
Behavioral/Cognitive

A Common Neural Account for Social and Nonsocial
Decisions

Desislava H. Arabadzhiyska,1,2 Oliver G.B. Garrod,1,2 Elsa Fouragnan,3 Emanuele De Luca,1,2,4

Philippe G. Schyns,1,2 and Marios G. Philiastides1,2
1School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, United Kingdom, 2Centre for Cognitive Neuroimaging, University of
Glasgow, Glasgow G12 8QB, United Kingdom, 3School of Psychology, University of Plymouth, Plymouth PL4 8AA, United Kingdom, and
4Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, United Kingdom

To date, social and nonsocial decisions have been studied largely in isolation. Consequently, the extent to which social and
nonsocial forms of decision uncertainty are integrated using shared neurocomputational resources remains elusive. Here, we
address this question using simultaneous electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) in
healthy human participants (young adults of both sexes) and a task in which decision evidence in social and nonsocial con-
texts varies along comparable scales. First, we identify time-resolved build-up of activity in the EEG, akin to a process of evi-
dence accumulation (EA), across both contexts. We then use the endogenous trial-by-trial variability in the slopes of these
accumulating signals to construct parametric fMRI predictors. We show that a region of the posterior-medial frontal cortex
(pMFC) uniquely explains trial-wise variability in the process of evidence accumulation in both social and nonsocial contexts.
We further demonstrate a task-dependent coupling between the pMFC and regions of the human valuation system in dorso-
medial and ventro-medial prefrontal cortex across both contexts. Finally, we report domain-specific representations in regions
known to encode the early decision evidence for each context. These results are suggestive of a domain-general decision-mak-
ing architecture, whereupon domain-specific information is likely converted into a “common currency” in medial prefrontal
cortex and accumulated for the decision in the pMFC.
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Significance Statement

Little work has directly compared social-versus-nonsocial decisions to investigate whether they share common neurocomputa-
tional origins. Here, using combined electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) and com-
putational modeling, we offer a detailed spatiotemporal account of the neural underpinnings of social and nonsocial
decisions. Specifically, we identify a comparable mechanism of temporal evidence integration driving both decisions and
localize this integration process in posterior-medial frontal cortex (pMFC). We further demonstrate task-dependent coupling
between the pMFC and regions of the human valuation system across both contexts. Finally, we report domain-specific repre-
sentations in regions encoding the early, domain-specific, decision evidence. These results suggest a domain-general decision-
making architecture, whereupon domain-specific information is converted into a common representation in the valuation
system and integrated for the decision in the pMFC.

Introduction
Most strategic decisions occur under considerable uncertainty.
For example, when investing in the stock market, a trader may
use only purely probabilistic models to estimate risk in the
market’s fluctuations. In contrast, when negotiating a deal in
person, the trader’s risk assessment may rely instead on how
trustworthy the other party appears (Fouragnan et al., 2013;
Griessinger and Coricelli, 2015). Similarly, the decision to
undergo a risky surgical operation may depend on online
statistics regarding past success rates or seek the advice of a
trustworthy friend who has recently undergone a similar
operation.
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In standard economic utility models (Morgenstern and Von
Neumann, 1953), the rules governing such decisions are the
same, regardless of whether the source of uncertainty is social or
nonsocial in nature (e.g., a human or an online platform). In cor-
respondence with this view, it has been argued that the same
neural network processes the different forms of uncertainty and
converts the values associated with different choice alternatives
into a “common currency” (Ruff and Fehr, 2014). This view has
gathered support over the years with some studies comparing
the learning mechanisms employed across social and nonsocial
decisions (Tarantola et al., 2017) and implicating prefrontal
structures in the processing of both social and nonsocial value
(L.T. Harris et al., 2007; Konovalov et al., 2021). Nonetheless,
these examinations focused mainly on one subtype of social
choices, based on self-versus-other considerations (A. Harris et
al., 2018), and with a special emphasis on value computation
during the learning stages of decision-making (Behrens et al.,
2008; Tarantola et al., 2017).

While these studies add valuable insight into the extent of
shared value representations across social and nonsocial con-
texts, the domain-generality hypothesis has not been fully estab-
lished, with some studies providing evidence in support of
largely dedicated brain networks for encoding social and nonso-
cial forms of decision uncertainty and for assigning value to dif-
ferent choice alternatives (Behrens et al., 2008; Tarantola et al.,
2017; A. Harris et al., 2018; Ugazio et al., 2022). Moreover, previ-
ous attempts to compare social and nonsocial decisions fall short
of equalizing the different forms of decision uncertainty and of-
ten collect the data across social and nonsocial contexts in dif-
ferent subjects/experiments (Krajbich et al., 2015; Tarantola et
al., 2017). Importantly, none of the previous comparisons have
attempted to investigate potential implementational common-
alities of how the relevant evidence is integrated for the decision
[i.e., domain generality of the process of evidence accumulation
(EA)].

We argue that these are important considerations in providing
a unified framework for integrating social and nonsocial decisions.
Correspondingly, to characterize the full cascade of constituent
neural processes both the algorithmic (i.e., what mechanistic rules
are involved) and implementational (i.e., which brain regions are
involved) levels of social and nonsocial choices need to be consid-
ered. This approach, in turn, will offer an opportunity to further
ascertain whether the distinction between social and nonsocial
choices in the brain is categorical or could be better understood in
terms of a shared relationship (Lockwood et al., 2020).

To address these issues, here, we design a novel task in which
decision evidence in social and nonsocial contexts varies along
comparable scales. Importantly, in our task, the social informa-
tion is carried by the social interpretation of facial features
(i.e., a social cue) rather than self-versus-other or group deci-
sions (Suzuki et al., 2015; Park et al., 2019). Across contexts,
we test whether there is a common embedding of decision evi-
dence as well as a common mechanism for integrating this evi-
dence using simultaneous electroencephalography (EEG) and
functional magnetic resonance imaging (fMRI; henceforth
EEG-fMRI) in an attempt to expand the scope of the typical
“common currency” investigation.

In doing so, we identify, in both contexts, centroparietal EEG
signals exhibiting decision dynamics consistent with a common
process of EA. Consistent with such domain-general mecha-
nisms, the trial-by-trial temporal variability in these accumulat-
ing signals is reflected in the fMRI data in the region of the
posterior-medial frontal cortex (pMFC) previously implicated in

other types of decisions (Pisauro et al., 2017). Moreover we
report a trial-wise and task-dependent modulation of the pMFC
with established regions of the human valuation system in the
medial prefrontal cortex (Chib et al., 2009; Philiastides et al.,
2010; Clithero and Rangel, 2014), suggestive of decision evidence
embedded within a “common currency” space. Finally, we also
identify domain-specific activations known to reflect the early
encoding of the relevant social and nonsocial decision evidence.

Materials and Methods
Participants
Forty participants were recruited through The University of Glasgow
subject pool. Since facial perception may depend on one’s race and racial
history (Scott and Monesson, 2009), participants were chosen to be
whites, aged 18–35 to match the available face stimuli (see below). Two
participants were removed because of poor behavior (one had near
chance performance across all levels of reward probability in the social
context whereas the other had chosen to nearly always “Play” across all
levels of reward probability in the nonsocial context) and seven partici-
pants because of noisy EEG signals in the scanner leading to poor
(chance) discrimination performance. The remaining 31 subjects (12
males, 19 females), were included in all subsequent analyses. They all
had normal or corrected-to-normal vision and reported no history of
psychiatric, neurologic or major medical problems, and were free of psy-
choactive medications at the time of the study. The study was approved
by the College of Science and Engineering Ethics Committee at the
University of Glasgow (300180147) and informed consent was obtained
from all participants.

Our original sample size was based on previous studies
employing similar behavioral decision tasks and neuroimaging
methods (Philiastides et al., 2014; Pisauro et al., 2017; Gherman
and Philiastides, 2018). We further ran a power analysis (G*Power
software; Faul et al., 2007) using the behavioral data from Pisauro
et al. (2017; i.e., one sample two-tailed t test on b coefficients
from a single-trial regression analysis to examine the effects of
task difficulty on choice [reaction time (RT) data] with an a level
of 0.05, power of 0.95 to inform our estimated effect size (0.847). This
power analysis indicated a minimum sample size of 21 participants.
We effectively doubled this estimate (N = 40) to account for the
potential removal of participants on the basis of poor behavioral per-
formance and noisy neuroimaging data, given the added challenges of
the simultaneous EEG-fMRI acquisition. Our eventual sample size of
31 participants is comparable to previous EEG-fMRI studies in which
reliable brain differences were observed in the EEG/fMRI data
(Fouragnan et al., 2015, 2017; Pisauro et al., 2017; Gherman and
Philiastides, 2018).

Stimuli
We used a set of 150 photorealistic face images (400� 300 pixels). We
presented all stimuli centrally via an LCD projector (frame rate = 60Hz)
on a screen placed at the rear opening of the bore of the MRI scanner,
and viewed through a mirror mounted on the head coil (distance to
screen= 95 cm), using Presentation software (Neurobehavioral Systems
Inc.). These face images were assigned to the five levels of reward prob-
abilities given a “Play” choice [Pðpayoff jplayÞ ¼ f0� 0:2; 0:2� 0:4;
0:4� 0:6; 0:6� 0:8; 0:8� 1g] used in the main task (Fig. 1), based on
participant-specific indirect trustworthiness ratings for each face (see
procedure below). Nonetheless, to encourage a broad range of indirect
trustworthiness reports from our participants, we manipulated these
images to obtain versions across a potentially wide range of trustworthi-
ness levels.

Specifically, we used a reverse correlation procedure (Ahumada and
Lovell, 1971) to first identify features associated with higher trustworthi-
ness scores and we then manipulated these features in all faces to create
different trustworthiness versions of each face using a Generative Face
Grammar (Yu et al., 2012). We estimated the facial features associated
with trustworthiness judgements from a separate set of 416 faces that
were each first 3D-captured using a Di4D (Dimensional Imaging) facial
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capture system and subsequently rendered and
rated for their trustworthiness by 49 independent
observers, based on a reverse-correlation procedure
reported previously (Zhan et al., 2019).

Each captured face is described by a (4735*3�
1) vector of 3D mesh vertex coordinates (x,y,z) and
a (800*600*3� 1) vector of texture pixel colors (r,
g,b). For each mesh vertex coordinate and texture
pixel we fit a multiple linear regression model pre-
dicting the value of the coordinate or pixel as a
function of the following predictors: average trust-
worthiness rating over the 49 observers, age of the
face, sex of the face, ethnicity of the face, plus a
constant term and interaction terms between the
predictors, yielding a set of linear coefficients for
each vertex coordinate and pixel. Categorical pre-
dictors were coded as one-hot vectors, continuous
predictors were coded as their real values. Each
individual face vertex and texture pixel is then
described by the output of this linear model at the
given values of the predictors plus an identity-spe-
cific residual term.

To generate individual faces of varying degrees
of perceived trustworthiness for a specific identity
we evaluated the linear model at varying levels of
the trustworthiness predictor while holding the
remaining predictors constant (at the observed val-
ues for this identity) and finally added the identity-
specific residual term and rendered the resulting
3D model. This procedure was first applied to 131
identities, made up of 61 male images, 70 female
images (all white), and an additional set of 19 new
identities were included (to increase the image
sample size to 150) by perturbing the identity-spe-
cific residuals in the above procedure with noise in
the directions of the principal components of the
identity space.

Using this procedure, we created twenty trust-
worthiness versions for each face, 1 representing
the least trustworthy version and 20 displaying a
trustworthy version of the face. Only one version
per face identity (original and fabricated) was cho-
sen for the main experiment. As noted above, this
procedure was adopted purely for increasing the
likelihood that stimuli would fall into a wide range
of different trustworthiness categories, though ulti-
mately the final categorization of each face was
based on the participant-specific reports as we
explain in more detail below.

Experimental paradigm
The experimental design consisted of three parts:
(1) an initial behavioral session comprising a rating
task and a separate choice task, (2) an online rating
task 1 d before the main EEG-fMRI experiment,
and (3) a rating task and the main choice task dur-
ing which participants underwent scanning. All
tasks were framed in the context of an economic
game. Specifically, we used a variant of the trust
game in which participants engaged in a series of
one-shot trust games involving a Trustee and an Investor. In each game,
the Trustee is allocated one point per trial and has two options: (1) to
obtain a small but certain reward by keeping the one point (“Keep”
option) or (2) to invest the one point with the Investor for a bigger (two
points) but uncertain reward (“Play” option). When the Trustee chooses
the latter option the one point is quadrupled and it is now up to the
Investor to determine whether to keep all four points for themselves or
split them evenly between the two players 2 (Fig. 2a).

During the rating tasks, we told participants that the face identities
belonged to individuals who have previously taken part in an economic
game (i.e., a trust game like the one described above) in which they were
assigned the role of Trustee. The goal of the participants in these indirect
trustworthiness rating tasks was to assess the face identities’ social atti-
tudes by estimating the overall likelihood with which each Trustee split
the augmented endowment (in the range 0–1, on a continuous scale).
This framing ensured that our social stimuli varied along the same scale
of reward probability as nonsocial gambles (see below). This was a criti-
cal feature of our design since embedding the rating in the context of a
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Figure 1. Sample stimuli from a representative participant. Top, Social stimuli at five different (participant–specific)
indirect trustworthiness levels, matching the pure reward probability levels used for the nonsocial stimuli. For each par-
ticipant there were, on average, 28 unique face identities in each of the five reward probability levels. Bottom, Nonsocial
stimuli with five explicit reward probability levels (given a “Play” choice) superimposed on a face neutral for trustworthi-
ness (i.e., 0.5 reward probability). The same neutral face was used for all trustworthiness levels and across participants.
Photo-realistic face images were obtained using the procedure described previously (Gill et al., 2014) and summarized in
Materials and Methods.
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Figure 2. Experimental design. a, A variant of the traditional Trust Game in which a participant (Investor) is allocated
one point and they need to decide whether to “Keep” the point or “Play” for the chance of winning two points. During
“Play” choices, the one point is quadrupled and passed on to a Trustee, which takes the form of either a social agent (S;
red) or a purely probabilistic gamble (NS; blue). The Trustee can either split the four points evenly and give the partici-
pant two points or keep all four points to themselves (i.e., the participants receive 0 points). In the social context the
probability of winning is based on the trustworthiness of the social agent displayed in the stimulus, while in the nonso-
cial context by the reward probability range displayed on top of a face, neutral for trustworthiness. b, Social (S; red out-
line) and nonsocial (NS; blue outline) experimental design trials. Each trial began with a variable duration (1–4 s)
fixation cross screen, which served as an intertrial interval. The fixation screen was followed by a stimulus screen which
remained available for up to 1.3 s, during which participants indicated their choice (“Play” or “Keep”). The stimulus
screen was replaced by a fixation cross following choice for the remainder of the 1.3 s.
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trust game allowed us to circumvent the arbitrary nature of explicit trust-
worthiness ratings (e.g., using Likert scales) and ensured a direct map-
ping between social and nonsocial choices. Furthermore, this indirect
measure of perceived trustworthiness was previously shown to be more
ecologically valid compared with explicit ratings (Uleman and Kressel,
2013) and further ensured that trustworthiness judgments became
the product of an economic decision as in our main experimental
paradigm. Importantly, when instructing participants, we purposely
avoided explicit mentions of “trustworthiness” to sidestep the possibility
of participants developing unusual strategies in the game because of
social desirability biases.

Correspondingly, we told participants that during the main choice
task they would assume the role of the Investor themselves and play with
the same face identities they encountered during the ratings tasks (in
social trials) or using purely probabilistic gambles (in nonsocial trials).
On each trial participants had to choose between the “Keep” and “Play”
option, however the outcome of the trial depended on the context (Fig.
2a). In the social context, we told participants that the probability of
doubling their points was based on one of the Trustee’s responses from
when they previously played the game in our lab. In reality, we used the
participant-specific reports on the likelihood of individual face identities
splitting the augmented endowment to construct reward probability ranges
that were comparable to those used in the nonsocial contexts (via explicit
reward probability values). This design ultimately ensured that participants’
decisions in the main choice task would be based on the same economic
considerations, that is, the reward probability associated with a “Play”
choice, across both contexts. To make our cover story more realistic for our
participants, we took pictures of their own faces and told them that their
face displays and responses would be used for similar experiments in the
future. In reality, we would delete the pictures after each session.

In the main choice task, we included five different levels of reward
probabilities (given a “Play” choice): 0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, and
0.8–1. Ultimately, these ranges correspond to three broad task difficulty
levels: easier trials favoring either a “Keep” or “Play” choice (i.e., 0–0.2
and 0.8–1, respectively), medium difficulty trials in which the outcome
uncertainty for “Play” choices begins to increase (i.e., 0.2–0.4, and 0.6–
0.8), and difficult trials for the most ambiguous set of reward probabil-
ities (i.e., 0.4–0.6). In the social context, we assigned each of the face
identities into the five bins based on the participants ratings on the day
of the EEG-fMRI. We nonetheless used their ratings across all three rat-
ings sessions to identify face identities that received inconsistent ratings
across sessions (more than two bins apart) and removed them from the
experiment (on average, 10.807 face identities were removed). On aver-
age, there were 23, 34, 32, 36, and 14 face identities across the five levels
of reward probability, respectively.

In the nonsocial context, the reward probability was presented ex-
plicitly through a probability range displayed on a face neutral for trust-
worthiness (Fig. 1). We embedded a background face in the nonsocial
trials to equalize the perceptual load across contexts to enable direct
comparisons between contexts (e.g., when searching for domain-specific
representations). Furthermore, the inclusion of a face stimulus in both
conditions ensures that any domain-specific differences across condi-
tions (i.e., based on task-dependent social or nonsocial features) are not
driven merely by differences in the bottom-up processing of the stimuli
themselves. We additionally distorted the number presenting the reward
probability ranges to equalize the early encoding of the perceptual stim-
uli across contexts (by ensuring that reaction times (RTs) and nondeci-
sion times were comparable across contexts, during initial piloting of the
task). During these trials, we instructed participant to focus exclusively
and base their choices on the numbers displayed on the stimuli.

The main choice task during the initial behavioral session was virtu-
ally identical to the one used for the EEG-fMRI experiments, with the
main difference being that participants received feedback following each
of their choice on a trial-by-trial basis. We included this initial choice
task to identify participants who would understand the task and to offer
participants a chance to familiarize themselves with the main paradigm.
We provided immediate feedback relating to their choice to reinforce
the associations between the stimuli and the outcome. During the EEG-
fMRI experiments participants would be informed of their accumulated

points only during the breaks (after every 50 trials). Furthermore, to mo-
tivate participants to engage with the task, we told them that in addition
to their base rate payment (behavioral session: £6, EEG-fMRI session:
£16) they would receive a variable bonus (up to £4) based on the overall
points they collected during the experiment. We did not provide further
details on how points translated into monetary rewards. On average, the
participants who were included in the final analysis received £8.036 0.31
during their initial behavioral session. In the EEG-fMRI session, we paid
all participants £20.

The main choice task during the EEG-fMRI session comprised of a
total of 500 trials, split evenly across the social and nonsocial contexts.
All trials were presented in fully interleaved fashion and they were fur-
ther broken down into five runs, lasting ;7min each. In each run we
included a 30-s break at the middle and the end (i.e., after every 50 tri-
als). During each trial, a jittered fixation cross (1–4 s, mean= 2 s; opti-
mized for maximizing discriminability across contexts as previously
described (Mumford et al., 2015) would be followed by the presentation
of the face stimulus (either social or nonsocial). For both contexts, the
stimulus remained on screen until the participant made a response or
for a maximum of 1.3 s. If the participant’s response was faster than 1.3
s, the fixation cross reappeared for the remaining time up to 1.3 s, to
keep the run times consistent between participants (Fig. 2b). Participants
used an MR-compatible response box (Cambridge Research Systems,
2019) to indicate their choices.

Choice probabilities
To assess the similarity between the probabilities of “Play” choices across
the social and nonsocial contexts, we used a conventional likelihood-ra-
tio test. Specifically, we examined whether a single sigmoid curve
(Weibull function) would fit the combined social and nonsocial choice
data across the five reward probability levels better than two separate
curves (Philiastides and Sajda, 2006). We performed this separately for
each participant by fitting the best single Weibull function jointly to the
two datasets in addition to the individual fits. The likelihoods (L)
obtained from this procedure were transformed using the following
equation:

l ¼ �2ln

1
N

XN
i¼1

Liðdata j joined curveÞ

1
N

XN
i¼1

Liðdata j individual curvesÞ
; (1)

where N represents the number of participants and l is distributed as
x 2 with 2 df (Hoel et al., 1971). If l exceeds the criterion value (for
p=0.05), we concluded that a single function fits the data better than
two separate domain-specific functions.

Sequential sampling modeling
Wemodeled the behavioral data using a special case of the leaky compet-
ing accumulator model (Fig. 3). Specifically, we used an Ornstein–
Uhlenbeck process to model the evidence accumulation (EA) stage as
previously described (Polanía et al., 2014; Pisauro et al., 2017):

EAðt1 1Þ ¼ EAðtÞ1 ðl EAðtÞ1 kðevidenceÞdt1Nð0;sÞÞ
1 biasðevidence ¼ 0Þ: (2)

We set the decision thresholds for “Play” and “Keep” choices to 11
and –1, respectively, such that positive drift rates are associated with
reward probability levels favoring “Play” choices while negative drift rate
values with those favoring “Keep” choices. Correspondingly, in Equation
2 the evidence represents a transformed version of the original five
reward probability levels such that they are now centered around zero
(i.e., [�0.5�0.25 0 0.25 0.5]).

Free parameter k modulates the input, l represents the acceleration
to threshold and N(0, s ) is a Gaussian noise term with standard devia-
tion s . We used a time increment dt = 0.001s and assumed that the
model makes a decision when jEAj. boundary. Early visual encoding

Arabadzhiyska et al. · Social versus Non-Social Decision Making J. Neurosci., November 30, 2022 • 42(48):9030–9044 • 9033



and motor preparation were captured by the nondecision time free pa-
rameter (nDT), which was included into the total reaction time (RT).
For the indecision point (i.e., 0 evidence) we included an extra free pa-
rameter, bias, to account for potential interindividual biases toward ei-
ther “Play” or “Keep” choices. We separated the RTs according to the
selected action (“Keep” or “Play”). We then combined the RTs from
both trial types into a single distribution by flipping the sign of the
“Keep” trials, so that all the times in this distribution received a negative
sign (Voss et al., 2004). This RT distribution and participants’ choice
probabilities were compared with the RT distribution and proportion
“Play” choices generated by the model (Fig. 3). For a given set of param-
eter estimates, we estimated the log likelihood (LL) of the data using the
following formula:

LL;
X5

evidence¼1

logðKSðRTevidence
data ;RTevidence

model ÞÞ

1
X5

evidence¼1

log exp � Pplayevidencedata � Pplayevidencemodel

0:01

� �2
 ! !

:

(3)

KS(p,q) is used to estimate the probability that two distributions are
equal, based on the Kolmogorov–Smirnov test (via the ktest2 function in
MATLAB). Pplay represents the fraction of “Play” choices for each of
the five levels of evidence. To fit the model, we used a two-step proce-
dure. First, we used the fmincon MATLAB function to provide an initial
estimate of participant-specific parameters. Specifically, we ran this pro-
cedure 20 times and the parameters associated with the smallest LL were
selected for the next step. Secondly, we ran a grid search fitting proce-
dure for each participant using a fine-grained parameter space around
the estimates obtained in the previous step. Choices and RT distributions
were created for each possible combination of the four free parameters
from 5000 simulated decision traces for each context.

Mean parameter estimates for the social context: l : 5.7746 2.357, k:
3.2066 1.555, s : 0.026 0.01, bias: �0.00,0046 0.0004, nDT: 0.3366
0.09. Mean parameter estimates for the nonsocial context: l : 5.2776 2.37,
k: 2.6116 1.355, s : 0.0116 0.006, bias: �0.00,0026 0.0006, nDT;
0.3046 0.089. For the majority of parameters, there was no significant dif-
ferences between the two contexts (l : t(30) = �1.3, two-sided p=0.203,
bias: t(30) = 0.26, two-sided p=0.8, k: t(30) = �1.349, two-sided p=0.188,
nDT: t(30) = �1.363, two-sided p=0.183), reinforcing the notion that
choice behavior was comparable across social and nonsocial choices.
There was a significant difference in the noise term (s : t(30) = �4.244,
two-sided p , 0.001), likely because of additional internal variability in
processing the faces and their trustworthiness in the social context

compared with processing the numbers in the nonsocial trials. We expect
that these differences would be captured in the trial-by-trial variability
reflected in our EEG slopes, which we used to inform the fMRI analysis
and identify the brain nodes correlating with the EA process (see below).

Finally, although we did not include an explicit urgency manipula-
tion in our design, we also tested a variant of our model with a variable
boundary parameter across the two contexts. We performed a formal
model comparison with the original model by calculating subject-spe-
cific BIC scores and found that the addition of an extra free parameter
led to higher summed BIC scores than the original model and thus,
worse fits (Summed nonsocial BICs in fixed boundary model: 5896.265,
and in the variable boundary model: 6180.934; Summed Social BICs in
the fixed boundary model: 3519.885, in the variable boundary model:
3568.106). This further ensures that the original drift rate estimates,
which we use to establish a link to the process of EA in the EEG, are not
reflective of any unaccounted variance in other decision-related parame-
ters. We further note that since our fMRI analysis is based purely on
EEG-derived slopes of EA (see below), we are effectively circumventing
any remaining issues with model estimation/mis-specification.

EEG data acquisition
We used an MR-compatible EEG amplifier system (Brain Products) to
collect the data and Brain Vision Recorder software (Brain Products) to
continuously record EEG at 5000Hz. A hardware 0.016- to 250-Hz
bandpass filtered the data online. We placed the 64 Ag/AgCl scalp elec-
trodes according to the 10–20 system, with the reference and ground
electrodes being built in between electrodes Fpz and Fz and between
electrodes Pz and Oz, respectively. Each electrode had in-line 10-kV sur-
face-mount resistors to ensure subject safety, which was further guaran-
teed by bundling and twisting all leads for their entire length. We
lowered the input impedance for each electrode to,50 kV (25 KV aver-
age across participants). The acquisition of EEG and MRI data were
synchronized (Syncbox, Brain Products) and MR-scanner triggers were
recorded separately for the subsequent offline removal of MR gradient
artifacts. To facilitate the recording of the scanner triggers, the
scanner pulses were lengthened to 50 ms via an in-house pulse
stretcher. Experimental event codes and participants’ responses were
synchronized, and recorded simultaneously, with the EEG data through
the Brain Vision Recorder software. We positioned subjects inside the
scanner by ensuring that electrodes Fp1 and Fp2 were aligned with the
isocenter of the MR scanner. Finally, the cabling connecting to the EEG
amplifiers at the back of the bore was secured to a cantilever beam to
minimize scanner vibration artifacts.

EEG data preprocessing
We used MATLAB (MathWorks) to preprocess and analyze the EEG
data. EEG signals recorded inside an MR scanner are contaminated pri-
marily with MR gradient artifacts and ballistocardiogram (BCG) artifacts
because of magnetic induction on the EEG leads. To correct for gradi-
ent-related artifacts, we constructed average artifact templates from sets
of 70 consecutive functional volumes centered on each volume of inter-
est, and subtracted these from the EEG signal. This process was repeated
for each functional volume in our dataset. To remove any residual spike
artifacts we applied a 12-ms median filter. Furthermore, we applied a
0.5- to 20-Hz bandpass filter to remove slow DC drifts and higher fre-
quency noise. All data were downsampled to 1000Hz.

To remove eye blinks, we asked participants to perform an eye move-
ment calibration task before the main experiment during which they
were instructed to blink repeatedly several times while a central fixation
cross was displayed in the center of the computer screen. We recorded
the timing of these events and used principal component analysis to
identify linear components associated with eye-blinks, which were sub-
sequently removed from the broadband EEG data collected during the
main task (Parra et al., 2005).

BCG artifacts share frequency content with the EEG and are there-
fore more challenging to remove. To avoid loss of signal power in the
EEG we only removed a small number of participant-specific BCG com-
ponents using principal component analysis and relied instead on our
multivariate discriminant analysis (see single-trial EEG analysis section
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below) to identify task-related discriminating components that are likely
to be orthogonal to the BCG (Fouragnan et al., 2015; Gherman and
Philiastides, 2018). This approach is robust to the presence of BCG arti-
fact residuals, specifically, because of the (spatial) multivariate nature of
our classification techniques.

Correspondingly, we first extracted BCG principal components
from the data after low-pass filtering at 4 Hz (i.e., to extract the sig-
nal within the frequency range where BCG artifacts are typically
observed) and then created datasets with different number of prin-
cipal components removed (up to 5). The sensor weightings corre-
sponding to the relevant components were projected onto the
broadband data and subtracted out. We determined the number of
optimal principal components for each participant by identifying
peak classification performance along the task-relevant dimension
(see below) using cross validation (average number of BCG com-
ponents across participants: 2.4476 1.969).

Single-trial EEG analysis
As we aimed to examine whether social and nonsocial choices share a
common underlying mechanism for integrating relevant decision evi-
dence, we leveraged the high temporal resolution of the EEG data to
identify signals exhibiting a gradual build-up of activity consistent with a
general process of EA (Polanía et al., 2014; Pisauro et al., 2017). We
hypothesize that if such signals exist, we should observe reliable ramp-
like activity with a build-up rate that is proportional to the amount of de-
cision difficulty.

To identify activity related to EA we used a single-trial multivariate
linear discriminant analysis (LDA; Parra et al., 2005; Sajda et al., 2009) to
discriminate between easy (i.e., reward probabilities 0–0.2 and 0.8–1)
and difficult trials (reward probabilities 0.4–0.6) in stimulus-locked EEG
data, collapsing across both social and nonsocial trials. Such a persistent
accumulating activity with a build-up rate proportional to the amount of
decision difficulty should lead to a gradual increase in the classifier’s per-
formance while the traces for the easy and difficult trials diverge as a
function of elapsed time in stimulus-locked data (Fig. 4a). We treated
the medium difficulty trials (i.e., reward probabilities 0.2–0.4 and 0.6–
0.8) as “unseen” data, to more convincingly test for a full parametric
effect on the build-up rate associated with the different levels of decision
difficulty (see below).

More specifically, our method estimates an optimal combination of
EEG sensor linear weights (i.e., a spatial filter w) which, applied to the

multichannel EEG data [x(t)], yields a one-dimensional projection [i.e., a
discriminant component y(t)] that discriminates between the two
contexts:

yðtÞ ¼ wTxðtÞ ¼
XD
i¼1

wixiðtÞ; (4)

where D represents the number of channels, indexed by i, and T indi-
cates the transpose of the matrix. We applied this method to identify w
for short (60ms) overlapping time windows centered at 20-ms interval
time points, between�100 and 800ms relative to the onset of the decision
stimulus. This procedure was repeated for each subject and time window
separately. By integrating information spatially across the multidimen-
sional sensor space, we increase signal-to-noise ratio while simultaneously
preserving the trial-by-trial variability in the relevant discriminating com-
ponent. More specifically, applied to an individual trial, spatial filters (ws)
obtained in this way produce a measurement of the discriminant compo-
nent amplitude for that trial, which we treat as a neural surrogate of the
relevant decision variable that is being integrated.

To estimate the optimal discriminating spatial weighting vector
w we used a regularized Fisher discriminant analysis as follows:
w ¼ Scðm2 �m1Þ, where mi is the estimated mean of condition i
and Sc ¼ 1=2ðS1 1 S2Þ is the estimated common covariance matrix
(i.e., the average of the condition-wise empirical covariance matri-

ces, Si ¼ 1=ðn� 1Þ
Xn
j¼1

ðxj �miÞðxj �miÞT , with n = number of tri-

als). We replaced the condition-wise covariance matrices with
regularized versions of these matrices to counteract potential esti-
mation errors: ~Si ¼ ð1� lÞ Si 1 l �I, with l [ [0, 1] being the regu-
larization term and � the average eigenvalue of the original Si
[i.e., trace(Si) /D, with D corresponding to the dimensionality of
our EEG space]. Note that l = 0 yields unregularized estimation
and l = 1 assumes spherical covariance matrices. Here, we opti-
mized l for each participant using leave-one-trial-out cross vali-
dation with the following l values [ [0, 0.01, 0.02, 0.04, 0.08, 0.16]
(l mean 6 SE: 0.0676 0.072).

To quantify the performance of the discriminator for each time win-
dow, we computed the area under a receiver operating characteristic
(ROC) curve (i.e., the Az value), using a leave-one-trial-out cross-valida-
tion procedure. Specifically, for every iteration, we used N–1 trials to
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estimate a spatial filter (w), which we then applied to the remaining trials
to obtain out-of-sample discriminant component amplitudes [y(t)]. We
used these out-of-sample amplitudes to compute the Az. In addition, we
determined participant-specific Az significance thresholds (rather than
assuming an Az = 0.5 as chance performance) using a subsequent boot-
strap analysis whereby trial labels were randomized and submitted to the
leave-one-trial-out test described above. This randomization procedure
was repeated 500 times, producing a probability distribution for Az,
which we used as reference to estimate the Az value leading to a signifi-
cance level of p, 0.05 (Fig. 4b).

To produce the full temporal profile of the relevant discriminating
components [y(t)], we applied the spatial filter w of the window associ-
ated with the highest discrimination performance (i.e., subjected the
data through the “spatial generators” leading to the most reliable dis-
crimination) across the entire stimulus-locked window (�100 to 800ms
poststimulus) and separately for each of the social and nonsocial con-
texts as well as the three difficulty conditions (easy, medium, and diffi-
cult; Fig. 4c). The times course of these discriminating components were
then Z-scored separately for each participant and for each of the social
and nonsocial contexts.

This procedure allowed us to investigate the gradual build-up of EA
activity leading up to a point of peak discrimination and to extract the
corresponding single-trial build-up rates used in subsequent analyses.
These build-up rates (or slopes) were computed through a linear regres-
sion between onset and peak time of the accumulating activity extracted
on a participant-specific basis. Specifically, we identified the time point
at which the discriminating activity began to rise monotonically after
an initial dip in the stimulus-locked data following any early evoked
responses present in the data (onset time mean 6 SE: 363.0976 97.046
ms for social trials and 376.1616 107.155 ms for nonsocial trials).

Finally, the linearity of our model also allowed us to compute scalp
topographies of the relevant discriminating components from Equation
4 by estimating a forward model:

a ¼ Xy
yTy

: (5)

The EEG data X and discriminating components y are now depicted
in matrix and vector notation, respectively, for convenience. Equation 5
represents the electrical coupling of the discriminating component y that
explains most of the activity in X. Specifically, strong coupling is linked
to low attenuation of the component and can be visualized as the inten-
sity of vector a. We estimated forward models for the resulting discrimi-
nating activity separately for social and nonsocial trials (Fig. 4b).

Single-trial regression analyses
To examine the association between the probability of reward (i.e., indi-
rect trustworthiness levels and pure probabilities in the social and non-
social contexts, respectively) and the probability of playing (1: “Play”, 0:
“Keep”) on individual trials (Fig. 3a) we performed the following single-
trial logistic regression analysis (separately for each participant and for
each of the social and nonsocial trials):

Pplay ¼ ½11 e�ðb 01b 1�yðreward probabilityÞÞ��1 (6)

To examine the association between task difficulty [i.e., 1: easy
(reward probabilities 0–0.2 and 0.8–1), 2: medium (reward probabilities
0.2–0.4 and 0.6–0.8), 3: difficult (reward probabilities 0.4–0.6)] and
response times (RT) on individual trials (Fig. 3b), we performed the fol-
lowing single-trial regression analysis (separately for each participant
and for each of the social and nonsocial trials):

RT ¼ b 0 1 b 1 � ðdifficulty levelÞ: (7)

To offer further validation that the EEG signals we identified
through our LDA analysis (independently from the behavioral
model estimation) were related to the process of EA, we tested the
extent to which the build-up rate of the EEG EA signals [i.e., y(t)]

would correlate with sequential sampling model estimates of drift
rate that were derived purely from participants’ behavior (i.e., on
fraction of “Play” choices and RTs; Fig. 3). To this end, we flipped
the sign of the EEG slopes in the two reward probability levels which
support “Keep” choices [i.e., Pðpayoff jplayÞ ¼ f0� 0:2; 0:2� 0:4g],
since the “Play” and “Keep” choices were mapped to 11 and –1,
respectively (see section on Sequential sampling model for details),
and therefore positive (negative) drift rates reflected reward proba-
bility levels favoring a “Play” (“Keep”) choice (Fig. 5a,b).

To further examine the association between the rate of EA derived
from the neural data and single-trial behavioral performance on the task
(rather than mean drift rates from the model as in the analysis above),
we ran a single-trial logistic regression analysis. Specifically, we used the
trial-wise estimates of the slope of the EEG-derived EA signal to predict
the probability of playing (1: “Play”, 0: “Keep”) on individual trials (Fig.
5c,d). Consistent with the previous analysis we flipped the sign of the
EEG slopes in the two reward probability levels which support “Keep”
choices. We expected, high positive and high negative EA rates to reflect
easy “Play” and “Keep” choices, respectively, with intermediate magni-
tude slopes reflecting medium difficulty choices and slopes near zero
representing difficult choices. We performed this analysis separately for
each participant and for each of the social and nonsocial trials:

Pplay ¼ ½11 e�ðb 01b 1�yðbuildup rateÞÞ��1 (8)

Finally, we also ran a logistic regression predicting the probability of
a “Play” choice using a combination of the EA-derived slopes and the
probability of reward (as described above) to examine whether our neu-
ral estimates offer additional explanatory power, beyond what could be
inferred by accounting for the overall experimental manipulation of task
difficulty:

Pplay ¼ ½11 e�ðb 01b 1�yðbuildup rateÞ1b 2�yðreward probabilityÞÞ��1 (9)

In all four regression analyses, we tested whether the regression coef-
ficients across participants (b1 values in Eqs. 6–8) came from a distribu-
tion with a mean different from zero (using separate two-tailed t test).
We also compared the deviance scores associated with the three analyses
predicting the choice behavior to assess whether the addition of the neu-
ral predictor would explain more of the variability in the data.

MRI data acquisition
A Siemens 3-Tesla TIM Trio MRI scanner (Siemens) with a 12-channel
head coil was employed for the (f)MRI acquisition. A T2*-weighted gra-
dient echo was used to acquire functional volumes with an echo-planar
imaging sequence (32 interleaved slices, gap: 0.3 mm, voxel size: 3� 3 �
3 mm, matrix size: 70� 70, FOV: 210 mm, TE: 30ms, TR: 2000ms, flip
angle: 80°). We recorded five experimental runs of 205 whole-brain vol-
umes each. Afterwards, we acquired phase and magnitude field maps
(3� 3 � 3 mm voxels, 32 axial slices, TR=488ms, short TE= 4.92ms,
long TE=7.38ms) for distortion correction of the acquired EPI images.
Finally, a high-resolution anatomic volume was taken using a T1-
weighted sequence (192 slices, gap: 0.5 mm, voxel size: 1� 1 � 1 mm,
matrix size: 256� 256, FOV: 256 mm, TE: 2300ms, TR: 2.96ms, flip
angle: 9°), which was used as an anatomic reference for the functional
scans.

fMRI data preprocessing
To guarantee a steady-state fMRI we removed the first five volumes per
run and we used only the remaining 200 volumes for the analysis. Head-
related motion correction, slice-timing correction, high-pass filtering
(.100 s), and spatial smoothing (with a Gaussian kernel of 5-mm full-
width at half maximum) were performed using the FMRIB’s Software
Library (Functional MRI of the Brain). The motion correction prepro-
cessing step generated motion parameters which were subsequently
included as regressors of no interest in the general linear model (GLM)
analysis (see fMRI analysis below). Brain extraction of the structural and
functional images was performed using the Brain Extraction tool (BET).
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The echo-planar imaging data for each participant was transformed into
the subject-specific high-resolution space using a boundary-based registra-
tion (BBR) algorithm. The images were then registered to standard space
(Montreal Neurologic Institute, MNI) using FMRIB’s Nonlinear Image
Registration tool with a resolution warp of 10 mm and 12 df. Finally, to cor-
rect for signal loss and geometric distortions because of B0 field inhomoge-
neities B0 unwarping was used for 29 out of 31 participants. Field map
images were not acquired for the remaining two participants.

fMRI analysis
Here, we aimed to exploit endogenous trial-by-trial variability in the
slope of EA to create EEG-informed fMRI predictors to identify candi-
date regions for the process of EA in social and nonsocial contexts (Fig.
6a). More specifically, we used the trial-wise changes in the rate of EA,
which embody the momentary changes in the decision process as it
unfolds, to predict BOLD activity in the fMRI signal. Note that, unlike
conventional event-related potentials for which the trial-by-trial signal fluc-
tuations might be contaminated from unspecific neural process, the nature
of our multivariate EEG discriminant analysis ensured these processes were
effectively subtracted out, facilitating instead the spatial “unmixing” of the
main signal of interest (i.e., process of EA; Ratcliff et al., 2009; Philiastides et
al., 2014).

We performed whole-brain statistical analyses of the functional data
using a multilevel approach within the framework of a GLM, as imple-
mented in FSL (using the FEATmodule; S.M. Smith et al., 2004):

Y ¼ xb 1 e ¼ b1X1 1 b2X2 1 ::: 1 b NXN 1 e (10)

Y represents the time series (with T time samples) for a voxel and X
is a T�N design matrix where the columns correspond to the different
regressors included in the design (see below) convolved with a canonical
hemodynamic response function (double-g function). b is a N� 1

column vector of regression coefficients and e
a T� 1 column vector of residual error terms.
We performed a first-level analysis to analyze
each participant’s individual runs, which we
then combined using a second-level analysis
(fixed effects). We combined data across par-
ticipants using a third-level, mixed-effects
model (FLAME 1), treating participants as a
random effect. Time-series statistical analy-
sis was conducted using FMRIB’s improved
linear model with local autocorrelation
(Woolrich et al., 2005).

Our GLM included four regressors of in-
terest for each of the social and nonsocial con-
texts (i.e., a total of eight regressors). More
specifically, for each of the social and nonso-
cial trials, we included (1) an EEG-informed
regressor with a parametric amplitude modu-
lation based on the trial-by-trial fluctuations
in the rate of EA [i.e., trial-wise slopes in y(t)];
(2) a parametric regressor with amplitude
modulation based on individual trial RTs; (3)
a parametric regressor with amplitude modu-
lation based on the individual trial task diffi-
culty, not accounted for by the EEG-derived
regressor (�1: difficult, 0: medium, 1: easy);
and (4) an unmodulated regressor (i.e., all
amplitudes set to 1) to account for any
additional unaccounted variance in the
data, which specifically aimed to capture
activity in early evidence representations
independent of any other task-relatedmanipula-
tions (Fig. 6a).

We note that the EA slopes derived from
the EEG were not highly correlated with indi-
vidual RTs (Social: r = �0.297, Nonsocial: r =
�0.333). This is because of the high degree of
intertrial variability in the decision and motor

planning stages, as has been demonstrated consistently in previous mod-
eling and experimental studies (Ratcliff et al., 2009; Philiastides et al.,
2014; Verdonck et al., 2021). As such, RTs do not constitute a major
confounding factor, but we nonetheless included separate nuisance RT
predictors in our fMRI analysis. We modeled all regressor events as box-
car functions (i.e., duration 100ms). For the first two regressors, event
onset times were aligned to the time of response, while for the last two,
to the onset of stimulus presentation. Using the unmodulated regressors
we also computed standard contrast and conjunction maps between
social and nonsocial trials. Finally, we added the motion correction pa-
rameters obtained from fMRI preprocessing (three rotations and three
translations) as additional covariates of no interest.

Our EEG-informed fMRI approach benefits from using the actual
neural signals, which could capture latent variability in information
processing that might otherwise go amiss when using simple behavioral
or model-derived indices (Sajda et al., 2011; Philiastides et al., 2021). For
example, most sequential sampling models only produce mean estimates
of the relevant decision variables (e.g., drift rate) across many trials, with
only few studies attempting to derive single-trial parameter estimates
(Turner et al., 2015; Gluth et al., 2017). Here, instead, we estimate the
rate of EA on individual trials purely from the slope of the accumulating
activity we identified in the EEG data. This way we could account for
true endogenous variability in EA, that might not be reflective in behav-
ior (and hence the model) and circumvent potential issues related to
model estimation and/or mis-specification when deriving build-up rates
purely based on fits to behavior.

Resampling procedure for fMRI thresholding
In order to establish a reliable significance threshold for the fMRI data,
while properly correcting for multiple comparisons, we used a resam-
pling procedure, which examines a priori statistics of the trial-wise
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variability in the parametrically adjusted regressors
(i.e., regressors 1–3 above) in a way that trades off
cluster size and maximum voxel Z-score (Fouragnan
et al., 2015; Gherman and Philiastides, 2018).
Specifically, for each resampled iteration, we main-
tained the onset and duration of the regressors iden-
tical, while shuffling the amplitude values across
trials, runs and participants. Thus, the resulting
regressors for each participant were different as they
were constructed from a random sequence of regres-
sor amplitude events. This procedure was repeated
100 times and for each iteration we performed the
full three-level analysis (run, participant, and group).
Finally, we estimated a joint threshold for the cluster
size and Z-score based on the cluster outputs per
shuffled regressor. This was achieved by constructing
a null distribution for this joint threshold based on
the size of all clusters larger than 10 voxels and with
Z-scores larger than —2.57— (i.e., considering both
positive and negative correlations) across all shuffled
regressors. We found that the largest 5% of cluster
sizes exceeded 88 voxels. We therefore used these
results to derive a corrected threshold for our statisti-
cal maps, which we then applied to the clusters
observed in the original data (that is, Z = 62.57,
minimum cluster size of 88 voxels, corrected at
p= 0.05).

Psychophysiological interaction (PPI) analysis
We conducted a psychophysiological interaction
(PPI) analysis to probe the functional connectivity
between the pMFC, which was found to correlate
with the trial-by-trial variability in our EEG-informed EA regressor, and
the rest of the brain. To carry out the PPI analysis, we first extracted
time-series data from group-level activation clusters in the pMFC (seed),
separately for each of the social and nonsocial contexts. Specifically, we
identified the relevant pMFC clusters that were situated within the sup-
plementary motor area (SMA) portion of the cluster and were most con-
sistent with previous reports of EA-related activity in this region
(Pisauro et al., 2017) and then back-projected these clusters from the
group (standard) space into the individual participant’s EPI (func-
tional) space (by applying the inverse transformations estimated
during the main registration procedure). The average time-series
data from the back-projected voxels, which displayed activations
in the direction of the predicted EA profile were then used as the
physiological regressor in our PPI analysis.

The main aim of this analysis was to investigate potential task-de-
pendent associations between the site of EA and regions involved in do-
main-general value computations. If such an association exists, the
coupling between these regions should be stronger while the process of
EA unfolds and it should also scale with the difficulty of the decision. To
this end, our psychological regressor was constructed as a parametric box-
car regressor, the amplitude of which reflected the difficulty (1=difficult,
2 =medium, 3= easy) and the duration of which reflected the RT of each
trial. We expected the relevant coupling to be negative, as easier trials
decrease integration times and correspondingly the overall integrated ac-
tivity (that is, area under the accumulation curve; Fig. 6b). The resulting
fMRI statistical maps were corrected based on the threshold derived from
the resampling procedure described above.

Data and code availability
The data and code required to reproduce the main findings are available at
https://osf.io/hrgp5/?view_only=c84a4a66aebd4284951c8efd3a4d65fd.

Results
We investigated economic decisions within a social context by
exploiting trustworthiness in a partner’s face during a strategic eco-
nomic game to generate predictions about possible outcomes and

within a nonsocial (purely probabilistic) context by manipulating
outcome probabilities in individual gambles. Importantly, we cre-
ated parametrically modulated stimuli along comparable scales of
reward probability in each of the social and nonsocial contexts
(while keeping reward magnitude constant across both contexts).
The nonsocial stimuli were associated with a range of pure reward
probabilities chosen from the full probability range (from 0 to 1),
placed on top of a face image (neutral for trustworthiness) to equal-
ize perceptual load across the social and nonsocial stimuli as well as
to eliminate any potential confounds associated with differences in
the bottom-up processing of the stimuli across contexts (Fig. 1; see
Materials andMethods for more details).

We derived comparable reward probabilities for the social stim-
uli by asking participants (N=31) to provide indirect trustworthi-
ness ratings for a series of 150 face identities. Specifically, we
framed this rating stage in the context of a trust game (Berg et
al., 1995). Usually a trust game involves an interaction between
two players, the Investor and the Trustee. The Investor decides
whether to send a monetary endowment to the Trustee that
gets multiplied by a certain factor (“Play” option) or to retain
possession of the initial endowment (“Keep” option). In turn,
the Trustee can decide whether or not to send a fixed share of
the augmented amount back to the Investor so that both parties
can benefit from the interaction. We told participants that each
face belonged to people who had previously taken part in a sim-
ilar study in the role of the Trustee, and we asked them to indi-
cate the overall likelihood (in the range 0–1) that each person had
returned a fixed share (50%) of the augmented endowment
entrusted to them (Fig. 2a).

During the main (EEG-fMRI) task, participants assumed the
role of the Investor in a series of one-shot trust games. In each
game they had to decide whether to choose between a small but
sure reward (onepoint; “Keep” option) or a bigger, but riskier pay-
off (two points; “Play” option). We randomly interleaved nonso-
cial trials (i.e., probabilistic gambles) in which we controlled the
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likelihood of obtaining the higher payoff with explicit reward
probabilities, matched against subject-specific indirect trustworthi-
ness ratings as highlighted above (Fig. 2b).

We instructed participants that the probability of receiving the
higher payoff for “Play” choices would be based on the overall
likelihood with which each face identify split the augmented
endowment (here four points) in a previous study (social trials) or
the pure reward probabilities depicted on the face stimuli (nonso-
cial trials). We sampled the full range of reward probabilities given
a “Play” choice using five levels [Pðpayoff jplayÞ ¼ f0� 0:2;
0:2� 0:4; 0:4� 0:6; 0:6� 0:8; 0:8� 1g]. In social trials, we
populated each reward probability level with face identities
based on the subject-specific perceived trustworthiness from
the initial rating stage.

Behavioral performance in social and nonsocial contexts
Participants’ fraction of “Play” choices (Eq. 6) correlated posi-
tively with the overall reward probability across both the social
and nonsocial trials (Social: t(30) = 17.769, two-sided p , 0.001;
Nonsocial: t(30) = 4.086, two-sided p , 0.001), indicating that
they selected the riskier option more frequently as the likelihood
of receiving the higher payoff increased (Fig. 3a). More impor-
tantly, we demonstrated that choice behavior was comparable
across the social and nonsocial trials. Specifically, we used a like-
lihood-ratio test (see Materials and Methods) to show that a sin-
gle sigmoid function (Eq. 1) fit the fraction of “Play” choices
(jointly across both conditions) as well as two separate functions
[l (30) = 0.551, p= 0.759].

The mean response times (RTs) as a function of the overall
reward probability exhibited an inverted V relationship, across
both the social and nonsocial trials (Fig. 3b), consistent with a
positive relationship with task difficulty (Social: t(30) = 10.024,
p, 0.001; Nonsocial: t(30) = 10.692, p, 0.001). In other words,
we observed the longest RTs for the most difficult trials (reward
probabilities 0.4–0.6), the shortest RTs for the easiest trials
(reward probabilities 0–0.2 and 0.8–1) and intermediate RTs for
medium difficulty trials (reward probabilities 0.4–0.6 and 0.6–
0.8). The overall RTs showed a small (41.637ms), albeit signifi-
cant difference between the social and nonsocial trials (paired t
test: t(30) = �3.274, two-sided p=0.003), with social trials (MS =
677.864ms, SDS = 86.479ms) being on average faster than non-
social ones (MNS = 719.502ms, SDNS = 91.287ms).

Evidence accumulation in social and nonsocial contexts
Having established comparable behavioral performance across
the social and nonsocial contexts, we asked whether these share a
common underlying mechanism for integrating relevant deci-
sion evidence. To this end, we aimed to identify correlates of a
general process of EA in our EEG data by looking for a reliable
ramp-like activity with a build-up rate that is proportional to the
amount of decision difficulty (Polanía et al., 2014; Pisauro et al.,
2017).

We used a single-trial multivariate linear classifier (Parra et
al., 2005; Sajda et al., 2009) designed to estimate spatial weight-
ings of the EEG sensors that discriminate between easy versus
difficult trials (see Materials and Methods). As hypothesized, the
classifier’s performance increased systematically over time,
reflecting the potential divergence in the gradual build-up of ac-
tivity between easy and difficult trials (Fig. 4b). On average, the
classifier’s performance began increasing after 400ms poststimu-
lus (i.e., after early encoding of the relevant evidence) and peaked
several hundred milliseconds later.

The spatial distribution of this discriminating activity (i.e.,
forward model; see Materials and Methods) from participant-
specific windows of peak discrimination between easy and diffi-
cult trials (Fig. 4b, top) revealed comparable centroparietal
topographies across social and nonsocial contexts (r= 0.896,
p, 0.01; Fig. 4b, inset). These similarities are suggestive of
common neural generators across the two contexts, consistent
with those reported previously in the perceptual domain (Kelly
and O’Connell, 2013; Philiastides et al., 2014; Herding et al.,
2019).

To formally characterize the temporal profile of the dis-
criminating activity [i.e., y(t)] for each condition separately,
we applied participant-specific spatial weights from the time
window of peak discrimination to an extended stimulus-
locked time window and separately for social and nonsocial
trials. This approach revealed a gradual build-up of activity
akin to a process of EA in both social and nonsocial trials (Fig.
4c, top, Social; bottom, Nonsocial). Similar to the classifier
performance, the neural activity began to rise around 400ms
after stimulus presentation in both the social and nonsocial
trials, with the build-up rate being proportional to the amount
of decision difficulty. Note that the build-up rate from me-
dium difficulty trials was situated between the two extreme
conditions used to originally train the classifier, thereby estab-
lishing a fully parametric effect across the three levels of decision
difficulty (F(2,90) = 16.88, p, 0.001 for the social condition,
F(2,90) = 26.76, p, 0.001 for the nonsocial condition, post hoc
paired t tests, all p, 0.001).

We finally extracted participant-specific EA onset times,
that is the time point at which the discriminating activity
began to rise monotonically after an initial dip in the data
following any early evoked responses present in the data
(Fig. 4c, insets). Because of the interindividual variability in
these onset times, we predicted that re-aligning the relevant
signals to the participant-specific EA onset times should
reveal a more pronounced depiction of the underlying pro-
cess of EA at the population level, which was indeed the case
(Fig. 4d, top, Social; bottom, Nonsocial).

Linking neural signatures of evidence accumulation to
behavior
To further establish that our EEG signals reflect the process of
EA leading up to the decision we performed two additional anal-
yses to link these signals with our participants’ behavioral per-
formance. First, we expected the build-up rate of the EEG EA
signals to correlate with drift rate estimates obtained from a se-
quential sampling model (SSM; Polanía et al., 2014; Pisauro et
al., 2017) fit on participants’ fraction of “Play” choices and RTs,
which was indeed the case (Fig. 3; Social, Fraction “Play” Choice:
r= 0.945, t(154) = 36.464, two-sided p , 0.001, RT: r=0.754;
t(154) = 15.154, two-sided p , 0.001; Nonsocial, Fraction “Play”
Choice: r=0.968, t(154) = 94.196, two-sided p , 0.001, RT:
r= 0.765; t(154) = 14.461, two-sided p, 0.001).

In the SSM, we set the decision thresholds for “Play” and
“Keep” choices to 11 and –1, respectively (see Materials and
Methods for details). Correspondingly, positive (negative)
drift rates are associated with reward probability levels favor-
ing a “Play” (“Keep”) choice. To align the EEG build-up rates
[i.e., linear slopes of y(t); see Materials and Methods] with
this convention, we flipped the sign of the EEG slopes in the
two reward probability levels which support “Keep” choices
[i.e., Pðpayoff jplayÞ ¼ f0� 0:2; 0:2� 0:4g]. As expected, we
observed robust correlations between the slopes of the EEG
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and drift rates in the model, across both
social (Fig. 5a; r = 0.653, p, 0.001) and non-
social trials (Fig. 5b; r = 0.709, p, 0.001). To
exclude the possibility that our EEG slopes
were reflective of changes in the remaining pa-
rameters, we also conducted correlations for
the other (nonfixed) parameters in our model.
As these parameters do not include modula-
tions based on reward probability, we corre-
lated the estimates with the mean EEG slopes
per participant and found no significant cor-
relations (all p-values. 0.05).

To further validate the association between the
EEG EA and trial-wise changes in performance
(rather than mean drift rates from the model as in
the analysis above), we ran a logistic regression
analysis (Eq. 8) to directly predict the probability
of playing on individual trials based on the trial-
by-trial slope estimates from the EEG EA signals.
As expected, we found that EEG slopes were a
significant predictor of the eventual probability of
playing for both the social (Fig. 5c; t(30) =7.582,
two-sided p, 0.001) and nonsocial trials (Fig. 5d; t(30) =8.173, two-
sided p, 0.001).

We also asked whether including these trial-wise changes
in the EEG EA slopes offers additional explanatory power
into choice behavior, beyond what could be inferred using
simple task-derived predictors such as reward probability
(Eq. 9). We found that the patterns of results seen in our orig-
inal behavioral analyses were still present in this regression
analysis [i.e., that the P(Play) increased with reward probabil-
ity], but that the deviance scores were lower for the combined
analysis than the simple regressions suggesting that the addi-
tion of the neural predictor explained more of the variability
in the data. Although the differences between the combined
regression and the one relying on the task-derived reward
probability predictor were small, they were significant for
both domains (social: t(30) = �4.924, p, 0.001; nonsocial:
t(30) = �6.515, p, 0.001).

Finally, we also tested the possibility that trial-by-trial modu-
lations of the EEG slopes may have arisen merely because of fluc-
tuations in attention (as it waxes and wanes in the course of the
experiment). Specifically, we ran a linear serial autoregression
model predicting the EEG-derived EA slope in the current trial
from the slopes from the previous four trials, individually for all
participants. We found that on average this only accounted for a
very small portion of the overall variance in the EEG slopes
(Social: R2 = 0.02, Nonsocial: R2 = 0.019), demonstrating the ab-
sence of a serial autocorrelation in slopes across neighboring
trials.

EEG-informed fMRI of evidence accumulation
Our EEG analysis demonstrated that both the social and nonsocial
choices display comparable EA dynamics, potentially suggestive of
common underlying neural generators. Here, we aimed to identify
candidate regions involved in the process of EA for social and non-
social contexts by using the endogenous trial-by-trial variabili-
ty in the slope of EA (Fig. 6a). Crucially, trials with lower
EA rates that require longer integration times to reach the
decision boundary should have larger areas (energy) under
the accumulation curve (Basten et al., 2010; Hare et al.,
2011; Liu and Pleskac, 2011). Correspondingly, we hypothesize
that candidate accumulator regions should appear to be more

hemodynamically active in trials with longer compared
with shorter integration times (Fig. 6b). This, in turn,
should be consistent with a negative relationship between
our EEG-informed EA slope predictor and the BOLD
response in the relevant brain areas (Hare et al., 2011; Liu
and Pleskac, 2011; Mulder et al., 2014).

Consistent with a domain-general EA neural architecture, we
identified a region of the posterior-medial frontal cortex (pMFC)
correlating negatively with the trial-by-trial EA slope in our
EEG-informed predictor (Fig. 6c) in both social (Z(max) = 3.49,
MNI [0, �16, 56]) and nonsocial contexts (Z(max)= 4.39, MNI
[8, 8, 44]). We note that in nonsocial choices the cluster extended
more anterior compared with social choices, suggestive of a
potential gradient organization within the pMFC associated with
EA. We found no domain-specific activations surviving in the
direct contrast between social and nonsocial contexts for the EA
slope predictor.

To further establish the role of the pMFC in EA across
social and nonsocial contexts, we aimed to demonstrate
whether its activity exhibits a task-dependent coupling with
brain regions encoding the relevant decision evidence and the
extent to which this coupling arises from domain-general or do-
main-specific neural representations. To this end, we ran separate
psychophysiological interaction (PPI) analyses for each of the
social and nonsocial trials, using the context-specific pMFC clus-
ters as seed and the trial-wise task difficulty as the psychological
predictor (see Materials and Methods for more details). We
hypothesized that the relevant coupling with pMFC should be
negative, as easier trials decrease integration times and corre-
spondingly the overall integrated activity (that is, area under the
accumulation curve; Fig. 6b).

The PPI analyses from both social and nonsocial contexts
revealed significant negative coupling (by task difficulty during
the decision phase) between the pMFC and regions of the human
valuation system. More specifically, we observed activations in
posterior cingulate cortex (PCC; Social Z(max) = 3.54, MNI [2,
�70, 24]; Nonsocial Z(max) = 3.88, MNI [�4, �66, 22]) as well
as in dorso- (Social Z(max) = 3.5, MNI [�4, 48, 26]; Nonsocial Z
(max)= 3.39, MNI [�4, 52, 24]) and ventro-medial prefrontal
cortex (dmPFC/vmPFC; Fig. 7, Social Z(max) = 3.19, MNI [�2,
52, 2]; Nonsocial Z(max) = 3.74, MNI [�8, 62, 0]), consistent
with recent resting-state connectivity reports showing negative
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BOLD correlations between these regions and the pMFC
(Neubert et al., 2015). Intriguingly, these areas have repeatedly
been implicated in encoding a “common neural currency” of
abstract value signals used in the process of EA (Rangel and
Hare, 2010; Pearson et al., 2014; Piva et al., 2019). As with the
EA clusters, we found that in the nonsocial context, activations
were situated more anterior relative to the social context, consist-
ent with previous reports of value gradients within the medial
prefrontal cortex (Chib et al., 2009; D.V. Smith et al., 2010;
Clithero and Rangel, 2014). Taken together, our findings provide
compelling evidence that relevant decision evidence is converted
into a “common currency” along the medial wall of the human
brain and subsequently integrated for the decision in the pMFC.
We found no domain-specific activations surviving in the direct
contrast between social and nonsocial contexts for the PPI
predictor.

Domain-specific and task difficulty neural representations
To identify brain areas processing domain-specific representa-
tions (e.g., areas encoding the initial evidence for each of the two
contexts before conversion to a “common currency”) we exam-
ined the contrast between the unmodulated predictors for the
social versus nonsocial trials (Fig. 6a). We identified a distributed
set of regions activating stronger for social compared with non-
social trials, in the right fusiform gyrus (Z(max) = 5.18, MNI [40,
�48, �16]), right amygdala (Z(max) = 4.48, MNI [18, �2, �16])
and right ventrolateral prefrontal cortex (Z(max)= 5.42, MNI
[30, 34, �14]), collectively referred to as the “face network”
(Skelly and Decety, 2012), as well as in the right temporoparietal
junction (TPJ; Z(max) = 3.39, MNI [64, �42, 26]; Fig. 7a). These
findings are consistent with the processing of facial characteris-
tics required for mentalizing and inferring the opponent’s inten-
tions in the social trials, respectively (Cerniglia et al., 2019). In
contrast, nonsocial trials exhibited increased activation patterns
relative to social trials in areas of the lateral intraparietal cortex
bilaterally (left Z(max) = 4.26, MNI [�28, �62, 46]; right Z
(max) = 3.63, MNI [38, �42, 42]) as well as in the left dorsolat-
eral preforntal cortex (dlPFC; Z(max) = 4.12, MNI [�38, 0, 32];
Fig. 7a), which have both been implicated in encoding risk and
reward probabilities in nonsocial contexts (Daw et al., 2006; B.
W. Smith et al., 2009; Burke and Tobler, 2011). We note that we
view these results as further evidence that the social manipula-
tion in our design was successful since we would not expect to
see such differences in the neural data across contexts if the faces
in social trials were simply used as proxies for the relevant
reward probabilities (i.e., as in nonsocial trials).

Task difficulty in our task was reflective of the reward proba-
bility associated with a “Play” choice. We, therefore, expected the
task difficulty predictor to correlate both positively (i.e., easy .
difficult) with areas known to encode the value of a given choice
and negatively (i.e., difficult . easy) with regions of the human
attentional network encoding overall task demands. Across both
social and nonsocial contexts, we found positive correlations
with regions of the human valuation system such as the ventro-
medial prefrontal cortex (vmPFC; Z(max) = 3.75, MNI [6, 54,
�8]), ventral striatum (left Z(max) = 3.54, MNI [�14, 8, �12];
right Z(max) = 3.88, MNI [16, 10, �10]) and the posterior cingu-
late cortex (Z(max) = 3.55, MNI [�2, �28, 46]; Clithero and
Rangel, 2014; Domenech et al., 2018; Fig. 7b). Consistent with
previous reports (Philiastides and Sajda, 2007; Grinband et al.,
2008; Monosov, 2017), we also found negative correlations with
regions encoding uncertainty and attentional control such as the
anterior cingulate cortex (Z(max) = 5.09, MNI [�2, 16; 48]),

lateral prefrontal cortex (left Z(max) = 4.11, MNI [�38, 8, 24];
right Z(max) = 3.34, MNI [44, 8, 24]) and anterior insula in both
social and nonsocial contexts (Fig. 7b). We note, that though
these results are consistent with a long body of previous work,
they are nonetheless important to report here as further valida-
tion of the choice of our fMRI analysis design, which offered a
reliable account of all relevant experimental manipulations.

Discussion
The marriage of social and nonsocial forms of uncertainty into a
comprehensive theory of decision-making promises to signifi-
cantly improve our understanding of human behavior. Unlike
previous examinations of social and nonsocial decisions across
separate experiments or cohorts (Krajbich et al., 2015; Tarantola
et al., 2017), here we enabled direct comparisons between
domains by embedding both decision types in the context of an
economic game in which task difficulty varied along the same
scale of reward probability across social and nonsocial stimuli.
Moreover, we extended previous reports that focused on group
decisions (Suzuki et al., 2015; Park et al., 2019) or self-versus-
other considerations (A. Harris et al., 2018) by examining
choices in which the social information is carried by a social cue
(i.e., facial features).

To this end, we examined whether the “common currency”
framework, a view, which posits that a common neural architec-
ture encodes an aggregate value of all factors guiding each of the
social and nonsocial choices (Ruff and Fehr, 2014), extends
beyond value encoding to include the process of integrating the
relevant value signals for the decision. Indeed, we found that do-
main-specific perceptual information associated with each do-
main is likely converted into a common neural currency in
regions of the human valuation system before being integrated
for the decision in posterior-medial frontal cortex, thus expand-
ing the scope of the “common currency” framework to include
the EA stages of the decision process.

More specifically, modeling of choice-RT using a simple se-
quential sampling model was suggestive of comparable accumu-
lation-to-bound dynamics across social and nonsocial contexts.
Correspondingly, we identified ramp-like activity in the electro-
physiological signal with a well-demarcated centroparietal scalp
profile that was virtually identical across the two contexts. We
further demonstrated that trial-by-trial variability in the slope of
this accumulating activity was highly predictive of choice behav-
ior. We capitalized on this endogenous trial-by-trial variability to
deploy an EEG-informed fMRI analysis, to implicate a region of
the pMFC in the process of EA across both social and nonsocial
contexts. These findings suggest that both decision types are
likely to rely on the same implementational and algorithmic pro-
cess (Lockwood et al., 2017), consistent with previous reports in
value-based (Gluth et al., 2012; Polanía et al., 2014; Pisauro et al.,
2017), perceptual (Drugowitsch et al., 2012; Kelly and O’Connell,
2013; Gherman and Philiastides, 2015), and even memory-based
decisions (van Vugt et al., 2019).

The pMFC cluster we identified here lies on the medial sur-
face of the juxtapositional lobule cortex in a region commonly
referred to as the SMA and extending into portions of the adja-
cent pre-SMA, bilaterally. Both areas have traditionally been
linked to preparing voluntary actions (Nachev et al., 2008; Kim
et al., 2010) but have also been assigned other functional roles,
including decision boundary adjustments in the context of accu-
mulation-to-bound models (Forstmann et al., 2008; Ivanoff et
al., 2008). Our results suggest that the role of the pMFC extends
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beyond mere decision boundary adjustments and involves instead
the encoding of the full temporal dynamics of the process of EA, a
process that might be mediated by an increased tendency to
select the appropriate motor response. Correspondingly, our
results support the rapidly emerging view that, at least under
conditions of increased urgency to make a choice, decisions are
embodied in the same sensorimotor areas guiding the actions
used to express that choice. This interpretation is consistent with
past neuroimage findings (Donner et al., 2009; Filimon et al.,
2013) and recent mechanistic accounts ascribing an active “motor
accumulation” role to (pre)motor structures (Steinemann et al.,
2018; Verdonck et al., 2021).

To further probe the implementational level of social and
nonsocial decisions, we performed a psychophysiological inter-
action (PPI) analysis. This analysis allowed us to investigate the
functional coupling of the pMFC with other brain regions to fur-
ther probe the extent of the “common currency” account intro-
duced above. Unlike some recent accounts, which have argued
that social and nonsocial values are computed across different
networks (Ugazio et al., 2022), we found that pMFC activity
exhibited task-dependent coupling (i.e., as the process of EA
unfolds) with regions of the human valuation system in the
dmPFC, vmPFC, and PCC (Rangel and Hare, 2010; Pearson et al.,
2014; Piva et al., 2019). This coupling was present in both social and
nonsocial choices, consistent with the relevant decision evidence
being converted into a “common currency” before being used in
the process of EA to drive the final commitment to choice.

We speculate, that this discrepancy could potentially be
attributed to differences in the types of social choices (i.e.,
choices based on a social cue as utilized here versus the moral
choices used by Ugazio et al., 2022). Specifically, when consider-
ing moral versus social choices, Ugazio et al. (2022) argue that
moral choices are influenced by the social context to a much
lesser extent than social choices and highlight the fact that the
ability to differentiate between social and moral scenarios
emerges from an early age (Smetana, 1981; Smetana et al., 2013)
potentially because of the fact that these two decision types
employ separate networks (Moll et al., 2008).

Similarly, differences in social versus nonsocial processing
based on self-versus-other decisions (A. Harris et al., 2018) can
be attributed to the difference in benefactors (as the decision on
behalf of someone else would likely be linked to higher uncer-
tainty). In addition, deciding on someone else’s behalf could be
linked to a two-stage process, where the outcome of an action is
considered initially in accordance with one’s own views and then
re-adjusted to fit someone else’s. Therefore, by closely matching
the social and nonsocial conditions in the current experiment,
we may be in a better position to observe the similarities between
the processing of social and nonsocial decisions.

While pMFC activity covaried systematically with areas of the
human reward network, we nonetheless observed some degree of
spatial dissociation across contexts along an anterior/posterior
axis within these areas, consistent with recent reports from
human and animal work advocating for a gradient-based organi-
zation along the medial wall of the brain (Kolling et al., 2021).
Specifically, in the social context the relevant clusters were situ-
ated within the most posterior sections of the medial prefrontal
cortex (Ferrari et al., 2016; Lieberman et al., 2019) whereas those
of the nonsocial context occupied sections of the most anterior
portions of this region (Chib et al., 2009; D.V. Smith et al., 2010;
Clithero and Rangel, 2014). Interestingly, this organization seems
to be preserved along the cascade of constituent processes, from
the relevant value representation to the process of EA.

The “common currency” account also postulates that before
embedding within a domain-general valuation system, social
and nonsocial choices might give rise to domain-specific early
representations (Lim et al., 2013; Hutcherson et al., 2015). Here,
we observed that social choices were associated with increased
activity in the FFA, the amygdala and vlPFC, with a right later-
alization, consistent with the well-known “face network,”
which is crucial for face identification and affective processing
of faces (Vuilleumier et al., 2004; Garvert et al., 2014).
Similarly, we observed increased activation in the right TPJ, a
region implicated in social cognition and various types of
mentalizing relevant for extracting semantic meaning (value)
from an opponent’s face identity (Van Overwalle, 2009).
While a potential shortcoming of our experiment is that we
did not explicitly ask our participants whether they believed
our cover story (i.e., that the face stimuli belonged to people
who have previously taken part in a Trust game), these
uniquely social activations demonstrate that participants were
relying on relevant domain-specific information to guide their
choices.

Conversely, the nonsocial condition was uniquely linked to
activity in the lateral intraparietal cortex which has been linked
to the encoding of pure reward probabilities both in primates
(Sugrue et al., 2004; Burke and Tobler, 2011) and humans (Daw
et al., 2006; Wu et al., 2015), suggesting that these choices were
guided by the consideration of the likelihood of receiving a
reward as presented explicitly during the task. Collectively, these
representations are indeed evidence of task-relevant information
being broadcasted directly to the prefrontal cortex (Heekeren et
al., 2004; Philiastides and Sajda, 2007; Pessoa and Adolphs, 2010)
from domain-specific brain regions (Lamichhane and Dhamala,
2015), with these feed-forward projections being among the
main pathways connecting to higher-level prefrontal areas
(Yeterian et al., 2012; Lamichhane and Dhamala, 2015).

More importantly, the proposed “common currency”
account is in line with our ability to make choices based on
disparate options that ultimately require a common point of
convergence in the neural code. Consistent with this idea
there has been empirical evidence suggesting that the medial
prefrontal cortex has the capacity to both encode the subjec-
tive values of individual options as well as re-scale these values
into a common neural activity space (Chow et al., 2009; Levy
and Glimcher, 2011). In turn, this mechanism could enable
direct comparisons between different choice alternatives and
thereby guide decision-making in a domain-independent manner.

In conclusion, our results offer compelling new evidence that
social and nonsocial choices share common neural underpin-
nings, whereupon domain-specific information is converted into
a “common currency” in domain-general valuation areas before
being accumulated for the decision in medial frontal cortex.
Similarly, our multimodal research approach, including the
fusion of EEG and fMRI, offers news opportunities for a more
targeted characterization of the mechanistic principles and the
neural systems involved in human decision-making under differ-
ent forms of uncertainty. As optimal decision-making is at the
heart of strategic planning, providing a mechanistic account of
decision-making under risk and uncertainty could have wider,
long-term, socioeconomic impact and facilitate an improved
understanding of maladaptive choice behavior.

References
Ahumada A Jr, Lovell J (1971) Stimulus features in signal detection. J Acoust

Soc Am 49:1751–1756.

9042 • J. Neurosci., November 30, 2022 • 42(48):9030–9044 Arabadzhiyska et al. · Social versus Non-Social Decision Making

http://dx.doi.org/10.1121/1.1912577


Basten U, Biele G, Heekeren HR, Fiebach CJ (2010) How the brain integrates
costs and benefits during decision making. Proc Natl Acad Sci U SA
107:21767–21772.

Behrens TE, Hunt LT, Woolrich MW, Rushworth MF (2008) Associative
learning of social value. Nature 456:245–249.

Berg D, Ddickhaut J, McCabe K (1995) Trust, reciprocity, and social history.
Games Econ Behav 10:122–142.

Burke CJ, Tobler PN (2011) Coding of reward probability and risk by single
neurons in animals. Front Neurosci 5:121.

Cerniglia L, Bartolomeo L, Capobianco M, Lo Russo SLM, Festucci F,
Tambelli R, Adriani W, Cimino S (2019) Intersections and divergences
between empathizing and mentalizing: development, recent advance-
ments by neuroimaging and the future of animal modeling. Front Behav
Neurosci 13:212.

Chib VS, Rangel A, Shimojo S, O’Doherty JP (2009) Evidence for a common
representation of decision values for dissimilar goods in human ventro-
medial prefrontal cortex. J Neurosci 29:12315–12320.

Chow SS, Romo R, Brody CD (2009) Context-dependent modulation of
functional connectivity: secondary somatosensory cortex to prefrontal
cortex connections in two-stimulus-interval discrimination tasks. J
Neurosci 29:7238–7245.

Clithero JA, Rangel A (2014) Informatic parcellation of the network involved
in the computation of subjective value. Soc Cogn Affect Neurosci
9:1289–1302.

Daw ND, O’Doherty JP, Dayan P, Seymour B, Dolan RJ (2006) Cortical sub-
strates for exploratory decisions in humans. Nature 441:876–879.

Domenech P, Redouté J, Koechlin E, Dreher JC (2018) The neuro-computa-
tional architecture of value-based selection in the human brain. Cereb
Cortex 28:585–601.

Donner TH, Siegel M, Fries P, Engel AK (2009) Buildup of choice-predictive
activity in human motor cortex during perceptual decision making. Curr
Biol 19:1581–1585.

Drugowitsch J, Moreno-Bote R, Churchland AK, Shadlen MN, Pouget A
(2012) The cost of accumulating evidence in perceptual decision making.
J Neurosci 32:3612–3628.

Faul F, Erdfelder E, Lang AG, Buchner A (2007) G* power 3: a flexible statis-
tical power analysis program for the social, behavioral, and biomedical
sciences. Behav Res Methods 39:175–191.

Ferrari C, Lega C, Vernice M, Tamietto M, Mende-Siedlecki P, Vecchi T,
Todorov A, Cattaneo Z (2016) The dorsomedial prefrontal cortex plays a
causal role in integrating social impressions from faces and verbal
descriptions. Cereb Cortex 26:156–165.

Filimon F, Philiastides MG, Nelson JD, Kloosterman NA, Heekeren HR
(2013) How embodied is perceptual decision making? evidence for sepa-
rate processing of perceptual and motor decisions. J Neurosci 33:2121–
2136.

Forstmann BU, Dutilh G, Brown S, Neumann J, Von Cramon DY,
Ridderinkhof KR, Wagenmakers EJ (2008) Striatum and pre-SMA facili-
tate decision-making under time pressure. Proc Natl Acad Sci U SA
105:17538–17542.

Fouragnan E, Chierchia G, Greiner S, Neveu R, Avesani P, Coricelli G (2013)
Reputational priors magnify striatal responses to violations of trust. J
Neurosci 33:3602–3611.

Fouragnan E, Retzler C, Mullinger K, Philiastides MG (2015) Two spatiotem-
porally distinct value systems shape reward-based learning in the human
brain. Nat Commun 6:1–11.

Fouragnan E, Queirazza F, Retzler C, Mullinger K, Philiastides MG (2017)
Spatiotemporal neural characterization of prediction error valence and
surprise during reward learning in humans. Sci Rep 7:4762–4718.

Garvert MM, Friston KJ, Dolan RJ, Garrido MI (2014) Subcortical amygdala
pathways enable rapid face processing. Neuroimage 102:309–316.

Gherman S, Philiastides MG (2015) Neural representations of confidence
emerge from the process of decision formation during perceptual choices.
Neuroimage 106:134–143.

Gherman S, Philiastides MG (2018) Human VMPFC encodes early signa-
tures of confidence in perceptual decisions. Elife 7:e38293.

Gill D, Garrod OG, Jack RE, Schyns PG (2014) Facial movements strategi-
cally camouflage involuntary social signals of face morphology. Psychol
Sci 25:1079–1086.

Gluth S, Rieskamp J, Büchel C (2012) Deciding when to decide: time-variant
sequential sampling models explain the emergence of value-based deci-
sions in the human brain. J Neurosci 32:10686–10698.

Gluth S, Hotaling JM, Rieskamp J (2017) The attraction effect modulates
reward prediction errors and intertemporal choices. J Neurosci 37:371–
382.

Griessinger T, Coricelli G (2015) The neuroeconomics of strategic interac-
tion. Curr Opin Behav Sci 3:73–79.

Grinband J, Wager TD, Lindquist M, Ferrera VP, Hirsch J (2008) Detection
of time-varying signals in event-related fMRI designs. Neuroimage
43:509–520.

Hare TA, Schultz W, Camerer CF, O’Doherty JP, Rangel A (2011)
Transformation of stimulus value signals into motor commands during
simple choice. Proc Natl Acad Sci U SA 108:18120–18125.

Harris A, Clithero JA, Hutcherson CA (2018) Accounting for taste: a multi-
attribute neurocomputational model explains the neural dynamics of
choices for self and others. J Neurosci 38:7952–7968.

Harris LT, McClure SM, Van Den Bos W, Cohen JD, Fiske ST (2007)
Regions of the MPFC differentially tuned to social and nonsocial affective
evaluation. Cogn Affect Behav Neurosci 7:309–316.

Heekeren HR, Marrett S, Bandettini PA, Ungerleider LG (2004) A general
mechanism for perceptual decision-making in the human brain. Nature
431:859–862.

Herding J, Ludwig S, Lautz A, von, Spitzer B, Blankenburg F (2019) Centro-
parietal EEG potentials index subjective evidence and confidence during
perceptual decision making. Neuroimage 201:116011.

Hoel P, Port S, Stone C (1971) Introduction to probability theory. Series in
statistics. Boston: Houghton Mifflin.

Hutcherson CA, Montaser-Kouhsari L, Woodward J, Rangel A (2015)
Emotional and utilitarian appraisals of moral dilemmas are encoded in
separate areas and integrated in ventromedial prefrontal cortex. J
Neurosci 35:12593–12605.

Ivanoff J, Branning P, Marois R (2008) fMRI evidence for a dual process
account of the speed-accuracy tradeoff in decision-making. PLoS One 3:
e2635.

Kelly SP, O’Connell RG (2013) Internal and external influences on the rate of
sensory evidence accumulation in the human brain. J Neurosci
33:19434–19441.

Kim JH, Lee JM, Jo HJ, Kim SH, Lee JH, Kim ST, Seo SW, Cox RW, Na DL,
Kim SI, Saad ZS (2010) Defining functional SMA and pre-SMA subre-
gions in human MFC using resting state fMRI: functional connectivity-
based parcellation method. Neuroimage 49:2375–2386.

Kolling N, Braunsdorf M, Vijayakumar S, Bekkering H, Toni I, Mars RB
(2021) Constructing others’ beliefs from one’s own using medial frontal
cortex. J Neurosci 41:9571–9580.

Konovalov A, Hill C, Daunizeau J, Ruff CC (2021) Dissecting functional con-
tributions of the social brain to strategic behavior. Neuron 109:3323–
3337.e5.

Krajbich I, Hare T, Bartling B, Morishima Y, Fehr E (2015) A common
mechanism underlying food choice and social decisions. PLoS Comput
Biol 11:e1004371.

Lamichhane B, Dhamala M (2015) Perceptual decision-making difficulty
modulates feedforward effective connectivity to the dorsolateral prefron-
tal cortex. Front Hum Neurosci 9:498.

Levy DJ, Glimcher PW (2011) Comparing apples and oranges: using reward-
specific and reward-general subjective value representation in the brain. J
Neurosci 31:14693–14707.

Lieberman MD, Straccia MA, Meyer ML, Du M, Tan KM (2019) Social, self
(situational), and affective processes in medial prefrontal cortex (MPFC):
causal, multivariate, and reverse inference evidence. Neurosci Biobehav
Rev 99:311–328.

Lim SL, O’Doherty JP, Rangel A (2013) Stimulus value signals in ventrome-
dial PFC reflect the integration of attribute value signals computed in
fusiform gyrus and posterior superior temporal gyrus. J Neurosci
33:8729–8741.

Liu T, Pleskac TJ (2011) Neural correlates of evidence accumulation in a per-
ceptual decision task. J Neurophysiol 106:2383–2398.

Lockwood PL, Hamonet M, Zhang SH, Ratnavel A, Salmony FU, Husain M,
Apps MAJ (2017) Prosocial apathy for helping others when effort is
required. Nat Hum Behav 1:0131.

Lockwood PL, Apps MA, Chang SW (2020) Is there a ‘social’ brain? imple-
mentations and algorithms. Trends in Cognitive Sciences 24:802–813.

Moll J, Oliveira-Souza RD, Zahn R, Grafman J (2008) The cognitive neuro-
science of moral emotions. In: The neuroscience of morality: emotion,
brain disorders, and development, pp 1–17. Cambridge: The MIT Press.

Arabadzhiyska et al. · Social versus Non-Social Decision Making J. Neurosci., November 30, 2022 • 42(48):9030–9044 • 9043

http://dx.doi.org/10.1073/pnas.0908104107
https://www.ncbi.nlm.nih.gov/pubmed/19005555
http://dx.doi.org/10.1006/game.1995.1027
https://www.ncbi.nlm.nih.gov/pubmed/22013410
http://dx.doi.org/10.3389/fnbeh.2019.00212
https://www.ncbi.nlm.nih.gov/pubmed/31572143
http://dx.doi.org/10.1523/JNEUROSCI.2575-09.2009
http://dx.doi.org/10.1523/JNEUROSCI.4856-08.2009
https://www.ncbi.nlm.nih.gov/pubmed/19494146
http://dx.doi.org/10.1093/scan/nst106
https://www.ncbi.nlm.nih.gov/pubmed/16778890
https://www.ncbi.nlm.nih.gov/pubmed/28057725
http://dx.doi.org/10.1016/j.cub.2009.07.066
http://dx.doi.org/10.1523/JNEUROSCI.4010-11.2012
https://www.ncbi.nlm.nih.gov/pubmed/17695343
http://dx.doi.org/10.1093/cercor/bhu186
https://www.ncbi.nlm.nih.gov/pubmed/25165063
http://dx.doi.org/10.1523/JNEUROSCI.2334-12.2013
http://dx.doi.org/10.1073/pnas.0805903105
https://www.ncbi.nlm.nih.gov/pubmed/18981414
http://dx.doi.org/10.1523/JNEUROSCI.3086-12.2013
http://dx.doi.org/10.1038/ncomms9107
https://www.ncbi.nlm.nih.gov/pubmed/28684734
http://dx.doi.org/10.1016/j.neuroimage.2014.07.047
https://www.ncbi.nlm.nih.gov/pubmed/25463461
http://dx.doi.org/10.7554/eLife.38293
https://www.ncbi.nlm.nih.gov/pubmed/24659191
https://www.ncbi.nlm.nih.gov/pubmed/22855817
http://dx.doi.org/10.1523/JNEUROSCI.2532-16.2016
http://dx.doi.org/10.1016/j.cobeha.2015.01.012
https://www.ncbi.nlm.nih.gov/pubmed/18775784
http://dx.doi.org/10.1073/pnas.1109322108
https://www.ncbi.nlm.nih.gov/pubmed/22006321
http://dx.doi.org/10.1523/JNEUROSCI.3327-17.2018
http://dx.doi.org/10.3758/CABN.7.4.309
https://www.ncbi.nlm.nih.gov/pubmed/15483614
https://www.ncbi.nlm.nih.gov/pubmed/31302254
http://dx.doi.org/10.1523/JNEUROSCI.3402-14.2015
https://www.ncbi.nlm.nih.gov/pubmed/18612380
http://dx.doi.org/10.1523/JNEUROSCI.3355-13.2013
https://www.ncbi.nlm.nih.gov/pubmed/24336710
http://dx.doi.org/10.1016/j.neuroimage.2009.10.016
https://www.ncbi.nlm.nih.gov/pubmed/19837176
https://www.ncbi.nlm.nih.gov/pubmed/34407389
https://www.ncbi.nlm.nih.gov/pubmed/26460812
http://dx.doi.org/10.3389/fnhum.2015.00498
http://dx.doi.org/10.1523/JNEUROSCI.2218-11.2011
http://dx.doi.org/10.1016/j.neubiorev.2018.12.021
https://www.ncbi.nlm.nih.gov/pubmed/30610911
http://dx.doi.org/10.1523/JNEUROSCI.4809-12.2013
https://www.ncbi.nlm.nih.gov/pubmed/23678116
http://dx.doi.org/10.1152/jn.00413.2011
http://dx.doi.org/10.1038/s41562-017-0131
https://www.ncbi.nlm.nih.gov/pubmed/28819649
http://dx.doi.org/10.1016/j.tics.2020.06.011


Monosov IE (2017) Anterior cingulate is a source of valence-specific infor-
mation about value and uncertainty. Nat Commun 8:134.

Morgenstern O, Von Neumann J (1953) Theory of games and economic
behavior. Princeton: Princeton University Press.

Mulder M, Van Maanen L, Forstmann B (2014) Perceptual decision neuro-
sciences–a model-based review. Neuroscience 277:872–884.

Mumford JA, Poline J-B, Poldrack RA (2015) Orthogonalization of regres-
sors in fMRI models. PLoS One 10:e0126255.

Nachev P, Kennard C, Husain M (2008) Functional role of the supplemen-
tary and pre-supplementary motor areas. Nat Rev Neurosci 9:856–869.

Neubert FX, Mars RB, Sallet J, Rushworth MF (2015) Connectivity reveals
relationship of brain areas for reward-guided learning and decision mak-
ing in human and monkey frontal cortex. Proc Natl Acad Sci U SA 112:
E2695–E2704.

Park SA, Sestito M, Boorman ED, Dreher JC (2019) Neural computations
underlying strategic social decision-making in groups. Nat Commun
10:1–12.

Parra LC, Spence CD, Gerson AD, Sajda P (2005) Recipes for the linear anal-
ysis of EEG. Neuroimage 28:326–341.

Pearson JM, Watson KK, Platt ML (2014) Decision making: the neuroetho-
logical turn. Neuron 82:950–965.

Pessoa L, Adolphs R (2010) Emotion processing and the amygdala: from a
‘low road’ to ‘many roads’ of evaluating biological significance. Nat Rev
Neurosci 11:773–782.

Philiastides MG, Sajda P (2006) Temporal characterization of the neural cor-
relates of perceptual decision making in the human brain. Cereb Cortex
16:509–518.

Philiastides MG, Sajda P (2007) EEG-informed fMRI reveals spatiotemporal
characteristics of perceptual decision making. J Neurosci 27:13082–
13091.

Philiastides MG, Biele G, Heekeren HR (2010) A mechanistic account of
value computation in the human brain. Proc Natl Acad Sci U SA
107:9430–9435.

Philiastides MG, Heekeren HR, Sajda P (2014) Human scalp potentials reflect
a mixture of decision-related signals during perceptual choices. J
Neurosci 34:16877–16889.

Philiastides MG, Tu T, Sajda P (2021) Inferring macroscale network dynam-
ics via EEG-fMRI fusion. Annu Rev Neurosci 44:315–334.

Pisauro MA, Fouragnan E, Retzler C, Philiastides MG (2017) Neural corre-
lates of evidence accumulation during value-based decisions revealed via
simultaneous EEG-fMRI. Nat Commun 8:1–9.

Piva M, Velnoskey K, Jia R, Nair A, Levy I, Chang SW (2019) The dorsome-
dial prefrontal cortex computes task-invariant relative subjective value
for self and other. Elife 8:e44939.

Polanía R, Krajbich I, Grueschow M, Ruff CC (2014) Neural oscillations and
synchronization differentially support evidence accumulation in percep-
tual and value-based decision making. Neuron 82:709–720.

Rangel A, Hare T (2010) Neural computations associated with goal-directed
choice. Curr Opin Neurobiol 20:262–270.

Ratcliff R, Philiastides MG, Sajda P (2009) Quality of evidence for perceptual
decision making is indexed by trial-to-trial variability of the EEG. Proc
Natl Acad Sci U SA 106:6539–6544.

Ruff CC, Fehr E (2014) The neurobiology of rewards and values in social de-
cision making. Nat Rev Neurosci 15:549–562.

Sajda P, Philiastides MG, Parra LC (2009) Single-trial analysis of neuroimag-
ing data: inferring neural networks underlying perceptual decision-mak-
ing in the human brain. IEEE Rev Biomed Eng 2:97–109.

Sajda P, Philiastides MG, Heekeren H, Ratcliff R (2011) Linking neuronal
variability to perceptual decision making via neuroimaging. In: The
dynamic brain: an exploration of neuronal variability and its functional
significance (Ding M and Glanzman D, eds), pp 214–232. Oxford:
Oxford University Press.

Scott LS, Monesson A (2009) The origin of biases in face perception. Psychol
Sci 20:676–680.

Skelly LR, Decety J (2012) Passive and motivated perception of emotional
faces: qualitative and quantitative changes in the face processing network.
PLoS One 7:e40371.

Smetana JG (1981) Preschool children’s conceptions of moral and social
rules. Child Dev 52:1333–1336.

Smetana JG, Jambon M, Ball C (2013) The social domain approach to child-
ren’s moral and social judgments. In: Handbook of moral development,
pp 23–45. New York: Psychology Press.

Smith BW, Mitchell DG, Hardin MG, Jazbec S, Fridberg D, Blair RJ, Ernst M
(2009) Neural substrates of reward magnitude, probability, and risk dur-
ing a wheel of fortune decision-making task. Neuroimage 44:600–609.

Smith DV, Hayden BY, Truong TK, Song AW, Platt ML, Huettel SA (2010)
Distinct value signals in anterior and posterior ventromedial prefrontal
cortex. J Neurosci 30:2490–2495.

Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE,
Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE,
Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM,
Matthews PM (2004) Advances in functional and structural mr image
analysis and implementation as FSL. Neuroimage 23:S208–S219.

Steinemann NA, O’Connell RG, Kelly SP (2018) Decisions are expedited
through multiple neural adjustments spanning the sensorimotor hierar-
chy. Nat Commun 9:1–13.

Sugrue LP, Corrado GS, Newsome WT (2004) Matching behavior and the
representation of value in the parietal cortex. science 304:1782–1787.

Suzuki S, Adachi R, Dunne S, Bossaerts P, O’Doherty JP (2015) Neural mech-
anisms underlying human consensus decision-making. Neuron 86:591–
602.

Tarantola T, Kumaran D, Dayan P, De Martino B (2017) Prior preferences
beneficially influence social and non-social learning. Nat Commun 8:1–
14.

Turner BM, Van Maanen L, Forstmann BU (2015) Informing cognitive
abstractions through neuroimaging: the neural drift diffusion model.
Psychol Rev 122:312–336.

Ugazio G, Grueschow M, Polania R, Lamm C, Tobler P, Ruff C (2022)
Neuro-computational foundations of moral preferences. Soc Cogn Affect
Neurosci 17:253–265.

Uleman JS, Kressel LM (2013) A brief history of theory and research on
impression formation. In: The Oxford handbook of social cognition, pp
53–73. Oxford: Oxford University Press.

Van Overwalle F (2009) Social cognition and the brain: a meta-analysis.
Hum Brain Mapp 30:829–858.

van Vugt MK, BeulenMA, Taatgen NA (2019) Relation between centro-pari-
etal positivity and diffusion model parameters in both perceptual and
memory-based decision making. Brain Res 1715:1–12.

Verdonck S, Loossens T, Philiastides MG (2021) The leaky integrating
threshold and its impact on evidence accumulation models of choice rt.
Psychol Rev 128:203–221.

Voss A, Rothermund K, Voss J (2004) Interpreting the parameters of the dif-
fusion model: an empirical validation. Mem Cognit 32:1206–1220.

Vuilleumier P, Richardson MP, Armony JL, Driver J, Dolan RJ (2004)
Distant influences of amygdala lesion on visual cortical activation during
emotional face processing. Nat Neurosci 7:1271–1278.

Woolrich MW, Behrens TEJ, Beckmann CF, Smith SM (2005) Mixture mod-
els with adaptive spatial regularization for segmentation with an applica-
tion to fMRI data. IEEE Trans Med Imaging 24:1–11.

Wu SW, Delgado MR, Maloney LT (2015) Gambling on visual performance:
neural correlates of metacognitive choice between visual lotteries. Front
Neurosci 9:314.

Yeterian EH, Pandya DN, Tomaiuolo F, Petrides M (2012) The cortical con-
nectivity of the prefrontal cortex in the monkey brain. Cortex 48:58–81.

Yu H, Garrod OG, Schyns PG (2012) Perception-driven facial expression
synthesis. Comput Graph 36:152–162.

Zhan J, Garrod OG, van Rijsbergen N, Schyns PG (2019) Modelling face
memory reveals task-generalizable representations. Nat Hum Behav
3:817–826.

9044 • J. Neurosci., November 30, 2022 • 42(48):9030–9044 Arabadzhiyska et al. · Social versus Non-Social Decision Making

http://dx.doi.org/10.1038/s41467-017-00072-y
http://dx.doi.org/10.1016/j.neuroscience.2014.07.031
http://dx.doi.org/10.1371/journal.pone.0126255
https://www.ncbi.nlm.nih.gov/pubmed/25919488
https://www.ncbi.nlm.nih.gov/pubmed/18843271
http://dx.doi.org/10.1073/pnas.1410767112
http://dx.doi.org/10.1038/s41467-019-12937-5
https://www.ncbi.nlm.nih.gov/pubmed/16084117
https://www.ncbi.nlm.nih.gov/pubmed/24908481
http://dx.doi.org/10.1038/nrn2920
https://www.ncbi.nlm.nih.gov/pubmed/16014865
http://dx.doi.org/10.1523/JNEUROSCI.3540-07.2007
http://dx.doi.org/10.1073/pnas.1001732107
https://www.ncbi.nlm.nih.gov/pubmed/25505339
https://www.ncbi.nlm.nih.gov/pubmed/25505339
http://dx.doi.org/10.1038/ncomms15808
http://dx.doi.org/10.7554/eLife.44939
https://www.ncbi.nlm.nih.gov/pubmed/24811387
https://www.ncbi.nlm.nih.gov/pubmed/20338744
http://dx.doi.org/10.1073/pnas.0812589106
https://www.ncbi.nlm.nih.gov/pubmed/24986556
https://www.ncbi.nlm.nih.gov/pubmed/22275042
https://www.ncbi.nlm.nih.gov/pubmed/19422630
http://dx.doi.org/10.1371/journal.pone.0040371
https://www.ncbi.nlm.nih.gov/pubmed/22768287
http://dx.doi.org/10.2307/1129527
http://dx.doi.org/10.1016/j.neuroimage.2008.08.016
https://www.ncbi.nlm.nih.gov/pubmed/18804540
https://www.ncbi.nlm.nih.gov/pubmed/20164333
http://dx.doi.org/10.1016/j.neuroimage.2004.07.051
http://dx.doi.org/10.1038/s41467-018-06117-0
https://www.ncbi.nlm.nih.gov/pubmed/15205529
https://www.ncbi.nlm.nih.gov/pubmed/25864634
http://dx.doi.org/10.1038/s41467-017-00826-8
http://dx.doi.org/10.1037/a0038894
http://dx.doi.org/10.1093/scan/nsab100
http://dx.doi.org/10.1002/hbm.20547
https://www.ncbi.nlm.nih.gov/pubmed/18381770
https://www.ncbi.nlm.nih.gov/pubmed/30876858
https://www.ncbi.nlm.nih.gov/pubmed/32915011
http://dx.doi.org/10.3758/bf03196893
https://www.ncbi.nlm.nih.gov/pubmed/15813501
http://dx.doi.org/10.1038/nn1341
https://www.ncbi.nlm.nih.gov/pubmed/15494727
https://www.ncbi.nlm.nih.gov/pubmed/15638182
https://www.ncbi.nlm.nih.gov/pubmed/26388724
http://dx.doi.org/10.1016/j.cortex.2011.03.004
https://www.ncbi.nlm.nih.gov/pubmed/21481342
http://dx.doi.org/10.1016/j.cag.2011.12.002
https://www.ncbi.nlm.nih.gov/pubmed/31209368

	A Common Neural Account for Social and Nonsocial Decisions
	Introduction
	Materials and Methods
	Results
	Discussion


