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Object Boundary Detection in Natural Images May Depend
on “Incitatory” Cell–Cell Interactions
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Detecting object boundaries is crucial for recognition, but how the process unfolds in visual cortex remains unknown. To
study the problem faced by a hypothetical boundary cell, and to predict how cortical circuitry could produce a boundary cell
from a population of conventional “simple cells,” we labeled 30,000 natural image patches and used Bayes’ rule to help deter-
mine how a simple cell should influence a nearby boundary cell depending on its relative offset in receptive field position
and orientation. We identified the following three basic types of cell–cell interactions: rising and falling interactions with a
range of slopes and saturation rates, and nonmonotonic (bump-shaped) interactions with varying modes and amplitudes.
Using simple models, we show that a ubiquitous cortical circuit motif consisting of direct excitation and indirect inhibition—
a compound effect we call “incitation”—can produce the entire spectrum of simple cell–boundary cell interactions found in
our dataset. Moreover, we show that the synaptic weights that parameterize an incitation circuit can be learned by a single-
layer “delta” rule. We conclude that incitatory interconnections are a generally useful computing mechanism that the cortex
may exploit to help solve difficult natural classification problems.
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Significance Statement

Simple cells in primary visual cortex (V1) respond to oriented edges and have long been supposed to detect object boundaries,
yet the prevailing model of a simple cell—a divisively normalized linear filter—is a surprisingly poor natural boundary detec-
tor. To understand why, we analyzed image statistics on and off object boundaries, allowing us to characterize the neural-style
computations needed to perform well at this difficult natural classification task. We show that a simple circuit motif known
to exist in V1 is capable of extracting high-quality boundary probability signals from local populations of simple cells. Our
findings suggest a new, more general way of conceptualizing cell–cell interconnections in the cortex.

Introduction
The primary visual cortex (area V1) is a complex, poorly under-
stood, multipurpose image processor optimized to extract in-
formation from natural scenes, which are themselves complex,
poorly understood signals. Thus, understanding how V1 oper-
ates presents a challenging reverse engineering problem. A long-
standing hypothesis is that orientation-tuned V1 cells somehow
participate in object boundary detection, a core process in bio-
logical vision (Hubel and Wiesel, 1962; Biederman, 1987; von
der Heydt and Peterhans, 1989; Gilbert and Wiesel, 1990;
Kapadia et al., 1995) that is crucial for the functions of both

ventral and dorsal streams (Biederman, 1987; Hoffman, 2000;
Rust and Dicarlo, 2010; Theys et al., 2015). However, little pro-
gress has been made in refining or testing this hypothesis, in part
because of our lack of understanding of the structure of natural
object boundaries, and, particularly, what a V1 cell needs to do
to reliably distinguish boundaries from nonboundaries.

This uncertainty has made it difficult to form specific compu-
tational hypotheses as to how V1 circuits perform this behavior-
ally relevant classification task. Previous work has analyzed
natural image statistics to determine how local boundary seg-
ments are arranged in images (Sigman et al., 2001; Sanguinetti et
al., 2010), and how these arrangements relate to human contour
grouping performance (Geisler et al., 2001). However, no study
has yet attempted to deconstruct the natural boundary detection
problem in detail, or to link the computations necessary for
boundary detection to particular neural mechanisms.

With the goal to better understand the computations under-
lying object boundary detection in V1 (Fig. 1), we began with a
question that could be used to sort natural image patches
into boundary and non-boundary cases (Fig. 1A), and the
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Figure 1. Calculating boundary probability from natural images using Bayes’ rule. A, The boundary detection problem can be encapsulated by the question and answers
shown; ;30,000 natural image patches were classified in this way. Dashed box indicates a reference location where a boundary might appear. Patches shown during label-
ing were 20� 20 pixels. B, Three (of 300) oriented cells with responses r1, r2, and r3 are shown in the vicinity of the reference location. C, Under the assumption that simple
cell responses are class-conditionally independent (see main text), Bayes’ rule gives an expression for boundary probability in terms of individual cell LLRs (colored terms in
denominator). D, Cell responses ri are passed through their respective LLR functions li(), and the results are summed and passed through a fixed sigmoidal “f–I curve”
(frequency-current) to yield boundary probability.
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assumption that a known cell type—orientation-tuned “simple
cells” (SCs; as defined by Hubel and Wiesel, 1962), typically
modeled as divisively normalized oriented linear filters
(Carandini and Heeger, 2011) —covered the site of the putative
boundary at a range of positions and orientations; a sample of 3
SC receptive fields (RFs) is shown in Fig. 1B. We then asked
how the outputs of a population of SCs should be combined to
produce a “boundary cell” (BC), whose firing rate represents
the probability that an object boundary is present within its RF
(Fig. 1C,D). When framed in this way, Bayes’ rule tells us what
data to extract from natural images to obtain an answer to the
question. In a previous study (Ramachandra and Mel, 2013),
we noted that under the simplifying assumption of “class condi-
tional independence” (CCI; for a detailed discussion, see
Materials and Methods), simple cell–boundary cell interactions
are captured by the log-likelihood ratio (LLR) functions embed-
ded in Bayes’ rule (Fig. 1C, colored expressions), which repre-
sent the evidence that a given simple cell provides about the
presence of an object boundary within the receptive field of a
neighboring boundary cell (Fig. 1D). We found that SC–BC
interactions were diverse, and in some cases involved com-
pound excitatory (E) and inhibitory (I) effects. However, since
only a small number of cells was analyzed in that study, we
could not come to general conclusions about the types of cell–
cell interactions needed to compute boundary probability,
making it difficult to compare and contrast possible neural
mechanisms.

In this study, we analyze a much larger dataset and compute
the full set of simple cell–boundary cell interaction functions for
a population of 300 odd-symmetric simple cells surrounding a
“reference location” (RL) where a boundary might be detected.
We find that the simple cell–boundary cell interactions suggested
by the natural image LLR functions follow a predictable pattern
that depends on the offset in position and orientation between
simple cell and boundary cell receptive fields, and we show that a
well known cortical circuit motif can implement the entire spec-
trum of SC–BC interactions found in our dataset. Finally, we
demonstrate that a cortically inspired neural network can pro-
duce a boundary-detecting cell from simple cells with a single
layer of excitatory synapses and a single inhibitory interneuron.
Our findings suggest that cortical sensory computations, includ-
ing the detection of natural object boundaries, may depend on a
specific class of structured excitatory–inhibitory cell–cell
interactions.

Materials and Methods
Image preprocessing. As in the study by Ramachandra and Mel

(2013), we used a modified version of the COREL database for boundary
labeling in natural images. Several image categories, including sunsets
and paintings were removed from the full COREL database since their
boundary statistics differed markedly from that of typical natural images.
Custom code was used to select;30,000 20� 20 pixel image patches
for labeling. The reference location representing the receptive field
location of a hypothetical boundary cell was defined as the elon-
gated, horizontal 2� 4 pixel region at the center of the patch (Fig.
1A,B, dashed box).

Natural image data collection. To collect ground-truth data relating
to natural contour statistics, for each image patch to be labeled, a hori-
zontal 2� 4 pixel rectangular box was drawn around a centered refer-
ence location and human labelers were asked to answer the question,
“On a scale from 1-5, with 1 meaning ‘extremely unlikely’ and 5 meaning
‘extremely likely’—how likely is it that there is an object boundary pass-
ing horizontally through the reference box, end to end, without leaving
the box?” To qualify as valid, boundary segments also had to be visible

and unoccluded within the box. We restricted labeling to horizontal
boundaries (i.e., horizontal reference boxes) since pixel lattice discretiza-
tion made it more difficult to judge oblique orientations, and because we
expected cell response statistics in natural images to be approximately
orientation invariant. (This expectation was supported by subsequent
tests showing that LLR functions obtained for horizontal boundaries
also led to high boundary detection performance on oblique bounda-
ries.) Labeler responses were recorded, and patches with scores of 1 or
2 were classified as “no” patches, while patches with scores of 4 or 5
were classified as “yes” patches. Agreement between labelers was very
high, based on informal observations when two labelers worked to-
gether. Rare ambiguous patches that could cause labeler disagreement
were often given scores of 3, so these patches were excluded from our
analyses. After labeling, the dataset was doubled by adding left–right
flipped versions of each patch, and assigning the same label as the
unflipped counterpart.

Collecting virtual simple cell responses on and off natural boundaries.
Given a large set of image patches, some labeled as boundaries and
others not, the next step was to collect virtual simple cell responses
densely covering boundary versus nonboundary image patches so
that their different statistics could be analyzed. Original color
image patches were converted to single-channel (monochrome)
intensity images 0:29R10:59G10:11Bð Þ: Simple cell-like-oriented
linear “filters” were created by rotating a 2� 4 pixel horizontal fil-
ter kernel in 15° increments from 0° to 165° (i.e., 12 orientations).
The filter kernel for the horizontal (0°) cell is shown in Figure 2A.
Positive filter coefficients represent ON subregions, and negative
coefficients represent OFF subregions of the receptive field of the
virtual simple cell. Blank kernel entries represent zeros. Filter coef-
ficients in rotated kernels were computed by rotating the horizon-
tal kernel using “bilinear interpolation” (https://en.wikipedia.org/
wiki/Bilinear_interpolation; Fig. 2B,C). In essence, any entry in an
oriented kernel that was affected by the rotated horizontal pattern
would be assigned a coefficient that was interpolated based on the
nearest four coefficients in the original horizontal pattern after
back-rotation. (The locations of the faint blue dots in Fig. 2A show
the locations of the dark blue dots in Fig. 2B rotated back by 45°
into the horizontal frame of references; the four coefficients closest
to each faint blue dot were used for the interpolation.) A similar
procedure was used to generate all other rotated filter kernels.
Note that we modeled only “odd-symmetric” simple cells with a
single ON and a single OFF subfield, as we found that even-sym-
metric cells (e.g., with a central ON region and two flanking OFF
regions), which are also found in V1, are of limited use in classify-
ing the type of “step” edges contained in our human-labeled natu-
ral image dataset.

The “response” value of a simple cell at a particular image location
was computed as the dot product between the filter kernel of the cell and
the underlying image intensity pixel values. A simple cell generated a
positive response when its positive kernel coefficients mostly overlapped
with bright image pixels and its negative coefficients mostly overlapped
with dark image pixels. The largest positive responses occurred on light–
dark boundaries of the preferred orientation of a cell. A negative
response was treated as a positive response of a distinct simple cell with
opposite contrast polarity (i.e., rotated by 180°).

Given a labeled image patch, simple cell responses covering that
patch were collected on a 5� 5 grid centered on the patch, at each of 12
orientations (Fig. 2D). This led to 5� 5 � 12= 300 simple cells respond-
ing to any given image patch. Simple cell response data were accumu-
lated separately for yes and no labeled patches.

Restriction to “normalized” image patches. The prevailing model of a
simple cell consists of a linear filter whose output is divisively normal-
ized by activity in the surround of the cell (Carandini and Heeger, 2011).
Normalizing the response of a simple cell involves (1) computing the
prenormalized response of the cell (e.g., as we do above using an ori-
ented linear filter); (2) calculating the sum N of certain other cells’ pre-
normalized responses in the surround of the cell and (3) inhibiting the
simple cell’s response as an increasing function of N. Normalization is
often called “divisive” as the surround activity term N generally appears
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in the denominator of the overall cell response expression. Response
normalization plays a variety of roles in the brain (for review, see
Carandini and Heeger, 2011), though in the visual system normalization
is most often discussed as a means of counteracting the effect of multipli-
cative “nuisance” factors that modulate the responses of entire local popu-
lation of neurons in a correlated fashion. For example, if the level of
illumination varies across the visual field, a common occurrence in natural
scenes, the spatial variation in light level tends to drive up the response
rates of all neurons in brighter areas and tamp down the response rates of
all neurons in darker areas. Normalization circuitry helps to cancel out
these correlated, population-level neural response variations, leading
to a greater degree of illumination invariance across the visual
field, and a greater degree of statistical independence in the neural

code (Liang et al., 2000; Wainwright and
Simoncelli, 2000; Schwartz and Simoncelli,
2001; Zetzsche and Rohrbein, 2001; Fine et al.,
2003; Karklin and Lewicki, 2003, 2005; Zhou
andMel, 2008).

The importance of normalization with
respect to our analysis is that neural activity
in the nonclassical surround of a simple cell
can powerfully influence its response, and,
given that our study involves collecting and
statistically analyzing simple cell responses
in natural images, we made efforts to take
account of the effects of normalization cir-
cuitry on simple cell responses. We selected
a pool of 100 oriented cells from the 300
shown in Figure 2D using an ad hoc pro-
cedure designed to find a subset of the
cells that would be minimally correlated in
normalized patches. (Limiting the normaliz-
ing pool to a subset of the 300 cells turned
out to be unnecessary, as we found that
including all 300 cells in the normalizer pool
led to functionally equivalent results, but we
describe the selection procedure below since
the 100-cell normalizer was what was
actually used to generate our result figures.
The reader not interested in the details of
the normalization approach can skip to
the next paragraph.) We started by
defining a “basic normalizer” consisting
of the single linear filter value at the ref-
erence location. We then culled out a
large set of natural image patches whose
basic normalizer values fell into a narrow
range, that is, all the culled patches had
approximately the same filter value at
the reference location. The value used
for the basic normalizer was 106 2, but
the particular value mattered little; what
mattered was that the value was fixed
across all image patches collected. We
then incrementally “grew” a normaliza-
tion pool as follows. The cell at the refer-
ence location was considered to be the
first cell in the normalization pool (C1).
A second cell, call it C2, was added to the
pool by choosing that cell (from the 299
remaining) for which the correlation of
its absolute value to that of the other
cells in the pool (which was only C1 in
this case) was closest to zero. The abso-
lute value was used because negative val-
ues were considered to be responses of
distinct cells with opposite polarity. A
third cell, C3, was then chosen (from the
298 remaining) for which the correlation
of its absolute value to that of C1 and C2

was, on average, closest to zero. This “greedy” (i.e. “choose the best
each time”) procedure continued until 100 cells were chosen, leading
to the particular subset of cell RFs shown in Figure 2E. Having chosen
the 100-cell normalization pool, we could now cull out a second gen-
eration-normalized set of image patches from the image database by
selecting patches for which the sum of the responses of all 100 cells in
the normalization pool (converted to absolute values) fell into a fixed
response range N = 2006 40. The data in our results figures was gen-
erated from this set of normalized image patches. However, as men-
tioned above, random image patches normalized using all 300 filters
surrounding the reference location (and N ; 600 6 40; the exact bin
center was chosen to match the mean on our normalized labeled

Figure 2. Simple cell “filter” construction, layout, and normalization pools. A, Diagram shows layout of positive and negative
filter coefficients for computing simple cells responses. Positive coefficients represent the ON subregion of the RF, and negative
coefficients represent the OFF subregion. B, Faint blue dots indicate off-grid positions (in x–y space) of the 18 pixel locations
holding coefficients for the 45° case, back-rotated to the horizontal orientation. B, Blue dots indicate all pixels that overlap with
the red box, representing the original horizontal receptive field rotated by 45°. A, C, Each of these 18 pixels will contain a coeffi-
cient (C) computed from bilinear interpolation of the coefficients in the original horizontal layout (A). The coefficients “down the
middle” of the 45° filter are zero, reflecting an equal contribution from the ON and OFF subregions of the RF. D, Layout of 300 fil-
ter locations (red) in 5� 5 grid surrounding the reference location (blue). E, Subset of 100 of the 300 simple cell RFs chosen as
the normalizer pool in the following figures. See text for details. F, Examples of image patches drawn at random from the image
database whose normalizer values (i.e., the sum of the response magnitudes of the 100 cells) fell into the same bin (2006 40);
see text for details. Top left patch is the average of all. G, Same as F, but with patch selection based on a different normalizer:
the sum of the response magnitudes of all 300 simple cells covering the region (D, RFs).
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patch database) were indistinguishable as a group (Fig. 2F,G) had
indistinguishable averages (upper left patch in each image grid),
and led to LLR functions for boundary detection that were very
similar.

The restriction of our analysis to image patches within a narrow
range of normalizer values was functionally similar to carrying out our
analysis “under controlled lighting conditions.” The benefit of this
restriction was that it allowed us to probe the relationships between sim-
ple cell responses and boundary probability without having to assume
that we know the precise form of the function that normalizes neural
responses against changes in lighting or other regional correlating fac-
tors. The cost of this restriction is that we obtain information only about
the boundary probability computation at a specific normalization level.
This would be a serious problem if the boundary probability computa-
tion changed significantly at different levels of normalization. To miti-
gate this risk, we verified that our analysis produced similar main results
for two other value ranges of the 100-cell normalizer (N=3006 40 and
N=4006 40). We accomplished this by assuming that the normalizing
function divisively scales filter responses, which, given that the filters are
linear, is equivalent to divisively scaling the image patches themselves.
When we scaled down the image patches from the other two normalizer
bins by factors of 300/200 = 1.5 and 400/200= 2, respectively, and there-
after processed all image patches equivalently, we obtained results that
were functionally indistinguishable from those produced from the origi-
nal “200” dataset (data not shown). In our main results figures, we
include only the data derived from image patches in the original “200”
normalizer bin.

Bayesian formalism. We assume that a boundary cell computes
pðyesjr1r2r3 � � �Þ, that is, the probability that a boundary is present at the
reference location given a set of simple cell responses r1r2r3, etc., whose
receptive fields surround and cover the reference location (Fig. 1D).
Using Bayes’ rule we obtain the following:

pðyesjr1r2r3 � � �Þ ¼ pðr1r2r3 � � � jyesÞpðyesÞ
p r1r2r3 � � � jyes
� �

p yesð Þ1p r1r2r3 � � � jnoð Þp noð Þ :

(1)

Dividing through by the numerator and rearranging, we find:

pðyesjr1r2r3 � � �Þ ¼ 1

11
pðnoÞ
pðyesÞ exp �log

pðr1r2r3 � � � jyesÞ
pðr1r2r3 � � � jnoÞ

� � : (2)

The log term in the denominator of Equation 2 consists of a ratio of
two “likelihoods.” The numerator and denominator of the likelihood
ratio represent, respectively, the probability of measuring a particular
combination of simple cell responses (r1r2r3 � � �Þ when a boundary is
present at the reference location (yes), and the probability of measuring
the same combination of filter responses when a boundary is not pres-
ent at the reference location (no). When a simple cell response combi-
nation (r1r2r3 � � �Þ is measured in the vicinity of a reference location,
and based on statistical record keeping we know that that response
combination is more likely to be associated with a yes case than a no
case, then the likelihood ratio is .1, meaning that there is positive evi-
dence for a boundary. In this case, the logarithm term is .0, and
the exponential term drops to ,1 because of the negative sign of the
exponent. When the likelihood ratio is much .1, the exponential
term approaches zero, and the denominator of the full expression
approaches 1, indicating that a boundary at the reference location is
highly probable. The other term in the denominator of Equation 2 is
the prior “odds” of finding an object boundary at a randomly sampled
location, which is the ratio of the prior probabilities of yes and no cases.
Yes cases made up 2.4% of our default dataset (for N= 200), meaning
the odds of a boundary was 2.4/97.6 = 2.45%. The odds term functions
as a sort of evidence threshold: the lower the prior odds of a boundary,
the stronger the evidence must be to reach a 50% probability that a

boundary is present at the reference location. For prior odds of 2.45%,
a likelihood ratio of 41 would be needed to reach a 50% boundary
probability.

Simplifying Bayes’ rule by assuming class conditional independence.
Using Bayes’ rule as a tool for interpreting cortical circuit interactions
runs into the obstacle that the likelihood expressions contributing to
the likelihood ratio involve high-dimensional probability densities,
where the dimension corresponds to the number of simple cells that
contribute to the boundary probability calculation (which could num-
ber in the 100s). Collecting high-dimensional probability density
functions (pdfs) from natural images, and representing them mathe-
matically, by rote tabulation, or neurally, is for all intents and purposes
intractable. However, if we assume that neighboring simple cells dis-
play a certain kind of statistical independence (i.e., “class conditional”
independence), this radically simplifies the computational problem by
allowing the high-dimensional likelihoods in Bayes’ rule to be factored
and re-expressed as a sum of one-dimensional LLR functions l i rið Þ.
These one-dimensional LLR functions can be interpreted as “the effect
that simple cell i has on a nearby boundary cell over its range of
responses ri.” Fortuitously, the functions l i are simple in form (i.e.,
smooth and unimodal) and can be easily computed by a known cortical
circuit motif. We therefore begin our analysis under the CCI assump-
tion, as it provides a stepping stone to understanding the types of cell–
cell interactions we should expect to find in a cortical circuit in which
boundary probability is computed. We then take steps to bridge the
gap between the predictions of the simplified analysis that assumes
class conditional independence, and the types of cell–cell interactions
that we should expect to find in the more realistic scenario where the
simple cells contributing to a boundary probability computation do
not satisfy the CCI assumption.

The assumption of class-conditional independence in our scenario
implies that simple cell responses are statistically independent both for
the set of image patches where a boundary is present at the reference
location, and for the set of image patches where a boundary is not pres-
ent at the reference location. When CCI holds, both the numerator and
denominator terms in the likelihood ratio of Equation 2 can be fac-
tored into individual cell response terms, and converted to a sum of
cell-specific LLR functions, as follows:

log
p r1r2r3 � � � jyes
� �
p r1r2r3 � � � jnoð Þ ¼

¼ log
p r1j yes
� � � p r2jyes

� � � p r3jyes
� � � � �

p r1jnoð Þ � p r2jnoð Þ � p r3jnoð Þ � � �

¼ log
p r1jyes
� �
p r1jnoð Þ 1 log

p r2jyes
� �
p r2jnoð Þ 1 log

p r3jyes
� �
p r3jnoð Þ 1 :::

¼ l 1 r1ð Þ1 l 2 r2ð Þ1 l 3ðr3Þ1 :::;

where li rið Þ is the log-likelihood ratio function for the ith neighboring
cell. In simple terms, the LLR function li rið Þ captures how the evidence
for a boundary at the reference location depends on the response of the
ith neighboring simple cell. We can write the CCI version of Bayes’ rule
as follows:

pðyesjr1r2r3 � � �Þ ¼ 1

11
pðnoÞ
pðyesÞ � exp �

X
i
l i rið Þ

� � ;

which reduces to the remarkably simple formula:

¼ sigmoid
X

i

l i rið Þ
 !

:
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In intuitive terms, this equation says that for a boundary cell at the
reference location to compute boundary probability within its receptive
field, the response of each neighboring simple cell ri should be passed
through a nonlinear function l i whose form depends on the neighbor’s
offset in position and orientation from the reference location; the results
from all contributing simple cells should be summed; and the total
should be passed through a final sigmoidal nonlinearity to produce
the boundary cell response (Fig. 1D).

Extracting the log-likelihood ratio functions
l i rið Þ from natural images. Histograms of the
responses of the 300 simple cells surround-
ing the reference location were collected
separately for yes and no image patches
(total of 600 histograms). Histograms for no
patches contained 50 evenly spaced bins.
Yes histograms were binned more coarsely
because our dataset had many fewer yes
patches than no patches; between 8 and 20
evenly spaced bins were used to ensure
smoothness of the response histograms for
all cells. The yes and no histograms for each
simple cell were converted to yes and no
pdfs by dividing the sample count in each
bin by the following two factors: (1) the
total sample count in the respective histo-
gram; and (2) the bin width. From these
pdfs, LLR functions l ðrÞ were constructed

for each simple cell as l ðrÞ ¼ log
p rjyes� �
p rjnoð Þ ,

where p rjyes� �
and p rjnoð Þ were the yes and

no pdf bin values of the cell, respectively.
The log function was the natural logarithm
(base e). To control noise levels, the l func-
tion of each cell was considered valid only
at nonextreme response levels for which the
probability in both the yes and no pdfs exceeded
minimum thresholds (p rjyes� �

.0:005 and
p rjnoð Þ.0:002Þ. Different thresholds were
used because smaller probabilities could be esti-
mated more reliably in the no histograms given
the much larger set of no image patches. Only
data inside valid response regions is plotted in
Figures 3–5.

The same procedure was repeated using dif-
ferent simple cell profiles (2� 6, 2� 8, 4� 8,
and 6� 8 pixels) to generate the LLR functions
shown in Figure 4.

Modeling log-likelihood ratio functions l ðrÞ
as incitatory interactions. As a step in the direc-
tion of a circuit-level model, we fit the meas-
ured LLR functions l ðrÞ for all 300 cells
surrounding the reference location with an
additive combination of an excitatory and in-
hibitory interaction function. This was accom-
plished in two steps. First, for each plot in
Figure 6C, we combined the data from the 5
LLR functions (i.e., combining across the five
vertical RF shifts) and used least-squares regres-
sion to fit a quadratic function ar2 1 br1 c
using the data from positive filter values only.
Whenever the fitted quadratic had a negative

mode � b
2a

,0

� �
, which meant the data used

to fit the quadratic would not have included the
mode, or if the fit had a positive second deriva-
tive corresponding to an upward-pointing pa-
rabola (a.0), which implied that the fit must
have suffered from insufficient data, we refit the
quadratic model including LLR values for nega-

tive filter values (corresponding to the left sides of each plot; data not
shown). We then decomposed the quadratic fits into excitatory and in-
hibitory components as follows: the excitatory component EðrÞ reprodu-
ces the rising portion of the quadratic, and then saturates at the
maximum value, while the inhibitory component IðrÞ is fixed to 0 for all
filter values less than the mode, and thereafter rises quadratically, giving

Figure 3. Computing LLR functions from natural images. A, Histograms were constructed for simple cell responses from
30,000 labeled image patches potentially containing boundaries at the reference location (dashed box) separately for yes (red)
and no (blue) cases. Yes (no) cases were those with confidence scores of 4 and 5 (1 and 2). A subset of simple cell response his-
tograms is shown for 7 orientations and 5 vertical positions (centered horizontally). B, By dividing the yes and no distributions
and taking natural logarithms, one obtains the LLR functions l i() for each cell, which vary as a function of the cell response ri .
C, The full set of 300 LLR functions reveals a regular pattern over orientation and location. Cases grouped within each subplot
are for five horizontal shifts (indicated by black dots at top). Many LLR functions are nonmonotonic functions of the response of
the cell.
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rise to the falling portion of the quadratic.

Thus E rð Þ ¼
ar21br; r,� b

2a

� b2

4a
; r � b

2a

8>><
>>: and

I rð Þ ¼
0; r,� b

2a

�a r1
b
2a

� �2

; r � � b
2a

8>>><
>>>:

, and

E rð Þ � IðrÞ gives the quadratic fit obtained
above (up to an additive constant, which is
chosen so that all interactions are 0 when
r ¼ 0). Note that the ability to precisely match
individual LLR function shapes using a differ-
ence of two simple functions is mainly of di-
dactic interest; the more practically significant
question is whether a weighted sum of simple
excitatory and inhibitory functions (which
will in general involve more than two curves)
can produce the LLR-like interactions needed
to produce improved boundary detection per-
formance (Fig. 7).

Optimizing cell–cell interactions in a corti-
cally inspired network using gradient descent
learning. In the data analysis portions of the
article, the term “simple cell responses”
referred to the value obtained by comput-
ing the dot product between the receptive
field kernel and the underlying intensity image. This operation
yielded the linear response value of the simple cell ri for that recep-
tive field location. In a step toward greater biological realism, for the
network-level simulation of Figure 7, each of the 300 oriented receptive
fields surrounding the reference location was represented by a population
of eight model simple cells, all sharing the same receptive field and thus
the same linear response value r, but having different output nonlinear-
ities (reflecting natural variability within the neuronal population). The
differentiation of responses within each eight-cell subpopulation was
achieved by modifying the threshold in the sigmoidal output function

applied to the linear response of each cell, yi rð Þ ¼ A

11exp �g r � tð Þ� �.
All cells shared the same amplitude and gain parameters
(A ¼ 1; g ¼ 0.5), but spanned a range of thresholds from t = �6 to
35 in even steps.

The synaptic weights connecting each model simple cell to the
boundary cell were obtained as follows. Each image patch created a pat-
tern of activation across the 2400 model simple cells (300 linear RFs � 8
output threshold variants). We used logistic regression to train a linear
classifier to distinguish boundary from nonboundary image patches
using the 2400 model simple cells as inputs. A subset of the data
(25,000 of the ;30,000 labeled patches) was used for training. During
training, data were balanced by duplicating boundary-containing
patches such that boundary and nonboundary exemplars were equal in
number. Training was done using batch gradient descent with a learning
rate of h ¼ 0:1, performed for 1000 iterations. The net effect on the
boundary cell of the eight model simple cells sharing the same RF location
is visualized in Figure 7B. Each graph shows the weighted sum of the out-
puts of the eight simple cell variants as a function of r, the shared under-
lying linear response value of the cells. To facilitate comparison of these
graphs with the explicit LLR function li rð Þ for that RF location, we
scaled the colored interaction functions within each plot. Each plot has
one scaling factor that applies to all five colored curves in the plot. The
inverse of the scaling factor, which can be thought of as the weight that the
classifier puts on the curves contained in the subplot, is shown by gray bars.

Precision–recall curves measure boundary classification performance.
Precision–recall (PR) curves were generated for the boundary cell net-
work with optimized weights, as well as for the naive Bayes’ classifier
(based on a literal sum of all cell LLRs; Fig. 1C,D) and other classifier
variants (see Fig. 9). The term “classifier” refers to any cell or network or

mathematical formula that produces a value in response to an image
patch, where larger values are meant to signify higher boundary proba-
bility. A classifier consisting of the single simple cell at the reference
location provided the PR baseline (see Fig. 9 blue curve). To generate a
PR curve, a classifier was applied to each of the 5000 labeled but
untrained “test” image patches, and the patches were sorted by the classi-
fier output. A threshold was set at the lowest classifier output obtained
over the entire test set and was systematically increased until the highest
output in the test set was reached. For every possible threshold, above-
threshold image patches were called putative boundaries and below-
threshold patches were called putative nonboundaries. “Precision” was
calculated by asking what fraction of patches identified as putative boun-
daries were true boundaries (according to the human ground truth
labels), and “recall” was calculated by asking what fraction of true boun-
daries were identified as putative boundaries. As the threshold increased,
the precision and recall values swept out a curve in PR space. Perfect per-
formance would mean 100% precision and recall simultaneously, corre-
sponding to the top right corner of the PR graph. Precision–recall curves
are an alternative to receiver operating characteristic curves and are pref-
erable in domains where the classes are very unbalanced in terms of
prior probability. This is the case in our study: boundary images made
up only 2.4% of the overall dataset, versus 97.6% for nonboundary cases.
See this excellent article for a discussion of this issue (https://
machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-
classification-in-python/).

Boundary cell stimulus responses. The idealized boundary image,
analogous to a spike-triggered average (STA) stimulus, was computed by
averaging all natural image patches weighted by their boundary cell
response (see Fig. 10A). Sinusoidal grating stimuli were generated on a
20� 20 pixel grid at 24 orientations in 15° steps, and at 60 phase shifts
per cycle (see Fig. 10B,C). The spatial frequency was chosen to be 0.25
cycles/pixel because it led to relatively artifact-free stimuli at 20� 20
pixel resolution, and evoked robust boundary cell responses. For consis-
tency with earlier results, the contrast of each grating image was adjusted
to have the same normalizer value (200) as the natural image patches used
in the LLR analysis. This was done by generating the grating patch at
100% contrast, computing the normalizer value N on the generated patch
using the 100-cell normalization pool (see section above on normalization
for details), and scaling down the grating patch by the factor N/200. This
procedure reduced the worry that boundary cell responses to the artificial
grating stimuli would be distorted by floor or ceiling effects.

Figure 4. The basic pattern of LLR forms is conserved across different filter spatial profiles. LLRs were generated for each of
the filter profiles shown on the left (2� 6, 2� 8, 4� 8, and 6� 8 pixels). The overall spectrum of LLR shapes remains simi-
lar for the different cases.
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Simple cell responses to the grating stimuli were presented to the net-
work of Figure 7 just as was done with natural images patches (see
above). Responses were averaged over all phases of the grating at each
orientation (see Fig. 10C). Tuning curves (see Fig. 10D) were obtained
by presenting natural image stimuli from the N=200 set of normalized
image patches. Red and blue curves are for images with 90th and 10th
percentile contrast at the reference location, respectively. These percen-
tiles varied in their contrast by approximately a factor of 2. Contrast was
defined as the linear filter response at the reference location divided by
the average intensity over the 2� 4 pixel region of support of the refer-
ence filter.

Results
To gain insight into the cell–cell interactions needed for natural
boundary detection, we collected and labeled 30,000 natural image

patches, with scores ranging from 5, indicating
high confidence that a boundary was present at
an RL (Fig. 1A, dashed box), down to 1, indicat-
ing high confidence that a boundary was not pres-
ent at the RL. From these labeled patches, we
constructed histograms of oriented linear filter
values (representing simple cell responses) sepa-
rately for yes (scores of 4–5) and no (scores of 1–
2) cases (Fig. 3A, red and blue histograms, respec-
tively). From the responses of 300 neighboring
simple cells at 12 orientations on a 5� 5 pixel lat-
tice centered on the RL, we computed the likeli-
hoods pðrijyesÞ and pðrijnoÞ, meaning the
probability of the ith simple cell having a particu-
lar response ri when the patch either does (yes) or
does not (no) contain a horizontal boundary. We
show in the Materials and Methods section that,
for a boundary cell to compute the probability of
a boundary, and contingent on the assumption
that the different filter responses are class con-
ditionally independent, the boundary cell
should have as its input the sum of the LLR

functions, liðriÞ ¼ log
p rijyes
� �
p rijnoð Þ of all contrib-

uting simple cells. Each function liðriÞ repre-
sents the evidence—positive or negative—that
simple cell i, when responding at level ri, pro-
vides about the existence of a boundary at the
reference location. This evidence should be
summed by the boundary cell, and then passed
through a sigmoidal output function to yield an
actual boundary probability (Fig. 1C,D).

Accordingly, we computed the LLR functions
for all of the 300 simple cells surrounding the ref-
erence location. Examples of LLR functions are
shown in Figure 3B, and the full set is shown in
Figure 3C grouped across five horizontal shifts at
each orientation and vertical position. The LLR
functions varied considerably with position and
orientation relative to the reference location, but
nonetheless conformed to a small number of
qualitative shape prototypes (rising, falling, and
bump shaped). When we generated LLR func-
tions for simple cell receptive fields of different
sizes and aspect ratios (2� 6, 4� 6, 4� 8, and
6� 8 pixel RF profiles), we found a qualitatively
similar pattern of results, indicating that the basic
shapes of the LLR functions do not depend sensi-
tively on the RF profiles of the simple cell recep-

tive fields (Fig. 4).
The LLR functions l iðriÞ are important functions to under-

stand since they encode the way the response of a simple cell, ri,
individually affects boundary probability at a neighboring recep-
tive field location (positively, negatively, or a combination of
both). To gain insight into the forms of the l iðriÞ functions that
we collected, we developed a simple mathematical model of the
process of LLR function formation. If yes and no distributions of
each cell are approximated as Gaussian (i.e., unimodal bell-
shaped curves) with different means and variances, the resulting
LLR functions will be quadratic in form, that is, they will have
parabolic shapes. Since the no response distribution is virtually
always more variable than the yes distribution, the LLR functions
take the form of downward-pointing parabolas (Fig. 5A),

Figure 5. Interpreting the LLRs as cell–cell interaction functions. A, Modeling the yes and no distributions as
gaussians (left) leads to parabolic LLRs (middle). To interpret the LLRs as cell–cell interactions functions, we perform
the following two additional processing steps: (1) when a simple cell is inactive, it should not influence the bound-
ary cell, and this is accomplished by shifting the LLR to have zero output (y= 0) when the input is zero (x= 0); and
(2) simple cells cannot have negative firing rates, and so the left halves of the LLRs, corresponding to negative sim-
ple cell firing rates, are discarded (these cases are handled by an opponent SC whose RF is identical but with the ON
and OFF subfields reversed). This produces the curves in the right panel. B, The full set of LLR interactions processed
in this way. Many of them are nonmonotonic, indicating that that simple cell should have a nonmonotonic effect on
the boundary cell. The plots corresponding to the three LLRs modeled in A are marked with asterisks.
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qualitatively resembling the LLR functions seen in Figure 3. The
particular height and width of each LLR function is determined
by the means and variances of the yes and no distributions for
that cell (Fig. 5A, different colored curves). In addition to quali-
tatively capturing the range of observed LLR function shapes,
this model has a simple interpretation in terms of natural
image statistics: in image patches that do not contain boun-
daries at the reference location (which is to say most image
patches), the responses of simple cells in the neighborhood
tend to vary widely. On the other hand, image patches that
do contain boundaries at the reference location are more
constrained, and the responses of nearby simple cells tend
to be clustered more tightly around characteristic values,
r�i . The bump-shaped LLR functions, peaked at r�i , simply
reflect the fact that a simple cell provides the strongest posi-
tive evidence for a boundary when its response is more typi-
cal of yes image patches than no patches.

To facilitate the interpretation of the l functions as cell–cell
interactions, we slightly reformatted them, in two ways. First, the
l functions were shifted vertically in order that they passed
through the origin, reflecting the idea that when a simple cell is
not firing (corresponding to ri = 0 on the graph), its influence on
the boundary cell (y-value on the graph) should also be zero.
This shift was justified given that the outputs of these functions
would later be combined additively (Fig. 1C,D), and thus the ver-
tical offsets across the entire population of simple cells could be
collapsed into a single net offset at the level of the boundary cell
(that would likely be small because of the cancellation of positive
and negative shifts). Second, simple cell firing rates can only be
positive, so the left half of each LLR function, corresponding to a
negative simple cell firing rate, was “rectified” (i.e., set to zero).
Information was not lost since the same or very similar function
would be covered by a different simple cell with the same RF but
opposite contrast polarity. The right panel of Figure 5A shows
the combined effect of the shift and rectify operations. The full
set of shifted LLR (sLLR) functions lsiðriÞ obtained this way is
shown in Figure 5B, with the plots corresponding to the concep-
tual curves in Figure 5Amarked by asterisks.

Returning to the interpretation of shifted LLR functions as
simple cell–boundary cell interactions, for some simple cells ls

increased monotonically from the origin, meaning that, as the
simple cell response increased from zero, the evidence it pro-
vided to the boundary cell grew steadily more positive. This type
of monotonic positive SC–BC interaction was seen for simple
cells that were most directly supportive of the hypothesis that a
boundary was present at the reference location, such as the sim-
ple cell directly overlapping with the RL (Fig. 5B, middle column,
top row). Referring to the model of Figure 5A, this was a case
where the downward-pointing “parabola” peaked far to the right
of the origin, so that over the entire observed firing range of the
simple cell, its effect on the boundary cell remained on the rising
limb of the parabola (Fig. 5A, case 1, right panel). At even higher
firing rates than are plotted in Figure 5B, the ls function would
eventually reach its peak and turn back downward, but such high
filter values were so rare in yes patches in our natural image data-
set that the LLR curves could not be reliably estimated beyond
the range shown. Two other cases of pure positive ls functions
are worth noting (Fig. 5B, bottom left and right corners). These
cases apply to simple cells whose RFs are nearly “upside down”
(i.e., polarity reversed) versions of the reference filter kernel, but
shifted vertically 2 pixels either above or below the reference
location. The fact that these cells are monotonically supportive of
the reference hypothesis can be attributed to the existence of

many 1- to 2-pixel-wide light and dark horizontal bands in our
natural image dataset.

For other simple cells, the ls functions decreased monotoni-
cally from the origin, meaning that, as the firing rate of the sim-
ple cell increased from zero, the evidence it provided to the
boundary cell grew increasingly more negative. This type of
monotonic negative cell–cell interaction was seen for simple cells
whose firing supported a hypothesis incompatible with the hy-
pothesis that a boundary was present at the RL. The clearest
examples of such cells are those with RFs perpendicular to the
RL (Fig. 5B, middle row, green LLR curves). Referring again to
the quadratic LLR model of Figure 5A, these monotonically
decreasing ls functions arose from cases where the downward-
pointing LLR parabola was peaked at, or to the left of the origin,
so that over the entire response range of the simple cell (to the
right of the origin), the ls function fell continuously along its de-
scending limb (Fig. 5A, case 2).

For the majority of simple cells, however, the ls functions
were bump shaped, first rising and then falling as the firing rate
of the simple cell increased from zero. This type of nonmono-
tonic cell–cell interaction was seen for simple cells whose recep-
tive fields had some degree of overlap in position and orientation
with the reference location, so that when a boundary was present
at the reference location, their characteristic response levels r�i
fell in the “middling” range. As a result, these cells provided
increasing positive evidence for a boundary at the reference loca-
tion for response levels up to r�i , but at even higher response lev-
els, they began to signal stronger evidence for a boundary at their
own RF location and orientation rather than the reference loca-
tion. This led to a progressive weakening of the evidence signal
sent to the reference boundary cell at response levels above r�i .

A known circuit mechanism can produce the entire observed
spectrum of ks functions
Given that the input to a boundary cell can be approximated as
the sum of the ls functions associated with different simple cells
(Fig. 1D), and that the shifted LLR functions for different simple
cells can be either monotonic or nonmonotonic functions of the
simple cell response, we next asked what kind of neural intercon-
nection circuit is capable of producing the types of monotonic
and nonmonotonic interaction functions that we observed. One
candidate mechanism is the ubiquitous circuit motif in which a
cortical cell both directly excites and disynaptically inhibits other
cells in its neighborhood (Buzsáki, 1984; McBain and Fisahn,
2001; Pouille and Scanziani, 2001; Swadlow, 2002; Wehr and
Zador, 2003; Klyachko and Stevens, 2006; George et al., 2011;
Isaacson and Scanziani, 2011; Pfeffer et al., 2013). For monotonic
positive or negative SC–BC interactions, the effect could in prin-
ciple be mediated by pure excitatory or inhibitory connections,
respectively (through an interneuron in the case of a pure inhibi-
tory connection; Fig. 6A, left and middle cases). Nonmonotonic
cell–cell interactions, however, would seem to require a com-
pound E–I interconnection scheme (Fig. 6A, rightmost case),
wherein the excitatory effect dominates at low firing rates and
the inhibitory effect dominates at high firing rates.

To determine whether this circuit motif can in principle
produce the full range of cell–cell interactions contained in
our dataset, we assumed that the sLLRs representing simple
cell–boundary cell interactions were parabolic in shape, as dis-
cussed above, and that each parabolic fit to an sLLR could be
expressed as a sum of two simple monotonic functions E(r)
and I(r) representing, respectively, the direct excitatory and
indirect inhibitory effect of the simple cell on the boundary
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cell (for definitions of E(r) and I(r), see Materials and
Methods). The E and I interaction functions found through
this procedure are shown in Figure 6B, and the parabolic fits
to the ls functions, corresponding to the sum of the corre-
sponding E and I curves, are shown in Figure 6C. The gener-
ally good fits to the measured sLLRs confirmed that the
spectrum of cell–cell interactions needed to calculate boundary
probability in natural images, including nonmonotonic interac-
tions, can in principle be produced by the “incitatory” circuit motif
shown in Figure 6A. To verify that good fits to the spectrum of ls

functions did not depend on our particular choice of E and I func-
tions (which in this case were constrained to sum to a downward-
pointing parabola), we repeated the fitting procedure using several
alternative sets of monotonic E and I functions, including sig-
moids, lines, power functions, and various saturating func-
tions. We obtained good qualitative fits in each case (data

not shown), and, based on this, con-
cluded that the basic types of cell–cell
interactions needed to detect object
boundaries in natural images fall easily
within the scope of the simple incitatory
circuit shown in Figure 6A, which is
known to be present in V1.

Returning to the parabolic fits of the
sLLRs, we next looked for regularities in
the progression of excitatory–inhibitory
curve pairs used to fit the ls functions
depending on the offset of a neighbor cell
in position and orientation from the refer-
ence location (Fig. 6D). We observed the
following patterns. First, for a neighboring
cell centered at the RL (Fig. 6D, middle
column) as the receptive field of the neigh-
bor rotates out of alignment with the RL
(indicated by a lightening of the curves
within each subplot), excitation becomes
weaker, and inhibition becomes both
stronger and lower in threshold. This pat-
tern amounts to a form of cross-orienta-
tion suppression, a staple function of V1
(Bishop et al., 1973; DeAngelis et al., 1992;
Geisler and Albrecht, 1992; but see Priebe
and Ferster, 2006). A second, more subtle
pattern can also be seen: for simple cells
whose RFs are slightly vertically shifted
relative to the RL of the boundary cell (Fig.
5C, second and fourth columns), the most
peaked ls functions are seen for simple
cells whose RFs are slightly misoriented
relative to the boundary cell RL (i.e., by
630–45°; Fig. 5C, third and fourth rows).
The steeper sides of these peaky ls func-
tions, combined with the left shift in their
peaks, led our least-squares fitting proce-
dure to assign stronger excitatory weights
to these cells compared with simple cells
perpendicularly offset but parallel to the
boundary RL (Fig. 5C, first row). The
effect can be seen in Figure 6D, where the
boldest red curve corresponding to the
preferred orientation of the boundary cell
is not the curve with maximum amplitude.
We found that this same pattern held for
fits to the ls functions using the several

other combinations of monotonic E and I functions that we
tested (data not shown), but the effect should be taken as a weak
prediction of our model, given it was relatively mild and depend-
ent on numerous parameters. A more general, stronger conclu-
sion supported by Figure 6D is that the strength of the excitation
and inhibition received by a boundary cell from neighboring
simple cells will vary systematically with the offsets of simple cells
in RF position and orientation relative to the boundary cell RF,
and in a way that can be predicted within a natural image-based
normative framework such as the one we have adopted here.

Optimizing the parameters for a boundary-detecting
incitation network
In pursuit of our goal to understand how cells in V1 detect natu-
ral object boundaries, our approach thus far has been to frame

Figure 6. Fitting simple cell–boundary cell interactions (LLRs) with a difference of excitatory and inhibitory effects. A,
Each of the three sLLRs shown can be parametrized by an incitatory circuit. The circuits implementing the red and green
sLLRs involve pure excitation and inhibition, special cases of incitation, while that of the orange sLLR involves a nontrivial
combination of both excitation and inhibition. B, E (red) and I (blue) curves were optimized so that their difference fit the
corresponding LLR shown in C (for details, see Materials and Methods). C, LLR fits are shown in color, on top of the five-curve
groups from Figure 3C shown in light gray. D, E and I interactions from B are collected across orientations within each sub-
plot, showing smooth progressions of parameters.
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boundary detection as a Bayesian classification problem, where
the inputs are simple cells (with the simplifying assumption that
all simple cells are CCI; Fig. 1), collect ground truth data from
human-labeled natural images (Figs. 3, 4), and calculate what the
simple cell–boundary cell interactions should look like in situa-
tions where the CCI assumption holds true. The approach has
led to two main findings. First, simple cell–boundary cell interac-
tion functions lsi are in general nonlinear and often nonmono-
tonic (Fig. 5), and so cannot be captured by a direct connection
from an SC to a BC through a conventional positive or negative
weight. On the other hand, we showed that the entire family of
rising, falling, and bump-shaped SC–BC interaction functions
can be captured by a two-stage “incitation” circuit motif that is
known to exist in V1 (Fig. 6A).

The precise forms of the SC–BC interaction functions that
we might expect to find in V1 remain in question, however:
the lsi functions shown in Figures 5B and 6C are only the
optimal cell–cell interaction functions if all of the simple
cells impinging on the boundary cell show CCI. To reiterate,
this rather severe condition means that no simple cell pro-
vides any information about the activity level of any other
simple cell either on or off object boundaries (for details, see
Materials and Methods and Appendix). The condition is, of
course, trivially true for a single simple cell, and in that case,
the functional connection of the simple cell to the boundary
cell should be exactly its LLR. The assumption may also hold
true for a small population of minimally overlapping simple
cells (see Ramachandra and Mel, 2013), but it is definitely
not true for 300 simple cells with densely overlapping recep-
tive fields, which is the scenario we consider here. Generally
speaking, if the number of simple cells exceeds the number
of underlying stimulus dimensions, which is at most 64 in
our case (i.e., the number of pixels covered by the RF profiles
of 300 simple cells), then the representation is “overcom-
plete,” and the simple cells are necessarily correlated. For
such a correlated cell population, the likelihood terms in
Equation 2 can no longer be factored, and the boundary
probability can no longer be expressed as a sum of cell-spe-
cific LLR terms liðriÞ.

This leads to the following interesting question: instead of
imposing parameters on the incitation circuit to represent cell-
specific lsi functions, as we did in Figure 6, suppose the synaptic
weights of an incitation circuit are trained to maximize boundary
detection performance. What would the individual SC–BC inter-
action functions look like then? Would they be similar to their
cell-specific lsi functions? Or would the SC–BC interaction func-
tions be significantly altered, presumably because of correlations
within the simple cell population?

To answer this question, we set up a slightly augmented inci-
tation network (Fig. 7A) whose modifiable parameters included
(1) the excitatory weights connecting each simple cell to the
boundary cell and (2) the excitatory weights connecting each
simple cell to the inhibitory interneuron. In addition, to make it
possible for the network to learn nonlinear SC–BC interaction
functions by modifying only a single layer of excitatory weights,
each simple cell was replicated eight times to form a small popu-
lation of closely related cells, all sharing the same oriented recep-
tive field, but each having a different firing threshold. The
threshold variability can be seen as arising from, for example,
natural variation in neuron size, morphology, and firing dynam-
ics. The functional purpose of this scheme is that the activation
level of each simple cell (before the threshold is applied) is
effectively being recoded through a set of fixed nonlinear

basis functions, which facilitates learning. The regularly
spaced threshold settings used for the groups of eight cells
are given in the Materials and Methods section. Each presyn-
aptic simple cell acted on the boundary cell through two ad-
justable weights, one excitatory weight directly onto the
boundary cell, and one excitatory weight onto the inhibitory
“partner” cell of the boundary cell, which would contribute to
disynaptic inhibition of the boundary cell (Fig. 7A). The in-
hibitory neuron was modeled as a linear cell whose firing rate
was a weighted sum of its synaptic inputs. Three examples of
oriented receptive fields (red, green, and yellow) and their
associated simple cell variants are depicted schematically in
Figure 7A.

Training occurred as follows. Labeled image patches contain-
ing boundaries and nonboundaries (with equalized probability)
were presented to the 2400 (= 300� 8) simple cells; ground-truth
labels from the natural image dataset were presented to the
boundary cell (1 for boundary, 0 for no boundary); and the exci-
tatory synapses between the simple cells and the boundary cell
and its associated inhibitory neuron were adjusted using a
supervised logistic regression learning rule (Murphy, 2012).
We then performed virtual neurophysiology to probe the net
effect of each oriented receptive field on the boundary cell
response induced by the eight simple cell variants (i.e., basis
functions) sharing that RF.

The learned interaction functions again included monotonic
rising and falling as well as nonmonotonic bump-shaped func-
tions (Fig. 7B, colored curves). For some cells, the learned SC–
BC interaction functions corresponded closely to their respective
sLLRs (thin gray lines), most notably the cells centered on the RL
at all different orientations (Fig. 7B, middle column). For this
category of cells, the simplified Bayesian formulation seems to
explain their role in the boundary detection computation, but no
strong inference can be made along these lines given that we
could neither predict, nor retroactively account for, which cells
fell into this category. In other cases, one or two of the learned
SC–BC interaction functions in each group of five overlapped
heavily with their corresponding sLLR curves, whereas the other
curves in the group were driven apart by the learning rule to
cover a much wider spread (vertically or horizontally or both)
than the original set of sLLRs. In still other cases, the learned
interaction functions were nearly “opposite” to their correspond-
ing sLLR functions (Fig. 7B, red curves in columns 2 and 4 of the
second row). In these cases, also, we were unable to explain
why the learned interaction functions of the cells deviated
from the predictions of the simplified Bayesian model. In the
hopes of at least confirming that the deviations were caused
by violations in the CCI assumption, we conducted a simple
experiment, described next, in which correlations between
pairs of simple cell inputs to a boundary cell were systemati-
cally manipulated.

Probing the relationship between the incitation circuit and
Bayes’ rule
To probe the role of correlations between simple cells in shaping
SC–BC interaction functions in a boundary-detecting circuit, we
ran a simple experiment in which a boundary cell received input
from just two simple cells whose RFs overlapped to varying
degrees. For each simple cell pair, we fit the parameters of the in-
citation circuit either separately (Fig. 8A, left) or jointly (Fig. 8A,
right). We tested pairs of filters ranging from very dependent
(Fig. 8B, middle columns) to nearly independent (Fig. 8B, outer
columns). Scatter plots of joint filter responses to boundary (red)
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and nonboundary (black) patches are shown below each pair.
When the SC–BC interaction functions were learned separately,
they were nearly identical to the literal LLRs [Fig. 8B, first row of
blue and orange curves (solid curves show learned interactions,
dashed curves show LLRs)]. On the other hand, when the SC–

BC interactions were learned jointly, for
SC pairs with heavily overlapping RFs,
which led to a breakdown of the CCI
assumption, the learned interactions dif-
fered significantly from the pure LLRs
(Fig. 8B, middle columns). Consistent with
these observations, we show analytically in
the Appendix that an incitation circuit like
the one shown in Figure 7A will learn LLRs
if the input features have CCI. Consequently,
any observable differences between the
learned incitation functions and the LLRs
must be attributable to a breakdown of class-
conditional independence.

Comparing boundary detection
performance of four models
The optimization of synaptic weights in
the incitation circuit of Figure 9A opens
up an additional avenue for validation (or
refutation) of our overarching boundary
cell hypothesis. Our main premise is that a
boundary cell in V1 should be able to sig-
nificantly improve its boundary detection
performance (compared with a single sim-
ple cell at the reference location) if it can
access, through the local cortical circuit, a
large and diverse set of simple cells cov-
ering the neighborhood. A major addi-
tional claim is that the incitation circuit
motif, which is known to exist in V1, is
well suited to deliver such a perform-
ance improvement. To directly test these
claims, we compared the precision–re-
call performance of the trained incita-
tion network (Fig. 9, red curve) to three
other boundary detectors: (1) the “null
hypothesis,” consisting of a single con-
ventional simple cell centered at the ref-
erence location (Fig. 9, blue curve); (2)
an unweighted sum of 300 literal LLRs
(orange curve), which is essentially a
direct implementation of Bayes’ rule
under the CCI assumption (Fig. 1D);
and (3) a weighted sum of the same 300
literal LLRs (Fig. 9, green curve). This
hybrid model honors the basic structure
of the Bayesian classifier of Figure 1D,
but allows weights on each of the LLR
inputs to help compensate for CCI viola-
tions in the simple cell population.

The results shown in Figure 9 support
the following three conclusions: (1) the
superior performance of all three multi-
input classifier variants compared with a
single conventional simple cell reinforces
the point that individual simple cells are
seriously underpowered as natural bound-
ary detectors (see Ramachandra and Mel,

2013); (2) the superior performance of the two classifier variants
with learned synaptic weights (Fig. 9, red and green curves)
compared with the simplified Bayesian classifier that receives
unweighted LLR inputs (Fig. 9, orange curve) attests to the

Figure 7. Simple cell–boundary cell interactions can be learned by a biologically plausible synaptic plasticity rule. A, Each
oriented filter was represented by a population of 8 simple cells, each with a different fixed input/output nonlinearity.
Nonlinearities were sigmoids, y ¼ 1

1þe�g

X
i
wi xi�t

� 	 ; with threshold t set at 8 evenly spaced values between �6 and

35. The learning rule used to adjust the weights from each simple cell onto the inhibitory and boundary cell was
Dwi ¼ 6h t � yð Þxi , where t is the “training signal” (1 for boundary, 0 for no boundary), y is the response of the bound-
ary cell, xi is the response of the ith simple cell, h is the learning rate, and the positive (negative) sign was used for the
boundary (inhibitory) cell. In the context of our model, this learning rule is mathematically equivalent (up to a transient ini-
tial difference in the learning rate parameter h ) to a learning rule that constrains all weights to be positive. B, To determine
the net effect of each filter on the boundary cell (for comparison with the LLRs), the underlying linear filter value was
increased from 0 to 1 while holding all other inputs constant, and the weighted sum of the eight associated simple cells was
plotted (colored curves). Black curves are sLLRs from Figure 5B. The gray bar in each plot represents the weight that the BC
puts on that group of five colored curves.
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importance of a learning rule that is sensitive to natural image
statistics and can help compensate for unwanted input correla-
tions; and (3) the very similar performance of the optimized in-
citation network (Fig. 9, red curve) and the weighted sum of
LLRs (green curve), especially in the high recall range, is again
suggestive of a nontrivial connection between the simplified
Bayesian classifier of Figure 1A and the behavior of the learned
boundary detecting incitation circuit of Figure 7A.

We conclude by noting that the requirements for developing
a cortical circuit that produces significantly improved boundary
detection performance compared with a conventional simple
cell are relatively modest, including (1) a compound E–I circuit

motif that we have dubbed an incitation circuit, which is known
to exist in V1; (2) variability in firing thresholds across the pop-
ulation of simple cells; and (3) a supervised “delta” rule capable
of setting the strengths (and/or dendritic locations) of the exci-
tatory contacts from simple cells onto boundary cells and their
associated interneurons. Possible sources of the supervisory sig-
nal are taken up in the Discussion.

Discussion
In the 60 years since Hubel and Wiesel (1962) first discovered
orientation-tuned simple cells in V1, it has been generally

Figure 8. The incitation circuit learns literal LLRs when the filters are class-conditionally independent. A, We selected several pairs of filters and fitted either 2 separate incitation
circuits, 1 for each filter (left), or 1 circuit with both inputs (right). B, Top, Filter pairs ranged from very different (left and right) to very similar or identical (middle) filters. Middle,
Scatter plots of joint filter responses for boundary (red) and nonboundary (black) image patches. Bottom, When filters were fit separately, the learned incitation functions (solid
curves) were nearly identical to the LLR curves of the filters (dashed). When the filters were fit jointly, pairs with very similar filters no longer learned LLR functions because of a
breakdown of CCI.
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assumed that these cells contribute in some way to the detection
of object boundaries (Field et al., 1993; Grosof et al., 1993;
Kapadia et al., 1995, 2000; Polat et al., 1998; Sceniak et al., 1999;
Angelucci et al., 2002). Consistent with this idea, virtually every
modern object recognition system, whether designed by hand or
trained from natural image data, includes simple cell-like filter-
ing in its early stages of processing (Fukushima et al., 1983;
Lades et al., 1993; Mel, 1997; Lecun et al., 1998; Riesenhuber and
Poggio, 1999; Krizhevsky et al., 2012). Surprisingly, however, the
quantitative relationship between simple cell responses, typically
modeled as divisively normalized linear filters (Carandini and
Heeger, 2011), and object boundary probability in natural images
has been little explored (though see Ramachandra and Mel,
2013), making it difficult to know whether or how V1 circuits
contribute to this behaviorally relevant natural computation. It is
important to emphasize that a simple cell on its own is a poor de-
tector of natural object boundaries within its receptive field (but
see Arbeláez et al., 2011): as shown in Figure 9 (blue curve), if we
use the response of a simple cell as an indicator of the presence
of an object boundary within its RF, even when the threshold for
detection is raised to such a high value that half of all true boun-
daries are rejected (corresponding to a recall score of 50%),
almost two-thirds of the “detected” edges at that threshold are
false positives (corresponding to a Precision score of ;35%).
The reason a simple cell is such an unreliable edge detector is
that true object boundaries are rare (see Fig. 11A, where the
overwhelming majority of points are piled in the bottom half of
the plot), and when they do occur, they are very often of low con-
trast. Much more common are high-contrast nonedge structures
(e.g., textures) that contain sufficient oriented energy to strongly
drive simple oriented filters.

The poor boundary detection performance of a lone simple
cell leads to the conjecture that V1 also contains “smarter” cells
that compute boundary probability by combining the responses
of multiple simple cells covering a local neighborhood. In a pre-
vious study, we suggested that the appropriate strategy for con-
structing a boundary cell from a local population of simple cells
is as follows: (1) select a small set of simple cells (e.g., six cells)
that are both individually informative and class-conditionally

independent (for discussion of the CCI assumption, see
Materials and Methods); (2) evaluate the log-likelihood ratios for
each of the participating simple cells, which tells us the optimal
functional interconnections between each simple cell and the
boundary cell (according to Bayes’ rule); and (3) sum the LLRs
and apply a fixed sigmoidal nonlinearity to compute boundary
probability (Ramachandra and Mel, 2013; Fig. 1C,D). The pres-
ent study extends that previous work in eight ways: (1) we col-
lected and analyzed individual LLRs for all of the even-
symmetric simple cells at all orientations covering a 5� 5 pixel
neighborhood in the vicinity of the RF of a boundary cell (300
cells total); (2) we show that the idealized functional interconnec-
tions between simple cells and boundary cells depend systemati-
cally on the relative positions and orientations of the simple cell
and boundary cell RFs (Fig. 3), but are relatively insensitive to
the scale or aspect ratio of the simple cell receptive fields (Fig. 4);
(3) we developed a simple analytical model (i.e., Gaussian likeli-
hoods, leading to quadratic LLRs) that shows how the three
seemingly different types of SC–BC interaction functions—ris-
ing, falling, and bump-shaped functions—represent different
ranges of the same underlying (quadratic) function class (Fig. 5);
(4) we show that a mixed excitatory–inhibitory, or incitatory, cir-
cuit motif that is known to exist in V1 is capable of producing
the entire spectrum of natural image-derived SC–BC interaction
functions (Fig. 6); (5) we show that the parameters of a bound-
ary-detecting incitation circuit can be learned by adjusting a sin-
gle layer of excitatory weights (Fig. 7A); (7) we show that a
learned incitation circuit can improve the precision of boundary
detection in the high-recall range by 43% to 121% compared
with a conventional simple cell model (Fig. 9); and (8) by “read-
ing out” the weights of the learned incitation circuit, we show
that the simple cell–boundary cell interaction functions that we
would expect to find in the visual cortex are not likely to be ver-
batim LLRs, but rather, perturbed versions because of class-con-
ditional dependencies among simple cells whose receptive fields
overlap heavily with each other (Figs. 7B, 8). This could be help-
ful in interpreting the results of future neurophysiological experi-
ments in V1.

Experimental predictions
Distinguishing boundary cells from conventional simple cells
Having shown that cortical circuitry is capable in principle of
producing boundary cells from simple cells using only a single
layer of modifiable excitatory weights, it is important to ask how
BCs could be detected experimentally and distinguished from
conventional simple cells (or the simple cell-like subunits of
complex cells; Hubel and Wiesel, 1962; Movshon et al., 1978;
Ohzawa et al., 1997).

To determine how BCs would respond to various stimuli,
stimulus patches were scaled to have the same fixed value of the
normalizer used in earlier figures, once again reflecting a simple
form of divisive normalization (see Materials and Methods sub-
section Boundary cell stimulus responses). We first constructed a
canonical stimulus for a boundary cell akin to a spike-triggered
average by averaging all image patches weighted by their evoked
boundary cell response. As expected, the STA stimulus appears
as a localized, polarized, oriented boundary segment reminiscent
of the receptive field of a simple cell (Fig. 10A). We then pre-
sented drifting sine wave gratings covering the “classical recep-
tive field” of a boundary cell, leading to the unremarkable phase
response and orientation tuning curves shown in Figure 10, B
and C. Next, we used labeled natural edges with the same nor-
malizer value to explore the effect of increasing center contrast

Figure 9. Precision–recall curves for 4 boundary detecting classifiers. See Materials and
Methods for definitions of precision and recall. Perfect performance is at top right-hand cor-
ner. A single oriented simple cell at the reference location performs poorly (;20% precision
at 90% recall; blue curve). A classifier consisting of a sum of 300 unweighted simple cell
LLRs is shown in orange. This case corresponds to the simplified Bayesian classifier depicted
in Figure 1, C and D. Poor performance was expected given violations of the CCI assumption
in the simple cell population. The green case is similar, but with weights on each of the 300
LLRs trained by logistic regression. Performance is dramatically improved, indicating that the
learning rule helps to compensate for correlations in the simple cell population. The red curve
shows performance of the trained incitation network of Figure 7A. Precision exceeds that of
a single simple cell by;1.5� at 90% recall, and 2.3� at 50% recall.
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on the orientation tuning curve width.
(This was not a perfectly controlled experi-
ment because variations in center contrast
at a fixed normalizer value would have led
to antivariations in surround contrast, but
given the filter value at the RF center was
only 1 of 100 filters of many orienta-
tions used to compute the normalizer
value, this effect was likely small.)
Subject to this limitation, as shown in
Figure 10D, the tuning width of the
boundary cell is essentially constant
across an approximately twofold change
in center contrast, the limit of analysis
allowed by our labeled database (aver-
age tuning curve has full-width at half-
height for high-contrast stimuli, 43.6°;
average tuning curve has full-width at
half-height for low-contrast stimuli,
39.2°).

Thus, for oriented edges and gratings
presented within the classical RF, bound-
ary cells behave similarly to conventional
simple cells in that they (1) have phase-de-
pendent responses, (2) are orientation
tuned, and (3) have tuning curves whose
widths are approximately contrast invari-
ant (Alitto and Usrey, 2004). It is therefore
possible that boundary cells exist and have
been classified as conventional simple cells
in previous experiments using simplified
stimuli. Among the multiple types of V1
cells that have been described previously,
boundary cells share most in common
with double opponent cells, which are
orientation tuned, have mostly odd-sym-
metric receptive field profiles, as would be
expected for boundary detecting cells
(Ringach, 2002), and respond to boundaries
whether defined by luminance or color
(Johnson et al., 2008).

In future neurophysiological studies, an efficient means of disso-
ciating conventional simple cells, which respond to oriented contrast
independent of boundary probability, from putative boundary cells,
which respond to boundary probability independent of oriented
contrast, would be to use natural image stimuli drawn from the four
corners of the oriented contrast—boundary probability space (Fig.
11A). Image patches with low oriented contrast and low boundary
probability scores (purple dots) tend to contain flat, unstructured
image regions; patches with low contrast and high probability (Fig.
11A, green dots) tend to contain well structured, faint edges; patches
with high contrast but low probability (Fig. 11A, blue dots) tend to
contain contrasty noise or misaligned edges; and regions with high
contrast and high probability (red dots) typically contain well struc-
tured, strong edges (Fig. 11B). This factorial stimulus set would
make it possible to identify pure simple cells, pure boundary cells, as
well as cells of intermediate type.

Diverse inputs to the dendrites of boundary cells?
One of our main findings is that a cell in visual cortex whose job
is to detect object boundaries can improve its detection perform-
ance if it collects input frommany simple cells in its vicinity with
a diversity of receptive field positions and orientations.

Consistent with this, several recent two-photon calcium imaging
studies have mapped the receptive field properties of individual
dendritic spines on V1 neurons in mice, ferrets, and monkeys, and
have shown that the inputs to a single V1 cell (and often a single
dendrite) are quite variable in terms of their receptive field proper-
ties, covering a much wider range of preferred orientations and
RF positions than might be expected given the more sharply tuned
response preferences of a target cell (Jia et al., 2010; Wilson et al.,
2016; Iacaruso et al., 2017; Scholl et al., 2017; Ju et al., 2020). These
findings do not prove that many or most cells in V1 are boundary
cells, only that most V1 cells appear to receive the requisite diversity
of inputs from neighboring cells. What remains to be shown is that
the excitatory and inhibitory inputs from surrounding cells are
properly weighted and balanced by the local incitation circuit, so as
to maximize boundary detection performance. The conceptual
experiment described next could help to establish whether the local
cortical circuit actually functions in this way.

A predictable spectrum of SC–BC interactions?
A key feature of the boundary cell hypothesis is that SC–BC inter-
action functions take on predictable forms, depending primarily
on the offsets in position and orientation between the SC and BC
receptive fields (Fig. 7B). It may be possible to empirically measure
those interaction functions by applying stimuli that distinguish

Figure 10. Boundary cell responses to parametric and natural stimuli resemble simple cell responses. To compute BC
responses, the weighted sum of LLRs model (Fig. 9, green PR curve) was used. A, Spike-triggered average stimulus computed
by averaging natural image stimuli weighted by their evoked boundary cell response. B, Response of a boundary cell to a
grating presented at different phases. The boundary cell is like a simple cell in that it is sensitive to polarity, responding to
only half of all phases. C, Orientation tuning curve to the same grating. At each orientation, responses were averaged over
all phases of the grating. The resulting tuning curve is similar to those obtained for simple cells in V1. D, Patches with fixed
surround contrast (normalizer value) and varying center contrast were selected and presented at 15° increments to the
boundary cell. For a fixed surround contrast, center contrast increases cell response without increasing tuning width, a hall-
mark of contrast invariant orientation tuning found in V1 simple cells [full-width at half-height for high-contrast stimuli (red
curve), 43.6°; full-width at half-height for low-contrast stimuli (blue curve), 39.2°].
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simple cells from boundary cells (Fig. 11) while imaging V1 neu-
rons in awake animals (Tang et al., 2018; Ju et al., 2020). The
approach would require the ability (1) to identify pairs of nearby
simple and boundary cells and to characterize their RFs, and (2) to
transiently activate or inactivate identified cells optogenetically.
Then, while presenting carefully curated natural image patches to

the boundary cell, which also overlap with the
RF of the simple cell, the activity level of the
simple cell could be perturbed, and the response
changes in the boundary cell measured. The
direction andmagnitude of the change in the ac-
tivity of the boundary cell could be compared
with the prediction of a trained incitation net-
work (Fig. 7B). For a particular simple cell, cer-
tain image patches will drive the cell to a level
on the rising slope of its SC–BC interaction
function, so that a boost in the cell activity
(through optogenetic stimulation) should in
turn boost the boundary cell activity—and con-
versely for suppression of the simple cell activity.
For other image patches, the simple cell will be
firing at or beyond the mode of its SC–BC inter-
action function with respect to a particular
boundary cell, so that a boost in the activity of
that simple cell will lead to a suppression of the
activity of that boundary cell (and conversely if
the activity of the simple cell is optogenetically
suppressed).

It is worth noting that we cannot assume
that the SC–BC interaction functions measured
in this way will look exactly like those produced
by a particular trained incitation network, since
even if the overall idea holds true, the interaction
functions depend on the complete set of simple
cells providing input to a particular boundary
cell, which cannot be known. Nonetheless, by
repeating these types of response manipulations
for a large number of SC–BC pairs, we can hope
to find a basic correspondence between pre-
dicted and measured SC–BC interactions, in the
sense that the measured interactions should
include pure increasing cases, pure decreasing
cases, and nonmonotonic cases, with a system-
atic dependence on the spatial and orientation
offsets of the RFs of simple and boundary cells
(Figs. 6, 7).

It is also worth noting that boundary cells
need not reside in, or only in, V1. Nothing pre-
cludes that cells that signal boundary probabil-
ity, rather than boundary contrast, may be
found in higher visual areas.

Relationship to previous work on natural
image statistics
A number of previous studies have attempted
to explain receptive field properties of cells in
the retina, LGN, and primary visual cortex in
terms of natural image statistics and principles
such as efficient coding, sparse coding, and in-
dependent components analysis (Barlow, 1981;
Laughlin, 1989; Bell and Sejnowski, 1995;
Olshausen and Field, 1996; Schwartz and
Simoncelli, 2001; Zhu and Rozell, 2013). These
studies have been mainly concerned with neu-

ral representation, where the goal is fast/accurate information
transmission through a noisy channel, and eventually faithful
image reconstruction. In contrast, our work is primarily con-
cerned with neural computation, where the goal is to transform
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Figure 11. Distinguishing linear filter responses from boundary probability responses. To determine whether a
given cell is computing linear contrast or boundary probability, it is necessary to use a stimulus set that dissociates
these two measures. Generally speaking, what is needed are stimuli whose linear filter and boundary probability scores
are “well spread” throughout linear filter-boundary probability space. A, Plotting the two scores for all labeled patches
shows that they are highly correlated, and that randomly selected patches are likely to lie at the bottom left and top
right corners of this space, where linear contrast and boundary probability are either both low or high together.
Therefore, if only these stimuli were presented to the cell, it would be difficult to know whether high cell responses
were being driven by linear contrast or boundary probability. It would therefore be preferable to present stimuli that
are well spread over the space of the two scores (colored dots) so that cell responses to each variable can be assessed
separately. B, Examples of these stimuli are shown. They include low-contrast nonedges (purple cases), high-contrast
nonedges (blue cases), low-contrast edges (green cases), and high-contrast edges (red cases).
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the image into a more abstract shape representation that is more
directly useful for guiding behavior.

From a different perspective and with a different goal, Geisler
et al. (2001) collected co-occurrence statistics of predetected local
boundary elements in natural scenes, with the aim to predict
human contour grouping performance. Their measurements on
natural images included the probability of finding a second
boundary element in the vicinity of a first boundary element,
depending on the relative offsets in the position and orientation
of the two elements, or whether two spatially offset boundary ele-
ments were more likely to belong to the same or different object.
Sigman et al. (2001) also studied co-occurrence statistics of pre-
detected boundary elements, coming to the conclusion that
boundary elements in natural scenes tend to lie on common
circles. The goal to characterize the spatial distribution of prede-
tected boundary elements in natural scenes in both of these stud-
ies contrasts with our focus here on the detection problem, that
is, the problem of discriminating object boundaries from non-
boundaries based on populations of simple cell responses col-
lected from a local neighborhood in an image. Furthermore, all
of the grouping statistics collected by Geisler et al. (2001) and
Sigman et al. (2001) were represented as scalar values linking
pairs of locations/orientations. In contrast, our natural image
analysis produces functions linking pairs of locations/orienta-
tions, which capture how a given simple cell should influence a
nearby boundary cell as a part of a boundary detection computa-
tion. Also unlike these previous studies, we use our data to con-
strain and to benchmark cortical circuit models.

Nonmonotonic cell–cell interactions have been previously
reported
One of our findings is that among the different types of local
cell–cell interactions needed for object boundary detection in
natural images, many cannot be described as “excitatory” or “in-
hibitory,” or represented by positive or negative synaptic weights,
but are instead U-shaped functions wherein cell 1 might excite
cell 2 at low firing rates, reach its peak excitatory effect at inter-
mediate firing rates, and inhibit cell 2 at high firing rates. U-
shaped functions of the opposite polarity can also occur (Fig.
7B). Should we find the idea surprising that nearby cells in the
cortex act on each other nonmonotonically?

From one perspective, one might argue that whenever there
are excitatory and inhibitory cells wired together in a circuit motif,
perhaps we should be surprised if we did not find nonmonotonic
interactions between cells. For example, in the “inhibition-stabi-
lized network” model (Ozeki et al., 2009; Jadi and Sejnowski,
2014), which accounts for a number of V1 cell response proper-
ties, “nonbinary” interactions between cells would almost certainly
be expected to occur. Nevertheless, there has been a historical
tendency to think about cell–cell interactions in the cortex as being
of a defined polarity, represented by a positive or negative scalar
value, and often subject to simple geometric rules. The notion of
“surround suppression,” for example, reflects both of these ten-
dencies (Cavanaugh et al., 2002; Schwabe et al., 2010; Adesnik et
al., 2012). Even as the geometric constraints governing cell–cell
interactions become more intricate, such as where interconnection
strength and polarity depend on distance or relative orientation,
the simplification that cell–cell interactions have a defined polarity
is often still relied on. For example, the models of Miller (1994)
map the development of short-range excitation and medium-
range inhibition; the models of Angelucci and Bressloff (2006)
include near and far suppressive surrounds; and several studies
support the idea that cortical cells affect each other laterally

through bowtie-shaped “extension fields” consisting of patterned
arrays of positive and negative coefficients (Field et al., 1993;
Bosking et al., 1997; Li, 1999; Kapadia et al., 2000; Geisler et al.,
2001; Sigman et al., 2001). In all of these cases, the effect of one
neuron on another neuron is described in terms of its scalar con-
nection “strength.”

Not all functional interconnections that have been described in
the cortex fit such descriptions, however. Examples of activity
level-dependent interactions have been reported, where the
strength and even the polarity of the connection between cells
depends on the activity levels of the sending and/or receiving cells.
For example, the responses of amplitude-tuned neurons in the au-
ditory cortex grow stronger as the sound pressure level increases
up to an optimal intensity level, and then are progressively inhib-
ited as the sound grows louder (Suga and Manabe, 1982); in V1,
surround modulation can switch from facilitating to suppressive
with increasing center contrast (Polat et al., 1998; Somers et al.,
1998; Schwabe et al., 2006; Ichida et al., 2007; Nauhaus et al.,
2009); length-tuned neurons respond best to an oriented stimulus
up to a certain length, but are then progressively inhibited as the
stimulus grows longer (Anderson et al., 2001); and nonmonotonic
modulatory interactions between the classical and extraclassical
receptive fields of a neuron have been reported (Polat et al., 1998).
These data, though unaccompanied by normative explanations,
do support the idea that the sign and magnitude of the effect of
one neuron on another can depend not only on the relative posi-
tion and orientation of their receptive fields (in the case of vision),
but also on their relative activity levels.

Our article represents a fleshing out of this type of effect
and is to our knowledge the first normative theory, parame-
terized by natural images, that specifies how intracolumnar
cell–cell interactions may help solve a specific, biologically
relevant classification problem. By analyzing natural image
data on and off object boundaries, we showed that the local
cell–cell interactions needed to solve this classification prob-
lem are not capturable by scalar weights, but are in general
nonlinear functions that depend on “all of the above”—rela-
tive location, relative orientation, and relative activity levels
of the sending and receiving cells. We further showed that
the SC–BC functional connections needed for boundary detection
are easily produced by a compound E–I circuit motif (Fig. 6) that
is known to exist in the cortex (Buzsáki, 1984; McBain and Fisahn,
2001; Pouille and Scanziani, 2001; Swadlow, 2002; Wehr and
Zador, 2003; Klyachko and Stevens, 2006; Isaacson and Scanziani,
2011; Pfeffer et al., 2013). Finally, we showed that the synaptic
weights that control the net effect of an incitation motif are easily
learned. Future experiments will be needed to establish whether
trainable incitation circuits are actually used to help solve the diffi-
cult natural classification problems faced by neurons in V1 and
other areas of the cortex.

How could a properly parameterized incitation circuit
develop?
A possible extension of this work would be to address the limita-
tion that the incitation circuit we show in Figure 7A was trained
by a supervised learning rule (logistic regression), but without
our providing a biologically based account for the source of the
supervision. The original purpose of the exercise was to test
whether an incitation circuit with a single layer of modifiable
excitatory weights is capable of performing object boundary detec-
tion at a level comparable to that of an explicit Bayesian classifier.
We found this to be true (Fig. 9), suggesting that this particular
Bayesian-inspired algorithm lies within the computational scope of
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cortical tissue. The demonstration leaves open the question, how-
ever, as to where a supervisory signal might come from during vis-
ual development that alerts a boundary cell and its inhibitory
partner when an object boundary is crossing through its receptive
field. One possible source of supervision would be a population of
neurons located within the same or different area that have access
to different visual cues, such as cells sensitive to motion-defined
boundaries. Such cells are found at many levels of the visual system,
including the retinas of salamanders (Olveczky et al., 2003); V1, V2,
V3, middle temporal cortex, and inferior temporal cortex in the
monkey (Marcar et al., 1995, 2000; Sáry et al., 1995; Zeki et al.,
2003); and in multiple areas of the human visual cortex (DuPont
et al., 1997; Zeki et al., 2003; Mysore et al., 2006; Larsson et al.,
2010). Topographic feedback projections from motion boundary-
sensitive cells in these areas to V1 (or locally within V1) could help to
instruct boundary cells in V1 so that they may perform well based
purely on pictorial cues (i.e., whenmotion signals are unavailable).

Limitations of the model
The boundary detection computation that we have studied was
inspired by Bayes’ rule and is essentially a feedforward computa-
tion whose core operation is a sum of LLR terms (Fig. 1C). Our
attempt to map this computation onto a simple, cortically plausi-
ble circuit is shown in Figure 7A, in which a layer of simple cells
with varying output nonlinearities activates both (1) a “layer” of
boundary cells (though only one BC is shown); and (2) a layer of
inhibitory cells, one per BC (though only one inhibitory cell is
shown—the one assigned to the one shown boundary cell). Each
inhibitory cell, in turn, acts on its associated boundary cells
through a fixed connection. Given that the circuit of Figure 7A is
purely feedforward, ignoring (1) local or long-range feedback con-
nections that are known to exist in the neocortex (Angelucci et al.,
2017), (2) nonlinear dendritic integration effects that could also
contribute to boundary detection (Jin et al., 2022), and (3) all dy-
namics at the synapse, cell, and circuit levels, it falls far short of a
fully elaborated cortical circuit model. Rather, the circuit
model of Figure 7A should be viewed as a demonstration that
a known cortical circuit motif—the incitation motif—is ca-
pable of producing cells that superficially resemble simple
cells, but are much better at detecting object boundaries in
natural scenes than the standard simple cell model (Heeger,
1992). A worthy long-range goal would be to fold the bound-
ary detection capability of a properly parameterized incita-
tion circuit into a more comprehensive cortical circuit model
that addresses a wider range of physiological phenomena
(Ozeki et al., 2009; Zhu and Rozell, 2013).

Appendix 1: logistic regression learns LLRs
assuming CCI
We are interested in estimating the probability of some event y, in
this case whether a patch contains a boundary, from input data~x, in
this case the responses of several simple cells. Logistic regression
builds a model of p yj~x� �

by computing (potentially nonlinear) fea-
tures U ~xð Þ, and assuming that the output probability is a sigmoid
function of a linear combination of these features:

p̂ yj~x� � ¼ s wT~xð Þ ¼ 1
11e�wTUð~xÞ :

The goal of learning is to pick weights w that minimize the
expected cross-entropy between the true and model probabilities, as
follows:

w� ¼ argminw �
X

~x

p ~xð Þ
X

y

p yj~x� �
ln p̂ yj~x� �

;

¼ argminw �
X

~x

p ~xð Þ
X

y

p yj~x� �
ln

p̂ yj~x� �
p yj~x� �

�
X

~x

p ~xð Þ
X

y

p yj~x� �
ln p yj~x� �

:

The first term is the KL divergence between the true and model
distributions, and the second term is a constant with respect to the
weights, and can be ignored. The optimization is then:

w� ¼ argminwDKL p y;~xð Þjjp̂ y;~xð Þ� �
:

This is minimized when the model distribution p̂ matches the
true distribution p. To see that under the assumption of class
conditional independence, learning the LLR functions achieves
this minimum, observe the following:

p̂ y;~xð Þ ¼ p ~xð Þp̂ yj~x� � ¼ p ~xð Þs f ~xð Þ� �
;

where f ~xð Þ ¼ wTUð~xÞ. Further, class conditional independ-
ence implies the following:

p yj~x� � ¼ p yð Þp ~xjy� �
p yð Þp ~xjy� �

1 p �yð Þp ~xj�y� � ¼ 1

11
p �yð Þp ~xj�y� �
p yð Þp ~xjy� �

¼ s �log
p �yð Þp ~xj�y� �
p yð Þp ~xjy� �

 !
;

¼ s �log
p �yð Þ
p yð Þ 1

X
i

log
p xijy
� �
p xij�y
� �

 !

¼ s �log
p �yð Þ
p yð Þ 1

X
i

LLRi xið Þ
 !

;

so that the objective can be written as follows:

w� ¼ argminwDKL

p ~xð Þs �log
p �yð Þ
p yð Þ 1

X
i

LLRi xið Þ
 !

jjp ~xð Þs f ~xð Þ� � !
:

One can see by inspection that the two distributions will be
equal and the objective will be minimized to exactly 0 if and only
if:

f ~xð Þ ¼ �log
p �yð Þ
p yð Þ1

X
i

LLRi xið Þ;

that is, when the classifier simply combines the filter values by
passing them through their LLR functions and summing the
result. Furthermore, by convexity, all local minima achieve the
global minimum cost which, assuming the features U are diverse
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enough to represent the LLR functions, is exactly 0. But we have
just shown that 0 cost is possible only if f is of the form above.
Thus, any learning rule for w that eventually converges to a local
minimum – including gradient descent – must learn the LLR
functions.
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