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Predictable Fluctuations in Excitatory Synaptic Strength Due
to Natural Variation in Presynaptic Firing Rate

Naixin Ren,! Ganchao Wei,> Abed Ghanbari,’> and Ian H. Stevenson’*°

"Departments of Psychological Sciences and, *Statistics, University of Connecticut, Storrs, Connecticut 06269, *The Jackson Laboratory for Genomic
Medicine, Farmington, Connecticut 06032, *Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, and
>Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut 06269

Many controlled in vitro studies have demonstrated how postsynaptic responses to presynaptic spikes are not constant but
depend on short-term synaptic plasticity (STP) and the detailed timing of presynaptic spikes. However, the effects of short-
term plasticity (depression and facilitation) are not limited to short, subsecond timescales. The effects of STP appear on long
timescales as changes in presynaptic firing rates lead to changes in steady-state synaptic transmission. Here, we examine the
relationship between natural variations in the presynaptic firing rates and spike transmission in vivo. Using large-scale spike
recordings in awake male and female mice from the Allen Institute Neuropixels dataset, we first detect putative excitatory
synaptic connections based on cross-correlations between the spike trains of millions of pairs of neurons. For the subset of
pairs where a transient, excitatory effect was detected, we use a model-based approach to track fluctuations in synaptic effi-
cacy and find that efficacy varies substantially on slow (~1min) timescales over the course of these recordings. For many
connections, the efficacy fluctuations are correlated with fluctuations in the presynaptic firing rate. To understand the poten-
tial mechanisms underlying this relationship, we then model the detailed probability of postsynaptic spiking on a millisecond
timescale, including both slow changes in postsynaptic excitability and monosynaptic inputs with short-term plasticity. The
detailed model reproduces the slow efficacy fluctuations observed with many putative excitatory connections, suggesting that
these fluctuations can be both directly predicted based on the time-varying presynaptic firing rate and, at least partly,
explained by the cumulative effects of STP.
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The firing rates of individual neurons naturally vary because of stimuli, movement, and brain state. Models of synaptic trans-
mission predict that these variations in firing rates should be accompanied by slow fluctuations in synaptic strength because
of short-term depression and facilitation. Here, we characterize the magnitude and predictability of fluctuations in synaptic
strength in vivo using large-scale spike recordings. For putative excitatory connections from a wide range of brain areas, we
find that typical synaptic efficacy varies as much as ~70%, and in many cases the fluctuations are well described by models of
short-term synaptic plasticity. These results highlight the dynamic nature of in vivo synaptic transmission and the interplay
between synaptic strength and firing rates in awake animals. /

Introduction behavior of the animal (Churchland et al., 2012; Shenoy et al.,
The firing activity of individual neurons can vary over time 2013), and the internal state of the network (Poulet and Petersen,
because of external stimuli (Hubel and Wiesel, 1959), the 2008 McGinley et al,, 2015). Although many statistical models

assume that coupling between neurons has a fixed strength
(Harris et al., 2003; Truccolo et al., 2005; Pillow et al., 2008),
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firing rate variation can directly affect synaptic strength
because of short-term synaptic plasticity (STP). For instance,
synapses with short-term depression should be weaker when
presynaptic firing rates are higher and stronger when the rates
are lower. On the other hand, synapses with short-term facili-
tation should be stronger when presynaptic firing rates are
higher and weaker when the rates are lower. In many studies,
STP is induced in vitro by modifying the presynaptic firing
rate using external electrical stimulation at different frequencies
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(Abbott et al., 1997; Tsodyks and Markram, 1997; Fortune and
Rose, 2001; Chung et al.,, 2002; Zucker and Regehr, 2002). These
studies illustrate how STP can act to high pass or low pass filter the
inputs of neurons and could potentially underlie working memory
and decision-making processes (Deng and Klyachko, 2011).

One prediction from these in vitro studies of STP using sim-
ple, controlled stimuli is that synaptic strengths should also vary
in response to the natural changes in firing rate that occur in
vivo. Indeed, slice studies have shown that for neurons receiving
naturalistic spike trains as input, synaptic strength varies sub-
stantially over time, with patterns matching those predicted by
STP (Klyachko and Stevens, 2006; Kandaswamy et al.,, 2010;
Costa et al.,, 2013). Studies in awake animals have also shown
that postsynaptic responses to presynaptic spikes vary depending
on the preceding presynaptic interspike intervals (ISIs; Swadlow
and Gusev, 2001; Stoelzel et al., 2008, 2009; English et al., 2017)
and presynaptic firing rates (Fujisawa et al., 2008; Stoelzel et al.,
2015; McKenzie et al., 2021). Together, these findings suggest a
general conclusion that the natural variation in presynaptic firing
rates in vivo may be accompanied by large fluctuations in synap-
tic strength and that these changes may be because of the effects
of STP on longer timescales.

Quantifying synaptic strength in vivo is a difficult statistical
problem. Many studies of synaptic transmission have used intra-
cellular recordings to study the dynamics in individual postsynap-
tic potentials or currents (Pala and Petersen, 2015, 2018; Sedigh-
Sarvestani et al., 2017). Long-term extracellular spike recordings
may allow us to track slow fluctuations more easily in vivo. Unlike
intracellular signals that contain postsynaptic responses to single
presynaptic spikes, extracellular spikes are sparse binary events,
and studies of synapses often rely on the cross-correlograms
(CCGs) between the presynaptic and postsynaptic spike trains. If
two neurons are connected with an excitatory synapse, there is
often a fast-onset, short-latency peak in the CCG (Perkel et al,,
1967; Fetz et al., 1991), and several techniques have been devel-
oped to automatically detect these connected pairs (Bartho et al.,
2004; Amarasingham et al., 2012; Kobayashi et al., 2019; Ren et
al.,, 2020).

Synaptic transmission with spikes is often measured by syn-
aptic efficacy using the CCG, which is defined as the excess prob-
ability of postsynaptic spiking in the short transmission window
following presynaptic spikes (Levick et al., 1972). By focusing on
specific presynaptic spike patterns, such as pairs with specific
ISIs, previous studies have shown how synaptic efficacy can vary
depending on features of presynaptic spike timing (Usrey et al.,
2000; Swadlow and Gusev, 2001; English et al., 2017). Modeling
individual spike transmission probabilities for the entire spike
train can also reveal how presynaptic spike features, as well as
different types of plasticity, interact (Ghanbari et al., 2017, 2020;
Song et al., 2018; Wei and Stevenson, 2021). Together, descrip-
tive and model-based approaches can track synaptic dynamics in
vivo (Swadlow and Gusev, 2001; English et al., 2017; Ghanbari et
al., 2017, 2020) and reveal changes associated with learning,
behavior, or stimuli (Fujisawa et al., 2008; Ghanbari et al., 20205
McKenzie et al.,, 2021). Here, we focus on a general description
of the ongoing changes in synaptic strength that may be
merely because of changes in presynaptic rate. We divide
long-term spike recordings into windows to measure the
fluctuations in synaptic efficacy on a timescale of minutes
and model the changes as a function of presynaptic ISI to
build the potential link between these slow changes and STP.

Using in vivo large-scale spike recordings from the Allen
Institute Neuropixels dataset (Siegle et al., 2021), we examine
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natural fluctuations in synaptic efficacy and firing rates and
quantify the relationships between them. These recordings from
awake, behaving mice contain the spiking of hundreds of neu-
rons from many brain regions while the mice view natural and
artificial visual stimuli (Siegle et al., 2021). Because neurons in
different brain regions have different firing rates and firing
regularity (Mochizuki et al., 2016), we also examine whether
putative synapses from different regions show different pat-
terns of efficacy fluctuations. We find that for individual
connections the synaptic efficacy often varies substantially
over the course of the recording. Interestingly, the efficacy is
often correlated with the presynaptic firing rate, with the
postsynaptic firing rate, or with both. We then test whether
the time-varying efficacy is predictable based on the presyn-
aptic firing. We model the time-varying synaptic effect as a
function of presynaptic ISI by fitting a generalized bilinear
model (GBLM) to the postsynaptic spike trains. For many
connections, the GBLM reproduces the observed efficacy
fluctuations, suggesting that these fluctuations can be, at
least partly, explained by a cumulative effect of STP. Altogether,
these results illustrate how natural fluctuations in firing rate
could lead to large, but predictable, changes in synaptic strength
in vivo and in many different brain areas.

Materials and Methods

We use the Visual Coding-Neuropixels dataset from the Allen Institute
(https://portal.brain-map.org/explore/circuits). During the recordings,
head-fixed mice viewed a standardized set of visual stimuli (including
Gabor patches, full-field drifting gratings, moving dots, and natural
images and movies) while they were free to run on a wheel. We analyze
20 recordings here (electrophysiology sessions 715093703-746083955
and 819186360-847657808), 6 from female mice (125 = 11.6d), 14 from
male mice (117.8 = 8.3 d). Nine recordings were from wild-type mice, and
the remainder were transgenic Cre lines expressing channelrhodopsin in in-
hibitory interneuron subtypes (Sst-IRES-Cre; Ai32, Pvalb-IRES-Cre; Ai32
and Vip-IRES-Cre; Ai32). Each recording lasts ~2.5 h and contains 365—
893 well-isolated single units from five or six Neuropixels probes from
mouse visual cortex, thalamus, and hippocampus. In 10 recordings, the
mice had a resting period that lasted for ~30 min. This period is referred to
as spontaneous activity period for further analysis. Additional information
about this dataset can be found in Siegle et al. (2021).

Detection of putative excitatory synaptic connections. We detect pu-
tative synaptic connections using the CCGs between pairs of neurons—a
source neuron (presynaptic) i and target neuron (postsynaptic) j. For the
binned spike trains of the two neurons, #; and ; (1 when there is a spike

and 0 otherwise), the CCG is given by y;(m) = Ztn;(t)nj(t— m),
where m denotes the interval between presynaptic and postsynaptic
spikes, and y;j(m) is the number of the times spikes in #; and #; that are
Atyin
2

Aty;
separated by an interval |m ,m+ %] for bin size Aty;, (1 ms

used here).

Given the CCG, we detect putative excitatory synapses in two stages.
First, we use a hypothesis test based on the jittered spikes to detect fast
changes in the CCG, and then we use a model-based approach to esti-
mate and screen for putative synaptic effects at specific latencies and
timescales. Our initial screening of neuron pairs is based on comparing
the observed CCG to a null model of the CCG generated using jittered
spike times. An exact null distribution can be approximated by directly
sampling jittered spike trains. However, here, for computational conven-
ience, we approximate the null distribution using the simplifying
assumption that the counts in each bin of the CCG y;;(m) are independ-
ent of each other (Amarasingham et al, 2012). We assume that
y,j(m)~Binomial(numP,e, ,u,(m)/numpm), where numy,, is the total
number of presynaptic spikes and u(m) = (y;; * f)(m), the convolution
of the CCG with a jitter function. We use a 10 ms uniform jitter f () = 1
for |t|<5ms, 0 otherwise. We then compute p values for each bin of the
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CCG using the cumulative distribution function of the binomial distri-
bution and evaluate statistical significance correcting for multiple com-
parisons by controlling the false discovery rate using a Benjamini—
Hochberg procedure (a = 0.00001). We then identify pairs of neurons
where two criteria are satisfied, (1) there are two neighboring statistically
significant bins in the CCG (where m > 0) and (2) the center bin
(m = 0) is not statistically significant. This test yields 0.5% of pairs of
neurons that have fast, transient changes in their CCGs.

For each pair of neurons that satisfies the testing criteria we then fit a
parametric model that aims to estimate the latency, timescale, and
strength of a putative synaptic effect. We fit an extended GLM based on
the model used in Ren et al. (2020). Briefly, we describe the CCG using
two components, (1) a slow fluctuation because of background fluctua-
tions and (2) a fast, transient effect because of the synaptic effect. The
rate of spike counts A at bin m in a CCG is given by the following:

A(m) = exp(sX,(m) + wa(m, 7, At)).

Here, sX; describes the slow fluctuation, where X, represents a set of
smooth basis functions learned by applying a low-rank, nonlinear matrix
factorization to all the cross-correlograms in the dataset (Ren et al.,
2020); and wa(m, 7, At) represents the fast synaptic effect, where w is
the synaptic strength and a(m, 7, At) is an alpha function with a time
constant 7 and a latency At that is then convolved with the autocorrelo-
gram of the presynaptic neuron to account for possible bursting in the
neuron. After fitting the parameters {s, w, 7, At} using a penalized maxi-
mum likelihood method, we select the neuron pairs where the CCG has
a strong sharp peak (w>0.3, 7<<0.8ms) with a short latency (At<<10
ms) and a relatively flat slow fluctuation (the coefficient of variation of
the slow fluctuation < 0.15). In the end, we detect 1383 putative excita-
tory connections (~0.17% of all pairs of neurons). This screening proce-
dure returns a set of neuron pairs whose CCGs are consistent with the
biophysics of excitatory synaptic transmission, which we then character-
ize in more detail.

Estimating time-varying synaptic efficacy. Synaptic efficacy reflects
the (excess) probability of observing a postsynaptic spike following a
presynaptic spike. Here, we estimate synaptic efficacy using the model-
based approach described in the previous section. Namely, we calculate
the efficacy by comparing the model with and without the synaptic effect
as follows:

eff =Y (A(m) = Agou(m)) /musmy,

where A oy, is A evaluated with § = {s, w = 0} and numy,, is the num-
ber of presynaptic spikes. To estimate changes in observed efficacy over
time, we divide the presynaptic and postsynaptic spike trains into 5 min
windows with 80% overlap and estimate efficacy for each window. We
fit the cross-correlogram for each window using the extended GLM with
a fixed alpha function a(m, 7, At), where 7 and At are the estimated pa-
rameters from the overall cross-correlogram of the connection. We cal-
culate the coefficient of variation (CV; the ratio of the SD to the mean)
for time-varying efficacy to measure the fluctuation.

For comparison, we also shuffle the postsynaptic spike timings to
create surrogate data and then calculate the fluctuations in efficacy that
would be expected by chance. With this shuffling, the overall average ef-
ficacy is preserved, but any fluctuations in the efficacy over long time
periods should be because of chance. To do this shuffling, we find all
pairs of presynaptic and postsynaptic spikes with an interval of (0, 25]
ms. Then for each presynaptic spike in this subset of spike pairs, we
resample the subsequent postsynaptic spikes. Any postsynaptic spikes
that do not occur following a presynaptic spike within the interval are
not changed. This way the postsynaptic spikes following each presynap-
tic spike in the CCG are shuffled across time, and any systematic, slow
changes in the CCG are removed. For each putative synapse, we do the
shuffling 100 times to generate 100 surrogate time-varying efficacies. We
can then create a surrogate distribution of the CV for efficacy and calcu-
late a z score for the observed CV to measure how far away it is from the
surrogate distribution. In addition, to examine the relationship between
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the time-varying efficacy and presynaptic firing rate, we calculate
Spearman’s correlation coefficient, and then similarly calculate a z score
for the observed correlation using the surrogate data.

Estimating synaptic efficacy with different presynaptic ISI ranges. To
further examine the relationship between efficacy and the presynaptic
firing, we also estimate the efficacy for presynaptic spikes with different
ISIs. Here, we group the presynaptic spikes by the ISI range their preced-
ing spike fell within and calculate a separate CCG for each subset of pre-
synaptic spikes. We then estimate the efficacy using the extended GLM
for each separate ISI range.

Modeling short-term synaptic plasticity with spike train observations.
In addition to quantifying the observed efficacy from noisy correlo-
grams, we also aim to assess to what extent changes in efficacy can be
explained by STP. Here, we model the time-varying synaptic effect as a
function of presynaptic ISI by fitting a GBLM to the postsynaptic spike
trains. This model has been previously described (Ghanbari et al., 2017;
Wei and Stevenson, 2021) and extends previous models of coupled
GLMs (Harris et al., 2003; Truccolo et al., 2005; Pillow et al., 2008;
Rebesco et al., 2010) to account for fluctuating excitability and plasticity.
Briefly, for each connection, we model the postsynaptic firing rate y at
time ¢ as follows:

Y(HBo(t), Bys Bes w(t)) = exp(Bo(t) + Bysion(t) + Byeou ()W(t))

HPDS,(t)"'POiSSOI’l(’)’(tlﬁo(t), Bu :857 W(t)))
yslow = npre * Kslow

Yeoup = Mpre *xcoupa

where 7, and np,, are the presynaptic and postsynaptic spike trains,
respectively.

Here, B,(t) represents a time-varying baseline firing rate, which is
estimated using an adaptive filtering algorithm (Wei and Stevenson,
2021). Bysiow(t) accounts for slow fluctuations that are shared by the
presynaptic neuron and postsynaptic neuron, where y,, denotes a set
of covariates generated by filtering the presynaptic spike train (cubic B
spline functions with four equally spaced knots over 150 ms Xy
Beyeoup(t)w(t) represents the contribution from the synaptic effect.
Here, B_ycoup(t) describes the stationary coupling effect, where y.y, is the
presynaptic spike train convolved with the alpha function we learned from
the extended GLM a(m, 7,At), and w(t) describes the effects of STP.
Namely, we model w(t) as a function of presynaptic ISIs Aty as follows:

w(t) =1+ quk(Atk)ZzT:o S (t — Dexp (— L) ,

Tstp

where gy (Aty) is a modification function that determines how the synap-
tic strength increases/decreases following each presynaptic spike at time
t. We model the modifications using a group of raised cosine basis func-
tions B(Atx) and gx(Aty) = 0B(At;) and assume that the effects of STP
decay with 7, = 200 ms. We fit the free parameters {3,(t), B, B, 0}
by maximizing the Poisson log-likelihood as follows:

LLHgpn = Zt(”past(t)k’g'y(t) = (1)

To estimate the parameters, we use an alternating optimization
(coordinate ascent); we fit B,(¢) using fixed {B;, B,, 6} and then fit
{Bs, B., 0} using fixed B,(t). We repeat this alternating pattern until
convergence.

After optimization we then have a model-based estimate of the
impact of each individual presynaptic spike and can predict how the effi-
cacy would change over time under a model of short-term plasticity. We
calculate GBLM estimated synaptic efficacy in a similar way as we esti-
mate efficacy using CCGs as follows:
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effons = Y, (¥(£) = o(£))/numye,

where 7y, is the postsynaptic rate with the synaptic effect removed
B. = 0; effgarm then reflects the excess probability of observing a postsy-
naptic spike because of the occurrence of a presynaptic spike within the
model.

For comparison, we also fit a static-synapse model where the synap-
tic coupling effect is B ycoup(t) instead of B yeoup(t)w(t). Under the
static-synapse model, the coupling effect stays the same over time and
will allow us to assess whether STP, specifically, meaningfully improves
the description of spike transmission. To quantify how well a model pre-
dicts whether there is a postsynaptic spike after each presynaptic spike,
we use receiver operating characteristic (ROC) curves, and the area
under the curve (AUC) reflects the performance. For each presynaptic
spike, we identify a transmission interval (t,, t, ) where the coupling filter
(alpha function in GBLM) is >0.5, and then we use the model fit within
the transmission interval 1 — H}:E(tmtb) P(npost = 0] y(1)) as the score for
predicting each individual postsynaptic spike.

Data availability. The MATLAB code for data analysis is available
from GitHub at https://github.com/NaixinRen/predictable-fluctuations-
in-synaptic-efficacy.

Results
Here, we characterize fluctuations in putative synapses from 20
recordings from the Allen Institute Neuropixels dataset (Siegle
et al,, 2021). We detect putative excitatory synaptic connections
based on the CCGs of pairs of neurons using a two-stage synapse
detection method. In stage 1, we use a hypothesis test based
on the jittered spikes to detect fast changes in the CCG, and in
stage 2, we use a model-based approach to estimate and screen
for putative synaptic effects at specific latencies and timescales
(see above, Materials and Methods). Figure 1A shows the CCGs
of example connections. By using this two-stage screening proce-
dure, our goal is not to detect as many putative synapses as possi-
ble but rather to generate a subset of strong putative synapses
with CCGs that are consistent with the biophysics of excitatory
synaptic transmission, including synaptic latencies (1.29 * 1.23
SD ms; Fig. 1B) and time constants (0.55 * 0.13 SD ms; Fig. 1C).
The presynaptic neurons for the majority of putative syn-
apses that we detect have broad waveforms (Fig. 1D), which
previous work has found tend to correspond to excitatory
neurons (Connors and Gutnick, 1990; Bartho et al., 2004;
Trainito et al., 2019). For each putative synapse, we estimate
the overall synaptic efficacy using an extended GLM (see
above, Materials and Methods; Fig. 1E). The distribution of
synaptic efficacy is approximately log normal (0.037 = 0.035,
mean * SD; Fig. 1E), consistent in shape with the previous
findings on postsynaptic potentials (Buzsaki and Mizuseki,
2014) and efficacy (English et al., 2017). Here, we detect 1383
putative excitatory synapses in total, most of which were
between neurons recorded on the same probe (1174 of 1383)
and within the same brain area (1090 of 1383; Fig. 1F).
Across the 20 recordings, we identify putative synapses
from many labeled brain regions. The regions with >10 effer-
ent synapses included six visual cortical areas (VISp, VIS,
VISrl, VISal, VISpm, VISam), three thalamic areas (LP, MGd,
MGv), three hippocampal areas (CA1, CA3, DG), and in loca-
tions that were not precisely identified (grey or VIS). Synapses
from different brain regions have distinct presynaptic firing
rates (5.75 = 9.93 SD spikes/s overall average) and synaptic
efficacies (Fig. 1G). Notably, putative synapses from thalamic
areas appear to have higher presynaptic rates and lower effi-
cacy on average. Firing rates are expected to fluctuate because
of varying stimuli, behavior, and internal state variables. Here,
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we aim to measure the extent to which the efficacy of putative
synapses also fluctuates and to determine whether these fluc-
tuations are predictable.

Presynaptic firing rate and efficacy both fluctuate
substantially over time

To examine the natural fluctuations in presynaptic firing rate
and synaptic efficacy, we divide the presynaptic and postsynaptic
spike trains into 5 min windows with 80% overlap and estimate
the presynaptic firing rate and efficacy for each window sepa-
rately (Fig. 2A,B, example of fluctuations). Here, we calculate the
CV (the ratio of the SD to the mean) for both variables for each
connection to measure the fluctuation. We find that both presyn-
aptic firing rate and synaptic efficacy fluctuate substantially over
time in all areas (Fig. 2C,D; CV for firing rate,0.55 £ 0.29 SD;
CV for efficacy,0.69 = 0.46 SD). Although large fluctuations in
firing rate are expected, large fluctuations in synaptic efficacy of
this scale are somewhat unexpected during ongoing behavior.
When firing rates are low, efficacy estimates are noisy, and some
variation in efficacy is expected purely by chance. However, the
observed fluctuations are not simply explainable by measure-
ment error. Here, we compare the observed fluctuations in effi-
cacy to surrogate data where postsynaptic spike trains are
shuffled to remove any systematic fluctuations over long time-
scales but preserve the overall efficacy (see above, Materials and
Methods, Estimating time-varying synaptic efficacy). For each
putative synapse, we shuffle 100 times to create a null distribu-
tion for CV of efficacy and calculate a z score for the observed
CV using the mean and SD of the null distribution. The average
z score across all putative synapses is 3.26, suggesting that the
observed efficacy fluctuations are substantially higher in most
cases than would be expected by chance. In addition, we find
that the CV for firing rate is correlated with CV for efficacy for
individual synapses (r = 0.24, p<<0.001). Averaging within brain
regions, we also find that the CV of firing rate and the CV of effi-
cacy are positively correlated across regions (r = 0.77, p<<0.01;
n=14 regions with >10 putative synapses). Regions with greater
fluctuations in the presynaptic firing rates tend to have higher fluc-
tuations in the efficacies of their putative synapses.

Efficacy fluctuations mirror fluctuations in the presynaptic
firing rate for individual neuron pairs

The efficacies of putative synapses appear to fluctuate sub-
stantially in vivo across multiple brain regions. To examine
these fluctuations in more detail, we calculate correlations
between the time-varying presynaptic firing rate and time-
varying synaptic efficacy for individual connections. The av-
erage absolute Spearman’s correlation is 0.32 * 0.22 SD (983
of 1383 connections are statistically significant; p < 0.05; Fig.
3A,B). As with the CV of efficacy fluctuations, these correla-
tions do not appear to be simply because of chance. By shuf-
fling the postsynaptic spike times as described above we can
also measure to what extent the observed Spearman’s corre-
lation for each synapse differs from that expected by chance
(see above, Materials and Methods, Estimating time-varying
synaptic efficacy). Here, the average z score of the synapses
with positive correlation coefficient is 2.34, and the average z
score of the synapses with negative correlation coefficient is
—1.83 (Fig. 4A-C, third column). This suggests that efficacy
fluctuations may be predicted based on the presynaptic firing
rate, with positive or negative correlations larger than expected
by chance, depending on the neuron pair. For comparison, we
also examine the correlation between the fluctuations in the
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Figure 1. Detection of putative excitatory synaptic connections. A, Examples of (CGs of putative excitatory synaptic connections. The bin size is 0.5 ms here for better visualization. In the analysis, we
use 1ms. B, The histogram of synaptic latency of all the detected synapses. The distribution tends to peak at 1, 2, 3 ... [ms] because the bin size of the (CG is 1 ms. C, The histogram of the synaptic time
constant of all the detected synapses. D, Two measurements of the duration of waveforms. Each dot represents one neuron. Most putative presynaptic neurons (yellow dots) show broader spike wave-
forms compared with all the neurons in the dataset (gray dots). E, The histogram of the synaptic efficacy of all the detected synapses. Left, Example CCGs with low or high efficacy and the model fits of
the extended GLM (red line, model fits with synaptic effect; yellow line, model fits without synaptic effect). F, Connectivity matrix across different areas (y-axis, presynaptic area; x-axis, postsynaptic area).
Color represents the number of connections detected (log transformed). The gridlines separate the brain regions of visual cortex, thalamus, hippocampus, midbrain, and unclassified. Visual cortex (VIS),
Primary Visual Area (VISp), Lateral visual area (VISI), Rostrolateral visual area (VISrl), Anteromedial visual area (VISal), Posteromedial visual area (VISpm), Anteromedial visual area (VISam), Mediomedial
posterior visual area (VISmmp), Mediomedial anterior visual area (VISmma), thalamus (TH), dorsal/ventral lateral/medial geniculate (LGd/LGv/MGd/MGv), Lateral posterior nucleus (LP), Intergeniculate leaf-
let of the lateral geniculate complex (IGL), Posterior nucleus (P0), Posterior limiting nucleus (POL), suprageniculate nucleus (SGN), Ventral posteromedial nucleus (VPM), Dentate gyrus (DG), Subiculum
(SUB), Prosubiculum (ProS), Anterior pretectal nucleus (APN), Nucleus of the optic tract (NOT), Posterior pretectla nucleus (PPT), Superior colliculus, intermediate grey matter (SCig), lateral ventrice (VL).
G, Box plots for the mean firing rate (top) and efficacy (bottom) for brain areas. The areas are grouped by brain regions mentioned above. Only areas with >10 efferent synapses are shown here. The
line inside each box is the median. The top and bottom edges of the box are the upper and lower quartiles, respectively. The whiskers show the nonoutlier maximum and minimum. The outliers are not
shown here.
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postsynaptic firing rate and synaptic efficacy; the average abso-
lute Spearman’s correlation in this case is 0.38 * 0.23 SD (1095
of 1383 connections are significant; p < 0.05; Fig. 3C,D).
Positive correlations between the fluctuations in postsynaptic
firing rate and synaptic efficacy are somewhat expected as the
excitability of the postsynaptic neuron may affect both and
increased synaptic efficacy might causally affect the firing rate
of the postsynaptic neuron (>75% of the synapses show a posi-
tive correlation in Fig. 3C). However, the correlation between
the fluctuations in the presynaptic firing rate and efficacy is
less predictable and worth exploration. To further determine
the influence of the presynaptic firing rate on synaptic efficacy,
for each putative synapse, we run a linear regression predicting
the time-varying efficacy from the log-transformed time-varying
postsynaptic firing rate and the log-transformed time-varying pre-
synaptic firing rate. The Wald test shows that for 67.1% of the puta-
tive synapses, the presynaptic firing rate makes a statistically
significant contribution to the prediction (928 of 1383, p < 0.05).
For many synapses, the fluctuations in the synaptic efficacy mirror
the natural fluctuations in presynaptic firing rate.

One concern with this analysis may be that some of the putative
synapses are false positives. To address this concern, we consider
jittered data where the fast changes in the CCGs are removed. We
calculate efficacy using the same neuron pairs where the postsynap-
tic spikes are jittered on a uniform interval of [—1, 1] s. We find
that the Spearman’s correlation between firing rate and efficacy in
this case is substantially smaller compared with the original spikes
(Fig. 3A,C, gray).

One potential explanation for the correlation between presyn-
aptic rate and efficacy is short-term STP. If a synapse exhibits
short-term synaptic depression, higher presynaptic firing rates
lead to a depletion of resources and lower efficacy, leading to a
negative correlation. On the other hand, if a synapse exhibits
short-term synaptic facilitation, higher presynaptic rates lead to an
increase in release probability and higher efficacy, leading to a posi-
tive correlation. In other cases, facilitation and depression may
coexist, leading to nonmonotonic relationships between presynap-
tic rate and efficacy. Here, we find a range of relationships (Fig. 4A4,
B) as well as cases where there are clear fluctuations but no
clear relationship between presynaptic rate and efficacy (Fig. 4C).
Previous studies have found short-term changes in synaptic efficacy
in vivo by showing how synaptic efficacy varies depending on the
preceding presynaptic ISIs (Swadlow and Gusev, 2001; Stoelzel et
al., 2008, 2009; English et al., 2017; Ghanbari et al., 2020). As previ-
ous studies have done, here, we estimate efficacies at different pre-
synaptic ISI ranges (see above, Materials and Methods, Estimating
synaptic efficacy with different presynaptic ISI ranges). We find
that the relationships between efficacy and presynaptic ISI
(Fig. 4A-C, fourth column) are often consistent with the corre-
lation between efficacy and presynaptic firing rates we find on a
minute timescale. For example, the putative synapse in Figure
4A exhibits short-term facilitation, and there is a consistent effi-
cacy-ISI relationship where short presynaptic ISI leads to high
efficacy. Overall, this suggests that fluctuations in synaptic effi-
cacy can potentially be predicted in detail by modeling STP as a
function of presynaptic ISL
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areas with >10 efferent synapses are shown.

A model of short-term plasticity reproduces efficacy
fluctuations

Because many synapses show a facilitating or depressing rela-
tionship between the presynaptic firing rate and synaptic effi-
cacy, we examine explanatory models based on STP. Here, we
build a GBLM that aims to describe the detailed (1 ms bins) post-
synaptic spiking by modeling STP, slow fluctuations in postsynap-
tic excitability, and slow common input to both the presynaptic
and postsynaptic neurons (see above, Materials and Methods).
Here, we estimate a modification function that describes how the
synaptic strength changes following the occurrence of presyn-
aptic spikes at a given ISI, and we use adaptive smoothing to
track slower fluctuations in the postsynaptic rate. Altogether,
this model captures the probability of postsynaptic spiking fol-
lowing every single presynaptic spike and allows us to track
how the time-varying synaptic strength increases (facilitation)
or decreases (depression) following presynaptic spikes with spe-
cific intervals.

To quantify how well the models predict the postsynaptic
spiking after a presynaptic spike, we use ROC curves, where the
AUC reflects performance (see above, Materials and Methods).
We find that the GBLM predicts postsynaptic spikes better than
the chance level (AUC,0.68 = 0.05 SD). In the 10 recordings
where there is a 30 min period of spontaneous activity, we find
that the GBLM predicts postsynaptic spikes better than the
chance level even when only examining this spontaneous period
where we calculate the AUC using only the spikes during the
spontaneous activity (AUC, 0.67 * 0.06 SD). Although many pu-
tative synapses involve neurons in nonvisual regions, this com-
parison illustrates how fluctuations in efficacy are predictable

even in the absence of specific visual stimuli and are not merely
an artifact of fast stimulus correlations.

The GBLM provides a model of the time-varying impact of
each individual presynaptic spike. However, to illustrate how
slow fluctuations in efficacy might be explainable by STP more
directly, we evaluate the predictions of the GBLM across 5 min
windows as before. We find that the median coefficient of deter-
mination (R?) between the GBLM estimated efficacy and the
observed efficacy is 0.22 [0.07-0.43 interquartile range (IQR);
Fig. 5A; 86.6% statistically significant, p<<0.05], and the results
do not vary substantially across different brain regions (Fig. 5B).
Moreover, the modification function of presynaptic ISI from the
GBLM tends to be consistent with the relationship between pre-
synaptic firing rate and observed synaptic efficacy (Fig. 5C-E).
As a comparison, we also build a static-synapse model without
STP, where the synaptic coupling stays the same over time (see
above, Materials and Methods). In this case, the median coeffi-
cient of determination between the static model estimated effi-
cacy and the observed efficacy 0.17 (0.05-0.37 IQR; Fig. 5A4;
83.3% of them show p<<0.05). The static model can reproduce
some fluctuations in the synaptic efficacy, indicating that some
of the fluctuations can be attributed to non-STP components,
such as the excitability of the postsynaptic neuron (Gal et al.,
2010) or slow common inputs shared by the presynaptic and
postsynaptic neurons. However, there is 30% improvement in
the median R?> when comparing the GBLM to the static model,
which suggests that STP plays a role in the efficacy fluctua-
tions as well. For many connections, the GBLM can reproduce
fluctuations in the synaptic efficacy with high fidelity, suggest-
ing that STP can, at least partially, explain the relationship
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between fluctuations in the presynaptic firing rate and synap-
tic efficacy.

To characterize the diversity of STP patterns in the putative
excitatory connections examined here, we further analyze the
modification functions estimated from the GBLM. The modifica-
tion function gives a simple description of how the synaptic
effect varies as a function of the presynaptic ISI. When the modi-
fication is positive, synaptic strength is facilitated, and when it is
negative it is depressed. However, the influence of the modifica-
tion function, overall, depends on the ISI distribution. Although
the modification function may be negative (for ISI < 10 ms in
Fig. 5C, e.g.), this will only influence the synaptic strength when
spikes occur with those particular ISIs. Here, we align the

modification function by ISI distributions. We sample the modi-
fication function at the 5th-95th percentiles of the ISI distribu-
tion (with 5% increments) and normalize by dividing the ISI-
scaled function by the absolute value of its average. To see if
there is any structure in the modification functions for all the pu-
tative synapses, we use hierarchical clustering on the ISI-scaled
modification function (Euclidean distance with unweighted aver-
age linkage). We find the functions are broadly split into two clus-
ters with some putative synapses mostly facilitating and others
mostly depressing. However, the specific ISI range where facilita-
tion or depression occurs varies widely across putative synapses
(Fig. 6A). Summarizing the ISI-scaled modification functions with
their average, we find that the overall level of facilitation or



8616 - J. Neurosci., November 16, 2022 - 42(46):8608-8620

w

A

-

o
™

Cumulative probability
o
(>

0.4
0.2 static model
ok
0 05 1

R2 (modeled vs. observed efficacy)

2
R
(GBLM vs. observed efiicacy)
o o o o
o N N )} [oe]
o —
o — —
o I —

Renetal. o Predictable Fluctuations in Synaptic Efficacy

-
d

DR N> Q O N DO N
A\A\%A\ ) 6\0":\\%@ \,®0®® XX (gz

2
2
o
D,6 ;
(0]
g V\/‘V"",\-/\/\R4-;/J“/\j-\‘/\ _m‘
S
o2t . :
c
= 0 50 100 sbsariag 150 10 10" 102 10%®  10*
L
— GBLM estimated
> 01r static model estimated 0.4
& 0.2
2 05T A A\ g
= Al -0.2
w or 1 ! f 0.4
0 50 100 150 10 10" 102 10%®  10*
Time [min] ISI[ms]

n
o
1

-
o
T

Firing rate [spk/s]
&

0 50 100

Efficacy
S o
8 =

0 .
0 50 100 150 10 10" 102  10%®  10*
Time [min] ISI[ms]
Ew
X
&op
2
©
S
o 5f
£ . . .
T o 50 100 150 10° 10" 102 10%  10*
> 01r
Q
©005F
L
ot . N 3
0 50 100 150 10 10" 102 10 10*
Time [min] I1SI[ms]
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ange line is the GBLM estimated efficacy. The yellow line is the static model estimated efficacy. Right, The distribution of the presynaptic ISl (top) and the modification function estimated from

the GBLM. The shaded orange area represents 1 SE.

depression appears to vary across brain regions (Fig. 6B) in a simi-
lar trend as the relationship between the minute-level fluctuations
in presynaptic firing rate and efficacy (Fig. 3B). These results sug-
gest that differences in the association between efficacy and pre-
synaptic rate that we observe on ~1 min timescales may be
related to differences in STP on subsecond timescales.

Although the sign of the modification functions estimated
with the GBLM typically reflects the positive or negative cor-
relation between the minute-level fluctuations in the presyn-
aptic firing rate and synaptic efficacy, it is also important to
note that this relationship is not one to one. The modifica-
tion function summarizes how the putative synaptic weight
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changes based on the single preceding ISI, whereas the over-
all efficacy in a time window is a result of not only the pre-
ceding ISI but also the sequence of presynaptic ISIs within
the window. The same ISI distribution can give rise to differ-
ent efficacy fluctuations depending on the specific order of
the presynaptic spikes (Fig. 6C). To illustrate the influence of
specific presynaptic spike patterns on the observed efficacy
fluctuations, we compared postsynaptic responses to the
original spikes with responses to shuffled presynaptic ISIs
with the same modification function. For each example syn-
apse (same as those in Fig. 5C,D), we shuffle the presynaptic
ISI within a 1 min window, so the ISI distribution and
minute-level fluctuation in the presynaptic firing rate are
preserved but the ISI sequence is randomized. We then
reconstruct the postsynaptic activities using the GBLM pa-
rameters estimated from the original data where the coupling
effect changes as a function of the shuffled presynaptic spike
train. For both synapses, the predicted efficacy fluctuations
with shuffled presynaptic ISIs (Fig. 6D, gray lines) are weaker
compared with the predicted fluctuations from the original
presynaptic spikes (Fig. 6D, orange lines) even under the
same modification functions. These differences demonstrate

how, in addition to the modification function and the overall
presynaptic rate, the detailed sequence of presynaptic spikes
plays a role in determining the correlation between presyn-
aptic firing rate and synaptic efficacy.

Discussion

In this study we examine associations between fluctuations in fir-
ing rates and efficacies of putative excitatory synapses using
large-scale extracellular spike recordings from awake, behaving
mice. Using both descriptive and model-based analysis we iden-
tify three main findings. First, we found that for many putative
synapses there are substantial fluctuations in the synaptic efficacy
that occur on a slow timescale of minutes alongside the expected
variations in presynaptic and postsynaptic firing rates. Second,
we found that these slow fluctuations in synaptic efficacy are of-
ten correlated (either positively or negatively) with fluctuations
in presynaptic rate. And third, by fitting a detailed 1 ms resolu-
tion model of postsynaptic spiking probability where synaptic
effects have short-term plasticity, we show that these slow fluctu-
ations in synaptic efficacy are consistent with the cumulative
effects of STP in many cases.
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Although previous studies have shown that synaptic efficacy
varies in vivo with learning, behavior, and stimuli (Fedulov et al.,
2007; Fujisawa et al., 2008; Ghanbari et al., 2020; McKenzie et al.,
2021), differences in efficacy across conditions may partially
reflect differences in presynaptic firing rates and spike patterns
across conditions. Firing rates depend both on external variables,
such as stimuli and movement (Ben-Yishai et al., 1995; Kang
et al., 2004; Vogels et al., 2005), as well as internal variables,
such as arousal, attention, adaption, and excitability (Gilbert
and Sigman, 2007; Gal et al., 2010; Goris et al., 2014). Firing
rate fluctuations can occur spontaneously (Teich et al., 1990;
Yaksi and Friedrich, 2006; Faisal et al., 2008) and are influ-
enced by brain state and the population activity of the sur-
rounding neurons (Tsodyks et al., 1999; Poulet and Petersen,
2008; McGinley et al., 2015). These many sources of firing
rate variability occur simultaneously in vivo and may have
complex effects on synaptic efficacy because of diversity in
both cell types and synaptic dynamics. Understanding how
synaptic efficacy is affected by presynaptic firing rates first
may allow us to better understand the influence of specific
external or internal variables.

Here, we find that the brain regions with larger fluctuations
in the presynaptic firing rate (measured by CV) also show larger
fluctuations in efficacy of putative excitatory synapses. It is im-
portant to note that this observation is just based on the putative
excitatory synapses we detected. Synapse detection from spikes is
biased toward strong synapses between neurons with high firing
rates. Moreover, most synapses analyzed here are between neu-
rons within the same brain area and detected on the same probe.
These findings thus represent only a partial picture of the
overall synaptic dynamics in these regions. However, the cor-
relations we observe are consistent with our core hypothesis
that firing rate variation leads directly to fluctuations in syn-
aptic efficacy because of STP. Here, we find such patterns not
just across brain areas, but for many individual synapses,
fluctuations in synaptic efficacy mirror fluctuations in the
presynaptic firing rate. Synaptic efficacy can be affected by
the postsynaptic activity as well (Abbott and Nelson, 2000;
Ibata et al., 2008; Sjostrom et al., 2008), but here we find that
the presynaptic firing rate is still predictive, even after
accounting for the postsynaptic firing rate. Previous in vitro
experiments have shown that natural spike patterns lead to
changes in synaptic strength consistent with STP on short
timescales (Klyachko and Stevens, 2006; Kandaswamy et al,,
2010). Here, we find evidence that synaptic efficacy fluctu-
ates with presynaptic firing rate in vivo, during behavior,
with large fluctuations on timescales of minutes.

Using a model-based approach to predict postsynaptic spik-
ing on 1 ms timescales (GBLM), we also examined to what extent
the slow fluctuations in synaptic efficacy can be explained by
STP. Here, we modeled the time-varying synaptic effect using a
modification function where the synaptic effect changes as a
function of presynaptic ISI. We find the GBLM can predict when
individual postsynaptic spikes will occur after a presynaptic spike
better than chance level, as well as accurately describe the slow
fluctuations in efficacy on timescales of minutes. The modifi-
cation functions estimated by the model show a range of ISI-
efficacy relationships, both depressing and facilitating, and the
distribution of this relationship varies in different brain areas.
Previous intracellular studies have shown that short-term syn-
aptic dynamics often depend on the presynaptic and postsy-
naptic neuron type and brain area (Thomson and Lamy, 2007;
Blackman et al., 2013; Lee et al, 2019; Campagnola et al,,

Renetal. o Predictable Fluctuations in Synaptic Efficacy

2022), and the presynaptic spike statistics that drive STP also
vary with cell type and brain area (Mochizuki et al., 2016). A
more detailed comparison of in vivo results with previous
in vitro results (Seeman et al., 2018) may help determine to
what extent in vitro results generalize to naturalistic settings.
Similarly, comparisons to previous in vivo studies, such as
those finding depression in thalamocortical synapses, (Chung
et al., 2002; Swadlow and Gusev, 2002; Bruno and Sakmann,
2006), can help determine to what extent these results general-
ize across species and experimental settings.

It should be noted that by using the GBLM we are only able to
partially reproduce the fluctuations in the synaptic efficacy using
the presynaptic firing activity, and many other factors could con-
tribute to variation in synaptic efficacy. First, our model does not
account for the long-term changes in the synaptic efficacy.
Previous work has found that long-term plasticity can be induced
in the visual cortex after repeated visual stimulation (Heynen and
Bear, 2001; Frenkel et al., 2006; Cooke and Bear, 2010; Sale et al,,
2011), as well as in hippocampus after behavioral training (Gruart
et al., 2006; Whitlock et al., 2006; Fedulov et al., 2007). A model
that accounts for the long-term plasticity may give a better pre-
diction for the fluctuations in synaptic efficacy (Stevenson and
Kording, 2011; Linderman et al., 2014; Song et al., 2018; Wei
and Stevenson, 2021). Second, in our model, the STP rules
themselves are assumed to be fixed for the whole recording.
However, experiments have shown that the induction of long-
term potentiation and long-term depression tend to shift STP
itself to be more depressing or more facilitating, respectively
(Markram and Tsodyks, 1996; Hardingham et al., 2007; Costa
etal., 2015, 2017), which may allow for more flexibility in signal
transmission (Carvalho and Buonomano, 2011). Third, although
we have a term in our model to describe the slow fluctuation in
network shared by the presynaptic and postsynaptic neurons,
it does not account for the fast synaptic effect of other poten-
tial presynaptic neurons (Harris et al., 2003). A postsynaptic
neuron can receive thousands of synaptic inputs, and corre-
lated presynaptic inputs can affect the synaptic responses
(Salinas and Sejnowski, 2000; Reinartz et al., 2014; Lee et al.,
2016). Finally, we model STP as a function of presynaptic ISI
to directly examine the influence of presynaptic firing, but
there are also many alternative models for short-term synap-
tic dynamics (Hennig, 2013). Our results find that ~20% of
the variance in efficacy explained by the GBLM, but better
models may be able to improve on this result and more accu-
rately predict fluctuations in synaptic efficacy in vivo.

Using extracellular spike recordings from behaving mice, we
find that the substantial fluctuations in the efficacy of putative
excitatory synapses can be partially predicted by modeling short-
term synaptic plasticity. Large-scale spike recordings have the
advantage of allowing us to study putative connections between
many brain areas for long periods of time (>2 h). Data from a
wide range of synapses across the entire brain, may drive richer
theoretical and normative models of synaptic transmission
(Pfister et al., 2010; Hennig, 2013). However, studying synapses
from spikes has the disadvantage that it requires sufficient
numbers of presynaptic spikes to accurately estimate efficacy.
Advances in stimulation and recording techniques may make
it possible to study fluctuations on faster timescales (Kwan
and Dan, 2012; English et al., 2017; Walker et al., 2021; Hage
et al., 2022), and systematic fluctuations in efficacy for inhibitory
synapses may also occur (Reyes et al., 1998; Beierlein et al., 2003;
Ma et al., 2012). Although disentangling the complex relationships
between synaptic efficacy and external or internal variables in vivo
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is an ongoing challenge in systems neuroscience, our results here
highlight the potentially important role of STP in driving slow
fluctuations in synaptic efficacy. In putative excitatory synapses
from a wide range of brain areas, we find that short-term synaptic
dynamics may lead to large, predictable fluctuations on longer
timescales.
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