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Non-Neural Factors Influencing BOLD Response
Magnitudes within Individual Subjects
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To what extent is the size of the BOLD response influenced by factors other than neural activity? In a reanalysis of three neu-
roimaging datasets (male and female human participants), we find large systematic inhomogeneities in the BOLD response
magnitude in primary visual cortex (V1): stimulus-evoked BOLD responses, expressed in units of percent signal change, are
up to 50% larger along the representation of the horizontal meridian than the vertical meridian. To assess whether this sur-
prising effect can be interpreted as differences in local neural activity, we quantified several factors that potentially contribute
to the size of the BOLD response. We find relationships between BOLD response magnitude and cortical thickness, curvature,
depth, and macrovasculature. These relationships are consistently found across subjects and datasets and suggest that varia-
tion in BOLD response magnitudes across cortical locations reflects, in part, differences in anatomy and vascularization. To
compensate for these factors, we implement a regression-based correction method and show that, after correction, BOLD
responses become more homogeneous across V1. The correction reduces the horizontal/vertical difference by about half, indi-
cating that some of the difference is likely not because of neural activity differences. We conclude that interpretation of varia-
tion in BOLD response magnitude across cortical locations should consider the influence of the potential confounding factors
of thickness, curvature, depth, and vascularization.
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The magnitude of the BOLD signal is often used as a surrogate of neural activity, but the exact factors that contribute to its
strength have not been studied on a voxel-wise level. Here, we examined several anatomical and measurement-related factors
to assess their relationship with BOLD signal magnitude. We find that BOLD magnitude correlates with cortical anatomy,
depth, and macrovasculature. To remove the contribution of these factors, we propose a simple, data-driven correction
method that can be used in any fMRI experiment. After accounting for the confounding factors, BOLD magnitude becomes
more spatially homogeneous. Our correction method improves the ability to make more accurate inferences about local neu-
ral activity from fMRI data. /

neural mechanisms underlying BOLD remain an active area of
investigation (Herman et al., 2017). One clear conclusion is that
the BOLD signal is strongly influenced by neural activity
(Arthurs et al., 2000; Heeger et al., 2000; Attwell and Iadecola,
2002; Heeger and Ress, 2002; Logothetis, 2002; Lee et al., 2010;

ignificance Statement

Introduction
The BOLD signal measured by fMRI is an important tool for
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Siero et al., 2014). For a given location in the brain, and within a
constrained paradigm (e.g., viewing different images and meas-
uring the response that they elicit in visual cortex), the BOLD
signal magnitude appears to be lawfully related to basic measures
of neural activity. For example, as stimulus contrast increases,
neural firing rates and BOLD magnitude increase in proportion
(Heeger et al., 2000). Similarly, increase in coherence of stimulus
motion boosts BOLD magnitude and firing rates in V5/MT
(Britten et al., 1993; Rees et al., 2000). When comparing different
experimental paradigms or different brain locations, however, it
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is less clear how to interpret differences in the magnitude of the
BOLD signal. For example, seeing a stimulus and expecting a
stimulus can both elicit robust BOLD signals in V1, but the
underlying neural activity is very different in the two paradigms
(Sirotin and Das, 2009; Herman et al,, 2017). It is also the case
that similar BOLD signal magnitudes in two locations may be
linked to very different underlying neural activity. These two
limitations are reviewed by Logothetis (2008).

There are several reasons to believe that BOLD signal magni-
tudes, even within a fixed experimental paradigm, are influenced
by factors that are not directly related to neural activity. The
BOLD response, quantified in terms of percent signal change,
can be especially high in voxels containing large veins (Menon et
al., 1993; Kim et al., 1994; Hoogenraad et al., 1999; Kay et al,,
2019) or unusually low, delayed, and/or displaced in voxels near
cerebral sinuses (Winawer et al., 2010; Jamison et al., 2017). The
choice of MRI sequence, field strength (van der Zwaag et al,
2009), and sequence parameters, such as echo time (Gorno-
Tempini et al., 2002), can also affect BOLD signal magnitude,
and these effects may vary across the brain (Herman et al., 2017).
Indeed, it has been reported that BOLD may vary across the cor-
tex up to 40% simply because of different orientation of vascula-
ture relative to the direction of the static magnetic field (Gagnon
et al.,, 2015, 2016; Viessmann et al., 2019). Furthermore, recent
high-resolution fMRI studies have shown that BOLD signal mag-
nitude clearly depends on cortical depth. It is highest in the su-
perficial depths which are positioned near large pial veins and
decreases with depth (Polimeni et al., 2010; Koopmans et al.,
2011; Zimmermann et al., 2011; Yu et al., 2014; Fracasso et al.,
20164, 2016b; Dumoulin, 2017; Dumoulin et al., 2018; Kay et
al., 2019; Self et al., 2019; van Dijk et al., 2020).

In this paper, we study variations in BOLD signal magnitude
within a fixed paradigm, focusing our efforts on primary visual
cortex (V1). We believe that, by focusing on a single brain region
in well-controlled visual paradigms, we are in the best position
to derive sound interpretations of differences in BOLD signal
magnitudes across the cortex. In three distinct datasets, we dem-
onstrate large differences between the meridian locations: the
BOLD magnitude in V1 is up to 50% higher along the represen-
tation of the horizontal meridian (HM) than along the represen-
tation of the vertical meridian (VM). We then investigate the
potential basis of these inhomogeneities by analyzing factors that
are in principle distinct from neural activity. As non-neural fac-
tors, we consider cortical curvature, cortical thickness, cortical
depth, presence of macrovasculature (as indexed by bias-cor-
rected EPI intensity), angle with respect to By magnetic field, and
radio frequency (RF) coil bias. We motivate the selection of these
factors in Materials and Methods. We find that several of these
factors are systematically related to observed variation in BOLD
magnitudes across V1. To remove their influence, we propose a
simple correction method and show that the correction increases
BOLD signal homogeneity across V1, reducing the difference in
response across the horizontal and VMs by about half.

Materials and Methods

Datasets. We used three publicly available visual fMRI datasets: the
Human Connectome Project 7T Retinotopy Dataset (HCP) (Benson et
al., 2018), the Natural Scenes Dataset (NSD) (Allen et al., 2021), and the
Temporal Decomposition Method (TDM) Dataset (Kay et al., 2020). All
data were acquired on 7T MR scanners using gradient-echo pulse
sequences (technical details provided in Table 1). The datasets varied in
stimulus properties and experimental design. HCP stimuli consisted of
rings, wedges, and bars in a retinotopic mapping experiment; NSD
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Table 1. Details on the fMRI pulse sequence used in each of the datasets

Dataset DM NSD HCP
Field strength n Ul m

TR (ms) 2200 1600 1000
TE (ms) 2.4 220 222
Flip angle 80 62 45

No. of slices 84 84 85
Matrix size 200 x 162 120 x 120 130 x 130
FOV (mm) 160 x 129.6 216 x 216 208 x 208
Nominal spatial resolution (mm) 0.8 18 1.6
Multiband factor 2 3 5
iPAT factor 3 2 2
Partial Fourier 6/8 7/8 7/8

Temporal Decomposition Method Dataset (TDM)
* 5subjects (2 males and 3 females)
* 0.8x0.8x0.8mm?
* Rings varying in eccentricity
* 9runs per subject
« TR=22s
* 3.550N/0.55sOFF
* Maximum eccentricity = 5.5 degrees

Natural Scenes Dataset (NSD)

8 subjects (2 males and 6 females)
1.8x1.8x1.8 mm?

* Natural scene images
*  360-480 runs per subject
-, ¢ TR=16s
4751 ¢ 3s5ON/1sOFF

Maximum eccentricity = 4.2 degrees

B

Human Connectome Project (HCP)

* 181 subjects (72 males and 109 females)
* 16x1.6x1.6mm?

« Textures viewed through spatial apertures
* 6 runs per subject

* TR=1s

« Continuous design

* Maximum eccentricity = 8 degrees

- 1 1 -

Figure 1.  Datasets used in this study. Stimulus images for each of the datasets are shown.
For TDM, stimuli consisted of 6 rings varying in eccentricity. For NSD, stimuli consisted of nat-
ural scene images. For HCP, the experiment consisted of several retinotopic mapping runs
that included expanding and contracting rings, rotating wedges, and moving bars filled with
a colorful object-based texture. Additional acquisition details are provided in Table 1.

stimuli consisted of natural scene images; and TDM stimuli consisted of
high-contrast rings presented at different eccentricities. Experimental
details are shown in Figure 1. The analyses performed in this paper start
with preprocessed data from each dataset.

Extracting BOLD magnitude. From each dataset, we extracted a mea-
sure of BOLD signal magnitude at each cortical surface vertex. For
TDM, we started with the preprocessed fMRI time-series data provided
with the dataset and analyzed the data with a GLM. Specifically, we con-
volved a canonical HRF with stimulus onsets to create a regressor for
each experimental condition, and then used these regressors with
GLMdenoise (Kay et al., 2013b) to estimate a 3 weight for each condi-
tion. We computed the maximum B weight across all conditions for
each voxel as the measure of BOLD signal magnitude. These results are
defined at six different depths (equidistant from 10% to 90% of the corti-
cal thickness) in each subject’s native surface space. (Depth assignment
was achieved by a spatial interpolation of each fMRI volume at the loca-
tions of the six depth-dependent cortical surfaces; for details, see Kay et
al.,, 2020.) For NSD, we took the ‘meanbeta’ values (1 mm data prepara-
tion, B version 2) provided with the dataset; these values indicate the av-
erage BOLD percent signal change observed across all stimulus trials
and all scan sessions. We then mapped these values to the three depth
surfaces provided in NSD (positioned at 25%, 50%, and 75% of the corti-
cal thickness). The HCP dataset was previously analyzed (Benson et al.,
2018) with a population RF model (Dumoulin and Wandell, 2008)
implemented in analyzePRF (Kay et al., 2013a). The model includes a
gain parameter that describes the amplitude of the BOLD response of a
given voxel (or vertex) to the object-based texture (covering the entire
population RF) for a single TR (1 s). We quantified BOLD in terms of
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percent signal change (%BOLD) by dividing the gain parameter by
mean signal intensity and multiplying by 100. The results are prepared
in FreeSurfer’s fsaverage space.

Visual field mapping. We used retinotopic mapping to divide the pri-
mary visual cortex into a set of regions. For HCP, we used polar angle
and eccentricity estimates available from the data release. For the TDM
and NSD datasets, we mapped Benson’s polar angle and eccentricity
atlas using neuropythy software (Benson and Winawer, 2018). We use
the following convention for all three datasets: the upper VM corre-
sponds to 0 degrees, the HM corresponds to 90 degrees, and the lower
VM corresponds to 180 degrees. The polar angle estimates are rescaled
for the correlation and linear regression analysis (see Quantification of
non-neural factors). We used Benson’s definition of the extent of visual
areas V1, V2, and V3 for all three datasets (Benson et al., 2014).

Quantification of non-neural factors. In the TDM and NSD datasets,
we quantified several factors that might be related to variation in the
magnitude of the BOLD signal across cortical locations. We focused on
factors that can be easily extracted from either functional or anatomical
data that are typically acquired in an fMRI experiment. For the purposes
of the present study, we consider only within-subject factors rather than
across-subject factors, with the goal of removing non-neural influences
on the variation of BOLD magnitudes across voxels. We note that there
are several other factors that influence variation of overall BOLD magni-
tude across subjects, such as caffeine use (Liu et al., 2004), vascular age
(Tsvetanov et al,, 2021), and heart rate (Chang et al., 2009). Below, we
describe each of the within-subject factors that we considered in the
present study.

Curvature was obtained from FreeSurfer outputs (Dale et al., 1999;
Fischl and Dale, 2000) and refers to the geometry of the folding pattern
of the cortical surface. Negative values correspond to gyri, while positive
values correspond to sulci. Curvature is quantified as 1/r, where r is the
radius of an inscribed circle measured in millimeters.

Thickness was also obtained from FreeSurfer outputs. It is measured
in millimeters and corresponds to the distance between the outermost
(close to CSF) and innermost (close to white matter) boundaries of gray
matter. Curvature and thickness are well known to vary across visual
cortex. Their relationship with %BOLD remains unknown and has not
been investigated in detail, especially on a voxel-by-voxel basis. We
include these factors in our analysis to assess whether these anatomical
factors have systematic relationships with BOLD magnitude.

Mean bias-corrected EPI was calculated as the mean signal intensity
in the fMRI data divided by the estimated RF coil bias (details below).
The units range from ~0 to 2, and indicate percentages (e.g., 0.5 means
50% of the strength of typical signal intensities). Mean bias-corrected
EPI values can be viewed as high spatial frequency changes in signal in-
tensity across space. We include this factor in the analysis as mean bias-
corrected EPI was previously found to be a good predictor for venous
effects (Kay et al.,, 2019). Proximity to veins often results in increased
BOLD magnitude.

Depth was estimated by generating six cortical surfaces (for TDM) or
three cortical surfaces (for NSD) equally spaced between 10% and 90%
(for TDM) or 25% and 75% (for NSD) of the distance from the pial sur-
face to the boundary between gray and white matter. These surfaces are
numbered from 1 to #, where 1 is outermost and # is innermost. We
include depth as a factor as it is well known that BOLD magnitude is
highest in superficial depths and decreases toward the white matter
(Polimeni et al., 2010).

Angle with respect to By was calculated by considering the angle
(theta) between the pial surface normal and the direction of the B, static
magnetic field as estimated from NIFTT header information. Angle was
quantified in degrees and was normalized as abs(theta-90) such that a
final value of 0 degrees indicates that the cortical surface is parallel to the
magnetic field and a final value of 90 degrees indicates that the cortical
surface is perpendicular to the magnetic field. We include angle with
respect to By in the analysis because previous reports showed that the
BOLD magnitude varies with By angle (Gagnon et al., 2015).

RF coil bias was taken to be the result of fitting a 3D polynomial to
the mean signal intensity in the fMRI data. The values are in raw scanner
units and represent low spatial frequency changes in the intensity of
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voxels. This estimation method has been used previously (Kay et al.,
2019). We include RF coil bias as a control in our analysis. In theory,
there should not be a systematic relationship between RF coil bias and
BOLD magnitude, as we express BOLD magnitudes at each voxel in
terms of percent signal change (as is typically done in the field), and per-
cent signal change is sensitive to an overall scale factor on the signal.

In sum, all of these factors are known to vary across the cortical sur-
face of V1. The exact biophysical mechanisms that might explain their
impact on %BOLD are in some cases unknown (e.g., curvature). In
other cases, we expect that some factors should not bear systematic rela-
tionships to %BOLD (e.g., RF coil bias). In general, the work here is
intended to be a first step toward understanding the influence of poten-
tial non-neural contributions to variations in %BOLD across individual
voxels within a given subject.

Quantification of neural factors. Polar angle was obtained from
Benson’s atlas (Benson et al., 2014), representing the visual field angle to
which each cortical location is optimally tuned. For the purposes of our
analyses, we normalize polar angle such that 0degrees corresponds to
the HM and 90 degrees corresponds to the upper and lower VMs. We
include polar angle as a positive control: we expect that polar angle
should bear a systematic relationship with BOLD magnitude, as this is
the original observation that motivated the present study.

Definition of ROIs. Using the visual field mapping results, we defined
ROIs corresponding to the representation of the horizontal and VMs
within V1. The ROIs were defined by limiting the eccentricity to the
maximum stimulus eccentricity used in each dataset and limiting the
angle to a specific range (e.g., to create a V1 ROI for the upper VM with
a width of 20 degrees, we created a mask where polar angle estimates
were >0 and <20 degrees).

Modeling variation in BOLD signal magnitude. To account for non-
neural contribution to %BOLD, we used a multiple regression model.
The modeled data (Y) consisted of the %BOLD value observed at each
surface vertex in visual areas V1-V3. Although this study focuses on
BOLD homogeneity in V1, we include %BOLD in V1-V3. This is
because we are attempting to establish relationships that might general-
ize across different cortical regions. Furthermore, if we were to include
only vertices in V1, we would be at high risk of removing genuine neural
activity differences (e.g., those that may exist between the horizontal
and VMs) that correlate with the non-neural factors.

The variables used to model the data included thickness, curvature,
depth, and mean bias-corrected EPI intensity. (Only these four factors
showed evidence of being substantially related to BOLD magnitude; see
Results.) The variables were standardized (z-scored) and, together with a
constant term, were included as predictors in the design matrix (X).
Ordinary least-squares estimates for 3 weights were obtained in the fol-
lowing linear model:

Y=XB+n (1)

where Y is the %BOLD magnitude at each vertex, X is the 5-column
design matrix, B is a set of B weights (5 per vertex), and # is a set of
residuals.

Major cortical sulci. In several figures, we show outlines of major
cortical sulci. These include the calcarine sulcus, parieto-occipital sulcus,
intraparietal sulcus, occipitotemporal sulcus, and superior temporal sul-
cus. These sulci were manually labeled on the fsaverage surface and then
mapped to each individual’s native surface.

Data and code availability. The datasets used in this paper are freely
available online: NSD (http://naturalscenesdataset.org), HCP (https://
osf.io/bw9ec/), and TDM (https://osf.io/j2wsc/). Code that reproduces
the main figures in this paper is available at https://github.com/jk619/
meridianbias/. Associated data files are available at https://osf.io/2nc4x/.

Results

Stronger BOLD responses along the V1 HM
We examined BOLD response magnitudes in three freely avail-
able datasets: the NSD (Allen et al., 2021), the data used for the
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Asymmetry ratio (%) =
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2
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BOLD magnitude is higher at the HM in V1. A, Polar angle map of group-average HCP subject (999999) with V1 boundary outlined in dotted black lines. B, Gray and magenta rep-

resent horizontal and vertical ROIs, respectively. White text indicates major brain sulci (see Materials and Methods). (-E, Mean BOLD magnitude for horizontal and vertical ROIs in the three

datasets. Error bars indicate SE across subjects.

TDM (Kay et al., 2020), and the HCP (Benson et al., 2018).
Each dataset contains BOLD responses to different types of
visual stimulation (see Materials and Methods). We defined
one ROI for the HM and one for the VM (Fig. 2A,B). These
ROIs represent a wedge-shaped region in the visual field cen-
tered at the HM with a width of 40 degrees (horizontal) and
two wedges abutting the VM each with a width of 20 degrees
(vertical).

In each of the three datasets, we compared BOLD magnitudes
expressed in percent signal change (%BOLD) observed for the
VM with BOLD magnitudes observed for the HM (Fig. 2C-E).
In each dataset, we find higher %BOLD in the HM ROIs com-
pared with the VM ROIs. We summarize this difference with an
asymmetry ratioo (HM - VM)/mean(HM,VM). All datasets
show strong asymmetry, with an asymmetry ratio of ~30%.
Positive values for the asymmetry ratio indicate greater response
for the HM. (If the asymmetry is expressed as a percentage of the
smaller VM response, the increase reflected in the larger HM
response is up to ~50%.)

One possibility is that the horizontal and vertical V1 BOLD
responses are indeed similar, but the vertical ROIs appear to
have lower signal because of mixing with signal from V2. V2
and V1 border along the VM representation, and blurring,
might occur either in acquisition or in preprocessing and
analysis. To further our understanding of the V1 response
asymmetries, we recomputed asymmetry ratios using smaller
wedges at many locations (Fig. 3A). Because we use smaller
wedges, the asymmetry at the cardinal meridians is different
from Figure 2. While the asymmetry is strongest at the cardi-
nal meridians, some horizontal/vertical asymmetry is found at
least 30 degrees away from the meridians in all three datasets
(Fig. 3B). This argues against the explanation that the asym-
metry is caused by spillover from V2.

HM/VM asymmetry persists at inner cortical depths

The BOLD signal is strongly influenced by properties of the
brain’s vasculature. Uneven venous contributions across the
brain can cause variation in BOLD magnitude (Menon et al.,
1993; Kim et al,, 1994; Hoogenraad et al., 1999; Kay et al., 2019).
One possibility is that the meridian asymmetries we observe arise
from nonuniformities in the vascular network. To investigate
this possibility, we took advantage of the submillimeter resolu-
tion of the TDM dataset and examined HM/VM asymmetry as a
function of depth. Because macroscopic venous effects are larger
in the superficial cortex because of large pial veins (Duvernoy et
al., 1981; Turner, 2002; Polimeni et al., 2010; Kay et al,, 2019), by
sampling BOLD responses from deeper depths, we minimize
contributions from pial veins. We find that the HM/VM asym-
metry is larger at the superficial depths, suggesting that part of
the asymmetry may be because of differential properties in mac-
roscopic vasculature (Fig. 4). This depth effect is systematic: ev-
ery subject shows higher asymmetry at the superficial depth than
the middle depth. Nonetheless, there remains a substantial hori-
zontal/vertical asymmetry at all depths (Fig. 4), suggesting that
macroscopic vessels near the pial surface are not the entire expla-
nation. At the innermost depth sampled, which is least influ-
enced by pial vessels, the HM/VM asymmetry is 26%
(average across subjects) and is positive in each of the 5 sub-
jects. The middle depths appear to have the least asymmetry.
This could be because of a difference in neural responses at
intermediate depths, which generally correspond to input-
related cortical layers.

Assessing and modeling non-neural contributions to BOLD
signal magnitude

In addition to vascular effects, other factors unrelated to neural
activity evoked by the experimental manipulation may influence
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Figure 4.  BOLD asymmetry in V1 persists at inner depths. We exploit the high-resolution
TDM dataset to discriminate V1 BOLD responses across depth and estimate response asym-
metries as a function of depth (asymmetry is calculated in the same way as in Fig. 3). The
presence of asymmetry at the innermost depth suggests that response asymmetries exist
even with minimal contribution of large pial veins.

variation in %BOLD across the cortical surface. These addi-
tional factors are often neglected in fMRI analysis pipelines.
Although some of the factors are known to vary across the
cortex, their influence on the BOLD signal is poorly under-
stood. Here, we attempt to understand how these factors
may be related to BOLD magnitude variations. To the best
of our knowledge, we are unaware of any previous study

that has examined this issue in detail, especially at the level
of individual voxels (or vertices) within individual subjects.

We first identified a list of possible confounding factors
(beyond cortical depth, which we have already introduced) based
on consideration of basic anatomical properties of the brain and
the nature of fMRI measurement. These factors are cortical cur-
vature, cortical thickness, RF coil bias, mean bias-corrected
EPI signal intensity, and angle with respect to By. Each of
these factors can be interpreted as spatial maps, with a value
at each vertex on the cortical surface mesh. The five maps
can be obtained from standard anatomical scans (T1-
weighted) or from the fMRI measurements themselves with-
out additional MRI experiments (for details, see Materials
and Methods). Example surface visualizations of these maps
together with %BOLD are shown in Figure 5. We hypothesize
that inhomogeneities in some of these maps might explain
some of the observed inhomogeneity in %BOLD across V1.

To understand the potential relationships among these
five identified factors and %BOLD, we first performed voxel-
wise correlation analyses. For these analyses, we used the
TDM dataset, as its high spatial resolution facilitates the
identification of vascular effects (Kay et al., 2019). We exam-
ined data from V1-V3 where neural activity magnitudes can
be expected to be relatively homogeneous (although biases
were reported before; Liu et al., 2006) given the simple con-
trast patterns used. In Figure 6A, we show pairwise correla-
tions across these five quantities, as well as retinotopic polar
angle preference (rescaled between 0 and 90; see Materials
and Methods) and cortical depth. We find that %BOLD cor-
relates substantially with four factors: curvature (r=0.26),
thickness (r = -0.17), mean bias-corrected EPI intensity (r =
-0.25), and depth (r = -0.27). We do not find a strong
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correlation between %BOLD and polar angle. Although results
from Figures 2C-E, and 4 suggest a strong negative correlation,
the previous analysis included data only from V1. Here we ana-
lyze vertices from V1-V3 where this relationship becomes
weaker (r = -0.05). Overall, we can summarize as follows: %
BOLD extracted from V1-V3 tends to be higher at locations
that correspond to sulci, in thinner parts of the cortex, in
voxels with lower mean bias-corrected EPI intensities, and at
more superficial depths.

Examination of correlations among factors yields addi-
tional insights (Fig. 6A). The strongest correlation that we
find is between curvature and thickness (r = -0.28), indicat-
ing that sulci tend to be thin. Curvature is correlated with
mean bias-corrected EPI (r=0.16) and with polar angle (r =
-0.19), and thickness is correlated with polar angle (r=0.15).
Our interpretation of these effects is that venous effects tend
be stronger in gyri (consistent with previous findings in Kay
et al., 2019), and that the correlations related to polar angle
simply reflect the tendency for HM representations to fall on

sulci (e.g., the calcarine sulcus). Overall, these complex relationships
suggest that making sense of non-neural influences on %BOLD
requires a broad perspective that considers multiple factors.

Correcting BOLD signal magnitude for non-neural factors
We now explore whether we can develop a statistical model to
compensate for the influence of non-neural factors on %BOLD.
We operate under the assumption that any observed correlation
between the factors and %BOLD is incidental and does not
reflect genuine neural activity variation. Our model is a multiple
regression model (Fig. 6B, top) that uses the main factors of cur-
vature, thickness, depth, and mean bias-corrected EPI intensity
as continuous variables and attempts to determine a weighted sum
of these factors that optimally accounts for variations in %BOLD
across cortical locations (for details, see Materials and Methods).
Fitting the model, we find a strong positive contribution of
curvature and negative contributions of thickness, mean bias-
corrected EPI intensity, and depth (Fig. 6B, bottom), consistent
with the earlier voxel-wise correlation analyses. Estimated S
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Modeling variations in BOLD signal magnitude. A, Correlation (Pearson’s r) between a variety of factors and %BOLD extracted from V1-V3 from the TDM dataset. Main plot repre-

sents results from data concatenated across all subjects. Inset plots represent results from individual-subject data. *p << 0.05; **p << 0.01; ***p < 0.001; one-sample t test across subjects. B,
Regression model for %BOLD. Based on the results of A, we selected curvature, thickness, depth, and mean bias-corrected EPI as the main non-neural factors that confound %BOLD. These four
factors were then used in a multiple linear regression model to predict %BOLD (top). The amount of variance explained by the model is shown in the inset.
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Figure 7.  Correction of V1 BOLD inhomogeneity. A, Removal of non-neural factors. First,
linear combinations of non-neural factors are used to predict %BOLD within V1-V3 using the
TDM dataset. The model is fit on data concatenated from all 5 TDM subjects. The model is
augmented with a nonlinear power-law function (blue line), which is controlled by a gain
parameter (p(1)), an exponent parameter (p(2)), and a constant term (p(3)). B, Each voxel's
BOLD responses are divided by the model fit, yielding the corrected %BOLD. €, BOLD signal
magnitude within V1 before and after the correction (TDM dataset, Subject S3, most superfi-
cial depth). Asterisk indicates the fovea. Dashed lines indicate the boundary between V1 and
V2. After correction, some vertices with very high BOLD are eliminated (see white arrows).
Within each plot, the color range extends from 0 to the maximum. Each map has an associ-
ated histogram that shows all values extracted from V1.

weights are fairly consistent across subjects, and the model on
average across subjects explains 26% of the variance in %BOLD.
A multiple regression model using all six factors (adding RF coil
bias and angle with respect to By) resulted in only minimally

larger explained variance (27% vs 26%), consistent with the ear-
lier correlation analyses indicating that RF coil bias and angle
with respect to By bear little or no relationship with %BOLD.

To better understand the relationship between the identified
non-neural factors and %BOLD, we construct a 2D histogram
relating the model fit (BOLD prediction based on non-neural
factors obtained by multiplying the design matrix and estimated
B weights) and %BOLD (Fig. 7A). This reveals a clear nonlinear
relationship. To accommodate this nonlinearity, we fit a nonlin-
ear function relating the linear model fit and %BOLD (Fig. 74,
blue line). Finally, we remove the contribution of non-neural fac-
tors by dividing %BOLD observed at each cortical location by
the fit of the nonlinear model. We divide %BOLD by the model
fit rather than subtracting the model fit, as we believe that the
influence of non-neural factors on %BOLD might impose a type
of ‘gain’ field on fMRI responses observed in a given experiment.
For example, if there is an excess of macrovasculature in a voxel,
we would expect the overall amplitude of the BOLD response
from the voxel to be scaled. Our method of rescaling BOLD
magnitudes does not change the pattern of responses across
different experimental conditions within a voxel (while a subtrac-
tive approach would). For example, if the response to Condition A
is 25% higher than the response to Condition B, this will continue
to be the case after rescaling.

The result of the proposed correction procedure is shown in
Figure 7B. We see that, after the correction procedure, the distri-
bution of BOLD response becomes flatter, indicating the efficacy
of the procedure. (What is important is the shape of the distribution
of the values, not necessarily the magnitudes of the values.)
Increased homogeneity of BOLD magnitude is also visible on the
cortical surface (Fig. 7C).

To understand whether our method generalizes across data-
sets, we used the same procedure and performed correction on
the NSD dataset. We summarize the effect of the correction by
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NSD datasets. The asymmetry drops by about half. Error bars indicate SE across subjects.

showing the correlations between %BOLD and non-neural fac-
tors before and after the correction (Fig. 8A). The pattern of
results before correction (Fig. 84, top) is consistent across the
TDM and NSD datasets, except for the reduced correlation with
bias-corrected EPI in NSD (see Discussion). Importantly, corre-
lations after the correction are substantially reduced, indicating
the efficacy of the method.

To check whether accounting for non-neural factors increases
the homogeneity of BOLD, we quantified the variation of BOLD
magnitudes across V1 before and after the correction. Variation
was quantified using the semi-interquartile range divided by the
median (SIR). Intuitively, if the spread of BOLD magnitudes is
small (i.e., %BOLD is relatively homogeneous), SIR will be low,
whereas if the spread of BOLD magnitudes is large (i.e., %BOLD
is inhomogeneous), SIR will be high. We find that, across sub-
jects, the SIR decreases from 0.42 before correction to 0.34 after
correction for TDM and decreases from 0.48 to 0.42 for NSD.

We now return to the experimental effect that motivated this
study, namely, BOLD response asymmetries across the horizon-
tal and VMs in V1. We quantify the asymmetry before and after
correction (Fig. 8B). We find that, after accounting for the non-
neural factors, the asymmetry drops for TDM from 49.2% to
25.1% and from 40% to 18% for NSD. We thus suggest that
some of the observed differences in BOLD response magnitudes
are because of non-neural factors.

In the results demonstrated in this paper, the correction
method reduces inhomogeneities between the horizontal and
VMs. But more generally, it is possible that in other datasets, the
method may reveal activity differences that are masked by non-
neural factors. For example, voxel A might have a lower neural
response than voxel B, but voxel A might reside close to a large
vein which would tend to increase %BOLD. In conventional
fMRI analyses, both voxels might show similar BOLD magni-
tude, although the underlying neural activity is different. The
methods proposed in this paper can be viewed as an attempt to
obtain better estimates of underlying neural activity.

Discussion

In this paper, we used three publicly available datasets to assess
the degree of homogeneity of BOLD signal magnitude in pri-
mary visual cortex. We found that stimulus-evoked BOLD
responses, expressed as percent signal change, are up to 50%
stronger along the HM than the VM. To investigate whether

these magnitude differences can be attributed to differences in
local neural activity, we systematically evaluated the potential
contribution of several non-neural factors to the observed effect.
We found that BOLD signal magnitude correlates with curva-
ture, thickness, depth, and macrovasculature (as indexed by bias-
corrected EPI intensities). Using a regression-based correction
procedure, we were able to increase the homogeneity of BOLD
signal magnitude and found that the meridian differences were
reduced by half.

Spatial variations in BOLD magnitude

This study tackles the issue of the neural basis of variation in
BOLD signal magnitude. Specifically, we address variation in
BOLD across cortical locations for a fixed experimental manipu-
lation, as opposed to variation in BOLD across experimental
manipulations for a fixed cortical location. The latter has been
heavily studied (Heeger et al, 2000; Logothetis et al, 2001;
Heeger and Ress, 2002; Logothetis and Wandell, 2004; Mishra et
al., 2021), whereas the former has not yet been systematically
studied to the best of our knowledge. If there are indeed non-
neural factors that influence BOLD signal variation, taking this
into account is critical when interpreting differences in fMRI
responses across brain regions.

We acknowledge that a challenge in understanding the neural
basis of the BOLD signal is that directly comparable ground-
truth measurements of neural activity are typically not available.
Moreover, the BOLD signal only indirectly measures the neural
response, and its magnitude likely depends on many aspects of
neural activity. Increased BOLD signal might be a consequence
of more neurons firing, more spikes per neuron, changes in neu-
ral correlation, changes in subthreshold activity, and/or changes
in what kinds of neurons are most active. Our approach cur-
rently does not try to distinguish among these causes.

In our analyses, we relied on the working assumption that the
experimental paradigms of the three datasets (combined with
suitable averaging and analysis procedures) are expected to gen-
erate relatively homogeneous patterns of neural activity in early
visual cortex. Of course, this may not be exactly the case.

Non-neural factors that affect BOLD magnitude

Mean bias-corrected EPI

Mean bias-corrected EPI is a convenient marker for macrovascu-
lar contributions to the fMRI signal (Kay et al., 2019). Vertices
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contaminated by venous effects show lower intensity values in
mean EPI images and often result in high %BOLD magnitude. In
the TDM dataset, we found this to be the case and were able to
remove, to some extent, venous effects using the described cor-
rection method. We did not, however, find a strong relationship
between mean bias-corrected EPI and %BOLD magnitude in the
NSD dataset. We suggest that the reason for this apparent dis-
crepancy is that effective discovery of venous contributions
requires high-resolution data where voxel size approaches the
scale of 1 mm or better. Another important issue to consider is
the cerebral sinuses. The sinuses are the largest veins that drain
blood from the brain and they exert major effects at certain spe-
cific cortical locations. Complicating matters is the fact that the
sinuses also produce low EPI intensity, but instead of boosting
BOLD magnitude they seem to reduce it, resulting in low %
BOLD (Winawer et al., 2010; Jamison et al., 2017). In the present
study, we do not attempt to isolate or analyze the effects of the
cerebral sinuses, although preliminary analyses indicate that the
sinuses do not provide a simple explanation of the horizontal/
vertical asymmetry (data not shown).

Cortical anatomy

We find that curvature and thickness correlate with BOLD signal
magnitude (see Fig. 6A). It is known that many anatomical prop-
erties vary with thickness and with curvature (Jiang et al., 2021):
(1) total neuron count is higher in gyri than it is in sulci
(Hilgetag and Barbas, 2005); (2) gyri tend to be thicker than sulci
(Welker, 1990; Hilgetag and Barbas, 2005); (3) venous effects
(resulting in higher BOLD signal amplitude) are more promi-
nent in gyri than they are in sulci (Kay et al., 2019); and (4) there
may even be intrinsic causal relationships between curvature and
thickness during development (Hilgetag and Barbas, 2005).
However, the exact anatomical and biophysical mechanisms
that might link curvature and thickness to BOLD signal magni-
tudes are largely unknown, to our knowledge. This is an impor-
tant issue for future research. Here, we operate under the
working assumption that correlations between the BOLD signal
and curvature or thickness reflect incidental factors unrelated
to local neural activity. We therefore assume that a correction
that removes their influence from the BOLD signal is desirable.

Orientation of pial veins

It has been reported that regions where the cortical surface is ori-
ented perpendicular to the main magnetic field produce lower
BOLD signal than regions where the surface is oriented parallel
(Gagnon et al., 2015; Fracasso et al., 2018). The proposed expla-
nation is that this effect is caused by the orientation of pial veins,
which lie parallel to the cortical surface. Our analyses did not
replicate this result and indicated little relationship between
BOLD magnitude and angle with respect to B, (see Fig. 6A).
One possible explanation could be related to our preprocess-
ing approach, in which fMRI signals are sampled specifically
in the gray matter and away from the pial veins that reside
on top of the gray matter. This may have dampened effects
related to the pial veins. Nonetheless, the prior literature
would have predicted some B, effect even at inner cortical
depths (Viessmann et al., 2019). Alternatively, it is possible
that the orientation effects depend in some way on pulse
sequence parameters or the specific brain area being studied.
A detailed examination of different datasets would be neces-
sary to resolve these discrepancies.

Kurzawski et al. @ Non-Neural Factors Influencying BOLD Response Magnitudes

RF coil effects

Because of cortical folding, gyri tend to be closer to the RF
coil than sulci. Locations that are further from the coil
might have lower mean signal intensities and therefore
lower SNR (Srirangarajan et al., 2021), but this should not
affect BOLD magnitudes expressed in terms of percent sig-
nal change. We are not aware of any mechanism that would
alter the percent signal change in brain locations that are
further away from the RF coil. Indeed, we did not find any
relationship between RF coil bias and BOLD magnitude
(see Fig. 6A).

Correction for the impact of non-neural factors
Our results show that voxel-wise %BOLD is likely contaminated
by several non-neural factors.

To account for these factors, we developed a regression-based
correction method. The goal of this method was to introduce a
simple, data-driven approach that can be applied irrespectively
of the specific experiment or brain region that is under consider-
ation. The underlying premise of the method is that by removing
the contribution of non-neural factors, the resulting measures
would constitute a better representation of the underlying neural
activity. After application of the method, we found that %BOLD
becomes more homogeneous and correlations between %BOLD
and non-neural factors become significantly reduced. Thus, our
results indicate that some variation in %BOLD that might be
interpreted as change in neural activity likely reflects the varia-
tion of non-neural factors.

We believe the results presented in this paper constitute a first
step toward developing a cogent strategy for compensating for
non-neural biases in BOLD signal magnitudes. Suppressing the
influence of non-neural factors has potential applications in pre-
surgical planning, where fMRI is routinely used to map motor,
speech, and visual areas. The value of fMRI for presurgical plan-
ning is currently limited by the accuracy of localizing neural
responses (Silva et al., 2018a). BOLD-derived maps that are a
better representation of neural activity could lead to more accu-
rate neurosurgical interventions.

It remains to be seen whether the remaining asymmetry
across the horizontal and VMs in V1 is a result of genuine neu-
ral activity differences or an effect of other non-neural factors
that we were unable to quantify in the present study (which
might require additional MRI acquisition measures and/or
higher resolution data). It is conceivable that genuine neural ac-
tivity differences may exist across the horizontal and VM loca-
tions in V1. For example, there is greater cortical magnification
along the horizontal than VM (Silva et al., 2018b; Benson et al.,
2021; Himmelberg et al., 2021, 2022), and it is plausible that
this might be accompanied by differences in the strength of
neural responses.

Although our method is aimed toward more meaningful
quantification of the BOLD signal, it differs conceptually from
quantitative BOLD (qBOLD) approaches (He and Yablonskiy,
2007; Yablonskiy et al., 2013; Cherukara et al., 2019). On the
one hand, gBOLD attempts to model the BOLD signal in terms
of its underlying metabolic and hemodynamic components (e.g.,
blood flow, blood volume, oxygenation extraction), and this in
principle may yield measures more closely related to neural
activity. On the other hand, the approach we have taken in this
paper is to apply analytic methods to BOLD data that consider
inhomogeneities that may exist across the brain, with the goal of
better estimating local neural activity. The two approaches are
not mutually exclusive: one might imagine assessing whether the
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magnitude of gBOLD measures covaries with non-neural factors
across the brain.

There are other methods that can be used to suppress the
contribution of non-neural factors to BOLD signal magnitudes.
By identifying early and late components of evoked hemody-
namic responses, a temporal decomposition method can be used
to estimate BOLD response components more closely linked to
the microvasculature, which presumably more closely reflect
local neural activity (Kay et al., 2020). Another analysis method
focuses on BOLD fluctuations where estimates of slow oscilla-
tions (<0.1Hz) are used to suppress vascular-related effects
(Kazan et al,, 2016). Similarly, some methods use the amplitude
of fluctuations in resting-state data to rescale the BOLD signal
(Di et al., 2013; Guidi et al., 2020). Finally, acquisition methods,
such as spin-echo pulse sequences, can be used to suppress
unwanted venous effects. All these methods concern effects of
the macrovasculature, but systematic biases in BOLD signal mag-
nitudes may in theory persist even if BOLD responses were fully
restricted to the microvasculature. Further investigation is neces-
sary to resolve these possibilities.
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