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Both the cerebellum and the basal ganglia are known for their roles in motor control and motivated behavior. These two sys-
tems have been classically considered as independent structures that coordinate their contributions to behavior via separate
cortico-thalamic loops. However, recent evidence demonstrates the presence of a rich set of direct connections between these
two regions. Although there is strong evidence for connections in both directions, for brevity we limit our discussion to the
better-characterized connections from the cerebellum to the basal ganglia. We review two sets of such connections: disynaptic
projections through the thalamus and direct monosynaptic projections to the midbrain dopaminergic nuclei, the VTA and
the SNc. In each case, we review the evidence for these pathways from anatomic tracing and physiological recordings, and
discuss their potential functional roles. We present evidence that the disynaptic pathway through the thalamus is involved in
motor coordination, and that its dysfunction contributes to motor deficits, such as dystonia. We then discuss how cerebellar
projections to the VTA and SNc influence dopamine release in the respective targets of these nuclei: the NAc and the dorsal
striatum. We argue that the cerebellar projections to the VTA may play a role in reward-based learning and therefore con-
tribute to addictive behavior, whereas the projection to the SNc may contribute to movement vigor. Finally, we speculate
how these projections may explain many of the observations that indicate a role for the cerebellum in mental disorders, such
as schizophrenia.

Key words: Cerebellum; Basal-ganglia; dopamine; motor coordination; reward processing; movement vigor

Introduction
Coordinated movements leading to meaningful behavior require
integration of sensory cues that inform the animal of its environ-
ment and the state of its body, activating and coordinating a
multitude of skeletal muscles, and then ensuring that all move-
ments are timed correctly and take place as intended (Ebbesen
and Brecht, 2017). In addition, during goal-directed behavior,
the brain computes what actions are optimal, and even what
goals are worth pursuing. These are fundamental components of
behavior and are thought to be processed by the brain’s reward
system, which computes motivation: the willingness to perform
an action (Salamone and Correa, 2012; Berke, 2018). Even the
simplest volitional behavior requires immense neural computa-
tion; therefore, the motor systems constitute a major component
of the CNS. In mammals, voluntary movements are planned in
the cerebral cortex and executed by spinal cord circuits. Two
additional major structures of the brain, the basal ganglia and the

cerebellum, are also considered to be components of the motor
system. By and large, these two systems control movement indi-
rectly by regulating the activity of the upper motor systems of
the cerebral cortex and brainstem.

The basal ganglia system ensures that the correct move-
ments are initiated and maintained, while unwanted move-
ments are suppressed (Klaus et al., 2019). In contrast, the
cerebellum guarantees that movements take place in a
smooth and coordinated way (D’Angelo, 2018). In addition
to their motor functions, both the basal ganglia and the cere-
bellum are involved in processing sensory perception and
higher-order cognitive functions (Middleton and Strick,
2000; Wagner and Luo, 2020). Both systems are also essen-
tial components of the brain’s learning mechanisms (Bostan
and Strick, 2018). The basal ganglia include the brain’s so-
called reward system, which controls both motivation and
associative learning primarily as positive-reinforcement and
classical conditioning. As with the prominent role of the ba-
sal ganglia in associative learning, the cerebellum also plays
a central role in learning and memory. Cerebellar learning is
primarily understood in the context of error correction in
motor learning, for example, in learning to throw or catch a
frisbee better and better (Popa et al., 2016). Borrowing ter-
minology from Computer Science, cerebellar learning is of-
ten considered a form of error-based supervised learning
(Raymond and Medina, 2018) because it uses feedback about
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the motor system’s performance to adjust the system parame-
ters and improve future performance. However, recent studies
have indicated that cerebellar signals also process reward infor-
mation, suggesting a role for the cerebellum in reward-based
reinforcement learning (Taylor and Ivry, 2014).

All basal ganglia functions depend crucially on neuromodula-
tion by dopamine (DA). DA release from midbrain nuclei to ba-
sal ganglia structures, especially the striatum, is essential for
the initiation and vigor of movements (da Silva et al., 2018).
Dysfunctions of DA neurons, as in Parkinson’s disease, or their
targets in the striatum, as in Huntington’s disease, result in debil-
itating deficits of movement and action (Klein et al., 2019). DA
in the basal ganglia is also essential for the reinforcement learn-
ing system (Lerner et al., 2021), and DA fluctuations are often
considered a proxy for motivation and reward processing
(Salamone and Correa, 2012).

Both the basal ganglia and the cerebellum systems receive
input from the cerebral cortex and sensory systems, and both
communicate back to the cortex, via mostly distinct thalamic
nuclei (Percheron et al., 1996; Sakai et al., 1996). Thus, either sys-
tem can be considered a component of a cortical loop, and these
two loops have been historically thought to interact at the corti-
cal level. Yet, early functional and anatomic studies (Li and
Parker, 1969; Snider et al., 1976; Nieoullon et al., 1978; Nieoullon
and Dusticier, 1980) as well as human brain imaging (Kwon and
Jang, 2014; Milardi et al., 2016) had suggested the possibility of
more direct connections between these structures. The develop-
ment of modern anatomic techniques allowed for the discovery
of interactions between the cerebellum and the basal ganglia in-
dependent of the cortical loops (Hoshi et al., 2005; Bostan et al.,
2010), leading to a renewed interest in unraveling the nature
of interactions between these two important brain structures
(Cacciola et al., 2017; Caligiore et al., 2017). In the past decade, a
handful of studies used modern techniques in viral-genetic cir-
cuit mapping, imaging, optogenetics, and electrophysiology to
show that the cerebellum also provides a direct input to the basal
ganglia DA centers (Watabe-Uchida et al., 2012; Beier et al.,
2015; Carta et al., 2019; Washburn et al., 2022), increasing the
dimensions by which the cerebellum can contribute to move-
ment and cognition. Nevertheless, the detailed function of these
connections or their mechanism of action remains unclear. In
this article, we will review these recent findings and discuss the
contribution of the subcortical pathways that connect the cere-
bellum to the basal ganglia to the processing of (1) movement
initiation and coordination and (2) reward-based learning in the
basal ganglia. Although there is also strong evidence in support
of subcortical connections from the basal ganglia to the cerebel-
lum (Kizer et al., 1976; Ikai et al., 1994; Meissner et al., 2005;
Bostan et al., 2010; Sutton et al., 2015; Jwair et al., 2017; Flace et
al., 2021), we will not discuss these connections in this review.

Basic cerebellar anatomy and projections to the basal ganglia
Cerebellar processing is performed by the cerebellar cortex,
whose anatomic organization is primarily a uniform, repetitive
three-layer neuronal circuit. The cellular processing units of the
cerebellar cortex are the Purkinje cells, which receive primarily
inputs from the pontine nuclei and the inferior olive. The pon-
tine nuclei axons (mossy fibers) synapse onto granule cells, the
most abundant cells in the vertebrate brain. Purkinje cells inte-
grate inputs conveyed from the parallel fibers, the granule cell
axons, and from climbing fibers, the axons of the inferior olivary
neurons. Purkinje cells are tonically active (pacemakers) and
have inhibitory GABAergic output. Their axons mainly project

to the neurons in the deep cerebellar nuclei (DCN), the cerebellar
output nuclei whose efferent projections are sent to other brain
regions. As with the Purkinje cells, the DCN neurons are also toni-
cally active. Inhibition by the Purkinje cells results in changes in
the pattern and frequency of firing of DCN neurons (Cerminara
et al., 2015; Hull and Regehr, 2022).

The DCNs are bilateral and, on each side, are composed of
three primary nuclei: the dentate, the interposed, and the fastigial
nucleus, each of which somatotopically receives inputs from their
overlaying cerebellar cortex. Classical studies suggested that the
dentate and interposed nucleus neurons project mainly to the thal-
amus and the midbrain, while the brainstem and spinal tracts are
targeted mainly by the fastigial nuclei (Ito, 1984; Voogd, 2014).
While in broad strokes these observations remain valid, recent
data show heterogeneity in DCN neurons and broad projections
from each nucleus to similar but mostly nonoverlapping target
regions (Kebschull et al., 2020), suggesting that each nucleus may
have a potentially different functional influence on the target
regions. Moreover, historically it is thought that the cerebellar
nuclei may serve distinct functions, with the fastigial and inter-
posed nuclei primarily contributing to motor execution, and the
dentate to motor planning (Manto and Oulad Ben Taib, 2010;
Gao et al., 2018).

Although early anatomic studies (discussed below) linked
the cerebellum with some components of the basal ganglia,
recent advances on tracing techniques combined with cutting-
edge approaches, such as optogenetics and fiber photometry,
have allowed a more rigorous characterization of the details
and possible functions of the pathways involved in the cere-
bellum-basal ganglia connections. Below, we will discuss the
evidence linking the cerebellum with the basal ganglia, specifi-
cally the pathways through the thalamus and the midbrain DA
centers (Fig. 1), and then delineate the possible roles of the
cerebellum in these different circuits in terms of motor con-
trol, motivation, and reward-related behaviors.

The thalamic pathway and its influence on motor
coordination
The cerebellum and basal ganglia have been traditionally consid-
ered to be interconnected via the cerebral cortex (Haber and
Gdowski, 2004; Nieuwenhuys et al., 2007; Voogd and Ruigrok,
2012). However, both the basal ganglia and the cerebellum com-
municate to the cortex through the thalamus, albeit through dif-
ferent thalamic nuclei (Percheron et al., 1996; Sakai et al., 1996),
although some degree of convergence exists (Hintzen et al.,
2018). The thalamus, in turn, has a myriad of connections to sub-
cortical structures, so the idea that the cerebellum and the basal gan-
glia may have connections through the thalamus has been present
for a long time. Interestingly, such connections have been examined
in nonmammalian vertebrates. Both the cerebellum and the basal
ganglia are brain structures that have been conserved throughout
the vertebrate evolutionary history (Nieuwenhuys, 1967; Grillner
and Robertson, 2016), and both by far predate the evolution of the
neocortex (Van Essen et al., 2018). Many studies have examined the
role of these structures in a variety of behaviors in nonmammalian
vertebrates (Reiner et al., 1998; Gómez et al., 2010; Brown et al.,
2011; Montgomery and Perks, 2019). In songbirds that learn song
by imitation, both structures have been implicated in song learning
(Ziegler and Ackermann, 2017; Daou and Margoliash, 2021).
Connections from the cerebellum to the song-related components
of the basal ganglia had been suggested by anatomic studies (Vates
et al., 1997; Person et al., 2008; Nicholson et al., 2018), but the func-
tional significance of these connections to sensorimotor learning in
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songbirds was unknown. A recent study confirmed the
presence of a disynaptic connection between the cere-
bellum and Area X, a striatal nucleus of the songbird
basal ganglia, through the thalamus. This pathway is
mediated by the dorsal thalamic zone, which is the bird
homolog of the mammalian intralaminar, midline, and
mediodorsal nuclei (Veenman et al., 1997). Electrical
stimulation of the DCN in anesthetized zebra finches
provoked a strong increase in the firing rate of Area X
neurons, indicating that cerebellar activity can drive
these striatal neurons. In addition, DCN lesions resulted
in lower imitation scores in song learning, suggesting
that the cerebellar projection to the basal ganglia con-
tributes to song learning (Pidoux et al., 2018).

Does a similar pathway exist in mammals? An
early anatomic study in the rat used double labeling
with traditional tracers and electron microscopy to
show an overlapping distribution, in the central lat-
eral nucleus (CL) of the thalamus, of retrograde-la-
beled neurons of the dorsolateral striatum and
anterograde-labeled cerebellar dentate nucleus axon
terminals (Ichinohe et al., 2000). The presence of a
similar connection was shown using modern ana-
tomic retrograde rabies virus tracing methods in the
macaque monkey. This study showed that both the
motor and the nonmotor domains of the dentate nu-
cleus are linked to the striatum via a disynaptic con-
nection (Hoshi et al., 2005), and suggested that the
intralaminar thalamic nuclei (Smith et al., 2004; Xiao
et al., 2018) (which include the CL and the parafascic-
ular nucleus [PF]) may be the intermediary connec-
tion between the two structures. The physiological
properties of such a connection were explored more
recently, in behaving rodents, in a study that specifi-
cally examined the connections from the dentate
nucleus to the dorsal striatum (DS)-projecting CL tha-
lamic nucleus neurons (Chen et al., 2014). Optogenetic
stimulation of the cerebellar axons in the thalamus
evoked rapid (;10ms) excitation of dorsal striatal neuronal activity,
which was abolished by the inactivation of the thalamic CL, but not
of the cerebral cortex. This was the first physiological proof that, in
mammals, the cerebellum communicates with the basal ganglia in-
dependent of the classical cortical route. This study further showed
that the cerebello-thalamostriatal pathway can adjust long-
term plasticity of cortical projections to the striatum by
switching LTP of the corticostriatal synapse to LTD, thus
pointing to a potential function of simultaneous activity in
these two pathways. Although the basal ganglia connections
cover the anterior-medial parts of the thalamus, the cerebellum
mainly projects to the posterior-lateral regions of the thalamus.
Nevertheless, the existence of overlapping zones, mainly through
medial thalamic and intralaminar nuclei, supports the presence
of a similar thalamic interaction between the two systems in
humans.

What potential function may the cerebello-thalamostriatal (Cb-
CL/PF-DS) pathway serve? Cerebellar activity correlates with move-
ment kinematics and is necessary for the real-time adjustment and
optimization of the muscle activity (Ito, 1984), while it is thought
that the basal ganglia are primarily concerned with the selection of
optimal motor commands (Mink, 1996; Doya, 1999; Redgrave et
al., 1999; Doya, 2000). It is possible that the real-time muscle kine-
matics conveyed by the Cb-CL/PF to the basal ganglia would be of
value to its selection of the optimal motor commands for complex

motor tasks, particularly for movements that require high temporal
precision and thus synchronization between the two structures. In
support of this hypothesis, Diaz-Hernandez et al. (2018) reported
that thalamostriatal projections were activated for several millisec-
onds before a mouse initiated movement sequences in an operant
task, and that inhibition of their activity led to a delay in movement
initiation, suggesting that the basal ganglia relies on this information
on the millisecond timescale for movement initiation. Studies of
dystonia also supported this idea. In a mouse model of cerebellar-
induced dystonia, it was shown that the Cb-CL projections errone-
ously transmit irregular high-frequency activity to the striatum,
causing the dorsal striatal neurons to fire in high-frequency bursts.
Interrupting the Cb-CL activity rescued the dystonia in these mice
(Chen et al., 2014). Together, these studies indicate that the Cb-CL-
DS signaling is essential for intact motor coordination, and inap-
propriately timed or excessive signaling from the cerebellum to the
striatum via the thalamus can aggravate or cause abnormal move-
ment disorders, such as dystonia.

Interactions through the midbrain dopaminergic nuclei
Midbrain DA nuclei are a key brain region in charge of provid-
ing DA to the basal ganglia and the cerebral cortex. DA release
in the basal ganglia is necessary for reward processing and move-
ment initiation, and impairment in DA release dynamics could
produce severe behavioral consequences in motor and nonmotor
domains. Recent evidence showing that the cerebellum directly

DS

NAc

SNcVTA

CL/PF

Cortex

Cerebellum

DCN

Figure 1. Anatomical pathways connecting the cerebellum with the basal ganglia. The figure refers only
to the noncanonical pathways described in this review. The traditional cerebello-thalamo-cortical pathways
are omitted. The DCN of the cerebellum connect with the DS via the thalamic nuclei (CL and PF), and with
the NAc and DS via the VTA and the SNc, respectively. The thalamic pathway conveys fast glutamatergic sig-
nals to the striatum, contributing to motor coordination. Projections via the VTA and SNc allow the cerebellum
to directly contribute to DA release in the DS and the NAc. The VTA, as well as the thalamus, also projects to
the cerebral cortex. VTA cortical projections suggest that the cerebellum can directly contribute to cortical DA
levels via direct projections to the VTA (this connection is not discussed in this review).
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contributes to midbrain dopaminergic activity in behaving ani-
mals suggests that cerebellar input plays a direct role in basal
ganglia DA levels, and proposes that this circuit might play a
central role in linking the cerebellum to motor and nonmotor
dysfunctions. Below, we review the recent work supporting this
idea.

Projections to the VTA and their potential influence on
motivation and reward evaluation
The ventral tegmental area (VTA) is a ventromedial midbrain nu-
cleus, and is one of the major sources of DA in the brain together
with the substantia nigra. The VTA plays a role in a variety of
brain functions, such as positive and negative reinforcement, deci-
sion-making, salience, and aversion (Ungless et al., 2004; Berridge,
2007; Matsumoto and Hikosaka, 2009; Bromberg-Martin et al.,
2010; Lammel et al., 2012; Fry et al., 2021). The VTA receives
inputs from different brain regions, including the PFC, NAc, lat-
eral habenula, and the ventral pallidum (Geisler et al., 2007;
Watabe-Uchida et al., 2012; Ogawa et al., 2014; Beier et al., 2015;
Faget et al., 2016) and sends dopaminergic projections to several
brain regions, primarily through two major pathways: the meso-
limbic pathway to the NAc (Fallon and Moore, 1978; Mogenson
et al., 1980; Phillipson and Griffiths, 1985) and the mesocortical
pathway to the PFC (Swanson, 1982) (see Fig. 1). The mesolimbic
pathway has been involved in reward-related behaviors, motiva-
tion, and aversion (Salamone, 1994; Cardinal et al., 2002; Carelli,
2002; Yun et al., 2004; Goto and Grace, 2005). The VTA is
mainly composed of DA neurons, while the rest of the neurons
are GABAergic or (a smaller fraction) glutamatergic. The
GABAergic and glutamatergic subgroups include both local
interneurons and projection neurons, and some fraction of these
corelease DA as well (Morales and Margolis, 2017).

Almost 50 years ago, some anatomic studies pointed out cere-
bellar projections to the VTA, but there were no follow-up explo-
rations of this pathway until the recent development of modern
tracing methods. The early studies performed tracing experiments
using post-lesion staining of degenerating projections, and antero-
grade or retrograde tracing in cats and rats, and showed that all
three DCNs contribute to VTA projections (Snider et al., 1976;
Phillipson, 1979; Teune et al., 2000). The development of transsy-
naptic anterograde and retrograde viruses allowed researchers to
corroborate these results. Using transgenic mice lines combined
with retrograde viruses to selectively target specific cell types, it
was demonstrated that the DCN send direct projections to VTA
DA, GABAergic, and glutamatergic neurons (Watabe-Uchida et
al., 2012; Beier et al., 2015; An et al., 2021). There are, however,
some disagreement in these studies on the DCN origin and iden-
tity of these projections. Baek et al. (2022) have observed projec-
tions in the dorsolateral VTA mainly from the dentate nucleus
and to a lesser extent from the interposed nucleus, but not from
the fastigial nucleus. However, by using a transsynaptic antero-
grade virus to label postsynaptic target cells, another study has
shown that the posterior fastigial nucleus also contributes to these
projections (Fujita et al., 2020). Results from our group have also
corroborated this pathway. Similarly, we have observed cerebellar
inputs coming from the three cerebellar nuclei, targeting DA and
GABAergic VTA neurons. Projections from each DCN nuclei tar-
get different, but overlapping regions in the VTA, suggesting
potentially specific contributions of each DCN to the VTA
pathway (Oñate and Khodakhah, unpublished observation).
Physiologic characterization of the DCN projections that used
optogenetic stimulation to demonstrate the presence of functional

monosynaptic cerebellar projections to the VTA only found exci-
tatory connections (Carta et al., 2019; Baek et al., 2022).

In order to understand the possible functional roles of this
pathway, it is important to identify the targets of the VTA neurons
that receive cerebellar input. A major output of the VTA is
through the mesolimbic projections to the NAc. Anatomical
tracing experiments to trace the input of cell type-specific
neurons in the VTA based on the output suggested the exis-
tence of a disynaptic pathway from the cerebellum to the
accumbens through this pathway that involves GABAergic,
glutamatergic, and dopaminergic neurons (Beier et al., 2015,
2019). Corroborating this circuit, a recent study (D’Ambra et
al., 2021) showed an overlap in the VTA neurons that receive
input from the DCN (tagged using an anterograde viral
tracer) and those that project to NAc (tagged using a retro-
grade tracer). In addition, intersectional tracing using a transsynap-
tic virus combined with an anterograde virus showed cerebellar
VTA projections to accumbens (D’Ambra et al., 2021). Data from
our group have also confirmed these results. Using a combination
of transsynaptic anterograde and retrograde virus tracing, we
mapped and identified the cells in the DCN and in the VTA that
form this disynaptic pathway. We found that neurons from all three
DCN nuclei project to DA and non-DA neurons in the VTA (the
Cb-VTA pathway) that then send extensive projections to all regions
of the NAc (Oñate and Khodakhah, unpublished observation).

Previous data from our group have also shown that the Cb-
VTA pathway is functionally active. The DCN sends monosy-
naptic excitatory projections to both dopaminergic and nondo-
paminergic neurons of the VTA (Carta et al., 2019). Given that
VTA sends major projections to the NAc, this suggests that cere-
bellar activity could trigger excitation of the VTA neurons and
consequently modify the mesolimbic neuronal activity. A similar
study used amperometry measurements of DA to show that elec-
trical stimulation of the dentate nuclei evokes DA release in the
NAc (Holloway et al., 2019). Using fiber photometry to measure
DA activity with the fluorescent sensor dLight, we also recently
found that optogenetic stimulation of the Cb-VTA pathway can
drive DA release in the NAc (Vera and Khodakhah, unpublished
observation). Interestingly, stimulation of this pathway evoked
not only DA release but also fast excitation of NAc single units
(D’Ambra et al., 2021; Vera and Khodakhah, unpublished obser-
vation), suggesting that cerebellar activity can have strong influ-
ence in the activity of the NAc.

Although the cerebellum has been traditionally thought to pro-
cess mainly motor-related information, it is well known that it
also contributes to a variety of other brain functions, such as sen-
sory and cognitive processing (Rapoport et al., 2000; Noroozian,
2014; Bostan and Strick, 2018; Schmahmann, 2019). Pertaining to
our topic, several recent studies have reported that the cerebellum
encodes and processes reward-related signals (Ohmae and
Medina, 2015; Wagner et al., 2017; Heffley et al., 2018; Heffley and
Hull, 2019; Kostadinov et al., 2019; Larry et al., 2019; Kostadinov
and Hausser, 2022), functions that are typically attributed to the
limbic system and are also the purview of the basal ganglia. But is
this reward-related information conveyed to the basal ganglia?

Some clues from earlier studies suggest an answer to this
question. Impairment in Purkinje cells, granule cells, or the
DCNs could cause a reduction in motivated behaviors (Berntson
and Schumacher, 1980; Caston et al., 1998; Bauer et al., 2011). As
we described above, the cerebellum has direct projections to the
VTA dopaminergic neurons. It is well known that VTA dopa-
minergic neurons, in particular the projections to the NAc, play
a central role in reward-driven motivated behaviors and in
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reward-based reinforcement learning (Saunders et al., 2018;
Mohebi et al., 2019). Interestingly, time-restricted optogenetic
inactivation of the VTA-accumbens projection does not affect
ongoing movements (Lee et al., 2020) but influences upcoming
future behaviors (Chang et al., 2016; Lee et al., 2020). These
findings suggest that the Cb-VTA-NAc pathway may contrib-
ute to the computation of motivation and influence learning
processes. Indeed, fiber photometry measurement of the fluo-
rescent calcium indicator GCaMP in behaving mice showed
that the activity of the Cb-VTA projection was increased during
social interaction, compared with exploration of an empty
chamber (Carta et al., 2019), and scaled with reward value in a
Pavlovian task (Yoshida and Khodakhah, unpublished observa-
tion). In addition, optogenetic stimulation of the Cb-VTA
projection produced conditioned place preference, and its opto-
genetic inhibition impaired social interactions in a three cham-
ber test (Carta et al., 2019).

The mesolimbic DA pathway is known to be an essential
component of brain processes underlying addiction (Nestler,
2001; Koob and Volkow, 2010). The fact that the Cb-VTA pro-
jection is involved in motivational processing therefore indicates
that this projection may also contribute to the pathologic
mechanisms underlying addiction. Although the cerebellum is
not generally considered as part of the neural circuitry respon-
sible for drug abuse and addiction, studies of drug-dependent
humans have consistently yielded tantalizing evidence, sug-
gesting cerebellar involvement in reward processing and in
addiction (Volkow et al., 2006; Thomas et al., 2008; Miquel et
al., 2009, 2016, 2019, 2020; Moulton et al., 2014; Wagner et al.,
2017; Guarque-Chabrera et al., 2022). For example, cerebellar
gray matter volume is reduced in long-term addicted individ-
uals compared with controls (Moulton et al., 2014; Miquel et
al., 2016). Even more compellingly, functional imaging studies
show that the cerebellum is activated in human subjects receiv-
ing methylphenidate, cocaine, or nicotine (Volkow et al., 1997,
2006; Domino et al., 2000; Risinger et al., 2005; Zubieta et al.,
2005). Moreover, in drug abusers, cues predictive of drugs acti-
vate the cerebellum (Grant et al., 1996; Schneider et al., 2001;
Bonson et al., 2002; Anderson et al., 2006), and the strength of
these activations correlates with subjective ratings of craving
(Grant et al., 1996; G. J. Wang et al., 1999; Sell et al., 2000; Kilts
et al., 2001; Schneider et al., 2001; Bonson et al., 2002; Risinger
et al., 2005; Anderson et al., 2006; Lou et al., 2012). These strik-
ing and consistent correlations seen in human subjects suggest
that the cerebellum may participate in craving, relapse, and
even primary drug reinforcement. Recent studies in rodents
find that chronic cocaine treatment causes structural plasticity
in cerebellar Purkinje cells (Vazquez-Sanroman et al., 2015),
and that cerebellar granule neurons exhibit c-Fos activation in
mice expressing a cocaine-conditioned place preference (Carbo-
Gas et al., 2014), leading to strong evidence for cerebellar involve-
ment in cocaine-induced habit formation (Domino et al., 2000;
Miquel et al., 2019, 2020; Gil-Miravet et al., 2021; Sanchez-
Hernandez et al., 2021). These studies strongly indicate that the
cerebellum is one of the brain regions involved in the pathologic
mechanisms of addiction, possibly by its modulation of the meso-
limbic pathway.

The cerebello-nigrostriatal pathway and its possible role in
movement vigor
Another dopaminergic center in the midbrain is the substantia
nigra pars compacta (SNc), located in the ventrolateral region,
next to the VTA. Like the VTA, the SNc mainly contains DA

neurons; and although it also includes GABAergic and glutama-
tergic neurons, DA neurons dominate by far (Nair-Roberts et al.,
2008). The major output of the SNc is through its (nigrostriatal)
projections to the DS, where the release of DA modulates the
properties of target neurons and their synapses. DA release in
the DS has been associated with motor control, primarily because
degeneration of DA neurons in the nigrostriatal system, a pri-
mary hallmark of Parkinson’s disease, is linked to difficulty in
initiating movements (hypokinesia) and rigidity, and its hyperac-
tivity could favor hyperkinetic movements (Wang et al., 2013).
Notably, studies using MRI for fiber tracking have suggested the
presence of cerebellar connections with the substantia nigra and the
VTA in healthy humans (Kwon and Jang, 2014; Milardi et al.,
2016), and that the relative connectivity with these two regions is
modified in patients with Parkinson’s disease (O’Shea et al., 2022),
suggesting that cerebellar activity is a required input for these dopa-
minergic centers in humans.

As discussed for the VTA in the previous section, older ana-
tomic tracing studies had implicated the presence of direct cere-
bellar projections to the SNc. Lesions in each DCN nucleus,
followed by a staining method to detect neuronal degenerated
terminals revealed that the DCN projects to the substantia nigra,
targeting medial and lateral regions of the SNc (Snider et al.,
1976). This work was not followed up for several decades, until
the development of modern neuronal tracing techniques (as dis-
cussed above) allowed for a more rigorous reevaluation of these
connections. Using a retrograde viral approach to target specific
neuronal cell types shows inputs in the cerebellum projecting to
DA, GABAergic, and glutamatergic neurons in the SNc (Watabe-
Uchida et al., 2012; An et al., 2021). More recently, this result was
corroborated by multiple groups. Using a transsynaptic antero-
grade virus to label all target cells, Fujita et al. (2020) showed that,
specifically, the caudoventral region of the fastigial nucleus sends
projections to SNc DA and non-DA neurons. Our own anatomic
work using the same approach, but targeting the entire DCN, con-
firmed these projections to both DA and non-DA neurons of the
SNc. By mapping the target cells in detail, we found cells through-
out the entire SNc. Additionally, injection of a retrograde virus in
the SNc to map all originating neurons demonstrated that cerebel-
lar inputs come from all three DCN (Washburn et al., 2022). In a
similar study, to label the input of SNc-DA neurons based on their
output, particularly to the striatum, input cells in the cerebellum
were observed, providing anatomic data for the existence of this
disynaptic circuit (Menegas et al., 2015). In addition to anatomic
studies, both older and recent studies have explored the function-
ality of this pathway. Electric stimulation of the DCN was shown
early on to alter DA levels in the striatum (Nieoullon et al., 1978;
Nieoullon and Dusticier, 1980). More recently, our group showed
that the projections from DCN neurons to the SNc (the Cb-SNc
pathway) form monosynaptic glutamatergic synapses, targeting
AMPARs and NMDARs, with both DA and non-DA neurons.
Optogenetic stimulation of this pathway in slice preparations
produced fast excitatory synaptic currents in SNc neurons.
Additionally, in vivo optogenetic stimulation of this pathway
increased SNc single-unit activity and evoked DA release in the
DS, as measured with the fluorescent DA sensor dLight (Washburn
et al., 2022). Finally, in vivo optogenetic activation of the Cb-SNc
pathway increased the probability of locomotion in head-fixed
animals ambulating on a treadmill. Together, these data show
that cerebellar projections to the SNc can play a prominent role
in the DA modulation of the basal ganglia and may constitute
an additional pathway by which the cerebellum contributes to
movement coordination.
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All movements underlying natural behavior are initiated
and executed with a specific delay, speed, frequency, and with
appropriate force, attributes that are collectively referred to as
movement vigor. All components of movement vigor are flexi-
ble and subject to change depending on behavioral need. A
large body of research in primates, including humans, and
rodents shows that the basal ganglia play a central role in con-
trolling movement vigor (Berardelli et al., 2001; Boecker et al.,
2008; Palmiter, 2008; Howe and Dombeck, 2016; da Silva et al.,
2018; Shah et al., 2020) and that nigrostriatal DA plays a critical
role in adjusting movement vigor (Panigrahi et al., 2015;
Mendonça et al., 2021). It is also known that the DCN activity
precedes movement onset (Thach, 1970, 1975; Armstrong et al.,
1979; Fortier et al., 1989) similar to what has been observed
for the SNc DA neurons (Boecker et al., 2008; Howe and
Dombeck, 2016; da Silva et al., 2018), and that inhibiting the ac-
tivity of the cerebellar nuclei slows reaction times in motor
tasks (Meyer-Lohmann et al., 1977; Trouche and Beaubaton,
1980; Miller and Brooks, 1982; Tsujimotoet al., 1993). Although
the cerebellar thalamocortical pathway is known to contribute
to movement initiation (Dacre et al., 2021), as discussed above,
recent work from our laboratory has also shown that the Cb-
SNc projection directly influences the activity of the SNc DA
neurons and their DA release in the DS. Interestingly, in a sim-
ple Pavlovian task where animals were given a liquid reward
following a sensory cue, the Cb-SNc projections showed activa-
tion to water reward and a much higher activation to sweet
water reward, indicating that this pathway conveys information
on the reward value (Washburn et al., 2022). The cerebellum is
commonly thought as a “learning machine” that uses cortical
and sensory input to learn to predict the neural activity needed
to coordinate posture and movement (Ito, 1984, 2006). Knowing
that the cerebellum computes reward value information, it is plau-
sible that the cerebellum uses sensory and cortical signals to com-
pute reward likelihood and communicate this information to the
SNc. The SNc then can use this information, together with those
arriving from other brain regions, to determine the appropriate
movement vigor.

Given the evidence showing the strong activation of the SNc
DA neurons by the Cb-SNc activity, it is logical to think of this
pathway in the context of Parkinson’s disease. Parkinson’s dis-
ease is caused by the degeneration of SNc DA neurons (Damier
et al., 1999; Dauer and Przedborski, 2003; Michel et al., 2016).
A key feature of Parkinson’s disease is the difficulty in initiating
movements and the movements of Parkinsonian patients, once
initiated, tend to be slower (Benecke et al., 1987; Jahanshahi et
al., 1992; Pascual-Leone et al., 1994; Chen et al., 2001), both in-
dicative of a deficit in movement vigor. Therapeutic approaches
that increase DA receptor activation, such as increasing DA release
by administering levodopa, are effective in alleviating these vigor
deficits early in the disease (Ehringer and Hornykiewicz,
1960; Hornykiewicz, 1975; Birkmayer and Hornykiewicz,
1998; Hornykiewicz, 2006), indicating that reduced DA is
the major cause of the motor symptoms. Recent studies have
shown a rapid increase in the activity of SNc DA neurons im-
mediately preceding movement onset (Boecker et al., 2008;
Howe and Dombeck, 2016; da Silva et al., 2018) and have
demonstrated that SNc DA plays a central role in the control of
movement vigor (Berardelli et al., 2001; Mazzoni et al., 2007;
Palmiter, 2008; Turner and Desmurget, 2010; Panigrahi et al.,
2015; Mendonça et al., 2021). As described above, the Cb-SNc
projection can convey movement vigor information to the basal
ganglia by increasing the activity of SNc DA neurons and

striatal DA levels. Although the Cb-SNc pathway is not the sole
projection that contributes to regulation of SNc DA neurons, it
is nonetheless plausible that increasing the activity of the Cb-
SNc pathway may alleviate the Parkinson’s-like motor symp-
toms if the DA neurons are only partially lost. This hypothesis
could be readily examined in animal models of Parkinson’s dis-
ease with optogenetic excitation of the Cb-SNc pathway. If excita-
tion of the Cb-SNc pathway can reduce Parkinson’s-like vigor
deficits, activation of this pathway provides a potential therapeutic
substrate by deep brain stimulation or transcranial magnetic stim-
ulation of DCNs that can be readily targeted in Parkinsonian
patients.

Beyond reward and movement: thoughts on the potential
role of the cerebellum and basal ganglia interactions in
schizophrenia
Both the cerebellum and basal ganglia are implicated in diverse
functions, such as motor, cognitive, reward, and emotional proc-
essing. As discussed, recent findings have revealed an extensive
set of direct, cortex-independent, pathways by which the cerebel-
lum communicates with the basal ganglia. These pathways allow
the cerebellum to transmit information at multiple timescales,
with neurotransmitters, such as glutamate, enabling fast, short-
latency communication with millisecond time resolution, and
neuromodulators, such as DA, supporting slower modulation of
the basal ganglia in the 100 ms to seconds timescale. As discussed
above, a cardinal feature of the cerebellar circuitry is its ability to
provide predictive outputs based on learned associations between
a wide array of sensory and cortical inputs. It is plausible, there-
fore, that the cerebellum constantly samples the environment
and one’s intent using its extensive sensory and cortical inputs,
and via its direct projections provides the basal ganglia with pre-
dictions that help formulate diverse sets of behaviors, ranging
from movement to reward processing, motivated behavior, and
cognition.

Further scrutiny of such potential functional frameworks
might allow for formulation and test of hypotheses to better
understand the brain, and also to account for the diversity of
nonmotor disorders in which the cerebellum is implicated. As an
example of the latter, it might be interesting to briefly consider
the role of the cerebellum in schizophrenia. In patients, a sub-
stantial decrease in cerebellar size (Laidi et al., 2015; Moberget et
al., 2018, 2019) changes in cerebellar connectivity with the cor-
tex and basal ganglia (Cao et al., 2018; Moberget et al., 2018;
Anteraper et al., 2021), and cerebellar, cortical, and striatal
hypoactivity (Lungu et al., 2013) are some of the most common
and consistent findings. A major debilitating feature of schizo-
phrenia is the presence of negative symptoms, cardinal among
which are apathy and amotivation (Millan et al., 2014; Mosolov
and Yaltonskaya, 2021). Given that motivated behavior requires
reward processing by the midbrain DA centers that target both
the PFC and the ventral striatum, the negative symptoms of
schizophrenia might be the consequence of the reduced interac-
tions between the cerebellum and the basal ganglia DA network
as described here. Such a failure in communication between the
cerebellum and basal ganglia might prevent the cerebellum
from conveying to the basal ganglia its predictions related to
desirability of upcoming behaviors, leading to apathy and amo-
tivation. Indeed, in support of such a possibility, preliminary
reports suggest that transcranial magnetic stimulation of the
cerebellum can partially restore its functional connectivity with
the cortex and the basal ganglia, and concurrently lessen the se-
verity of the negative symptoms in patients (Demirtas-Tatlidede,
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et al., 2010; Tikka et al., 2015; Garg et al., 2016; Brady et al., 2019;
Basavaraju et al., 2021; Zhu et al., 2021; Bègue et al., 2022).

The recent advances in our understanding of the nature of
the interactions between the cerebellum and basal ganglia, and
the potential contributions that these interactions may make in
motor and nonmotor functions of the brain, have generated sig-
nificant excitement in the field and have forced reevaluation of
many long-held beliefs. No doubt, the fertile ground thus gener-
ated will motivate a large number of exciting new hypotheses
that need to be rigorously tested in the coming years.
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