from the p-GEM vector. p140Cap aa 728-1217 was cloned into Nhe
site of pPCDNA3.1/Myc-Hys expression vector. p140Cap aa 1-770 GFP
was obtained from the Myc tagged vector with the restriction site for
EcoRI and was cloned into GFP-N2 vector. p140Cap 728-1217 GFP
was obtained from the Myc tagged vector with the restriction enzymes
Nhe/Sall and was cloned into GFP-N3 vector.
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pCI-EGFP-GIuN1 was obtained from Addgene (plasmid #45446)
pCI EGFP-GIuN2A was obtained from Addgene (plasmid #45445),
pEGFP-GIuN2B (Addgene #45447), and PSD95-Flag (plasmid #15463).
GST-GIuN2A (1049-1464), GST-GIuN2A (1349-1464), and GST-GIuN2A
(1244-1389) C-terminal tail constructs were kindly provided by Professor
Gardoni.

Cell lines. Human HEK293 cells and COS7 cells were obtained from
American type Culture Collection. Cells were cultured in DMEM sup-
plemented with 10% heat-inactivated FBS and penicillin/streptomycin
(100 U/ml and100 g/ml, respectively).

Cell lines transfection. HEK293 cells were transfected by calcium
phosphate precipitation; 15 ug of cDNA was used to transfect one 10 cm
plate, and cell density was 50%-80% confluent on the day of transfection.
c¢DNA was mixed with sterilized milliQ water and with 50 ul of CaCl,
2.5 M to a final volume of 500 pl. The mix was slowly dropwise added to
500 pl of HEPES buffered saline (HBS) by gently vortexing. 24 h after
transfection, the medium was refreshed and the following day, the cells
were harvested, and proteins were extracted.

COS7 cells were transfected with Lipofectamine LTX (Thermo
Fisher Scientific). For each condition, 0.5 ug of cDNA (GFP-GluN2A,
GFP-GuN2B, pl40Cap-RFP, PSD95-Flag tagged) was diluted into
100 ul of DMEM antibiotic and serum-free 2 ul of Lipofectamine LTX
was added into the above diluted DNA solution and incubated for
25 min at room temperature. The cells were incubated at 37°C for 36 h
and then were fixed with ice-cold 100% methanol for 15 min at —20°C.

Primary mouse hippocampal neurons cultures. Hippocampal neu-
rons were isolated from the hippocampus of E16-E17 pups derived from
breeding of heterozygous mice (p140Cap™’~ female with p140Cap ™'~
male). The dissociated cells were plated onto 20 mm glass coverslips
coated with poly-L lysine (Sigma) at the density of 1 x 10 cells/coverslip
and maintained in Neurobasal (Thermo Fisher Scientific) supplement
with B27, antibiotics, 2 mm glutamine, and 2 mum glutamate. Cells were
fixed with ice-cold methanol for 10 min at —20°C or with 4% PFA, 4%
sucrose for 10 min at room temperature according to the experiment.

Hippocampal neurons transfection. Primary hippocampal neurons
were transfected at DIV 14 with Lipofectamine 2000 (Thermo Fisher
Scientific) with cDNA plasmid for p140Cap (aa 1-770) and p140Cap (aa
728-1217), both GFP tagged. For each coverslip, 1 ug of DNA was incu-
bated with 2 ul of Lipofectamine 2000 in neurobasal antibiotics-free me-
dium for 20 min at room temperature. DNA/Lipofectamine solution was
directly added to each coverslip and incubated for 30min at 37°C.
Neurons were then washed with neurobasal medium, and conditioned
medium was put back on coverslips. Neurons were fixed after 48 h from
transfection with methanol for 10 min at —20°C.

Chemical LTP (c-LTP). c-LTP was induced as reported (Otmakhov
et al,, 2004; Franchini et al, 2019). Briefly, neurons were incubated
in ACSF (125 mm NaCl, 25 mm KCl, 2 mm CaCly, 33 mum glucose, and
25 mm HEPES) + 1 mm MgCl, for 30 min at 37°C. ¢-LTP induction was
performed in ACSF MgCl, free with 50 um Forskolin (Tocris), 0.1 um
Rolipram (Tocris) and 100 um Picrotoxin (Tocris) for 16 min. Unstimulated
neurons were treated with DMSO in the same conditions. After stimula-
tion neurons were incubated back in ACSF with MgCl, for 15 min and
then were fixed with methanol. Stimulation control was performed by
WSB for the phosphorylation of GluR1 on Ser 845.

Immunofluorescence. Fixed COS7 cells transfected with RFP and/or
GFP constructs were incubated for 30 min with blocking solution (PBS
5%, BSA, Sigma) and then with primary antibodies for 1 h at room tem-
perature in PBS and then with AlexaFluor dye secondary antibodies for
1 h protected from light. Samples were rinsed several times in PBS and
mounted on glass slides or with ProLong (Thermo Fisher Scientific)
mounting medium.

Hippocampal neurons were incubated with blocking solution (5%
goat serum, 5% BSA 0,1% Triton X-100) for 30 min. Primary antibodies
were diluted in PBS 1% goat serum and incubated overnight in a humid
chamber. AlexaFluor dye secondary antibodies were incubated for 1 h
protected from light. Phalloidin-FITC or -647 and anti-p140Cap conju-
gated with Alexa647 were incubated with secondary antibodies. Neurons
were mounted on glass slides with Mowiol. Samples were examined
using Nikon ViCo Video Confocal Microscope equipped with a triple
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bandpass filter set (FITC, TRITC, DAPI) and SP5 confocal microscope
Leica equipped with four excitation laser lines (405 Diode, Argon,
DPSS561, HeNe633). Images were analyzed with Image] software.
Colocalization in COS7 cells was performed with the plug-in JACoP and
was expressed with Manders coefficients M1 and M2, which are propor-
tional to the amount of fluorescence of the colocalizing pixels in each
color channel. Colocalization in neurons dendrites was assessed by man-
ual counting of colocalizing dots in selected ROIs. Gated-stimulated
emission depletion (g-STED) confocal scanning microscopy and GM1
staining

For g-STED microscopy, neurons were plated on 0.17 mm glass cov-
erslips (#1.5) coated with L-polylysine. After 16 d, mature neurons were
incubated with cholera toxin subunit 3-488 conjugated for 10 min at 4°
C (concentration 1 ug/ml). Cells were washed in PBS, fixed in 4% PFA,
4% sucrose for 10 min at room temperature, and permeabilized in 0.1%
Triton X-100 for 5 min. Neurons were incubated with anti GluN2A anti-
body overnight in a humid chamber and revealed by goat-anti rabbit
AlexaFluor-555 secondary antibody (Invitrogen) in combination with
phalloidin-647 to visualize DS heads.

To acquire super-resolved images, a Leica TCS SP8 g-STED 3x
laser-scanning microscope equipped with an HC PL APO 100x/1.40
objective was used (Leica Microsystems). Fluorochromes and fluorescent
proteins were excited at the optimal wavelength by means of 80 MHz
pulsed white light laser (470-670 nm), allowing time gating of fluores-
cence lifetimes. For STED, the appropriate, 592 or 660 nm, depletion
laser was used. Fluorescence channels were scanned sequentially, and
emission was revealed by means of hybrid spectral detectors (HyD SP,
Leica Microsystems). STED images were deconvolved to reduce noise
using the adaptive method of the Lightning package, based on the
Richardson-Lucy algorithm optimized for the Leica system.

Telencephalon extracts preparation. Telencephalon was quickly iso-
lated from the total brain and immersed in liquid nitrogen to snap
freeze. The samples were stored at —80°C for later use or kept on ice for
immediate homogenization. The tissue was homogenized with an elec-
tric homogenizer in RIPA buffer (150 mm NaCl, 1.0% NP-40, 0.5% so-
dium deoxycholate, 0.1% sodium dodecyl sulfate, 50 mm Tris, pH 8.0, 5
mm EGTA) supplemented with protease inhibitor (Roche protease
inhibitors 25x) and phosphatase inhibitors (1 mm PMSF, 1 mm NaOvs,
1 mm NaF, and 2 mm DTT). The homogenates were centrifuged for
45min at 13,000 rpm at 4°C. The supernatant was collected and protein
concentration was determined using the Bio-Rad protein assay method
(Bio-Rad).

Synaptosomes preparation. Synaptosomes were prepared from the
telencephalon of WT and p140Cap KO mice. The tissues were immedi-
ately transferred in 8 ml of ice-cold synaptosomes buffer (0.32 m sucrose,
4 mm HEPES pH 7.3, 1 mm EGTA) containing a freshly added protease
inhibitor (Roche) and phosphatase inhibitor cocktail. The tissue was ho-
mogenized with a Dounce glass homogenizer and glass pestle (Sigma
Aldrich) and centrifuged at 1000 x g at 4°C for 10 min to remove the
pelleted nuclear fraction (P1). The resulting supernatant (S1) was centri-
fuged at 12,500 x g for 20 min at 4°C (JA 25.50 Beckman rotor, Sorvall)
to yield the crude synaptosome pellet (P2). S2 was discharged and P2
was resuspended in 10 ml of synaptosomes buffer and centrifuged again
at 12,500 x g for another 20 min to yield the washed crude synaptosomal
fraction. P2 was then resuspended in 2 ml of ice-cold lysis buffer (150
mu NaCl, 50 mm Tris, pH 7, 5% glycerol, 1% NP-40, 1 mm MgCl, prote-
ase and phosphatase inhibitors).

Synaptic NMDA receptor stimulation. For assessing NMDAR stimu-
lation in synaptosomal preparations, we mimicked synaptic NMDAR
activation according to Corera et al. (2009); 400 pg of P2 crude synapto-
somes (see above) was suspended in physiological solution (125 mm
NaCl, 26 mm NaHCO3, 1.6 mm NaH,PO,, 2.5 mm CaCl,, 5 mm KCI, pH
7.4, protease inhibitors), and left untreated or treated with 100 um gly-
cine for 20 min, at 37°C. Physiologic solution containing KCl at a 50 mm
final concentration, was then added for 5-30 min. Samples were centri-
fuged at 12,500 x g for 20 min at 4°C, and the pellets were suspended in
Triton insoluble fraction (TIF) buffer (1% Triton X-100, 20 mm HEPES,
pH 7.4). TIF isolation was performed by ultracentrifugation for 1 h at
100,000 x g (SW70Ti; Beckman) at 4°C, and suspended in Laemmli 2,
before SDS-PAGE and WB analysis.
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Immunoprecipitation (IP). IP was performed from HEK293 cell
extracts and from WT and p140Cap KO crude synaptosomes in the lysis
buffer (see above); 0.2 mg of Dynabeads protein G (30 mg Dynabeads/ml
Thermo Fisher Scientific) was initially washed using PBS 1 x 0.02%
Tween and then incubated with 1 pg antibody for 10 min at room tem-
perature. The complex was washed PBS 1 x 0.02% Tween and incubated
with 1 mg of extract for 2 h at 4°C. Beads were washed 5 times with cold
lysis buffer, then resuspended in 10 pl of Laemmli buffer in reducing
conditions, and incubated at 95°C for 10 min.

Western Blots (WB). WBs were performed with Mini-PROTEANR
TGXTM Precast Gradient 4%-15% Gels from Bio-Rad (94547). Samples
were mixed with Laemmli buffer (4x solution: SDS 8%, glycerol 40%,
Tris-HCI, pH 6.8, 0.625 M phenol blue, 5% [ -mercaptoethanol), boiled for
10 min at 95°C, and subjected to SDS-PAGE using Running Buffer (10x
solution: 250 mm Tris, 1.92 M glycine, SDS 1%). Gels were transferred on
nitrocellulose blotting membrane (GE Healthcare Life Sciences) with cold
Towbin buffer (25 mm Tris, 192 mm glycine, 20% methanol). Membranes
were blocked with TBS (50 mm Tris, pH 7.5, 150 mm NaCl) with 5% milk
for 1 h at room temperature and incubated with primary antibodies diluted
in TBS 1% BSA overnight at 4°C. Membranes were incubated with second-
ary antibodies for 1 h at room temperature and then developed with Bio-
Rad’s Clarity ECL on ChemiDoc Touch Imaging System.

Pull-down assays. Overnight cultures from single colonies of
Escherichia coli transformed with the plasmid of GluN2A C-terminal tail
(aa 1049-1464, aa 1349-1464, aa 1244-1389) all GST-tagged were grown
overnight in 50 ml of Luria-Bertani medium containing 100 ug/ml
ampicillin (Sigma) at 37°C. Bacterial suspension was refreshed by dilu-
tion with Luria-Bertani (1:10) under the same conditions for 2 h.
Synthesis of recombinant proteins was induced by 0.1 mwm isopropyl-L-
D-thiogalactopyranoside (Sigma). The bacteria were grown for another
4 h and harvested by centrifugation. Bacterial pellets were resuspended
with ice-cold PBS containing 5 mm DTT, 100 ug/ml lysozyme, 0.1 mm
PMSF, and incubated on ice for 15 min. Lysis was achieved by the addi-
tion of 1.5% N-laurylsarcosine (Sarkosyl) from a 10% stock in PBS.
Bacteria were sonicated on ice for 1 min, and the lysate was clarified by
centrifuging at 10,000 x g (5min, 4°C) in a JA 25.50 Beckman rotor
(Sorvall).

Pull-down experiments, to evaluate the direct interaction between
p140Cap and GluN2A, were performed using MBP-p140Cap (aa 261-
730) and GST-GluN2A full carboxy terminal tail (aa 1049-1464) fusion
proteins or GST alone as control. Glutathione Sepharose 4B Cytiva (17-
0756-01 GE Healthcare Life Sciences) was washed with interaction buffer
(50 mm Tris-HCI, pH 7.4, 150 mm NaCl, 1% Triton X-100) and then
incubated with GST supernatants for 1 h at 4°C in interaction buffer.
The complex was then washed 3 times and incubated with MBP-
p140Cap protein for 1 h at 4°C. Following incubation, Sepharose was
washed 7 times with the interaction buffer and resuspended in Laemmli
buffer in reducing conditions for WB analysis.

Pull-down experiments to evaluate p140Cap interaction with differ-
ent regions of GluN2A were performed by incubating GST-GluN2A
supernatants (1049-1464, 1349-1464, and 1244-1389) with Glutathione
Sepharose 4B in lysis buffer. Sepharose-bound proteins were washed 5
times with lysis buffer, and then were incubated with 1 mg of extract
from WT crude synaptosomes or HEK293 cells stably expressing
p140Cap-RFP for 2 h at 4°C. After incubation, the Sepharose was
washed 10 times with the lysis buffer with 0.5% Triton X-100 and resus-
pended in the Laemmli buffer in reducing conditions for WB analysis.

Rac GTPases activity assay. For GST-PAK pull-down assay, 20 ug/
sample of PAK-GST protein beads (Cytoskeleton) was used. The assay
was performed using 2 mg of crude synaptosomal lysed in ice-cold lysis
buffer. The extracts were incubated with PAK-GST beads for 1 h at 4°C
under rotation. Beads were then centrifuged at 5200 x g (4°C) for 1 min,
supernatant was discarded, and beads were washed twice in wash buffer
(25 mm Tris, pH 7.5, 30 mm MgCl,, 40 mym NaCl). Pellets were resus-
pended in 25 ul of Laemmli buffer in reducing conditions and analyzed
in WB.

Patch-clamp experiments. Patch-clamp recordings were performed
in whole-cell configuration using a Multiclamp 700-B amplifier con-
nected to a Digidata 1440 and governed by the pClampl0O software
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(Molecular Devices). Patch electrodes, fabricated from thick borosilicate
glasses (Hilgenberg), were pulled to a final resistance of 3-5 m{).
Currents activated by NMDA administration (Inmpa) were recorded in
voltage-clamp conditions, holding neurons at -70 mV (V},). Experiments
were performed at room temperature (22°C-24°C) and acquired with sam-
ple frequency of 10 kHz. eEPSCs were filtered at half the acquisition rate
with 8-pole low-pass Bessel filter. Recording with leak current >100 pA or
series resistance >20 M{) were discarded. Analysis was performed with
Clampfit software (Molecular Devices).

Solutions and drugs. For voltage-clamp recordings, the external
solution contained the following (in mm): 130 NaCl, 1.8 CaCl,, 10
HEPES, 10 glucose, 1.2 glycine, pH 7.4. The internal solution con-
tained the following (in mm): 90 CsCl, 8 NaCl, 20 TEACI, 10 EGTA,
10 glucose, 1 MgCl, 4 ATP, 0.5 GTP, 15 phosphocreatine, pH 7.4
with CsOH. For blocking synaptic currents because of the activation
of glutamatergic AMPARs and GABAergic synapses (GABA4 recep-
tors), we added, respectively, DNQX (20 um, Sigma-Aldrich) and pic-
rotoxin (100 um, Sigma-Aldrich). TTX (0.3 um, Tocris Bioscience)
was added to block voltage-gated Na™ channels. The neuron was
constantly superfused through a gravity system that allowed a rapid
change (50-60 ms) of the solutions and the recording of Inympa fol-
lowing NMDA administration at different concentrations. During
these experiments, NMDA was administered to neurons until Ixypa
reached the maximum amplitude.

LR isolation from total brain. LRs were purified as previously
described in Delint-Ramirez et al. (2010) with some modifications. The
telencephalon was homogenized in LR buffer (0.5 ml of 150 mm NaCl,
25 mu Tris-Cl buffer, pH 7.5, containing 50 mm NaF, 10 mm NaP,O5,
1 mum sodium orthovanadate, complete protease inhibitors cocktail) and
1% Triton X-100; 2 mg Triton X-100 extracts were incubated for 30 min
at 4°C and centrifuged (13,000 x g, 4°C, 10 min) to separate the deter-
gent-insoluble pellet. Triton X-100-insoluble pellet was resuspended in
0.5 ml of lysis buffer and mixed with 1 ml sucrose 2 M, overlaid with
2 ml of sucrose 1 M, and with 1.5 ml of sucrose 0.2 M. The gradient was
centrifuged for 18 h at 200,000 x g (SW40Ti; Beckman) at 4°C. After
centrifugation, 1.1 ml fractions were collected from the top to the bot-
tom of the gradient. Equal volumes of each fraction were subjected to
WB analysis.

Synaptic LR isolation. Synaptic LRs were prepared from crude synap-
tosomal pellets (P2); 4 mg of P2 was resuspended with 1 ml of LR buffer
(see above) containing 1% Triton X-100 and incubated for 30 min at
4°C. The suspension was then mixed with 1 ml of sucrose 90% to achieve
a final sucrose percentage of 45%. The gradient was completed with 4 ml
of sucrose 35% and 4 ml of sucrose 5%, and it was centrifuged at 200,000
x g for 18 h at 4°C (SW 40 Ti; Beckman). After centrifugation, 1.1 ml
fractions were collected from the top to the bottom of the gradient.
Equal volumes of each fraction were subjected to WB analysis.

Dot blot for GM1. The level of enrichment of monosialoganglioside
(GM1) was determined as described by Delint-Ramirez et al. (2010) with
some modification. Briefly, 1 ul of each density gradient fraction was dot
blotted onto nitrocellulose, and membrane was saturated with TBS 5%
BSA for 2 h. After incubation with HRP-conjugated cholera toxin B (1/
20,000) (Sigma), the dots were revealed by chemiluminescence.

Statistical analysis. All statistical analysis was performed with Prism
GraphPad (version 8.0.1). “n” indicates the number of biological repli-
cates for each experiment as indicated in each figure legend. To compare
one variable, the two-tailed paired Student’s ¢ test was performed. All bar
graphs are represented as mean *+ SEM.

Results

p140Cap is a new interaction partner of the GluN2A subunit
of the NMDAR

Here we demonstrated that p140Cap coimmunoprecipitated with
the NMDAR subunits GluN1, GluN24A, and GluN2B in mouse
synaptosomes (Alfieri et al., 2017) (Fig. 1A). We further investi-
gated the specificity of the p140Cap interaction with the different
NMDAR subunits by coimmunoprecipitation experiments in
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Figure 1. p140Cap directly interacts with GIuN2A. A, p140Cap IP and immunoblotting from 1 mg P2 fraction of crude synaptosomes. p140Cap KO synaptosomes were used as negative con-
trol; 30 ug synaptosome was loaded for each sample as loading control. B, p140Cap IP and immunoblotting from 1 mg extracts from HEK293 cells cotransfected with Myc-tagged p140Cap
and GFP-tagged NMDAR subunit GIuNT, GIuN2A, GIuN2B, or empty-GFP as negative control; 30 g extracts were loaded for each sample as loading control. €, D, Confocal imaging of C0S-7
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heterologous cells. To this end, cell extracts from HEK293
cells cotransfected with Myc-tagged p140Cap cDNA in combi-
nation with GFP-tagged GluN1, GluN2A, and GluN2B subu-
nit constructs were immunoprecipitated with anti-p140Cap
antibody and were analyzed by WB with anti-GFP antibody.
p140Cap was specifically associated with the GluN2A subunit
(Fig. 1B); conversely, the association was weaker with GIuN2B
and totally absent with GluN1 (Fig. 1B). Accordingly, immu-
nofluorescence experiments performed in COS7 cells cotrans-
fected with p140Cap in combination with GIuN2A and GluN2B
subunits showed a significant higher colocalization between
p140Cap and GluN2A compared with GluN2B (Fig. 1C,D)
(in Fig. 1D: M1 p=0.0453, M2 p=0.0264, paired ¢ test).
Interestingly, both GluN2A and GIuN2B subunits trans-
fected alone displayed a perinuclear distribution (Gardoni et
al., 2003; Stanic et al., 2015). However, GluN2A underwent
redistribution throughout the cell when it was coexpressed
with p140Cap, while GIuN2B perinuclear localization was
not affected (Fig. 1C), further confirming that p140Cap mainly
associates with the GluN2A subunit and has an impact on its
subcellular localization.

To identify the binding regions involved in the association, a
panel of Myc-tagged p140Cap fragments (Chapelle et al., 2020)
represented in Figure 1E were cotransfected with GFP-GIuN2A
or with empty GFP vectors as negative control in HEK293
cells. The IP with anti-GFP antibody pointed out that both the
p140Cap N-terminal region (aa 1-770) and the proline-rich
region 1 encoded by aa 351-691 can associate with GluN2A (Fig.
1F). To assess direct physical interaction between GluN2A and
p140Cap, Glutathione S-transferase (GST) pull-down assay was
performed. The recombinant GST-GluN2A fusion protein (aa
1049-1464), corresponding to the full intracellular C-terminal
tail (Fig. 1G) or the GST protein, as negative control, were im-
mobilized on Glutathione Sepharose 4B beads. The beads were
then incubated with a p140Cap-MBP fragment including the
proline-rich domain 1 (aa 261-730). WB with anti-MBP antibody
revealed the direct binding between pl140Cap and GluN2A
recombinant proteins (Fig. 1G). To identify the GluN2A region
responsible for the interaction with p140Cap, GST fusion pro-
teins for GluN2A full intracellular domain (aa 1049-1464), and
for two enclosed regions (aa 1349-1461 and aa 1244-1389) (Fig.
1H) were immobilized on Glutathione Sepharose 4B beads. Both
in mouse synaptosomes extracts (Fig. 1I) or in HEK293 cell
extracts stably expressing p140Cap-RFP (Fig. 1)), the GIuN2A

«—

cells cotransfected with p140Cap-RFP (red) in combination with GFP-GIuN2A (green) or GFP-
GIuN2B (green). The GFP signal was enhanced with anti-GFP mAb. Scale bar, 12 um. D,
Manders’ overlap coefficients are represented as the average of n = 10 individual cell quanti-
fication M1 p=10.0453, M2 p=0.0264, paired t test. E, Schematic representation of Myc-
tagged p140Cap fragments. F, GFP IP and immunoblotting from 1 mg extracts from HEK293
cells cotransfected with the constructs shown in E together with GFP-GIuN2A. Empty GFP in
combination with p140Cap fragments was used as negative control; 30 g extracts were
loaded for each sample as loading control. G, GST pull-down assay with a Sepharose 48 col-
umn charged with the C-terminal GST-GIuN2A fusion protein (aa 1049-1464), incubated with
the p140Cap-MBP fusion protein (aa 261-730). Empty GST was used as negative control.
Immunoblot with antibodies to MBP to reveal p140Cap binding (right), to GST as control of
GST binding to the column (middle), and Ponceau staining as loading control. H, Schematic
representation of C-terminal GST-GIUN2A recombinant proteins. /, p140Cap immunoblotting
of pull-down assay from columns of GST-GIuN2A fragments incubated with 1 mg WT synap-
tosomes. Empty-GST and Sepharose 4B beads were used as negative controls. J, GST pull-
down assay with a Sepharose 4B column charged with GST-GIuN2A fragments incubated
with 1 mg cell extracts from HEK293 cells stably expressing p140Cap-RFP.
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region 1349-1464 was sufficient for the interaction with p140Cap.
However, the binding of this small fragment was weaker than that
obtained with the large fragment 1049-1464, suggesting that the
entire C-terminal tail of GIJuN2A owns the optimal conformation
for the interaction with p140Cap. Overall, these results provide the
first evidence that p140Cap is a direct binding partner of the
GluN2A subunit of NMDAR.

The association between p140Cap and GluN2A occurs
during synaptogenesis, increases on c-LTP induction, and is
required for NMDAR-dependent LTP

Based on the results shown above, we wondered whether p140Cap
could influence GluN2A temporal expression. However, in hippo-
campal neurons and in telencephalon extracts from WT and
p140Cap KO mice, GluN2A temporal expression and protein level
were not affected by p140Cap as shown in Figure 2A and Figure
2B, respectively. To investigate the association between p140Cap
and GluN2A-associated proteins during brain development, we
analyzed WT telencephalon at different postnatal days (PO, P7,
P14, P21, P60) (Fig. 2C). WB analysis of telencephalon extracts
showed that p140Cap is present from PO, consistently with previ-
ous works (Ito et al., 2008), and its expression increased at P7 and
remained constant afterward. By contrast, GluN2A and PSD95 are
expressed later, as previously shown (Gonzalez-Lozano et al,
2016). IP experiments with p140Cap antibody revealed that the
association with the GluN2A-PSD95 complex was quantitatively
relevant only from P14 (Fig. 2C). Interestingly, also Flotillin-1,
which is expressed from PO, was immunoprecipitated with
p140Cap only at P14, suggesting that the formation of the com-
plex is strictly time-dependent during development, requiring a
precise subcellular localization of the different components.
Coherently, GluN2A IP from telencephalon at the selected time
points P7, P10, and P14, confirmed that GluN2A can associate
with its partners only from P14 (Fig. 2D). Since P14 corre-
sponds to the peak of synaptogenesis (Gonzalez-Lozano et al.,
2016), these results suggest that the formation of the complex
occurs during synapse development. To further investigate the
dynamic of the p140Cap/GluN2A complex formation also at
cellular level, we performed immunofluorescence for GluN2A
and p140Cap in neurons at selected time points (DIV 10, 14,
17) in which both p140Cap and GluN2A are expressed (Fig.
2E). Indeed, GluN2A expression is known to increase during
hippocampal neuron maturation, and it starts to be expressed
from DIV 5 (Siow et al, 2010) while p140Cap is already
expressed at DIV 0 (Fig. 2C). At DIV 10, p140Cap was already
well expressed while GIuN2A staining was weaker, and the
two molecules did not colocalize. In contrast, p140Cap and
GluN2A colocalization was clearly detectable at DIV14 and
further increased at DIV 17 (Fig. 2E), suggesting that the
association can occur only in late phases of neuron matura-
tion and likely depends on synaptic activity.

To test this hypothesis, we investigated whether synaptic
remodeling, which occurs during LTP, could modulate the com-
plex. To this end, we treated hippocampal neurons at DIV 16
with a forskolin/rolipram/picrotoxin cocktail to induce c-LTP
(Otmakhov et al., 2004; Franchini et al, 2019). Proper c-LTP
stimulation was validated by WB analysis of mature neuron
extracts to detect the increased Ser845 phosphorylation in the
GluR1 subunit of the AMPAR (Esteban, 2003; Oh et al., 2006;
Hu et al.,, 2007; Makino et al., 2011) (Fig. 3A,B). We found a sig-
nificant increase of p140Cap colocalization with the presynaptic
marker Bassoon, demonstrating an increased p140Cap recruit-
ment to the DSs on ¢-LTP (Fig. 3C,D) (in Fig. 3D, p=0.0015
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§ GIuN2A/p140Cap

Kinetics of p140Cap and GIuN2A complex formation during brain development. A, WT and p740Cap KO hippocampal neuron extracts at different DIV (3, 7, 10, 14, 17, and 21)

were immunoblotted with indicated antibodies; 30 u.g was loaded for each time point. Tubulin was used as loading control. B, Telencephalon extracts from WT and p740Cap KO mice at differ-
ent postnatal days (P) (PO, P7, P14, P60) were immunoblotted with the indicated antibodies; 50 14q of extracts was loaded for IP control. Tubulin was used as loading control. €, p140Cap IP
and immunoblotting from 1 mg telencephalon extracts at the indicated postnatal days (P). IP with p740Cap KO P60 telencephalon was used as negative control; 30 g of extracts was loaded
as IP control. GAPDH was used as loading control. D, GIuN2A IP and immunoblotting from telencephalon extracts (1 mg) at selected postnatal days. Mock rabbit IgGs were used in P14 telen-
cephalon as negative control; 30 g of extract was loaded for IP control. GAPDH was used as loading control. £, GluN2A, p140Cap, and Map2 immunofluorescence in WT hippocampal neurons
at indicated DIV. Neurons were fixed with 4% PFA 4% sucrose. Scale bars: 5 ptm; segment length, 20 pm.

paired t test). Moreover, GluN2A and p140Cap fluorescent
immunolabeling analysis revealed a significant increase in
protein colocalization on c-LTP stimulation (Fig. 3E,F) (in
Fig. 3F, p=0.0049 paired ¢ test), suggesting that the forma-
tion of the p140Cap-GluN2A molecular complex increases
on LTP stimulation.

We next asked whether the GluN2A/p140Cap associa-
tion merely regulates NMDAR-dependent LTP. Previous
work showed that the activity-dependent stimulation of synap-
tic NMDARs can regulate the insertion of AMPARs into post-
synaptic sites, thus inducing LTP (Bredt and Nicoll, 2003). In
particular, Corera et al. (2009) have shown in synaptosomes
that application of glycine (a NMDAR co-agonist) results in the
pre-activation of synaptic NMDARs; next, NMDARs can be
fully activated by KCl-dependent depolarization, which pro-
motes glutamate release from presynaptic terminals. This leads
to a rapid surface increase of AMPARs into synaptic sites,
which is prevented by blocking NMDARs with AP5. In synap-
tosomes from WT adult mice, we found that treatment with
glycine alone did not alter the level of GluR1 in the TIF, while
KCI stimulation induced a strong increase in GluR1 in the same
compartment (Fig. 3G). Moreover, the GluR1 increase in TIF

was completely abolished in the p140Cap KO (Fig. 3G), suggest-
ing that p140Cap is required to regulate NMDAR-dependent
LTP.

Overall, these data indicate that both ex vivo and in vitro, the
formation of the p140Cap and GluN2A-containing NMDAR
molecular complex is time-dependent, requires the recruitment
of specific DS components, and is necessary for physiological
NMDAR-dependent LTP (Fig. 3G). This mechanism could
underlie the impairment of NMDAR-dependent LTP that we
observed in p140Cap KO mice (Repetto et al., 2014).

p140Cap controls the composition of the molecular complex
associated to GluN2A-containing NMDARs
In DSs, the NMDAR GIuN2A subunit is associated with a large
multiprotein complex, which includes scaffold proteins (PSD95,
Homerl1) (Husi et al., 2000; Shiraishi et al., 2003), signaling pro-
teins (Groveman et al., 2012), molecules involved in NMDAR
recruitment into LRs (Flotillin-1) (Swanwick et al., 2009), and
molecules involved in actin dynamics, such as the small GTPase
Racl (Swanwick et al., 2009).

By IP of p140Cap from P2 crude synaptosomes, we found
that PSD95, Racl, and Flotillin-1 also associated with p140Cap.
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DMSO c-LTP

p140Cap and GluN2A complex formation on ¢-LTP induction and NMDAR-dependent LTP. 4, 30 g of extracts from DIV 16 WT hippocampal neuron extracts on DMSO or ¢-LTP

treatment was loaded and immunoblotted with antibodies to phosphorylated GIuRT subunit of the AMPAR (pGIuR1 Ser845). B, The ratio of p-GIuR1 on total GIuR1 is shown from n =3 inde-
pendent experiments (p = 0.001, paired ¢ test). C, p140Cap and Bassoon colocalization in DIV 16 hippocampal neurons on DMSO or c-LTP treatment. Scale bar, 5 wm. D, Quantification for
colocalization obtained from the analysis of 30 wm; n =17 for each experimental group (p = 0.0015, paired t test). £, p140Cap and GIuN2A colocalization in DIV 16 hippocampal neurons on
DMSO or ¢-LTP treatment. Neurons were fixed with methanol. Scale bar, 20 m. F, Quantification of colocalization obtained from the analysis of 30 um segments; n = 24 for each experimental
group (p = 0.0049, paired ¢ test). G, Immunoblot analysis of TIF prepared from xx WT and p740Cap KO synaptosomes, left untreated or on stimulation with glycine and KCl for the indicated

times; 20 g of extracts was loaded for each condition. Tubulin was used as loading control.

Interestingly, no association was found with Cdc42, another Rho
GTPase protein (Fig. 4A). To investigate whether p140Cap could
influence the composition of the molecular complex associated
to GluN2A-containing NMDAR at the post synapse, we com-
pared the composition of GluN2A-associated molecular com-
plex in synaptosomes isolated from WT and from p140Cap KO
adult mice (Fig. 4B). Total protein levels were unaffected
between the two genotypes; however, in p140Cap KO synapto-
somes, GluN2A was significantly less associated to PSD95,
Flotillin-1, and Racl than in WT synaptosomes (Fig. 4C-E):
paired ¢ test for Figure 4C (PSD95) p=0.0157, for Figure 4D
(Racl) p=0.0065, and for Figure 4E (Flotillin-1) p =0.0293. By
contrast, GluN2A association with other proteins as Tiam1 was
similar between the genotypes (Fig. 4F). These data suggest a
specific role of p140Cap in the recruitment of PSD95, Racl,
and Flotillin-1 in the GluN2A-associated molecular complexes.
Moreover, we also checked for Racl activity by performing
GST-PAK pull-down assay on synaptosomes. As shown in
Figure 4G, H, we found a significant decrease of Racl activity in
p140Cap KO synaptosomes compared with WT (in Fig. 4H:
paired ¢ test p=0.0047), suggesting the relevance of p140Cap
not only for Racl recruitment to NMDAR molecular complex
but also for its activation.

These data underline that p140Cap can influence the
composition of the GluN2A-containing NMDAR complex
and its functional activity, in terms of Racl activation

In p140Cap KO neurons, the current mediated by activation of
single NMDAR is reduced. In addition to the biochemical analy-
sis, to assess whether the presence of p140Cap may regulate the
activity of NMDARs, we acutely administered NMDA at differ-
ent concentrations on cultured hippocampal neurons, to study
both synaptic and extrasynaptic NMDARs (Harris and Pettit,
2007) by avoiding any possible presynaptic effect produced by
the loss of p140Cap (Russo et al., 2019). We therefore performed
patch-clamp experiments and measured currents mediated by
NMDARSs in hippocampal neurons at DIV 16. The experiments,
performed by holding neurons at V,= —70mV, showed that
NMDA administered at concentrations comprised between 6
and 300 um induces a mean inward current (Inypa) Dot signifi-
cantly different in WT (n=16) and KO (n=19) neurons. In par-
ticular, the current activated by 6, 10, 50, and 300 um of NMDA
was, respectively, 86.5 *19.0 pA in WT and 99.5 = 15.1 pA in
KO, 159.2 = 34.6 pA in WT and 194.7 = 20.1 pA in KO, 440.9 *
68.8pA in WT and 554.7 = 89.9pA in KO, 592.4 = 89.3pA in
WT and 854.9 + 1124 pA in KO neurons (Fig. 5A-C). Plots of
normalized NMDA current (Inypa) versus NMDA concentration
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Composition of GluN2A-associated molecular complexes in WT and p740Cap KO synaptosomes. A, p140Cap IP and immunoblotting from 1 mg P2 fraction of crude synaptosomes.

p140Cap KO synaptosomes were used as negative control. B-E, GIuN2A IP and immunoblotting from 1 mg WT and p740Cap KO adult mice P2 fraction of crude synaptosomes. Mock rabbit IgG
was used in WT synaptosomes as negative control. C-E, The quantification of the coimmunoprecipitation is expressed as arbitrary units (A.U.) calculated as follows: the ratio of coimmunopreci-
pitation on the corresponding input (synaptosomes) and on the IP protein (GluN2A). Data are representative from n =5 mice per experimental group, paired t test for € (PSD95) p =0.0157,
for D (Rac1) p=0.0065, and for E (Flotillin-1) p=0.0293. F, GluN2A IP and immunoblotting from 1 mg WT and p740Cap KO adult mice P2 fraction of crude synaptosomes. Tiam1 antibodies
were used as negative control. Mock rabbit IgG were used in WT synaptosomes as negative control of the IP. G, GST-PAK pull-down for Rac1 activity on WT and p740Cap KO adult mice P2 frac-
tion of crude synaptosomes; 2 mg was used for the assay while 30 g was loaded as input. H, Data are presented as the percentage of Rac1 activation in n = 6 independent preparations of

synaptosomes for each genotype (p = 0.0047 paired t test).

exhibited dose-response relationships fitted by the Hill equation
Y = Lax knj_ixnof similar steepness (n) (0902 in WT vs
0.9 = 0.1 in KO) and ECs, (k) (28.1 = 8.3 in WT vs 30.1 = 8.9 in
KO) (Fig. 4D). We thus concluded that, in KO neurons, Inypa
amplitude is comparable to that measured in WT and that the
stoichiometry as well as the ligand-receptor binding affinity is not
altered in KO cells. When traces of Iyypa activated by 300 um
were observed at higher magnitude, we noticed increased
and more discrete fluctuations in WT than in KO neurons (Fig.
5E,F). Because differences in noise signal can be quantified by

considering the variance (0?), we estimated the mean num-
ber of functioning NMDARs and their single-channel con-
ductance both in WT and in KO neurons, by comparing o
of Inmpa (Sigworth, 1980). We calculated o for periods of 2
s during stationary conditions of Inypa and plotted the val-
ues as a function of the average Inypa amplitudes generated
by increased NMDA concentration (Traynelis and Jaramillo,
1998). The relationship between o and Inmpa is described
by the following parabolic equation: o”°= il - I°/n, where i is
the unitary current of NMDARs, n the number of activated
NMDARSs, and I the mean Inypa amplitude (Fig. 5G,H). The
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Figure 5.

Electrophysiological properties of NMDARs in p740Cap KO neurons. A-C, Representative inward currents activated by increasing concentrations of NMDA (from 6

to 300 um), respectively, in WT (A) and p740Cap KO neurons (B). C, Bar graph summarizing the average amplitude of inward currents activated by NMDA. D, The dose—
response sigmoid curve of the current activated by NMDA (from 62 to 300 wm) is not affected by p140Cap. E, F, Inward currents of 2 s duration activated by 300 um of
NMDA shown at expanded scale showing the increased noise observed in WT (E) compared with p740Cap KO neurons (F). G, H, Representative parabolic relationship between
the variance (o-2) of noise signal and mean of the inward current activated by NMDA at different concentrations in WT (G) and p740Cap KO (H) neurons. I, J, K, Bar graph
sum marizing the significant increase of the average number of NMDARs induced in p740Cap KO neurons (/) and decrease of their unitary current (J), despite the open proba-

bility (K) remains unchanged. *p << 0.05 paired ¢ test.

fit with the above parabolic function gave a number of
NMDARs (n) that increased significantly in KO neurons
(from 622.1 £173.6 in WT to 1302.2*228.2 in KO;
*p<<0.05 Student’s t test) (Fig. 5I), despite a significant
decrease of the single-channel unitary current (1) was
observed (1.2 =0.2pA in WT and 0.7 = 0.1pA in KO; *
p <0.05 Student’s ¢ test) (Fig. 5]). Finally, we estimated the
maximum open probability of NMDAR channels p= I/(N*i)

(Traynelis and Jaramillo, 1998) where I is the maximum
Inmpa and found no significant changes between WT
(0.79 = 0.07) and KO neurons (0.84 + 0.07) (Fig. 5K). These
results show that the absence p140Cap modifies the intrin-
sic functional properties of NMDA receptors as well as their
expression on membrane surface, leaving unaltered the av-
erage Inmpa generated by activation of both synaptic and
extrasynaptic NMDA receptors.
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Figure 6. p140Cap potentiates GIuN2A and PSD95 association in neurons and in heterologous cells. A, p140Cap IP and immunoblotting from 1mg extracts of HEK293 cells cotransfected
with p140Cap-RFP and GFP-GIuN2A or PSD95-Flag or both. B, C. PSD95-Flag and GFP-GIuN2A clustering on transfection in COS-7 cells with or without p140Cap-RFP. Scale bar, 10 pum. C,
Manders’ overlap coefficients for PSD95-Flag and GFP-GIUN2A are represented as the average of n =10 individual cell quantification (p = 0.0369, paired ¢ test). D, E, GIuN2A, PSD95, and
p140Cap immunostaining performed on WT DIV 16 hippocampal neurons. Neurons were fixed with 4% PFA 4% sucrose. Staining for p140Cap was performed with c-p140Cap-647-conjugated
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p140Cap potentiates the association between PSD95 and
GluN2A

As is well known, PSD95 binds to the GIuN2A C-terminal tail,
thus stabilizing NMDAR at the cell surface and clustering GluN2
subunits in heterologous cells (Niethammer et al., 1996; Sheng
and Kim, 2011). Our biochemical data revealed a reduced associ-
ation of GluN2A with PSD95 in p140Cap KO synaptosomes (Fig.
4B), suggesting that p140Cap could potentiate or stabilize the
PSD95/GluN2A partnership. Following this lead, we next
demonstrated that p140Cap can associate with GluN2A and
PSD95 independently, by coimmunoprecipitation analysis in
HEK293 cells (Fig. 6A). Subsequently, we found that p140Cap
could influence PSD95 and GIluN2A clustering in heterol-
ogous COS7 cells and in WT DIV 16 hippocampal neurons.
Coexpression of PSD95 with GluN2A in COS7 cells induced
a significant GluN2A redistribution and the formation of
plaque-like clusters as already described (Kim et al., 1996;
Stanic et al., 2015) (Fig. 6B,C; Fig. 6C: p=0.0369 paired ¢
test). In cells triple-transfected with GluN2A, PSD95, and
p140Cap, the formation of GluN2A-PSD95 clusters signifi-
cantly increased. Moreover, the three proteins colocalized,
indicating that p140Cap may take part of a ternary complex,
including PSD95 and GluN2A, likely potentiating the asso-
ciation of PSD95 with GluN2A (Fig. 4A,B). Coherently,
PSD95, GluN2A, and pl140Cap also colocalized in DIV
16 WT hippocampal neurons (Fig. 6D and magnified in
Fig. 6E).

To assess the role of pl40Cap in the association between
PSD95 and GluN2A, we took advantage of the hippocampal neu-
rons isolated from p140Cap KO mice. We already know that
p140Cap KO neurons have reduced numbers of mushroom
spines (Repetto et al, 2014) and display reduced density of
PSD95 puncta (Tomasoni et al., 2013). However, we here show
that also the percentage of colocalization between GIuN2A and
PSD95 was significantly reduced in p140Cap KO neurons, sug-
gesting that p140Cap can potentiate or stabilize the association
between GluN2A and PSD95 (Fig. 6F-H) (in Fig. 6H: p < 0.0001
paired f test). Because the GluN2A and PSD95 protein levels did
not grossly change between primary WT and p140Cap KO hip-
pocampal neurons extracts (Fig. 6I), the reduced protein colocal-
ization is unlikely to be because of decreased protein expression
in the p140Cap KO neurons, but can be mainly attributed to a
different localization. To further prove the role of p140Cap in
stabilizing PSD95 and GluN2A association, we performed rescue
experiments by transfecting p140Cap KO hippocampal neurons
with cDNA constructs encoding either (1) the region aa 1-770 of
p140Cap, which corresponds to the domain involved in GluN2A
binding (see above Fig. 1E), or (2) the C-terminal region of

«—

mAb. Scale bar, 20 pim. E, Representative segments of dendrites (30 pm). F-H, GIuN2A im-
munostaining in combination with PSD95 in primary WT and p140Cap KO hippocampal neu-
rons at DIV 16. Neurons were fixed with methanol. Scale bar, 20 um. G, Representative
dendritic segments (30 .tm) considered for the analysis of colocalization. Scale bar, 5 um. H,
Percentage of colocalization between GIuN2A and PSD95 in n=16 dendritic segments for
each experimental group (p << 0.0001, paired t test). /, Immunoblotting of 30 g extracts
from DIV 16 p740Cap KO and WT hippocampal neurons for protein expression. Tubulin and
GAPDH were used as loading control. J, K, DIV 16 p740Cap KO hippocampal neurons trans-
fected with p140Cap-GFP (aa 1-770) and p140Cap-GFP (aa 728-1217) were fixed with meth-
anol. Scale bar, 20 um. K, Representative dendritic segments (30 tm) measured for the
analysis of colocalization. Scale bar, 5 um. L, Quantification of the percentage of colocaliza-
tion between GIuN2A and PSD95 in n = 26 dendritic segments for each experimental group
(p << 0.0001, paired t test).
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p140Cap (aa 728-1217), which is instead not involved in the
association (Fig. 6],K). Immunofluorescence analysis revealed
that p140Cap aal-770 can rescue the percentage of GluN2A and
PSD95 colocalization to the level of WT neurons, while p140Cap
(aa 728-1217) has no effect on PSD95/GIuN2A colocalization
(Fig. 6L, p <0.0001 paired ¢ test). Overall, these results demon-
strated that the p140Cap region required for the interaction with
GluN2A is sufficient to potentiate the association between
PSD95 and GluN2A.

Synaptic LRs from p140Cap KO mice contain reduced
amounts of GluN2A and PSD95

The above data show that p140Cap may influence the com-
position of the molecular complex associated to GluN2A-
containing NMDAR, indicating that p140Cap is required
for stabilizing the association between GluN2A and PSD95.
Furthermore, p140Cap may modulate Flotillin-1 and Racl
recruitment to the NMDAR complex and Racl activity (Fig.
3B). To assess the mechanisms through which p140Cap
could regulate the composition of GluN2A-associated mo-
lecular complexes, we studied the p140Cap association with
membrane LRs, which are signaling platforms enriched in
cholesterol and sphingolipids, essential for the organization
and compartmentalization of membrane receptor signaling
components (Hering et al., 2003; Allen et al., 2007). Indeed,
p140Cap has been described to be present in the fraction of
membrane LR-associated proteins by two different proteomic
analyses performed on rat brains (Jia et al., 2006; Suzuki et al.,
2011). Moreover, the in silico myristoylation prediction tool
for glycine myristoylation MYRbase (http://mendel.imp.ac.at/
myristate/myrbase/) revealed a reliable myristylation site in
p140Cap N-terminal sequence (GNAPSQDPERSSPPMLS).
The myristate moiety is important for protein subcellular
localization by facilitating protein-membrane as well as
protein—protein interactions (Martin et al., 2011). Here, we
isolated LR from mouse telencephalon, and we found that
p140Cap is present in the gradient fraction enriched for LR
markers Flotillin-1 and the sphingolipid GM1 (Fig. 7A),
confirming that p140Cap is a component of the LR. However,
p140Cap was also present at the high-density phases, indicating
that p140Cap may localize either to raft and to non-raft
compartments.

Recent studies show that the NMDAR trafficking to LR
is dynamically enhanced during synaptic plasticity (Delint-
Ramirez et al., 2008). Based on this evidence, we hypothe-
sized that pl140Cap could influence the recruitment or
stabilization of the NMDAR subunits to synaptic LR. Since
there was no difference in protein levels in synaptosomes prep-
aration (Fig. 7B), we quantified the amount of NMDAR subu-
nits recruited to WT and p140Cap KO synaptic LR. Synaptic
LRs were purified under a specific discontinuous sucrose gradi-
ent from WT and p140Cap KO P2 crude synaptosomes, con-
firming that the total amount of synaptic LR was similar in WT
and pI140Cap KO, as reflected by the unchanged levels of LR
markers (Fig. 7C). Indeed, in the LR from synaptosomes, both
Flotillin-1 and GM1 showed the higher enrichment in Phase 4,
while transferrin receptor was only present in high-density frac-
tions (7, 8, and 9). Then we analyzed the levels of NMDAR sub-
units in the synaptic LR-enriched phase. Protein levels were
normalized on Flotillin-1. p140Cap was present in the WT
synaptic LR phase as expected (Fig. 7D). A significant and selec-
tive decrease of the percentage of GluN2A and PSD95 was
detected in pI140Cap KO LRs. A slight decrease was also
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Figure 7.

p140Cap affects GluN2A recruitment in synaptic LRs. 4, LR purification from WT telencephalon. Five fractions were obtained from the sucrose gradient, and 30 pul of each fraction

was immunoblotted for the indicated proteins; 1 I of each fraction was also assayed for the presence of the GM1 sphingolipid in a dot blot assay. B, Synaptic protein expression in WT and in
p140Cap KO P2 crude synaptosomes used to perform LR purification. Representative immunoblotting of 40 ug of WT and p140Cap KO P2 crude synaptosomes. €, Synaptic LRs were isolated
from WT and p740Cap KO P2 crude synaptosome fractions. Nine fractions were obtained, and 30 pul of each fraction was run and immunoblotted for the indicated proteins; 1 pul of each fraction
was also assayed for the presence of the GM1 sphingolipid in a dot blot assay. D, 30 w! of the synaptic LR-enriched phase (Phase 4) of WT and p740Cap KO were immunoblotted with the indi-
cated antibodies. E, Protein quantification normalized on Flotillin-1. Values are presented as a percentage of protein level with respect to the WT, paired ¢ test for GIuN2A p = 0.0003, for
PSD95 p=0.0181, for GIuN2B p = 0.0158, for GluN1 p =0.0309, GRIA2, Src, and Camk2 3 not significant; n =5 mice for each experimental group.

observed for GluN2B and GluN1 subunits of NMDAR (Fig.
7D). Interestingly, the level of other molecules, such as the
AMPAR subunit 2 (GRIA2) and the kinases Src and
CamK2p3, was not affected in KO synaptic LR (Fig. 7E,
paired ¢ test for GluN2A p=0.0003, for PSD95 p=0.0181,
for GluN2B p=0.0158, for GluN1 p=0.0309, GRIA2, Src
and Camk2f not significant). Therefore, the absence of
p140Cap specifically alters the recruitment of specific com-
ponents as NMDAR subunits, such as GluN2b and GluN1,

even if these components are not directly associated to
p140Cap, and of PSD95 in synaptic LR. Therefore, p140Cap
can control the localization of NMDAR subunits and
PSD95 into the LRs, thus resulting in improved efficiency
of signal transduction given the enriched presence of sig-
naling molecules in LR. Indeed, the localization of NMDAR
into LRs could “reinforce” downstream signal transduction,
facilitating the assembly of molecular complexes required
for the activation of a specific signaling pathway.
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g-STED microscopy of GIuN2A synaptic clusters in WT and p740Cap KO hippocampal neurons. A, B, g-STED microscopy of WT and p740Cap KO DIV 16 hippocampal neurons immu-
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nolabeled with anti-GIuN2A in combination with phalloidin to visualize DS heads and Alexa-488-CTX-3 for GM1 sphingolipid (LR marker). Scale bar, 10 um. B, Representative segments of
dendrites (10 ptm). Scale bar, 2 um. €, Quantification of GIuN2A clustering on DSs (phalloidin) expressed as the ratio between the integrated density of GIluN2A and the phalloidin area which
corresponds to GIuN2A mean of fluorescence on DSs. n=225 DSs were analyzed for each genotype. p << 0.0001 (paired ¢ test). D, Immunoblotting of 30 ig WT and p740Cap KO hippocampal
neuronal extracts on DMSO or ¢-LTP treatment. GAPDH was used as loading control. E, F, g-STED microscopy of WT and p740Cap KO DIV 16 hippocampal neurons on DMSO or ¢-LTP treatment
immunolabeled as in A. Scale bar, 10 um. F, Representative segments of dendrites (10 ptm). G, Quantification of GIuN2A clustering on DSs (phalloidin) on DMSO or c-LTP, expressed as the ratio
between c-LTP/DMSO for WT and KO; n = 252 DSs were analyzed for each genotype. p << 0.0001 (paired ¢ test).

p140Cap promotes GluN2A clustering in basal condition
and on c-LTP stimulation

In addition to the LR biochemical data shown above, we also
investigated by g-STED microscopy whether p140Cap can con-
trol the spatial organization of GluN2A-containing NMDAR
clusters in LR microdomains focusing on hippocampal neurons
DS. LRs were identified with GM1 staining performed with chol-
era toxin subunit 3, together with anti-GluN2A antibody and
phalloidin-647 to visualize DS heads (Fig. 84,B). The analysis of
GluN2A clusters measured as the ratio between GluN2A signal
integrated density on the DS head area showed a significantly
less organization in clusters of KO DS compared with WT (Fig.
8C, p<0.0001 paired ¢ test). Indeed, in WT DS GluN2A clusters
were completely surrounded by GM1 sphingolipids indicating

that GluN2A is embedded into the LRs. Interestingly, in KO DS,
GluN2A clusters appear smaller and more diffused to the den-
dritic shaft. These data confirmed a different organization of
GluN2A subunit clusters and LRs in DSs in the absence of
p140Cap. Moreover, differential GM1 staining in KO DS could
suggest that p140Cap may impact also on LRs organization.
Finally, to investigate whether p140Cap can regulate NMDAR
recruitment during synaptic plasticity events, we stimulated
hippocampal neurons with ¢-LTP and performed g-STED
analysis as described above. WT and p140Cap KO neuron
stimulation was confirmed by proper p-GluR1 phosphoryla-
tion in total extracts (Fig. 8D, p <0.0001 paired ¢ test). The
GluN2A or LRs markers’ protein levels were similar between
WT and KO both in basal state and on c-LTP (Fig. 8D). The
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Figure 9.  Model for p140Cap and GluN2A functional association in the synapse. p140Cap binds the NMDAR subunit GIuN2A, thus affecting the composition of GluN2A-associated complexes,
and controlling NMDAR recruitment within synaptic LRs. Left, p140Cap directly associates with the distal part of the intracellular tail of the GIuN2A subunit. Moreover, p140Cap stabilizes PSD95
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the synaptic LRs, thus resulting in improved efficiency of LTP signal transduction. Overall, p140Cap appears as a new key adaptor protein in the PSD. However, we yet should investigate
whether the favored recruitment of the pre-assembled complex of PSD95-GluN2A-p140Cap into synaptic LRs, might depend on its increased stability, on facilitation of the myristoylation process

of each components, or on decreased turn-overr from the LRs. Created with www.BioRender.com.

g-STED microscopy analysis revealed that, in DS from WT
primary neurons, the LR organization was unchanged after
c-LTP, but the GluN2A-positive clusters were enriched com-
pared with basal condition, confirming that c-LTP affects the
GluN2A enrichment in DS (Fig. 8E,F). These data are consist-
ent with the accumulation of GluN2A-containing NMDARs
at the excitatory PSDs on ¢-LTP (Barria and Malinow, 2002;
Grosshans et al., 2002; Bellone and Nicoll, 2007). In contrast,
in DS from p140Cap KO, LR organization remained diffused
on ¢-LTP, and GluN2A clusters were only slightly increased
compared with the basal KO condition, without reaching the
same density observed in the WT (Fig. 8G). Overall, these
data confirmed that p140Cap can influence GluN2A recruit-
ment to LR in an activity-dependent fashion during synaptic
plasticity induction.

Discussion
Our previous characterization of pI140Cap KO mice pointed out
that p140Cap plays a critical role in the consolidation of new de-
clarative memories and in the establishment of both LTP and
LTD. These behavioral and electrophysiological phenotypes
could depend on altered activity and turnover of ionotropic glu-
tamate receptors (Warburton et al,, 2013; Volianskis et al., 2015).
Here, we demonstrate that p140Cap binds the NMDAR subunit
GluN2A, thus affecting the composition of GluN2A-associated
complexes, and controlling NMDAR recruitment within synap-
tic LRs (Fig. 9). Pull-down assay showed that the p140Cap aa
261-730, which includes the proline-rich region 1, can bind to
the GluN2A C-terminal tail (aa 1349-1464), which comprises an
SH3-like domain (aa 1382-1420) that is a putative binding do-
main for the PSD-95 family proteins (Ladépéche et al., 2014).
Therefore, p140Cap could associate with GIuN2A through a clas-
sical proline-rich/SH3-domain association.

The formation of chemical synapses begins during the
first postnatal week, peaks at P14, and stabilizes at P21-P28,
concurrent with synapse elimination and circuit refinement

(Farhy-Tselnicker and Allen, 2018). Assembled GluN1/
GluN2A-B receptors leave the endoplasmic reticulum and reach
the synaptic membrane as part of a vesicle-associated, macromo-
lecular complex which requires interaction with PDZ proteins
(Lau and Zukin, 2007). We found that p140Cap associates with
GluN2A as early as P14, when other members of the NMDAR-
complex, such as PSD95 and Flotillin-1, are also recruited in the
complex. Therefore, the GluN2A/p140Cap interaction appears
to accompany the critical period of synaptogenesis. Furthermore,
at the cellular level, p140Cap and GluN2A colocalized in mature
hippocampal neurons only from DIV14 to DIV17, reinforcing
the concept that the two proteins can associate during DS
maturation. Interestingly, the p140Cap/GluN2A association is
enhanced on synaptic activity stimulation, as is shown by
c-LTP experiments. These data, together with the higher colocal-
ization of p140Cap with the presynaptic marker Bassoon, are
consistent with the observation that p140Cap is recruited into
the DS, together with Endophilin 1A, in cultured hippocampal
neurons during the acute phase of NMDAR-mediated cLTP
(Yang et al,, 2021). Indeed, the physiological NMDAR-depend-
ent LTP induced by treating synaptosomes with glycine and KCI
revealed that p140Cap is necessary to increase AMPAR insertion
in the TIF, which is known to be required to sustain LTP (Corera
et al., 2009). These results indicate that p140Cap is necessary for
optimal chemical transmission and NMDAR-dependent LTP.
The fact that p140Cap and GluN2A associate during synaptogen-
esis and their association is relevant for synaptic activity suggest-
ing a possible explanation of the defective LTP observed in
p140Cap KO mice (Repetto et al., 2014)

Scaffold proteins of the PSD bridge surface receptors with
their intracellular effectors and regulate the receptors’ distribu-
tion and localization both at the surface and within the PSD
(Tasevoli et al., 2013). Here we demonstrate that p140Cap regu-
lates the composition of GluN2A-associated molecular com-
plexes. Indeed, in pI140Cap KO synaptosomes, GIuN2A was
significantly less associated with the scaffold protein PSD95, the
Rho-GTPase Racl, and the LR-associated protein Flotillin-1.
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This defective association could result in dysfunctional down-
stream signaling pathways, potentially altering the threshold for
induction of NMDAR-dependent LTP, the same phenotype
that was recently observed in p140Cap KO mice (Repetto et al.,
2014). Similar changes in the composition of the NMDAR-
associated molecular complex and in downstream signaling
have been reported in some pathologic conditions, underlining
the physiological relevance of a tight balance in the molecular
effectors associated with membrane receptors (Kristiansen et
al.,, 2006; Funk et al., 2009; Swartzwelder et al., 2016). The key
role of p140Cap in NMDAR molecular complexes is also indi-
cated by the observation that hypoxia-ischemia modifies postsy-
naptic GluN2B-containing NMDAR complexes in neonatal
mouse brain, which is accompanied by a higher association
with p140Cap (also known as SNIP) (Lu et al., 2018).

In the p140Cap KO synaptosomes, PSD95, the most abundant
scaffold protein of the PSD, is less associated with GIuN2A, sug-
gesting that p140Cap stabilizes the association between GluN2A
and PSD95. PSD95 binds to the last four amino acids (ESDV) of
GluN2 subunits (Gold, 2012) and is essential to inhibit GluN2-
mediated internalization (Lavezzari et al., 2004), to enhance
NMDAR clustering (Kim et al., 1996) and function (Lin et
al., 2004). Moreover, p140Cap associates with PSD95 in
HEK293 cells independently from GluN2A, in line with our
observations showing that PSD95 and p140Cap coimmuno-
precipitate in mouse brain (Fossati et al.,, 2015) and that
PSD95 takes part in the p140Cap synaptosome interactome
(Alfieri et al., 2017). These data are consistent with the
reduced PSD95 and GIuN2A colocalization observed in
p140Cap KO neurons. Since PSD95 and GluN2A expression
levels do not change between WT and KO neurons, we sug-
gest a receptor misallocation in absence of p140Cap. Overall,
our data depict a scenario in which p140Cap may promote
and/or stabilize GluN2A and PSD95 binding. Indeed, in the
COS7 heterologous system, p140Cap expression results in
increased colocalization between PSD95 and GIuN2A. Moreover,
the defect in GluN2A/PSD95 colocalization observed in KO hip-
pocampal neurons is rescued by expressing the p140Cap domain
involved in the association with GluN2A (p140Cap aa 1-770),
indicating that p140Cap is required for the physiological
stability of the NMDAR complexes through its interaction
with GIuN2A.

In p140Cap KO synaptosomes, Racl also was significantly
less associated to GIuN2A receptor complex, which is consistent
with its reduced activation in synaptosomes. Racl is an im-
portant mediator of actin-remodeling of the “spinoskele-
ton,” downstream to NMDAR activation. Moreover, Racl is
necessary for LTP (Simons and Sampaio, 2011). Our results
suggest that expression of p140Cap is necessary for localiza-
tion of Racl in the NMDAR complex, allowing proper acti-
vation, even if we cannot exclude that p140Cap can impact
on specific Racl-GEF, such as Tiam1.

As to the functional effect of p140Cap on NMDARs, noise
analysis of the NMDA currents in hippocampal neurons reveals
that deleting p140Cap leads to a reduction of the unitary
NMDAR current, in good agreement with the decreased
Inmpa amplitude measured in NMDARs expressing GluN2B
rather than GluN2A subunits (Monyer et al., 1992). This effect
is, however, accompanied by an increased number of NMDARs,
leaving the total current unchanged. Our electrophysiological results
reinforce the hypothesis that p140Cap is crucial in the recruitment
of GluN2A-containing NMDARs and, consequently, in regulating
NMDAREs intrinsic properties.

Angelini, Morellato et al. @ p140Cap Controls GIuN2A Recruitment to Lipid Rafts

NMDARs are distributed between the postsynaptic mem-
brane and the LR (Hering et al., 2003), and their association with
LR is developmentally regulated (Besshoh et al., 2007). LRs are
nanoscopic lipid and protein microdomains enriched in choles-
terol and sphingolipids, involved in protein trafficking and in
cell signaling complexes (Brown and London, 1998; Simons and
Toomre, 2000; Ikonen, 2001; Lingwood and Simons, 2010), criti-
cal for the maintenance and function of synapses (Sebastiao
et al., 2013; Tulodziecka et al.,, 2016). Receptor activation and
downstream signaling occurring in LRs are protected from non-
raft enzymes, such as membrane phosphatases that otherwise
could affect the signaling process (Simons and Toomre, 2000).
Here we show that pl40Cap modulates the recruitment of
GluN2A-containing NMDAR in the synaptic LR. Since the
putative myristoylation site in p140Cap N-terminal sequence
could facilitate its recruitment to LR, we detected p140Cap in
the low-density phases corresponding to the LR, as previously
shown in proteomic analyses from rat brains (Jia et al., 2006;
Suzuki et al., 2011). However, p140Cap is also present in the
high-density phases of the gradient, with a bimodal distribu-
tion, likely playing different roles either in raft or in non-raft
regions, as already described for PSD95 (Delint-Ramirez et al.,
2010).

Interestingly, the synaptic LRs of p140Cap KO mice have a
reduced level of GluN2A and PSD95, implying that p140Cap
may mediate the selective enrichment of GluN2A/PSD95 in syn-
aptic LRs, improving the efficiency of signal transduction. g-
STED confocal analysis confirms the key role of p140Cap in
organizing GIuN2A clusters into LR of DS in hippocampal neu-
rons. While in WT DS, GluN2A is organized in clusters embed-
ded into the LR; in the KO, GluN2A clustering was significantly
reduced, and the association with LR appears organized in a
weaker network. The defective GluN2A clustering in LR in
pI40Cap KO was confirmed by c-LTP induction. Thus, the
impaired LTP and LTD and the defects in memory and learning
observed in p140Cap KO mice could be explained by the reduced
localization of NMDARSs in the synaptic LRs. Hence, p140Cap
could modulate NMDAR recruitment into LR in the hippocam-
pus during spatial learning and memory formation (Delint-
Ramirez et al., 2008).

The role of p140Cap in pathologic processes or pharmacolog-
ical treatments needs further investigation. Nonetheless, we
notice that decreased levels of NMDAR in LRs were found in the
hippocampus of a mouse model of Alzheimer’s disease (Morin et
al,, 2016), following ischemia (Besshoh et al., 2005), or on treat-
ment with anesthetic agents (Sierra-Valdez et al., 2016), suggest-
ing that NMDAR reduction from LRs correlates with decreased
functions.

In conclusion, we demonstrated the synaptic relevance
of p140Cap as a partner of GluN2A and PSD95 proteins,
which coordinate NMDAR dynamics in membrane LRs.
Since NMDAR-associated proteins are implicated in synaptic
dysfunction in several brain disorders, our findings point to
p140Cap as a new active member of the highly dynamic syn-
aptic network, paving the way to future studies on its involve-
ment in neurologic and psychiatric disorders.
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