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Biological neural networks adapt and learn in diverse behavioral contexts. Artificial neural networks (ANNs) have exploited
biological properties to solve complex problems. However, despite their effectiveness for specific tasks, ANNs are yet to realize the
flexibility and adaptability of biological cognition. This review highlights recent advances in computational and experimental
research to advance our understanding of biological and artificial intelligence. In particular, we discuss critical mechanisms from
the cellular, systems, and cognitive neuroscience fields that have contributed to refining the architecture and training algorithms of
ANNs. Additionally, we discuss how recent work used ANNs to understand complex neuronal correlates of cognition and to pro-
cess high throughput behavioral data.
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Introduction
Recent technological advances have transformed our access
to the fine-grain spatiotemporal organization of the anat-
omy and physiology of biological neural networks. Over the
years, big data on an astounding diversity of genes, pro-
teins, neurons and glia, dendrites, synapses, and neural net-
work functions have transformed our understanding of
the brain (Sejnowski et al., 2014). On the other hand, brain-
inspired implementations of artificial neural networks
(ANNs), the perceptron model (McCulloch and Pitts, 1943;
Rosenblatt, 1958), Boltzmann machines (Ackley et al.,
1985), and Hopfield networks (Hopfield, 1982), have had
profound implications for biological research and computa-
tional problems. These ANN architectures have been founda-
tional for applications in pattern completion, attractor networks,
dynamical systems, and diverse algorithmic capabilities in

modern convolutional, multilayer, and recurrent neural net-
work (RNN) models.

Although biological neural networks have continued to guide
the development of their artificial counterparts, the beacon has
been held by mathematics and statistical physics to develop
efficient models of optimization functions (Sutskever et al.,
2011; Cox and Dean, 2014). ANNs have leapfrogged from
nonlinear systems and networks (Minsky and Papert, 1972;
Haykin, 1994) to deep and recurrent networks (LeCun et al.,
2015; Schmidhuber, 2015). More recently, backpropagation
of error (Werbos, 1974, 1982; Rumelhart et al., 1986) has
enabled the efficient training of neural networks, by computing gra-
dients with respect to the weights of a multilayer network. Although
methods to train ANNs have evolved to include improved weight
initializations, optimization, and gradient descent algorithms, they
do not appear to have any analogous neurobiological principles
(Marblestone et al., 2016).

Here, we review the current state of the art of ANNmodels in
terms of “biological realism,” their applications and limitations,
with the ultimate aim of identifying the operational principles
and functional settings through which biological neural networks
and ANNs can inform each other toward synergistic development.
With this background, the review focuses on four distinct aspects.

1. How can biological intelligence guide the refinement of
ANN architectures?

2. How can ANNs drive a better understanding of cognition?
3. What are the limitations of ANNs with respect to modeling

human cognition?
4. What are the recent advances in applying ANNs to quantify

complex behavior?
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Refining ANNs with biological precision
ANNs share many interesting features in common with biological
neural networks. This is, of course, no accident, as the original
ANN algorithms were in part inspired by the anatomy of the cere-
bral cortex (Sejnowski, 2020). The successful use of ANNs to model
computations has forced a recalibration of our working models
of the nervous system, leading to the embrace of dynamical models
of computation that incorporate distributed computations across
widespread, ever-changing networks (Sohn et al., 2019). Advances
in cellular neuroscience, neuroimaging, and computational model-
ing are enabling the integration of new details into advanced ver-
sions of ANNs that will, hopefully, bring us closer to the goal of
understanding how the brain works, while simultaneously refining
artificial intelligence (AI).

A prime example of an emerging tension between neuro-
science and AI is the recognition that pyramidal neurons,
the workhorse of the cerebral cortex and the primary feature
mimicked by ANNs, have highly nonlinear operating modes
(Larkum, 2013). Traditional models of pyramidal neurons
assumed that the dendrites of pyramidal neurons linearly
summed their action potentials within a given window, and only
spiked when the inputs exceeded a certain threshold (Larkum,
2022). In stark contrast, recent work has clearly demonstrated
that many pyramidal neurons in the cerebral cortex have distinct
modes of operation, sometimes firing linearly with inputs and
other times ignoring inputs altogether (Fig. 1A,B) (Ramaswamy
and Markram, 2015; Roelfsema and Holtmaat, 2018; Richards et
al., 2019). Rather than reflecting passive integrative inputs, the
active dendrites of pyramidal neurons have been shown to
underpin striking computational complexity (Johnston and
Narayanan, 2008; Spruston, 2008; Poirazi and Papoutsi, 2020;
Larkum, 2022). Indeed, deep neural networks with at least 5-8
layers are needed to model the complex input/output functions

of pyramidal cells (Beniaguev et al., 2021).
The ability to convert the presumed inte-
grator-like dynamics of neurons and their
dendrites to coincident detectors (or reso-
nators) is an important function that
specific ion channels perform (Rudolph
and Destexhe, 2003; Ratté et al., 2013).
The identity of individual neurons (in-
tegrators vs resonators) has important
implications for connectivity, computa-
tion, and information coding (Rudolph
and Destexhe, 2003; Ratté et al., 2013).
Such features have been recently incor-
porated into ANNs, toward solving the
so-called credit-assignment problem
(Payeur et al., 2021) using single-phase
learning (Fig. 1C,D) (Greedy et al.,
2022).

Nonetheless, plasticity, as a biological
mechanism, is not limited to synaptic
contacts. With emerging roles attributed
to entire neurons (engram cells) in the
physiology of memory, learning theories
that focus exclusively on synaptic plas-
ticity appear to be inadequate as a pre-
mise for models of ANNs (Titley et al.,
2017; Lisman et al., 2018; Josselyn and
Tonegawa, 2020). Plasticity is a ubiqui-
tous phenomenon, which spans multi-
ple scales of organization in biological
neural networks: from synapses and

dendritic branches to neurons and microcircuits (Le Bé and
Markram, 2006; Branco and Häusser, 2010; Titley et al.,
2017; Mishra and Narayanan, 2021). Incorporating a broad
repertoire of plasticity mechanisms, such as those available
to biological neural networks, is an essential step in refining
ANN architectures and extending their utility. We are only
just scratching the surface of the potential for biological
insights to suggest novel algorithmic solutions to problems
that have been trained on classical network architectures,
such as RNNs.

The cerebral cortex is also deeply embedded within a web of
dense interconnections with a number of highly conserved sub-
cortical structures whose functional importance to the working
of the nervous system should not be understated. One particular
structure that is often overlooked in ANNs is the thalamus, a
bilateral structure in the diencephalon that is densely (and heter-
ogeneously) interconnected with the cerebral cortex (Jones,
2001). Although the functional benefits of one class of cortico-
thalamic cell is relatively well understood (the so-called “core”
regions) (Crandall et al., 2015), the more diffusely projecting
“matrix” cells remain more enigmatic. Recently, a neural mass
model of the corticothalamic system was created to investigate
the impact of this topological projection on emergent whole-
brain dynamics (Shine, 2021). In brief, the model found that the
matrix cells tuned the functional repertoire of the brain, provid-
ing a flexible, yet robust, platform for instantiating an array of
novel combinations of cortical coalitions. Others have shown
that these same cells can alter information flow in neural circuits
(Anastasiades et al., 2021; Mukherjee et al., 2021) and are crucial
sites for behaviorally relevant plasticity (Williams and Holtmaat,
2019). It would be interesting to note how these circuit-level fea-
tures could inform future implementations of ANNs, such as
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Figure 1. Dendritic integration of inputs and neuromodulation-aware deep learning. A, How a pyramidal neuron responds
to an input depends on dendritic location. Feedforward inputs located near the soma directly drive the firing rate of the neuron,
whereas feedback inputs on apical dendrites affect burst firing (P(Burst)). B, The firing rate of presynaptic and postsynaptic neu-
rons and P(Burst) control plasticity long-term potentiation - LTP; long-term depression - LTD. C, The dendritic integration of feed-
back and feedforward inputs by cortical neurons could solve the credit assignment problem in hierarchical ANNs. D, Diagram of
how neuromodulation can be integrated by ANNs. Left, Error signal of a network perturbation is carried through a global neuro-
modulatory influence. Middle, Error signals are carried through node-specific neuromodulatory inputs. Right, Various neuromodu-
latory inputs could take part in signaling distinct error functions. A–C, Adapted from Payeur et al. (2021).
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models that mimic the interactions between
the cerebellum and cortex (Pemberton et al.,
2021; Boven et al., 2022).

The operating mode of the cerebral cortex
(along with the rest of the brain) is also fun-
damentally altered by the presence (or ab-
sence) of neuromodulatory chemicals, such as
noradrenaline, acetylcholine, and serotonin.
By interacting with GPCRs on target neurons
and glia, these ligands can alter the excitability
and receptivity of the network (Shine et al.,
2021), facilitating different information proc-
essing regimens that shift neural populations
between information storage and information
transfer (Li et al., 2019). These changes in
gain, while relatively low-dimensional, can
substantially impact the functional outputs of
ANNs (Stroud et al., 2018), suggesting that
their incorporation into modern deep learn-
ing architectures could be quite informative
(Mei et al., 2022). In addition, by combining
these approaches with sophisticated, high-re-
solution recordings of the neuromodulatory
system in vivo (Breton-Provencher et al., 2022),
we can also simultaneously test hypotheses
regarding the functional operation of the brain
as well.

A prominent example of biologically inspired ANNs that has
gained considerable interest in machine vision is the convolu-
tional neural network (CNN). CNNs are extensions of ANNs
with an architecture inspired by that of the mammalian visual
system, with convolutions representing the function of simple
cells and the pooling operations of complex cells (Lindsay,
2021). When trained appropriately, these models can produce
representations that match those of biological visual systems
better than previous models (Khaligh-Razavi and Kriegeskorte,
2014; Yamins et al., 2014). Traditionally CNNs are strictly feed-
forward; that is, they do not include lateral or feedback recur-
rent connections (Fig. 2). Yet, it is known that visual systems of
humans contain many such connections, and these connections
are implicated in important computations, such as object recog-
nition (Wyatte et al., 2012). Previous work has shown how
these connections can make models better at visual tasks and
better match biological processing (Fig. 2) (Spoerer et al., 2017;
Linsley et al., 2018; Kubilius et al., 2019; Nayebi et al., 2021). An
unmet potential of these models, however, is to use them as an
idealized experimental setup to analyze the computational role
that recurrence plays. Promising work in this direction has
shown that recurrence can help object classification by carrying
information about unrelated, auxiliary variables (Thorat et al.,
2021).

In a recent study (Lindsay et al., 2022), four different kinds
of recurrence were added to a feedforward CNN: feedback
connections that implement predictive processing to one net-
work, lateral connections that implement surround suppression
to another, and two more networks with feedback and lateral
connections trained directly to classify degraded images. This
choice of task, wherein the network must classify images of digits
that are degraded by one of several types of noise, such as occlu-
sion and blur, was chosen to capture some of the functions
believed to be performed by recurrence. Counterintuitively, recur-
rence added to the CNN was not related to its function in these
models: both forms of task-trained recurrence (feedback and

lateral connections) change neural activity and behavior
similarly to each other and differently from their bio-inspired
anatomic counterparts. Specifically, in the case of feedback, pre-
dictive feedback denoises the representation of noisy images at
the first layer of the network, leading to an expected increase in
classification performance. In the task-trained networks, repre-
sentations are not denoised over time at the first layer (indeed,
they become “noisier”), yet these dynamics do lead to denoising
at later layers and increased performance. We analyzed an open
fMRI dataset (Abdelhack and Kamitani, 2018) using the same
tools, such as dimensionality reduction, activity correlations,
and representational geometry analysis, applied to the models
and found weak support for the predictive feedback model.
Such analysis of artificial networks provides an opportunity to
test the tools of systems neuroscience (Lindsay, 2022).

Decisions, artificial RNNs, and functional neuron types
Many ingredients make up our decisions, a rich stream of sen-
sory information, a lifetime of memories, long-term goals, and
current mood or emotions. This poses a challenge in identifying
the neural processes of decision formation: The activity of corti-
cal neurons, for instance, reflects an equally large complexity of
decision-related features, from sensory and spatial information
(Rao et al., 1997), to short-termmemory (Funahashi et al., 1989),
economic value (Padoa-Schioppa and Assad, 2006), risk (Ogawa
et al., 2013) and confidence (Kepecs et al., 2008), or abstract rules
(Wallis et al., 2001). Furthermore, single neurons often demon-
strate mixtures of these features (Mante et al., 2013; Rigotti et al.,
2013; Fusi et al., 2016), precluding straightforward functional
interpretations of the signal they carry (Fig. 3). How can we iden-
tify any organizational principles by which cortical neurons or
neural networks take part in decision-making?

Recent approaches have focused on neural population as
the primary computational units for cognition (Pandarinath
et al., 2018; Saxena and Cunningham, 2019; Vyas et al., 2020;
Barack and Krakauer, 2021; Duncker and Sahani, 2021; Ebitz
and Hayden, 2021; Jazayeri and Ostojic, 2021). Population

Figure 2. Feedforward versus bio-inspired CNNs. By adding connections inspired by the anatomy and physiology of
the visual system, such as lateral (e.g., center surround suppression) or feedback (e.g., top-down predictions), CNNs with
recurrent connections show improved accuracy. Black and red arrows represent feedforward and recurrent connections,
respectively. Adapted from Lindsay et al. (2022).
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approaches identify low-dimensional patterns in neural
population data, describing the subspaces or manifolds in
which neural trajectories move (Cunningham and Yu,
2014). Applied to neural population recordings during flexi-
ble decision-making as a prime example, information about
sensory information, choice, and rules can be reliably sepa-
rated at the level of neural populations (Mante et al., 2013;
Malagon-Vina et al., 2018; Sohn et al., 2019; Aoi et al., 2020;
Ebitz and Hayden, 2021).

RNNs, which are able to mimic the complexity of real corti-
cal responses, have served as a valuable model for understand-
ing computation in large heterogeneous neural populations.
For instance, RNNs suggest dynamic network mechanisms by
which decision rules are flexibly applied to determine a deci-
sion (Mante et al., 2013). Hopfield networks and restricted
Boltzmann machines provide valuable insight into the storage
and retrieval of associative memories via unsupervised learn-
ing rules (Marullo and Agliari, 2020). Recently, supervised
learning approaches have been used to train RNNs to perform
the same cognitive tasks as behaving animals. This approach
provides a powerful alternative for studying how neural com-
putations underlying cognitive tasks are distributed across
heterogeneous populations (Fig. 3) (Mante et al., 2013; Song
et al., 2016; Wang et al., 2018; Yang et al., 2019) and how net-
works leverage previously learned tasks for continual learning
(Driscoll et al., 2022). Because of the complexity of their con-
nectivity and dynamics, reverse engineering trained RNNs
mimic the challenges faced when analyzing real neural data.
This observation has motivated their use as a testbed for can-
didate dimensionality reduction methods aimed at uncovering
low-dimensional latent dynamics. Such methods model heter-
ogeneous neural responses as linear mixing of task-relevant
variables and can uncover neural mechanisms which exist
only at the population level (Cunningham and Yu, 2014;
Kobak et al., 2016). The ability to perform precise perturba-
tion tests in RNNs (Yang et al., 2019) offers the possibility of
validating the causal role of neural representations revealed by

candidate dimensionality reduction strategies (Mante et al.,
2013; Song et al., 2016; Wang et al., 2018; Yang et al., 2019).

In a recent study, RNNs were trained on cognitive tasks to de-
velop and validate latent circuit models of heterogeneous neural
responses (Langdon and Engel, 2022) (Fig. 3). The latent circuit
model uncovers low-dimensional task-relevant representations
together with recurrent circuit interactions between these repre-
sentations. To validate this method, RNNs were trained on a
motion-color discrimination task in which the subject must flexi-
bly discriminate either the motion or color of random dot stimu-
lus depending on a contextual cue (Langdon and Engel, 2022)
(Fig. 3). Fitting a latent circuit model to the responses of this
RNN revealed a latent inhibitory mechanism in which con-
textual representations inhibit irrelevant stimulus represen-
tations, allowing the network to flexibly select the correct
stimulus–response association (Langdon and Engel, 2022).
This inhibitory mechanism is mirrored in dynamics as a sup-
pression of irrelevant stimulus representations.

Despite the success of population-centered analysis, recent
studies have discovered groups of single neurons with prototypi-
cal dynamic activity and encoding of decision variables. For
instance, Hirokawa et al. (2019) started from neural population
activity but considered the possibility that the neurons’ dynamic
activity as well as its tuning to decision variables in a com-
bined sensory and value-based decision task clustered into
distinct groups of neurons with distinct dynamic and tuning
profiles. Unsupervised clustering revealed dedicated groups of
single neurons in rat orbitofrontal cortex that were tuned to
canonical decision variables, that is, combinations of task fea-
tures that explained the animals’ decision behavior, such as
reward likelihood, integrated value, and choice outcome. A
dedicated group of neurons in the orbitofrontal cortex carried
information about the certainty that a decision was correct
(i.e., decision confidence) (Masset et al., 2020). These neurons
predicted subsequent confidence-guided behavior: the vari-
able time rats invested into their decision to obtain an uncer-
tain, delayed reward before abandoning their investment (Lak

Figure 3. Using RNNs to study neuronal correlates of complex tasks. In an example task where various contexts (u1) and sensory cues (u2) guide task outputs (z) or decisions, recordings of
neurons from associative brain areas (e.g., pre-frontal cortex - PFC) show multidimensional encoding of task variables by individual neurons. Representing population dynamics in neural state
space where each point in space represents a unique pattern of neuronal activity that is useful to dissect how the correlated activity of a large number of neurons represents task variables. To
model physiological dynamics, RNNs are trained to perform a similar task. Key features of physiological dynamics of neuronal populations are reproduced by RNNs. Complex perturbation studies
can thus be performed with these trained RNNs to test causality. In a recent study, Langdon and Engel (2022) found that low-dimensional latent circuits can be extracted from high-dimen-
sional RNN dynamics and used to perform patterned connectivity perturbations. Adapted from Mante et al. (2013) and Langdon and Engel (2022).

Cohen et al. · Advances in Biological and Artificial Intelligence J. Neurosci., November 9, 2022 • 42(45):8514–8523 • 8517



et al., 2014; Ott et al., 2018). These groups of neurons might
constitute functional neuron types, characterized by assuming
specific algorithmic roles to realize decision computations
(Christensen et al., 2022). Similarly, functional clusters were
found in the orbitofrontal cortex during value-based decision
tasks in rats (Hocker et al., 2021) and primates (Onken et al.,
2019), and in mice using calcium imaging during associative
learning (Namboodiri et al., 2019).

When and why might we expect to find functional neuron
types? Recent computational studies using RNNs suggest that
neural subpopulations with distinct dynamics or categorical rep-
resentations arise in trained networks that are required for flexi-
ble decision-making, such as context-dependent decision tasks
(Dubreuil et al., 2022; Flesch et al., 2022; Langdon and Engel,
2022). Functional neuron types might thus be a feature shared by
biological neural networks and ANNs to provide a robust com-
putational solution for flexible decision-making. On the other
hand, these interpretations are limited, since it is unclear what
the biological counterpart to an ANN unit might precisely be.
While many approaches interpret RNN units as candidates for
single neurons (Barrett et al., 2019), the complex computations
performed by single neurons outperform simple RNN units and
can only be described by deep networks themselves (Beniaguev
et al., 2021). Specifically, the functional coupling between neuro-
nal compartments (dendrites and soma, compare with previous
section) can be controlled by thalamic input (Aru et al., 2020),
and depends on learning (d’Aquin et al., 2022) further suggesting
that RNN units might correspond to computations of neuronal
compartments or biophysical processes. Categorical representa-
tions in RNNs might thus shed light onto the functions per-
formed by biophysical elements of neurons.

Functional neuron types might emerge as a result of the
cortical microcircuit structure. Emerging evidence suggests
that cortical cell types, defined by distinct gene expression or
connectivity patterns (Tasic et al., 2018; Winnubst et al.,
2019), assume specialized functions during decision-making.
For example, orbitofrontal cortex neurons that project to the
striatum predominantly carry sustained task-related signals
(Bari et al., 2019; Terra et al., 2020), such as information about
choice outcome (Hirokawa et al., 2019) (whether the animal
was rewarded or not), and projection-defined neurons in
motor cortex signal movement onset or choice signals, respec-
tively (Economo et al., 2018). Cell type identity might thus be
a structural constraint on the dynamic decision algorithms in
biological neural networks that could inform the design of
ANNs (Sacramento et al., 2018; Greedy et al., 2022).

Uncertainty and decisions: can insights from human (and
animal) cognition contribute to AI development?
Humans make decisions based on perceptual, value-based, or
other information. Such decisions are accompanied by a sense of
confidence. That is, our brains seem to compute not only the
best decisional outcome, but also estimates related to the proba-
bility that the decision is correct (Pouget et al., 2016; Mamassian,
2022; Peters, 2022). This sense of uncertainty accompanies the
moment-to-moment information processing across many per-
ceptual and cognitive domains, and can help any organism
decide whether to update their internal models of the world,
how to allocate resources, or how to sample new information.
Importantly, computing decisional confidence can also help
us to better learn from erroneous predictions (Guggenmos et
al., 2016; Stolyarova et al., 2019; Ptasczynski et al., 2022).

An argument can thus be made that getting artificial systems
to also compute such a confidence judgment could lead not only
to better decision-making under uncertainty, but also better and
more self-directed learning. A foundational goal of AI research is
to build systems that not only behave adaptively in the world,
but which “know” when they have made correct or erroneous
decisions, or when they have such a high level of uncertainty that
they should sample more information before committing to a de-
cision at all. Thus far, most “confidence” type signals in artificial
systems typically compute uncertainty estimates according to
probabilistic inference: for example, the variance of a (posterior)
probability distribution, or entropy of an outcome distribution,
can potentially be reasonable proxies for confidence in biological
systems (Li and Ma, 2020). This is because these quantities reflect
the relative evidence in favor of multiple possible decisional out-
comes. However, there are a number of problems with these
approaches for uncertainty estimation in artificial systems.

First, it is not clear that humans and other animals rate confi-
dence according to optimal inference, as implemented in ANNs
or similar; instead, a large body of work suggests that other influ-
ences on decisional confidence are likely, ranging from motor
preparation and execution (Fleming et al., 2015) to detectability
heuristics (Maniscalco et al., 2016, 2021; Rausch et al., 2018).
While these contributions to uncertainty/confidence estimates
may seem suboptimal or even random, we also must note that
our systems have been optimized through millennia of evolu-
tion, such that apparent “biases” in confidence judgments may
actually reflect some optimal behavior where the cost function
remains unknown to us as researchers (Michel and Peters,
2021).

Second, current implementations of confidence in multideci-
sion alternatives often do not have an option for artificial systems
to “opt out” of the decision, and instead decide to sample more
information. Current AI does not have agency in such a fashion.
However, we know that biological observers use confidence to
guide their decision-making behavior, including decisions about
whether and how to continue sampling their environments
(Kepecs and Mainen, 2012; Guggenmos et al., 2016; Stolyarova
et al., 2019; Ptasczynski et al., 2022). One area in which uncer-
tainty-based self-directed information sampling is likely to be of
utility is in meta-learning, wherein an artificial system must learn
which weights to update based on an inferred context (and thus
may avoid catastrophic forgetting when trained on multiple
tasks). Several architectures implementing explicit metacognition
or confidence have been proposed (Griffiths et al., 2019). For
example, in rats trained to report confidence by placing a wager
on difficult decisions, single neurons in the frontal cortex en-
code uncertainty information across multiple sensory modal-
ities, and predict both confidence-scaled time investment in
learning (Lak et al., 2014; Masset et al., 2020). These results
suggest a generalized representation of confidence as a “sum-
mary scalar” that could provide a robust uncertainty signal
used for subsequent decisions or learning processes and there-
fore constitute a precursor of metacognitive signals. The field is
ripe for more exploration whether such biological implementa-
tions could inform uncertainty predictions in ANNs (Griffiths et
al., 2019; Gawlikowski et al., 2021).

Here, we have discussed one among many examples of how
artificial system development may benefit from the study of
metacognition and confidence in biological systems, and vice
versa. Future work may also examine how cooperation between
humans and artificial systems may be optimized through confi-
dence-weighted communication, as it is between dyads or small
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groups of human deciders (Bahrami et al., 2010). Efforts to align
vocabularies, literatures, and concepts across the fields of cogni-
tive science and AI will assuredly benefit both fields.

Development of deep learning algorithms for high
throughput processing of complex behavior
Studying natural behaviors affords new understanding of how
the brain controls motion (Krakauer et al., 2017) and processes
sensory inputs (Hayhoe, 2018). But two major characteristics of
natural behaviors challenge their use in neuroscience experi-
ments: dynamic properties that are often difficult to quantify and
rich repertoires that require processing datasets much larger
than tractable with traditional manual or semimanual methods.
Modern machine learning offers both unsupervised and super-
vised approaches to meet these challenges.

Unsupervised algorithms help researchers identify struc-
ture in high-dimensional behavior data (Gilpin et al., 2020;
McCullough and Goodhill, 2021). For example, researchers
applied unsupervised dimensionality reduction, linear projec-
tions, or nonlinear embeddings (Tenenbaum et al., 2000; van
der Maaten and Hinton, 2008; McInnes et al., 2018) to videos
of freely moving worms (Stephens et al., 2008), fish (Mearns
et al., 2020), flies (Berman et al., 2014), rodents (Stringer et al.,
2019), and primates (Yan et al., 2020). Then, unsupervised
clustering could discover robust behavior states in the result-
ing low-dimensional representations. Additionally, clustering
was replaced by hidden Markov models (HMMs), capturing
sequences of behavior states (Wiltschko et al., 2015).

Successful approaches using ANNs to process textual, au-
ditory, and visual data, not as models in neuroscience, were
recently harnessed and applied to quantify complex behavior
in tandem or replacing these machine learning methods.
Unsupervised ANNs were used because they better capture
various data distributions (Graving and Couzin, 2020); con-
volutional and variational autoencoders (Batty et al., 2019;
Graving and Couzin, 2020; Luxem et al., 2022) performed
dimensionality reduction before clustering or fitting HMMs
and generative adversarial networks (Goodfellow et al., 2014;
Radford et al., 2015) improved the interpolation between
low-dimensional representations (Sainburg et al., 2018).

Supervised ANNs are extremely useful in automating manual
processing where humans can identify which data features to
track and provide labeled training examples. Many striking
examples come from pose estimation in movies of freely behav-
ing animals. These algorithms learn to track human-defined ana-
tomic features, such as joints and locations on the body of single
or multiple animals, in videos captured from single (Mathis et
al., 2018; Graving et al., 2019; Pereira et al., 2019) or multiple
(Marshall et al., 2021) cameras. Mostly using deep convolutional
ANNs, these supervised methods, like the unsupervised ones,
extended and improved previous methods based on supervised
classifier models (Dankert et al., 2009; Kabra et al., 2013;
Machado et al., 2015).

Together, these ANN-based algorithms ushered the field of
computational neuroethology (Anderson and Perona, 2014;
Datta et al., 2019; Pereira et al., 2020). However, while many spe-
cies naturally vocalize and offer a rich window onto complex
social interactions, fewer works developed audio analysis meth-
ods comparable with those created for video analysis (Sainburg
and Gentner, 2021).

Audio analyses predominantly start by converting sound sig-
nals to spectrograms, a two-dimensional representation in the
time and frequency domains. This “image of sound,” like visual

data, was used to extract low-dimensional representations. For
example, human-defined features, such as pitch, entropy, and
amplitude, were continuously extracted from spectrograms and
automated measuring similarities between juvenile and tutor
zebra finch songs (Tchernichovski et al., 2000). Unsupervised
variational autoencoders were also used for continuous low-
dimensional embedding of spectrograms (Goffinet et al.,
2021). Still, rather than working on continuous signals, most
machine learning tools for bioacoustics were developed for
analyzing audio segments, thought to represent basic vocal
units or syllables.

Segmenting vocal communication allows creating models
of syntax (Berwick et al., 2011; Jin and Kozhevnikov, 2011;
Markowitz et al., 2013; Hedley, 2016) and motor learning
(Sober and Brainard, 2009, 2012), and to relate syllable acous-
tics and sequence to neural activity (Leonardo and Fee, 2005;
Sober et al., 2008; Wohlgemuth et al., 2010). Researchers used
unsupervised similarity metrics (Mets and Brainard, 2018),
clustering (Daou et al., 2012; Burkett et al., 2015), embedding
(Morfi et al., 2021; Sainburg et al., 2021), variational autoen-
coders (Kohlsdorf et al., 2020), and other generative deep net-
works (Pagliarini et al., 2021) to assist human identification of
vocal units, visualize repertoire structures (Sainburg et al.,
2020), and study their dynamics (Mets and Brainard, 2018;
Kollmorgen et al., 2020). When human annotators created
training sets of labeled audio segments, those segments were
used to train supervised algorithms (Nicholson, 2016), support
vector machines (Tachibana et al., 2014), template matching
(Anderson et al., 1996), HMMs (Kogan and Margoliash, 1998),
and k-nearest neighbors (Nicholson, 2016, 2021), that allowed
scaling up analyses on annotated syllables.

Still, these methods require the audio to be a priori well seg-
mented. Traditional segmentation techniques hence create a bot-
tleneck, limiting the questions researchers can answer. Using
supervised deep ANNs introduces various solutions to this prob-
lem in rodents (Coffey et al., 2019) and songbirds (Koumura and
Okanoya, 2016; Steinfath et al., 2021; Cohen et al., 2022). For
example, TweetyNet (Cohen et al., 2022) is a supervised deep
ANN that leverages temporal vocal dependencies to achieve high-
precision annotation of multiple species. TweetyNet offers a
powerful tool to study the neuronal encoding of bird song syntax
(Cohen et al., 2020) and demonstrates how development in mod-
ern machine learning opens new boundaries in the study of natu-
ral behavior.

Finally, as different research laboratories, developing and
using various ANNs to analyze behavior, also develop their own
data formats and algorithms, it is of uttermost importance for
our community to develop and foster an ecosystem of interoper-
able methods to increase reproducibility and access.

In conclusion, we have briefly reviewed the state of the art of
ANNs and how their development has been inspired by biologi-
cal neural networks. Although ANNs are remarkably effective at
solving specific tasks, they lack the ability of biological neural
networks to generalize robustly across tasks (but see Reed et al.,
2022). We suggest that future implementations of ANNs should
incorporate some of the intricate multiscale organizing features
of biological neural networks to generalize as well as they do and
learn continually over a lifetime of experience.

Neuromodulatory systems endow biological neural networks
with the ability to learn and adapt to constantly changing behav-
ioral demands. Neuromodulators, such as dopamine, serotonin,
noradrenaline, and acetylcholine, play crucial roles in modu-
lating a repertoire of brain states from reward assessment,
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motivation, patience, arousal, and attention. The diverse phe-
nomenology of neuromodulatory function is yet to be fully
explored in ANNs, and their implementation has so far been
mostly restricted to models of reinforcement learning (Shine et
al., 2021; Mei et al., 2022).

Neurotransmitter and neuromodulator receptors are thought
to modulate perceptual processes by activating receptor “hot-
spots” on the distal apical dendrites of neocortical layer 5 pyrami-
dal cells (Takahashi et al., 2016). Recent implementations of
ANNs have incorporated dendritic mechanisms to address
the credit-assignment problem (Sacramento et al., 2018).
Incorporating neurotransmitter receptor clusters on den-
drites in ANNs could help unravel their role in gating per-
ceptual processes, for example, NMDA receptors that are
distributed nonlinearly on the dendrites of most neuron
types (Chavlis and Poirazi, 2021).

Biological neural networks promote renormalization and ho-
meostasis of synaptic strength during different states of sleep,
and facilitate learning and memory through replay. Replay ena-
bles the brain to consolidate memory and overcome forgetting of
acquired knowledge, also referred to as “catastrophic forgetting”
in machine learning. Implementing “sleep-like states” in deep
neural networks could mimic biological replay mechanisms and
prevent catastrophic forgetting (Roscow et al., 2021; Kudithipudi
et al., 2022; Mei et al., 2022; Tsuda et al., 2022).

Recent findings demonstrate that metabolic state dynami-
cally governs coding precision in biological neural networks.
Metabolic scarcity in the brain inactivates biological neural
networks required for long-term memory to preserve energy
(Padamsey et al., 2022). Biological neural networks regulate
energy use through intrinsic mechanisms that determine the
degree of energy consumption by reducing the impact of
subthreshold variability on information coding. Therefore,
biological neural networks dynamically adapt their coding
precision and energy expenditure in a context-dependent
manner (Padamsey et al., 2022). Most ANN architectures are
energetically expensive. How could metabolic principles con-
trolling coding precision inform implementations of energy
efficient ANNs?

Neuroscience is witnessing significant advances in our under-
standing of biological learning mechanisms that can continue to
inform new avenues for ANNs. We suggest that the machine
learning community could adopt these ideas and integrate them
into standard ANN frameworks to build a solid foundation, and
develop the next generation of ANNs informed by the multiscale
organizing features of their biological analogs.
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