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The function of long-term memory is not just to reminisce about the past, but also to make predictions that help us behave
appropriately and efficiently in the future. This predictive function of memory provides a new perspective on the classic ques-
tion from memory research of why we remember some things but not others. If prediction is a key outcome of memory,
then the extent to which an item generates a prediction signifies that this information already exists in memory and need
not be encoded. We tested this principle using human intracranial EEG as a time-resolved method to quantify prediction in
visual cortex during a statistical learning task and link the strength of these predictions to subsequent episodic memory behavior.
Epilepsy patients of both sexes viewed rapid streams of scenes, some of which contained regularities that allowed the category of the
next scene to be predicted. We verified that statistical learning occurred using neural frequency tagging and measured category predic-
tion with multivariate pattern analysis. Although neural prediction was robust overall, this was driven entirely by predictive items
that were subsequently forgotten. Such interference provides a mechanism by which prediction can regulate memory formation to pri-
oritize encoding of information that could help learn new predictive relationships.
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Significance Statement

When faced with a new experience, we are rarely at a loss for what to do. Rather, because many aspects of the world are stable
over time, we rely on past experiences to generate expectations that guide behavior. Here we show that these expectations dur-
ing a new experience come at the expense of memory for that experience. From intracranial recordings of visual cortex, we
decoded what humans expected to see next in a series of photographs based on patterns of neural activity. Photographs that
generated strong neural expectations were more likely to be forgotten in a later behavioral memory test. Prioritizing the stor-
age of experiences that currently lead to weak expectations could help improve these expectations in future encounters.

Introduction
Long-term memory has a limited capacity; and thus, a major
goal of psychology and neuroscience has been to identify fac-
tors that determine which memories to store. Well-known
factors include attention (Aly and Turk-Browne, 2017), emo-
tion (Dolcos et al., 2017), motivation (Dickerson and Adcock,
2018), stress (Goldfarb, 2019), and sleep (Cowan et al., 2021).
Here we further test a novel factor that constrains long-term
memory formation: predictive value.

Beyond reliving the past, a key function of memory is that it
allows us to predict the future (Schacter et al., 2012). When faced
with a new experience, we draw on related experiences from the
past to know what is likely to happen when and where (De
Brigard, 2014; Biderman et al., 2020). This knowledge is the result
of statistical learning, which identifies patterns or regularities in
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the environment that repeat over time
(Sherman et al., 2020; Endress and Johnson,
2021) and form the basis of predictions
(De Lange et al., 2018). We hypothesize that
the availability of these predictions during
encoding affects whether a new memory is
formed. Namely, if one of the main objec-
tives of long-term memory is to enable pre-
diction, in the service of adaptive behavior,
experiences that already generate a predic-
tion may not need to be encoded. In con-
trast, experiences that yield uncertainty
about what will happen next may be more
important to store because they can help
learn over time what should have been
expected. This is distinct from whether
an experience being encoded was itself
expected or unexpected, which also affects
subsequent memory (Greve et al., 2017;
Bein et al., 2021); rather, we argue that the
process of generating a prediction based on
the experience impedes its encoding.

We term this ability of an experience to
generate a prediction its predictive value.
We previously presented some suggestive
evidence for predictive value as an encod-
ing factor. In a statistical learning study
with images presented in temporal pairs,
subsequent memory for the first item in a
pair was impaired relative to unpaired con-
trol items (Sherman and Turk-Browne,
2020). Because the first item in a pair was
always followed by the second item, it could
have enabled a prediction of the second
item and thus had predictive value.

However, this prior study was not able
to directly link the predictive value of an
item during encoding to subsequent memory. From the behav-
ioral data alone (in which prediction was not directly measured),
it was unclear whether the memory impairment for the first item
originated at the time of encoding or emerged in later stages,
such as consolidation or retrieval. For example, the first item
might have been encoded well, but when this item was probed in
the later memory test, its association with the second item inter-
fered with recognition. Although an fMRI experiment provided
some evidence of prediction during encoding — the category of
the second item could be decoded during the first — the poor
temporal resolution fMRI muddied this interpretation. The
decoded neural signals were recorded during or after the second
item and shifted backward in time based on assumptions about
the hemodynamic lag. Methods with better temporal resolution
could provide more precise linking between neural signals and
experimental events, allowing for more direct measurement of
predictions.

Additionally, in our prior work, we only found a relation-
ship between prediction and encoding across participants.
Average fMRI evidence for the category of second items during
first items was negatively associated with overall memory per-
formance for first items. However, this could reflect a generic
individual difference — that participants who make more pre-
dictions tend to have worse memory — rather than prediction
having a mechanistic effect on encoding. According to the latter

account, whether a participant remembers or forgets a given
item should depend on whether that item triggered a pre-
diction during its encoding. This requires testing for a rela-
tionship between prediction and encoding across items
within participant. Time-resolved methods with denser
sampling of individual trials could better enable trial-level
estimates of prediction necessary for within-participant
subsequent memory analyses.

The present study addresses these issues to better establish
predictive value as an encoding factor. We combine intracranial
EEG (iEEG) with multivariate pattern analysis, allowing us to
measure neural predictions in a time-resolved manner and link
them to subsequent behavioral memory across trials. Epilepsy
patients viewed a rapid stream of scene photographs across
blocks of a statistical learning task. The scenes consisted of
unique exemplars from various categories (e.g., beaches, moun-
tains, waterfalls) that differed by block. In the Random blocks,
the order of “control” (Condition X) categories from which the
exemplars were drawn was random. In the Structured blocks, the
categories were paired such that exemplars from “predictive”
(Condition A) categories were always followed by exemplars
from “predictable” (Condition B) categories (Fig. 1A). Patients
were not informed of these conditions or the existence of cate-
gory pairs, which they learned incidentally through exposure
(Brady and Oliva, 2008). The items from each category were pre-
sented in subblocks that changed after four presentations (Fig.

Figure 1. Task design. A, Example scene category pairings for 1 participant. Three of 12 categories were assigned to
Condition A. Each A category was reliably followed by one of three other categories assigned to Condition B to create pairs.
The remaining six categories assigned to Condition X were not paired. Participants viewed the A and B (Structured) and X
(Random) categories in separate blocks of the task. B, Example stimuli from the Structured block. Participants passively
viewed a continuous stream of scenes. Each scene was shown for 267 ms, followed by an ISI of 267 ms with only a fixation
cross on the screen. The stream was segmented into subblocks. The same exemplar of each category was presented 4 times
per subblock, and new exemplars were introduced for the next subblock. For the Structured block, the category pairs
remained consistent across subblocks. Colored frame represents category pairs, corresponding to the A-B pairs (and colored
arrows) in subpanel A.
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1B). After both blocks, patients completed a recognition memory
test for the exemplars from the stream.

To track statistical learning in the brain, we used neural
frequency tagging (Batterink and Paller, 2017; Choi et al.,
2020; Henin et al., 2021). We quantified the phase coher-
ence of oscillations at the frequency of individual items
(present in both Random and Structured blocks) and at half of
that frequency reflecting groupings of two items (present only in
Structured blocks with category pairs). To measure prediction
during encoding, we used multivariate pattern similarity (Kok et
al., 2014, 2017; Demarchi et al., 2019; Aitken et al., 2020). We first
created a template pattern for each scene category based on the
neural activity it evoked in visual contacts. We then quantified the
expression of these categories during statistical learning, defining
prediction as evidence for the second category in a pair evoked by
items from the first category.

Although the hippocampus may be the nexus of competition
between statistical prediction and episodic encoding (Schapiro et
al., 2017; Sherman and Turk-Browne, 2020), hippocampal sig-
nals may be relayed and reinstated throughout the cortical hier-
archy (Bosch et al., 2014; Tanaka et al., 2014; Hindy et al., 2016;
Danker et al., 2017; Aitken and Kok, 2022; Clarke et al., 2022),
enabling the robust measurement of learning-related prediction
(Kok et al., 2014; Ekman et al., 2017; Kok et al., 2017; Kim et al.,
2020) and frequency tagging (Henin et al., 2021) in visual cortex.
This allowed us to test our hypotheses robustly in epilepsy
patients whose clinical care resulted in extensive electrode cover-
age in visual cortex but not the hippocampus.

In sum, by assessing iEEG signals during the rapid presenta-
tion of scenes, we measured the neural representations underly-
ing statistical learning and prediction, and linked these online
learning measures to offline memory, revealing how predictive
value constrains memory encoding.

Materials and Methods
Participants
We tested 10 participants (7 female; age range: 19-69 years) who had been
surgically implanted with intracranial electrodes for seizure monitoring.
Decisions on electrode placement were determined solely by the clinical
care team to optimize localization of seizure foci. Participants were
recruited through the Yale Comprehensive Epilepsy Center. Participants
provided informed consent in a manner approved by the Yale University
Human Subjects Committee.

A summary of patient demographics, clinical details, and research
participation can be found in Table 1. Given electrode coverage and

usable data, we retained 9 patients in the behavioral analyses, 8 patients
in the neural frequency tagging analyses, and 7 patients in the neural cat-
egory evidence analyses.

iEEG recordings
EEG data were recorded on a NATUS NeuroWorks EEG recording sys-
tem. Data were collected at a sampling rate of 4096Hz. Signals were refer-
enced to an electrode chosen by the clinical team to minimize noise in the
recording. To synchronize EEG signals with the experimental task, a cus-
tom-configured DAQ was used to convert signals from the research com-
puter to 8-bit “triggers” that were inserted into a separate digital channel.

iEEG preprocessing
iEEG preprocessing was conducted in FieldTrip (Oostenveld et al.,
2011). A notch filter was applied to remove 60 Hz line noise. No rerefer-
encing was applied, except for 1 patient, whose reference was in visual
cortex, resulting in a visual-evoked response in all electrodes; for this
patient, we rereferenced the data to a white matter contact in the left an-
terior cingulate cortex. Data were downsampled to 256Hz and seg-
mented into trials using the triggers.

Electrode selection
Patients’ electrode contact locations were identified using their postoper-
ative CT and MRI scans. Reconstructions were completed in BioImage
Suite (Papademetris et al., 2006) and were subsequently registered to the
patient’s preoperative MRI scan, resulting in contact locations projected
into the patient’s preoperative space. The resulting files were converted
from the Bioimagesuite format (.MGRID) into native space coordinates
using FieldTrip functions. The coordinates were then used to create an
ROI in FSL (Jenkinson et al., 2012), with the coordinates of each contact
occupying one voxel in the mask (Fig. 2).

For purposes of decoding scene categories, we were specifically inter-
ested in examining visually responsive contacts (Walther et al., 2009).
We defined visual cortex on the MNI T1 2 mm standard brain by com-
bining the Occipital Lobe ROI from the MNI Structural Atlas and the
following ROIs from the Harvard-Oxford Cortical Structural Atlas: infe-
rior temporal gyrus (temporo-occipital part), lateral occipital cortex
(superior division), lateral occipital cortex (inferior division), intracalcar-
ine cortex, cuneal cortex, parahippocampal gyrus (posterior division),
lingual gyrus, temporal occipital fusiform cortex, occipital fusiform
gyrus, supracalcarine cortex, and occipital pole. Each ROI was thresh-
olded at 10% and then concatenated together to create a single mask of
visual cortex.

To identify which contacts to include in analyses on a per-patient ba-
sis, this standard space visual cortex mask was transformed into each
participant’s native space. We registered each patient’s preoperative ana-
tomic scan to the MNI T1 2 mm standard brain template using linear
registration (FSL FLIRT) (Jenkinson and Smith, 2001; Jenkinson et al.,
2002) with 12 degrees of freedom. This registration was then inverted
and used to bring the visual cortex mask into each participant’s native
space.

In order to ensure that the visual cortex mask captured the anatomic
areas we intended, we manually assessed its overlap between the electro-
des and made a few manual adjustments to the electrode definition. For
example, because of noise in the registrations between postoperative and
preoperative space, as well as from preoperative space and standard
space, some grid and strip contacts appeared slightly outside of the brain,
despite being on the surface of the patient’s brain. Thus, contacts such as
these were included as “visual” even if they were slightly outside of the
bounds of the mask. Additionally, because of the liberal thresholds
designed to capture broad visual regions, some portions of the parahip-
pocampal gyrus area contained the hippocampus. Contacts within mask
boundaries but clearly in the hippocampus were excluded.

Experimental design
Participants completed the experiment on a MacBook Pro laptop while
seated in their hospital bed. The task consisted of up to four runs: two
runs of the Structured block and two runs of the Random block. We
aimed to collect all four runs from each patient but required a minimum

Table 1. Patient informationa

ID Age (yr) Sex nElec (vis) Implant Data collected Notes

1 19 F 203 (21) R G/S/D 2S, 2R R2 mem data not usable (D)
2 26 F 163 (59) L G/S/D 2S, 2R —
3 43 F 172 (10) Bi D 1S, 2R —
4 61 F 136 (0) Bi D 1S, 1R neural mem data not usable (T)
5 31 M 152 (31) L G/S/D 2S, 2R R1 encoding data not usable (T)
6 69 F 92 (7) L D 2S, 2R —
7 33 M 232 (22) Bi D 1S, 1R —
8 31 F 192 (20) Bi D 2S, 2R no mem data collected (C)
9 56 F 192 (36) Bi D 2S, 2R R1 encoding data not usable (T)
10 53 M 148 (0) Bi D 2S, 2R —
aDescription of patient participation. nElec (vis), the total number of electrode contacts, followed by the
number of visual electrode contacts. Implant: R, right-sided implant; L, left-sided implant; Bi, bilateral
implant; G, grid; S, strip; D, depth. Data collected: the number of runs for each condition collected (S,
Structured; R, Random). Notes: which runs (if any) were excluded from given analyses and why: D, patient
distraction (e.g., a clinician coming in and disrupting testing); T, trigger issue (i.e., an error with the equip-
ment such that we could not align individual trials to our neural signal); C, computer error (e.g., the com-
puter crashed).
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of one run per condition for subject inclusion. Given that the order
of structured versus random information can impact learning
(Jungé et al., 2007; Gebhart et al., 2009), the run order was coun-
terbalanced within and across participants (i.e., some participants
received Structured-Random-Random-Structured and others Random-
Structured-Structured-Random). Participants completed the runs across
1-3 testing sessions based on the amount of testing time available between
clinical care, family visits, and rest times.

Each run consisted of an encoding phase and a memory phase.
During the encoding phase, participants viewed a rapid stream of scene
images, during which they were asked to passively view the scenes.
Participants were told that their memory for the scenes would be tested
to encourage them to pay close attention. Each scene was presented for
267ms, followed by a 267ms interstimulus interval (ISI) period during
which a fixation cross appeared in the center of the screen. These short
presentation times were chosen to optimize the task for the frequency

tagging analyses, which involves measuring neural entrainment to
stimuli.

Within each run, participants viewed a series of images from a set of
six scene categories. There were six categories in the Structured block,
and six other categories in the Random block. In the Structured block,
the scenes categories were paired, such that images from one scene cate-
gory (A) were always followed by an image from another scene category
(B). Thus, A scenes were predictive of the category of the upcoming B
scenes, or stated another way, the category of B scenes was predictable
given the preceding A scenes. No scene pairs were allowed to repeat
back-to-back in the sequence. In the Random block, all six scene
categories (X) could be preceded or followed by any other scene
category, making them neither predictive nor predictable. No indi-
vidual scene categories were allowed to repeat back-to-back.

In total, participants viewed 16 exemplars from each category within
each run. To assist patients with remembering these briefly presented

Figure 2. Electrode coverage. The contact locations on the grid, strip, and/or depth electrodes for each participant are plotted as circles in standard brain space. Contacts colored in blue
were localized to the visual cortex mask.
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images, each individual exemplar was shown 4 times within a run. Thus,
each run was comprised of 16 “subblocks” during which the same set of
six exemplar images was repeated 4 times (384 trials total). Within each
subblock, the order of the pairs/images was randomized, with the con-
straints described above of no back-to-back repetitions. The individual
exemplars changed after each subblock, but the category relations were
held constant in the Structured block. Participants were not informed of
these category pairings, and thus had to acquire them through exposure.

At the end of each run, participants completed a memory test.
Participants were presented with all 96 unique images from the encoding
phase, intermixed with 24 novel foils from the same categories (4 foils/
category). Participants first had to indicate whether the image was old,
meaning it was just presented in that run’s encoding phase, or new,
meaning that they had not seen that image at all during the experiment.
Following their old/new judgment, participants were asked to indicate
their confidence in their response, on a scale of 1 (very unsure) to 4
(very sure). Participants had up to 6 s to make each old/new and confi-
dence judgment. We quantified episodic memory performance using A9,
a nonparametric measure which takes into account hit rate (HR) and
false alarm rate (FA) (Grier, 1971), as follows:

A9 ¼ :51 ðHR� FAÞ p ð11HR� FAÞ=ð4 pHR p ð1� FAÞÞ

Frequency tagging analyses
We conducted a phase coherence analysis to identify electrode contacts
that entrained to image and pair frequencies (Henin et al., 2021). For
both Structured and Random blocks, the raw signals were concatenated

across runs (if more than one per block type) and
then segmented into subblocks comprising 24 tri-
als with the four repetitions per exemplar. We
then converted the raw signals for each subblock
into the frequency domain via fast Fourier
transform and computed the phase coherence
across subblocks for each electrode using the for-

mula
1
N
RN cosfð Þ

� �2
þ 1

N
RN sinfð Þ

� �2
. No-

tably, by computing phase coherence between
subblocks, we collapsed over the contribution of
individual exemplars that repeated within sub-
block. In other words, entrainment in this analysis
was driven by phase-locking that generalized
across exemplars. Phase coherence was computed
separately for each contact in the visual cortex
mask, and we then averaged across contacts
within participant. We focused on phase co-
herence at the frequency of image presentation
(534ms/image; 1.87Hz) and pair presentation
(1.07 s/pair; 0.93Hz).

Category evidence analyses
We used a multivariate pattern similarity
approach to assess the time course of cate-
gory responses. We identified patterns of
multivariate activity associated with each
category across contacts, frequencies, and time.
These category patterns, or “templates,” were
defined during the memory phase of the dataset.
This was important because the order of catego-
ries was random during the memory phase,
allowing for an independent assessment of each
category across condition regardless of any pair-
ings. We then used these templates to examine
category-specific evoked responses during the
encoding phase, to assess the presence and timing
of category evidence (e.g., for the onscreen cate-
gory or the upcoming category). The following
subsections explain this approach in detail.

Frequency decomposition.We used a Morlet
Wavelet approach to decompose raw signals into time-frequency infor-
mation (Fig. 3A). We convolved our data with a Complex Morlet
Wavelet (cycles = 4) at each of 50 logarithmically spaced frequencies
between 2 and 100Hz to extract the power time course at each of these
50 frequencies. This analysis was done separately for each encoding and
memory phase of each run, and the data were z-scored across time
within each frequency and contact. This procedure was applied across
the unsegemented time courses; we then subsequently carved the time-
course into trials using the triggers, yielding a vector of frequency and
contact information at each time point within a trial.

Subsequent analyses required that each trial have the same number
of time points. However, memory trials were variable lengths, as partici-
pants had up to 6 s to respond. There was also slight variability in the
encoding trials (most trials were 138 samples long, but some were 136 or
137 samples). To account for this, we considered only the first 138 sam-
ples of each memory trial and treated each encoding trial as having 138
samples (interpolating missing time points by averaging the last sample
of the trial with the first sample of the next trial).

Category decoding. First, we verified that the multivariate patterns
contained category-specific information. We constructed a set of 30 bi-
nary classifiers to distinguish among two categories of a given condition
(Fig. 3B): A1-A2, A1-A3, A1-B1, A1-B2, A1-B3, A2-A3, A2-B1, A2-B2,
A2-B3, A3-B1, A3-B2, A3-B3, B1-B2, B1-B3, B2-B3, X1-X2, X1-X3, X1-
X4, X1-X5, X1-X6, X2-X3, X2-X4, X2-X5, X2-X6, X3-X4, X3-X5, X3-X6,
X4-X5, X4-X6, X5-X6. We used a linear support vector machine
approach using the SVC function in Python’s scikit-learn module, with a
penalty parameter of 1.00. We used all of the trials (both old and new
exemplars of a category) from the memory runs to train and test the

Figure 3. Category evidence analysis pipeline. A, A Morlet wavelet approach was used to extract time-frequency informa-
tion from contacts in visual cortex. This resulted in contact by frequency vectors for every time point of encoding phase and
memory phase trials, which served as the neural patterns for subsequent analysis steps. B, To identify the neural patterns
that distinguished between categories, we ran a series of binary classifiers for every pair of categories from the memory
phase trials. These classifiers were trained on the contact by frequency vectors for a single time point or set of time points.
The classifiers were then tested on time points from held-out data. C, After a series of feature selection steps, we chose the
per-participant top-N time point set that produced the best classification accuracy, and then averaged contact by frequency
vectors across those time points (across all exemplars of a given category) to create a “template” of neural activity for each
category. D, We then correlated the template for each category from the memory phase with the contact by frequency vector
at each time point of each trial/exemplar from that category during the (independent) encoding phase, yielding a time
course of pattern similarity reflecting neural category evidence.
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classifiers and build the subsequent category templates. Thus, there were 20
samples per category for participants who had one run of a condition and
40 samples per category for participants who had two runs of a condition.
We split these samples into two-thirds training and one-third test (all within
the memory phase), and iterated over the three train-test splits.

First, we independently trained classifiers on a single time point
(each of the 138 time points within a trial) and tested each classifier on
all 138 time points at test. To validate that we were able to discriminate
the categories above chance, we averaged over all train-test combinations
and computed overall classification accuracy.

Feature selection. We next aimed to identify the set of time points
that produced the best category discrimination. We reasoned that time
within a trial would be an important contributor to variance in discrimi-
nability, as we would not necessarily expect that time points very early
on in a trial (immediately after image onset) would produce high dis-
crimination between categories. We also reasoned that the best time
point(s) may differ from participant to participant depending on their
electrode coverage. Therefore, we devised a participant-specific time
point feature selection process. Importantly, these feature selection steps
were conducted within the memory phase data (the same data on which
the templates were trained), which were independent of the test data of
interest (encoding phase data).

Using the classifier output described above, we averaged the classifica-
tion over the 138 test time points to assess how well training at every time
point generalized to all other time points within a trial. We conducted this
analysis for all 30 classifiers and averaged performance over classifiers, yield-
ing a mean classification performance associated with each training time
point. For each participant, we then computed the rank order of time points
with respect to their classification, such that the first ranked time point was
the one that yielded the highest classification, and the last ranked (138th)
time point is the one that yielded the lowest classification.

To identify the set of training time points producing the best cate-
gory classification for a given participant, we repeated the pairwise classi-
fication procedure above iteratively training on an increasing number of
time points, adding from highest to lowest ranked. Thus, these classifiers
ranged from training on the single top time point, to all 138 time points.
We again conducted this analysis for all 30 classifiers and averaged perform-
ance across them, yielding a mean classification performance associated
with the 138 sets of top-N time points. We ranked this classification per-
formance again to determine which number of top time points produced
the highest classification. This number was used to define the templates.

Template correlations. Using the set of training time points for each
participant determined in the feature selection process, we then com-
puted a neural template for each category (Fig. 3C). We extracted the
pattern of activity (i.e., a vector containing electrode contact, time, and
frequency) for all instances of a given category during the memory
phase, including both old and new images. We then averaged over the
time points in that participant’s training set. The resulting category pat-
tern vector retained spatial (contact) and frequency information.

To assess the time course of neural evidence for a category during
the encoding phase, we extracted the pattern of activity (contact and fre-
quency) for each time point of every trial of that category (Fig. 3D). We
computed the Pearson correlation between the template and the activity
pattern separately for each time point within a trial, yielding a time
course of similarity to the template. The resulting Pearson correlation
values were Fisher transformed into z values.

We were interested in characterizing the time course of a category
response not only while that category was on the screen, but also during
the surrounding trials. We may observe evidence for a category before it
appears, if it can be predicted (as hypothesized for B), or after it disap-
pears, if its representation lingers. Thus, we assessed the time course
over a window comprising the onscreen category’s trial (“Current”) and
the two neighboring trials (“Pre” and “Post” trials). To quantify the
response, we subtracted a baseline of average evidence for the other cate-
gories of the same condition (e.g., for category A1, how much evidence
is there for A1 relative to categories A2 and A3?). For the X categories,
which could appear in any order, we ensured that the categories included
in the baseline did not appear during the “Pre” and “Post” trials. This
baselining approach was important for ensuring that effects were not

driven by a generic evoked response (to any category), but rather by spe-
cific evidence for the relevant category.

We quantified how template similarity changed over time within trial
by splitting the trials into “ON” and “ISI” epochs. The ON epoch refers
to the part of the trial when the image was on the screen (the first 69
samples, or 267ms). The ISI epoch refers to the part of the trial after the
image disappeared from the screen during the interstimulus fixation
cross (the second 69 samples, or latter 267ms).

Subsequent memory. To assess how variance in category evidence
across trials related to memory outcomes for those trials, we examined pre-
dictive and onscreen representations separately for subsequently remem-
bered versus forgotten trials. We conducted this analysis separately for
memory of A (as a function of Perceived evidence for A during A and
Predicted evidence for B during A) and for memory of B (as a function of
Perceived evidence for B during B and Predicted evidence for B during A).
Because each image was shown 4 times, we first averaged the Perceived and
Predicted evidence over these four trials. We considered the ISI epoch of
each trial, as this was the epoch in which we observed reliable evidence for
the Predicted category B during A. As a control analysis, we repeated these
steps for the X trials from the Random blocks.

Alternative classification approaches for feature selection. The cate-
gory evidence analyses described above rely on a set of binary classifiers
trained to distinguish the categories in a given condition (i.e., all combina-
tions of As and Bs in the Structured condition and Xs in the Random condi-
tion). However, this approach may lead to interpretational issues. For
example, from a binary classifier trained to distinguish two categories (e.g.,
A1 vs B1), it is difficult to know whether evidence for one category (e.g., A1)
reflects the presence of that category (A1) or the absence of the other category
(B1). Thus, we replicated all of the above analyses using two alternative
approaches.

First, we trained a 6-way classifier to distinguish among all six cate-
gories of a given condition (A1-A2-A3-B1-B2-B3 for Structured and X1-
X2-X3-X4-X5-X6 for Random). By including more than two classes, this
approach addresses the concern that classification accuracy could be
driven by the presence or absence of a given category. Second, we
retained the binary classification approach but trained classifiers to only
discriminate within the A or B categories. That is, instead of 15 classifiers
for A/B combinations, there were 6 classifiers (A1-A2, A1-A3, A2-A3,
B1-B2, B1-B3, B2-B3). This approach ensures that classification does not
mix evidence for predictive versus predicted categories.

For both of these approaches, we used a linear support vector
machine approach using the SVC function in Python’s scikit-learn mod-
ule, with a penalty parameter of 1.00 (same as the primary classification
approach). We then repeated the same feature selection steps using these
alternative classifiers, and used the output of the top-N time point analy-
ses to create new templates.

Statistical analysis
For all analyses (both behavioral and neural), statistical significance was
assessed using a random-effects bootstrap resampling approach (Efron
and Tibshirani, 1986). For each of 10,000 iterations, we randomly
resampled participants with replacement and recomputed the mean
across participants, to populate a sampling distribution of the effect.
This sampling distribution was used to obtain 95% CIs and perform null
hypothesis testing. We calculated the p value as the proportion of itera-
tions in which the resampled mean was in the wrong direction (opposite
sign) of the true mean; we then multiplied these values by 2 to obtain a
two-tailed p value. All resampling was done in R (version 3.4.1), and the
random number seed was set to 12345 before each resampling test. This
approach is designed to assess the reliability of effects across patients: a
significant effect indicates that which patients were resampled on any
given iteration did not affect the result, and thus that the patients were
interchangeable and the effect reliable across the sample.

Results
Memory behavior
We first assessed overall performance in the recognition memory
test to verify that participants were able to encode the images
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into memory. We computed A9, a nonparametric measure of
sensitivity (Grier, 1971), from test judgments for items from
both Structured and Random blocks. All participants had an A9
above the chance level of 0.5 (mean = 0.68; 95% CI = [0.64,
0.70], p , 0.001; Fig. 4A) indicating reliable memory. This was
driven by a higher hit rate (mean = 0.51) than false alarm rate
(mean= 0.32; difference 95% CI = [0.14, 0.23], p , 0.001). The
proportions of items that were subsequently remembered (hit
rate) or forgotten (1-hit rate, or misses) were roughly matched
on average, yielding balanced power for within-subject subse-
quent memory analyses.

We then assessed how statistical learning affected recognition
memory. Based on our prior work (Sherman and Turk-Browne,
2020), we hypothesized that the hit rate for items from the pre-
dictive A categories in the Structured blocks would be lower
than the hit rate for items from the control X categories in the
Random blocks. Indeed, we replicated this key behavioral
finding (Fig. 4B), with a significantly lower hit rate for A
(mean = 0.48) than X (mean = 0.52; difference 95% CI =
[�0.076, �0.010], p = 0.012). The hit rate for B (mean = 0.51)
did not differ from A (difference 95% CI = [�0.10, 0.059],
p = 0.51) or X (difference 95% CI = [�0.094, 0.053], p = 0.66).

The false alarm rate for X (mean= 0.36) was numerically
higher than A (mean=0.28; difference 95% CI = [�0.0023,
0.16], p=0.064); X was significantly higher than B (mean= 0.29;
difference 95% CI = [0.0069, 0.13], p= 0.028), although A and B
did not differ (difference 95% CI = [�0.074, 0.056], p= 0.82).
Unlike the higher hit rate for X than A, which was specifically
hypothesized based on prior work, the marginally higher
false alarm rate for X than A was not expected or consistent
with previous experiments. Nevertheless, this complicates
interpretation of the hit rate difference as impaired memory
for A versus X. One difference from the prior study is the
blocking of Structured (A,B) and Random (X) categories,
which may have allowed for differences in strategy or moti-
vation between conditions. Nevertheless, the main memory
hypotheses in the current study rest within the A condition
(i.e., which A items are remembered vs forgotten as a func-
tion of B prediction), rather than on overall condition-wide
differences with X (or B).

We additionally examined the time course of these memory
effects by sorting the items into subblocks. If the deficit in mem-
ory for A items arises from the predictive value that they confer,

we might expect that this effect will emerge
over time as learning occurs (Sherman and
Turk-Browne, 2020). We focused this analysis
on the first Structured run of the encoding
phase for each participant, to equate the
amount of data and corresponding opportu-
nity for learning across participants (some
had one run, others two). We quantified
change over time for each participant as the
Spearman rank correlation of subblock num-
ber with hit rate for A (averaged across items
in each subblock), expecting a negative corre-
lation. The resulting within-participant rela-
tionship was not reliable at the group level
(mean r = �0.038; 95% CI = [�0.27, 0.19],
p=0.77). This null effect of a learning trajec-
tory stands in contrast with what we observed
in Sherman and Turk-Browne (2020), per-
haps related to the smaller number of partici-
pants or differences in task design (e.g., the
use of subblocks) in the current study.

Neural frequency tagging
To provide a neural check of statistical learning of the category
pairs in the Structured blocks, we measured entrainment of neu-
ral oscillations in visual electrode contacts to the frequency of
individual images and image pairs (Fig. 5A). We expected strong
entrainment at the image frequency in both the Structured and
Random blocks, as this reflects the periodicity of the sensory
stimulation. Critically, we hypothesized that there would be
greater entrainment at the pair frequency in Structured com-
pared with Random blocks. This provides a measure of statistical
learning because the pairs only exist when participants extract
regularities over time in the transition probabilities between cate-
gories in the Structured blocks.

Consistent with our hypotheses and prior work (Henin et
al., 2021), there were distinct peaks in phase coherence at both
the image and pair frequencies in Structured blocks, but only
at the image frequency in Random blocks (Fig. 5B). To confirm
the reliability of these peaks, we contrasted the coherence at the
frequency of interest (image: 1.87Hz; pair: 0.93Hz) against a
baseline of the coherence at frequencies neighboring each of
the frequencies of interest (60.078Hz). At the image fre-
quency, there were reliable peaks in both the Structured (mean
difference = 0.46; 95% CI = [0.37, 0.55], p , 0.001) and
Random blocks (mean difference = 0.42; 95% CI = [0.28, 0.52],
p , 0.001). At the pair frequency, there was a reliable peak in
Structured blocks (mean difference = 0.059; 95% CI = [0.035,
0.084]), p , 0.001), but not Random blocks (mean difference =
�0.0027; 95% CI = [�0.016, 0.0085], p= 0.68).

Further, the peak in coherence at the pair frequency in
Structured blocks was reliably higher than that in Random blocks
(mean difference= 0.058; 95% CI = [0.035, 0.083], p , 0.001),
confirming that the pair frequency effect was specific to when
there was structure in the sequence. There were no differences in
coherence at the image frequency across conditions (mean
difference = 0.018; 95% CI = [�0.010, 0.048], p=0.25). Together,
these results provide strong evidence that visual regions repre-
sented the paired categories during statistical learning.

To measure the emergence of these entrainment effects over
time, we computed the coherence over an iteratively increasing
number of subblocks (Henin et al., 2021). Specifically, we first
computed the coherence across the first two subblocks, then the

Figure 4. Behavioral results. A, Overall memory performance collapsed across conditions. Circle represents A9 (a sensi-
tivity measure for recognition memory) for each participant. All participants were above chance (0.5). B, Hit rate as a
function of condition (A: predictive; B: predictable; X: control). Bars represent group means. Errors bars indicate boot-
strapped 95% CI across participants. Individual participant data are overlaid with the gray circles and lines.
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first three, and so on, up to all 16 subblocks. As
in the behavioral time course analyses, we only
included the first 16 subblocks per partici-
pant (corresponding to the first run of a
given condition) to equate the opportunity
for learning effects across participants. To
quantify neural entrainment, we computed
the difference in coherence between the fre-
quency of interest and the two neighboring
frequencies (as we did above to establish whether
peaks were reliable). We then assessed the reli-
ability of that difference, relative to 0, across par-
ticipants. We hypothesized that coherence at
the pair frequency would emerge over time in
the Structured condition, but that coherence
at the image frequency would be consistently
high, even at early time points.

In the Structured condition, the pair fre-
quency was consistently reliable by the 13th
subblock (mean ITC difference = 0.035; 95%
CI = [0.0011, 0.071], p=0.043), with each sub-
sequent subblock also exhibiting a reliable peak
in coherence at the pair frequency (p values ,
0.001; Fig. 5C, left). Confirming that this effect
was specific to the Structured condition, we did
not find reliable peaks in coherence at the pair
frequency across any number of subblocks in
the Random condition (p values. 0.30).

In contrast to the pair frequency that
required learning, the image frequency should
be driven by the stimuli and thus present early
in both conditions. Indeed, coherence at the
image frequency was reliably high across all
numbers of subblocks, in both the Structured
and Random conditions (all p values , 0.001;
Fig. 5C, right). This lends credence to the inter-
pretation of increasing coherence at the pair
frequency over time as reflecting a trajectory of
learning.

Given our interpretation that entrain-
ment to the pair frequency reflects statisti-
cal learning, and given that we expect our
key behavioral effect (impaired memory for
predictive A items) to depend on statistical
learning, we next asked whether these two
effects are related. We calculated this relationship within-
participant given the small sample for estimating across-partici-
pant relationships. Coherence is necessarily measured across
trials; and thus, we could not relate entrainment on a given
trial to memory for that trial. Instead, we computed coherence
across neighboring subblocks and estimated neural entrain-
ment to the pairs as the difference in coherence at the pair fre-
quency from the two adjacent frequencies. We then related
this neural measure to average A hit rate within the latter of
the two neighboring subblocks, expecting a negative relation-
ship (stronger pair entrainment associated with worse A
memory). For example, the coherence between Subblocks 1
and 2 was used to predict behavioral memory in Subblock 2
(memory in Subblock 1 was excluded from this analysis). The
within-participant relationship between neural entrainment
to pairs and A memory showed a trend at the group level
(mean r = �0.13; 95% CI = [�0.25, 0.020], p = 0.089),
although importantly 6 of 7 participants showed a negative

correlation. We repeated this analysis for the image frequency
as a control, and found no relationship between neural entrain-
ment to images and A memory (mean r = �0.072; 95% CI =
[�0.24, 0.087], p= 0.42).

Scene category decoding and template creation
The neural frequency tagging for pairs in Structured blocks indi-
cates statistical learning of the pairs. This learning should create
predictive value for the items from the A categories, which afford
a prediction of the associated B category. To test for these predic-
tive representations, we used a multivariate pattern similarity
approach that extracted neural evidence for visual categories. For
each category, we created a neural template based on the pattern
of time-frequency information evoked by each category across
visual contacts. These templates were optimized through a series
of a steps (described below) for each participant to ensure maxi-
mum category discriminability.

First, to verify that the scene categories were indeed discrimi-
nable, we developed a series of binary classifiers to distinguish

Figure 5. Neural frequency tagging analysis. A, Schematic of analysis and hypothesized neural oscillations. We
expect entrainment of visual contacts at the frequency of images in both blocks. In the Structured block, we also
expect entrainment at the frequency of category pairs. B, These hypotheses were confirmed, with reliable peaks in co-
herence at the image and pair frequencies in Structured blocks but only at the image frequency in Random blocks. C,
We examined the emergence of entrainment over time by measuring the difference in coherence at the frequency of
interest, relative to the two neighboring frequencies, as we iteratively increased the number of subblocks from the
start of the run included in the analysis. Left, Coherence at the pair frequency emerged over time in the Structured
block (reaching significance by the 13th subblock and beyond) but not in the Random block. Right, Coherence at the
image frequency was high in both blocks, regardless of how many subblocks were included. Error bands indicate the
95% bootstrapped CIs across participants.
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among the scene categories. Because we were interested in ulti-
mately selecting the time points that produced the best category
discrimination, we trained classifiers on a single time point (each
of the 138 time points within a trial) and tested each classifier on
all 138 time points at test. Figure 6A illustrates the classification
performance across all of these binary classifiers, averaged across
participants. At the group level (averaging across all train-test
combinations), classification performance was above chance
(mean= 0.528; 95% CI = [0.514, 0.542], p , 0.001), with each
individual participant exhibiting classification performance
greater than the chance level of 0.5.

We next aimed to select the training time points (per
participant) that exhibited the best category discrimination.
For each participant and training time point, we averaged
classification accuracy across all test time points (Fig. 6B).
We then ranked the training time points by classification
accuracy. Next, to find the set of training time points that
produced the best classification, we reran our classification
procedure, but training on an increasing number of time
points, starting with the best-performing time point, and
iteratively adding time points per rank. We then computed
the per-participant average classification accuracy for each
set of time points (Fig. 6C). Verifying that this feature selec-
tion approach worked to optimize category discriminabil-
ity, we indeed found that using the per-participant top-N
time points yielded higher classification accuracy than aver-
aging across all time points (mean accuracy = 0.554; 95%
CI = [0.536, 0.571], p , 0.001); this was independently true
for each participant.

We used these per-participant top-N time
points to create templates of each category.
Figure 6D illustrates the training time points
which were included in the templates, for 1 or
more participants. To construct the templates,
we averaged the contact � frequency vectors
across the top-N time points for all exemplars
of a given category. We then aimed to quantify
the expression of these category templates dur-
ing learning (e.g., during the presentation of a
predictive A item, is there a representation of
the upcoming B item?). However, given that
these templates were created from the memory
phase, after learning had already occurred, it is
important to ensure that the templates of
paired categories themselves were not corre-
lated with each other; if so, any effects of pre-
diction during learning could be confounded.
At the group level, the templates of paired cat-
egories (e.g., A1-B1) were no more correlated
than the templates of unpaired Structured cat-
egories (e.g., A1-B2; mean difference = 0.024;
95% CI = [�0.019, 0.069], p = 0.30) or Random
categories (e.g., X1-X2; mean difference= 0.047;
95% CI = [�0.032, 0.127], p=0.25).

Category evidence during learning
To test for evidence of predictive value, we quan-
tified the expression of these templates in the
Structured and Random blocks. As a check, we
expected clear neural evidence for the category
of the item being presented on the screen.
Critically, we hypothesized that neural evidence
for the upcoming B category would manifest
before its appearance, in response to an A exem-

plar. We measured these temporal dynamics of neural category
evidence by creating a window of three trials centered on the cur-
rent item: the trial preceding a trial in which the item appeared
(“Pre”), the trial during which the item was on the screen
(“Current”), and the trial succeeding the trial in which the item
appeared (“Post”). For example, if category Pair 1 involved
beaches (A1) being followed by mountains (B1), neural evidence
for the mountain category was calculated in response to beach
exemplars (Pre), mountain exemplars (Current), and exemplars
from the categories that could appear next in the Structured
sequence (A2 or A3 categories). These evidence values were aver-
aged across the categories from the same condition (e.g., B1, B2,
and B3 for Condition B) and plotted over time (Fig. 7A). For sta-
tistical analysis, we averaged the neural category evidence for
each category across the time points within 6 epochs: when Pre,
Current, and Post images were on the screen (ON) and during
the fixation period between these trials (ISI; Fig. 7B). We antici-
pated the evoked response to each image would span ON and ISI
periods (as neural processing of the image would take longer
than 267ms), but subdividing in this way allowed us to test for
the emergence of predictive evidence of B during the ISI immedi-
ately before its onset.

For Current trials (i.e., the trial when the target category was
on screen), we found robust (perceptual) evidence for both A
and B across both the ON epoch (A: mean= 0.0088; 95% CI =
[0.0046, 0.013], p , 0.001; B: mean= 0.012; 95% CI = [0.0066,
0.018], p , 0.001) and ISI epoch (A: mean= 0.012; 95% CI =
[0.0084, 0.015], p , 0.001; B: mean= 0.014; 95% CI = [0.0083,

Figure 6. Category decoding and feature selection. A, To establish overall category decoding accuracy, we trained and
tested binary category classifiers separately for all individual time points, yielding a temporal generalization matrix. B, As a
first feature-selection step, we computed the average classification accuracy (across pairwise classifiers) for each training
time point and participant (colored lines). We then ranked the time points by classification accuracy. C, To select the set of
time points that produced the best classification for a given participant, we trained and tested the category classifiers on
an increasing number of time points, starting with the best-performing time point identified in B and iteratively adding
time points by rank. We then computed the per-participant average classification accuracy for each set of time points. D,
Histogram depicting which training time points were selected for template creation for all participants (e.g., count = 3 indi-
cates that that time point was included for 3 of the 7 participants).
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0.019], p , 0.001). Neural evidence for X categories from
Random blocks was not reliable during the ON epoch
(mean = 0.0046, 95% CI = [�0.00075, 0.012], p = 0.13) but
became robust later in the trial during the ISI epoch
(mean = 0.0074; 95% CI = [0.0030, 0.013], p , 0.001). There
was greater evidence for B than X categories during both
ON (mean difference = 0.0077; 95% CI = [0.00058, 0.015],
p = 0.031) and ISI epochs (mean difference = 0.0065; 95%
CI = [0.00061, 0.012], p = 0.031). Considering X as a base-
line, this difference shows enhanced perceptual processing
of predictable categories. Neural evidence did not differ
between A and B categories (p values . 0.38) or A and X
categories (p values . 0.28).

For Pre trials (i.e., the trial before the target category appeared),
we found the hypothesized predictive neural evidence for the B cat-
egories during the ISI epoch (just after its paired A category
appeared; mean = 0.0037; 95% CI = [0.00054, 0.0071], p =
0.019). B evidence was not present during the ON epoch
earlier in the Pre trials (while its paired A category was on
screen; mean = 0.00063; 95% CI = [�0.0030, 0.0046], p =
0.78); this may reflect the time needed for associative reacti-
vation of the B category after perceptual processing of the A
item, or anticipation of the timing when B will appear (at
the end of the Pre trials). Further supporting our interpreta-
tion that Pre evidence of the B categories reflects predic-
tion, no such evidence was observed for X during ON
(mean = �0.0015; 95% CI = [�0.0039, 0.0012], p = 0.26) or

ISI epochs (mean = �0.00031; 95% CI = [�0.0021, 0.0015],
p = 0.73) or for A during the ISI epoch (mean = �0.0012;
95% CI = [�0.0048, 0.0025], p = 0.53). There was negative
evidence for the upcoming A category during the ON epoch
of the Pre trial (mean = �0.0043; 95% CI = [�0.0072,
�0.0013], p = 0.0052), but this may have been artifactual
(see below). When contrasting prediction-related signals
across conditions, Pre neural evidence for the B categories
during the ISI epoch was reliably greater than X categories
(mean difference = 0.0040; 95% CI = [0.00016, 0.0075],
p = 0.042) and marginally greater than A categories (mean
difference = 0.0049; 95% CI = [�0.00051, 0.010], p = 0.075).

For Post trials (i.e., the trial after the target category
appeared), we found reliable neural evidence for the A cate-
gories during the ON epoch (i.e., while its paired B category
was on screen; mean = 0.0055; 95% CI = [0.0017, 0.0091],
p = 0.0018); this effect was not significant during the ISI
epoch (mean = 0.0041; 95% CI = [�0.0011, 0.0098], p =
0.13). We did not find Post evidence of B or X categories
during either ON or ISI epochs (p values . 0.80), nor was
Post evidence for A reliably stronger than B or X (p values
. 0.16). Positive evidence of A during the Post trial may be
related to the negative evidence of A during the Pre trial
noted above. Because no back-to-back pair repetitions were
allowed, in an A1-B1-A2-B2 trial sequence, A1 and A2 were
different categories. A1 evidence during B1 was considered a
Post trial for the A condition, whereas A2 evidence during B1

Figure 7. Neural category evidence. A, Time course of similarity between patterns of neural activity in visual contacts evoked by exemplars from A (predictive), B (predictable), and X (con-
trol) categories and category template patterns for A, B, and X, respectively, baselined to average evidence for the other categories of the same condition. Inset, Raw pattern similarity before
baseline subtraction for the category template of interest (dark) and the average of the other category templates from the same condition (light). Error bands were removed for ease of visual-
ization. Current, the trial when the item was presented; Pre, the trial before the item was presented; Post, the trial after the item was presented. For each row/condition, the Pre, Current, and
Post trials are compared with the same category template (Current). Error bands represent the bootstrapped 95% CIs across participants (i.e., any time point whose band excludes 0, p ,
0.05). B, Average pattern similarity collapsed across time points within ON (stimulus on screen) and ISI (fixation between stimuli) epochs. Each dot represents an individual participant. Bars rep-
resent the means across participants. Error bars indicate the bootstrapped 95% CIs. *p, 0.05. **p, 0.01. ***p, 0.001.
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was considered a Pre trial for the A condition. Because A1 was
one of two baseline categories for A2 (along with the third A
category, A3), Post evidence for A1 during B1 would have
been subtracted from Pre evidence for A2, leading to a nega-
tive effect. We tested this by comparing evidence for A2 (Pre)
and A1 (Post) during B1 to the neutral A3 only. This weak-
ened the negative Pre evidence for A, during ON (mean =
�0.0027; 95% CI = [�0.0054, 0.00], p = 0.058) and ISI epochs
(mean = 0.00048; 95% CI = [�0.0022, 0.0038], p = 0.82).
However, the positive Post evidence for A during the ON
epoch remained significant (mean = 0.0081; 95% CI = [0.0036,
0.014], p, 0.001).

The findings above rely on category templates optimized
based on a set of binary category classifiers. To ensure that our
results are robust to these specific feature selection steps, we
reran our analyses using two different approaches for template
creation.

First, we created category templates from a 6-way classifier
that simultaneously learned to distinguish the patterns from all
categories of a condition. As a check, we first confirmed that this
method produced the same results for Current items. Indeed, as
above, we found reliable evidence for both A and B items, during
the ON (A: mean=0.0095; 95% CI = [0.0056, 0.014], p , 0.001;
B: mean= 0.015; 95% CI = [0.010, 0.019], p , 0.001) and ISI
periods (A: mean= 0.010; 95% CI = [0.0060, 0.014], p, 0.001; B:
mean= 0.014; 95% CI = [0.0085, 0.019], p , 0.001); evidence for
X was reliable during the ISI (mean= 0.0059; 95% CI = [0.0026,
0.0099], p , 0.001), but not ON periods (mean= 0.0037; 95%
CI = [�0.0026, 0.012], p=0.32). Critically, we replicated our key
finding of predictive B evidence during the Pre-ISI period (i.e.,
just after its paired A category appeared; mean= 0.0035; 95%
CI = [0.00042, 0.0066], p=0.025), as well as of lingering A evi-
dence during the Post-ON period (i.e., while its paired B category
was on screen; mean= 0.0049; 95% CI = [0.000059, 0.0095],
p=0.049).

Second, we retained the binary classification approach but
limited the classifiers to category comparisons within A or within
B, such that the classifiers did not learn to discriminate A versus
B. Although we expected that this approach would reduce the
quality of feature selection by optimizing for fewer category dis-
tinctions, it eliminated the possibility that mixing predictive and
predicted categories may artificially inflate classification per-
formance. This approach again produced qualitatively similar
results, though slightly weaker. We found reliable evidence for
both A and B Current items, during the ON (A: mean=0.0093;
95% CI = [0.0060, 0.013], p , 0.001; B: mean= 0.013; 95% CI =
[0.0076, 0.018], p , 0.001) and ISI periods (A: mean= 0.010;
95% CI = [0.0063, 0.013], p , 0.001; B: mean= 0.015; 95% CI =
[0.0097, 0.020], p , 0.001); evidence for X was reliable during
the ISI (mean= 0.0078; 95% CI = [0.0045, 0.012], p, 0.001), but
not ON periods (mean= 0.0046; 95% CI = [�0.0012, 0.012],
p=0.17). Further, we numerically replicated our key finding of
predictive B evidence during the Pre-ISI period (mean= 0.0038;
95% CI = [0.00, 0.0080], p=0.050), though lingering A evidence
during the Post-ON period was no longer reliable (mean=
0.0022; 95% CI = [�0.0034, 0.0081], p= 0.47).

Together, these results show that statistical learning of the cat-
egory pairs in Structured blocks affected neural representations
in the task. Not only did visual contacts represent the category of
the first and second items in a pair while they were being per-
ceived (A and B evidence during ON and ISI epochs of A and B,
respectively), but also the first category during the second (A evi-
dence during ON epoch of B) and the second category during

the first (B evidence during ISI epoch after A). This latter effect
indicates that the first item in a pair (from A category) had pre-
dictive value on average.

We again examined whether these predictive effects emerged
over time, in the first run of the Structured condition. For each
participant, we computed the Spearman rank correlation of sub-
block number with the mean predictive evidence for B (averaged
across all A items in each subblock), expecting a positive correla-
tion. The resulting within-participant relationship was not reli-
able at the group level (mean r = 0.012; 95% CI = [�0.24, 0.24],
p= 0.92). We also tested for a positive relationship across sub-
blocks between prediction of B during A and neural entrainment
for pairs, given that we expect both measures to depend on statis-
tical learning. However, this within-participant relationship was
not reliable at the group level (mean r = 0.038; 95% CI = [�0.12,
0.19], p= 0.67), nor was it reliable for neural entrainment to
images (mean r =�0.11; 95% CI = [�0.29, 0.079], p=0.25).

Although we did not observe a clear learning trajectory, we
can still leverage variability in prediction across trials to under-
stand the relationship between predictive value and memory.

Subsequent memory analysis
We theorized that items with predictive value are a lower priority
for new encoding into episodic memory. Here we test this rela-
tionship by comparing neural category evidence for remembered
versus forgotten items within participants. That is, although A
items had reliable predictive value on average, variability across
items may relate to subsequent memory. To the extent that
prediction interferes with encoding, we hypothesized that subse-
quently forgotten A items would elicit evidence for the upcoming
B category during their encoding. Critically, in contrast to prior
analyses relating entrainment to memory or prediction, which
required measurements at the subblock level, here we are able to
probe the relationship between prediction and memory at the
level of individual trials.

Consistent with our hypothesis, B evidence during the ISI
epoch after A (i.e., Predicted category) was negatively related
to subsequent A memory (Fig. 8A): forgotten A items yielded
reliable B evidence (mean = 0.0092; 95% CI = [0.0023, 0.017],
p= 0.0030), whereas remembered A items did not (mean =
0.0017; 95% CI = [�0.0016, 0.0049], p= 0.31). In contrast, A
evidence during the ISI epoch after A (i.e., Perceived category)
was reliable for both remembered (mean = 0.012; 95% CI =
[0.0091, 0.015], p , 0.001) and forgotten (mean = 0.014; 95%
CI = [0.0077, 0.021], p , 0.001) A items. This differential effect
of subsequent memory on neural evidence for Perceived versus
Predicted categories during the ISI after A was reflected in a sig-
nificant 2 (evidence category: A, B) by 2 (subsequent memory:
remembered, forgotten) interaction (p , 0.001). This interac-
tion was driven by a marginal difference in neural evidence for
the Predicted B category during encoding of subsequently for-
gotten versus remembered A items (mean difference = 0.0075;
95% CI = [�0.00046, 0.016], p= 0.065), but no reliable differ-
ence in neural evidence for the Perceived A category by subse-
quent memory (mean difference = 0.0022; 95% CI = [�0.0050,
0.0094], p= 0.57).

As a control analysis, we performed the key steps above in the
Random blocks. These blocks did not contain pairs, and so we
dummy-coded pairs of X items (X1 -X2 instead of A-B). In con-
trast to Structured blocks, we did not expect that neural evidence
of the “Predicted” X2 category during the X1 ISI would relate to
subsequent memory for X1. Indeed, there was no reliable evi-
dence for the X2 category for either remembered (mean =
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�0.0029; 95% CI = [�0.0069, 0.00084],
p=0.14) or forgotten (mean= 0.0011; 95%
CI = [�0.0027, 0.0054], p=0.57) X1 items.
In contrast, neural evidence for the
Perceived X1 category during the X1 ISI
was reliable for both remembered X1

items (mean = 0.010; 95% CI = [0.0039,
0.019], p , 0.001) and forgotten X1 items
(mean= 0.0065; 95% CI = [0.0022, 0.012],
p, 0.001).

We so far focused on the effects of pre-
diction for memory of the item generating
the prediction (A), but what is the mne-
monic fate of the item being predicted (B),
which in this task with deterministic pairs
always appeared as expected? Whereas
neural category evidence for B during the
A ISI (Predicted) was negatively related to
subsequent memory for A items, the op-
posite was true for memory of B items
(Fig. 8B): remembered B items were
associated with reliable prediction of
B (mean = 0.0082; 95% CI = [0.0036,
0.012], p , 0.001), but forgotten B items
were not (mean = �0.0028; 95% CI =
[�0.011, 0.0041], p = 0.49). In contrast,
and similar to A memory, evidence for
B during the B ISI (Perceived) was reliable
for both remembered (mean=0.013; 95%
CI = [0.0082, 0.018], p , 0.001) and for-
gotten (mean=0.014; 95% CI = [0.00096,
0.026], p=0.034) B items. We did not find
an interaction between category and mem-
ory (p=0.22). However, there was a reliable
difference in Predicted B evidence for
remembered versus forgotten B items
(mean difference=0.011; 95% CI = [0.00060,
0.021], p=0.039); Perceived B evidence did
not differ as a function of memory (mean
difference = 0.00064; 95% CI = [�0.014,
0.016], p= 0.89).

We repeated the same control analysis of Random blocks,
but now focused on subsequent memory for X2 items (equiv-
alent to B, rather than X1 memory for A). Neural evidence
for the “Predicted” X2 category during the ISI after X1 was
not reliable for either remembered (mean = 0.0013; 95% CI =
[�0.0020, 0.0043], p = 0.44) or forgotten (mean = �0.00048;
95% CI = [�0.0030, 0.0017], p = 0.75) X2 items.

We again tested whether our key results generalized
to templates created from two alternative classification
approaches. Using a 6-way classifier, we replicated the find-
ing that forgotten A items were associated with reliable pre-
dictive evidence of B (mean = 0.0075; 95% CI = [0.0015,
0.014], p = 0.009), whereas remembered A items were not
(mean = 0.0026; 95% CI = [�0.00010, 0.0054], p = 0.061). In
contrast, forgotten B items were not associated with reliable
predictive evidence of B (mean = �0.0046; 95% CI =
[�0.016, 0.0037], p = 0.40), whereas remembered B items
were (mean = 0.0082; 95% CI = [0.0021, 0.015], p = 0.003).
Using binary classifiers trained to discriminate within A or
B categories, we again found that forgotten (mean = 0.0075;
95% CI = [0.00087, 0.016], p = 0.014), but not remembered
A items (mean = 0.0027; 95% CI = [�0.00086, 0.0061],

p = 0.13) were associated with reliable predictive evidence
of B, and that remembered (mean = 0.0084; 95% CI =
[0.0033, 0.013], p = 0.0016), but not forgotten B items
(mean = �0.0044; 95% CI = [�0.017, 0.0048], p = 0.47) were
associated with reliable predictive evidence of B.

Together, these results highlight the opposing influence of
predictive value on memory for predictive versus predicted
items. Namely, prediction of B (during A) is associated with
worse memory for predictive A items (suggesting interference
between the generation of a prediction and encoding of the cur-
rent item) but better memory for predicted B items (suggesting
that this prediction may potentiate encoding of an upcoming
item).

Discussion
This study demonstrates a trade-off between how well an item is
encoded into episodic memory and how strong of a future pre-
diction it generates based on statistical learning. We first used
frequency tagging to provide neural verification of statistical
learning. During a sequence of scene photographs, electrodes in
visual cortex represented pairs of scene categories that reliably
followed each other, synchronizing not only to the individual
scenes but also to the boundaries between pairs. Next, we used

Figure 8. Subsequent memory analysis. A, Left, Time course of pattern similarity in visual contacts between the encoding
of A items and the category templates for A (Perceived, A during A) and B (Predicted, B during A), as a function of whether
the A items were subsequently remembered or forgotten. Right, Pattern similarity averaged within the ISI period, the epoch
in which we observed overall evidence of prediction, as a function of subsequent memory for A items (filled bars represent
remembered; empty bars represent forgotten). B, Left, Time course of pattern similarity in visual contacts between the cate-
gory template for B and the encoding of A items (Predicted, B during A) and B items (Perceived, B during B), as a function
of whether the B items were subsequently remembered or forgotten. Right, Pattern similarity averaged within the ISI period,
as a function of subsequent memory for B items. Error shading/bars represent the bootstrapped 95% CI across participants.
Each dot represents an individual participant. *p, 0.05. **p, 0.01. ***p, 0.001.
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multivariate pattern analysis to assess how the paired categories
were represented over time. Items from the first category in a
pair elicited a representation of the second category, which grew
in strength in advance of the onset of items from the second
category. We refer to the ability of an item to generate this pre-
dictive representation as its “predictive value.” Critically, by
relating these representational dynamics to subsequent memory
behavior, we found that forgotten items from the first category
triggered reliable predictions during encoding whereas remem-
bered first items had not.

Our work builds on suggestive evidence from a prior
study that predictive value may influence subsequent mem-
ory (Sherman and Turk-Browne, 2020). This prior study
included behavioral and fMRI experiments, whereas the cur-
rent study used iEEG. Neural measures are an important
advance over behavior alone because they can assay predic-
tive representations during passive viewing at encoding.
iEEG is superior to fMRI for this purpose because neural ac-
tivity is sampled at much greater temporal resolution and ac-
tivity reflects instantaneous electrical potentials rather than
hemodynamic responses smoothed and delayed in time. This
provides much greater confidence that the upcoming cate-
gory was being represented before its appearance and thus
was truly predictive. Moreover, the prior study showed a
negative relationship between prediction and memory across
participants, whereas the current study established this rela-
tionship within participant. This is also an important advance
because an across-participant relationship does not provide
strong evidence for the claim that prediction during encoding
impairs memory. Such a relationship could reflect generic indi-
vidual differences such that, for example, a participant with bet-
ter overall memory generates the same weak prediction on both
remembered and forgotten trials. In contrast, in this study, we
were able to link prediction to successful versus unsuccessful
memory formation across items. This more sensitive approach
yielded other findings not observed in the prior study, including
that memory for B items had an opposite, positive relationship with
prediction of B. Together, these results provide mechanistic insight
into the interaction between predictive value and memory, and
speak to theoretical questions about the representations underlying
statistical learning and episodic memory.

Nature of representational changes
Several fMRI studies have shown that statistical and related
forms of learning can change neural representations of associ-
ated items throughout the human brain (Schapiro et al., 2012,
2013; Schlichting et al., 2015; Deuker et al., 2016; Tompary and
Davachi, 2017). For example, if exposed to sequential pairs em-
bedded in a continuous stream of objects (akin to the category
pairs in the current study), the two objects in a pair come to
elicit more similar patterns of fMRI activity from before to
after learning, when presented on their own, in the medial
temporal lobe cortex and hippocampus (Schapiro et al.,
2012). Such integration could be interpreted as evidence that
the representations of the paired items merged into a single
“unitized” representation of the pair that can be evoked by
either item (Fujimichi et al., 2010). Alternatively, the paired
items may remain distinct but become associated, such that
either can be reactivated by the other through spreading acti-
vation (Schapiro et al., 2017). A key difference between these
accounts is the timing of how learned representations emerge
when one of the items is presented: the merging account predicts
that the (same) unitized representation is evoked immediately by

either paired item, whereas the associative account predicts that
the presented item is represented immediately while the paired
item is represented gradually over time through reactivation.
These dynamics cannot be distinguished by fMRI because of its
slow temporal resolution, but our iEEG approach may shed
light.

On the surface, the results of our frequency tagging analysis
may seem to suggest a merged representation of the category
pairs. The reliable peak in coherence at the frequency of two con-
secutive stimuli may suggest that electrodes in visual cortex rep-
resented the paired categories as a single unit (Batterink and
Paller, 2017). However, the results of our pattern similarity
analysis are more consistent with an association between
the paired categories. Although we found that both catego-
ries in a pair could be represented at the same time (i.e.,
predictive B evidence during the A Pre trial and lingering A
evidence during the B Post trial, relative to no such evi-
dence on X trials), these representations were offset in time.
The representation of the A category was robust during
both the ON and ISI epochs of the A trial, whereas the rep-
resentation of the B category was not reliable during the
ON epoch and only emerged during the ISI epoch. Thus,
our results are more consistent with an associative account
in visual cortex. It remains possible that the hippocampus
or other brain structures represent statistical regularities
through unitized representations. Moreover, one limitation
of our study is that we did not measure representations of
individual categories before and after learning to directly assess
representational change. Although we could not directly mea-
sure representational change from before to after learning, we
did correlate the category templates measured after learning.
Unitization of paired categories would be reflected in increased
pattern similarity among paired, relative to unpaired and ran-
dom categories. We did not find reliable evidence of such rep-
resentational merging, inconsistent with a unitization account.
However, prior studies focused on the unitization of paired
items rather than categories. Thus, if we had found evidence of
representational merging of paired categories in the current
study, it would be unclear whether this reflects unitization in
the same way or a qualitatively different kind of representa-
tional change.

Predictive interference on memory encoding
The time course of predictive representations also sheds light on
the temporal dynamics of the interaction between episodic mem-
ory and statistical learning. When examining the overall effect of
prediction, we found reliable B evidence during the ISI epoch of
A, immediately preceding the appearance of B. However, this
result was obtained by averaging across all trials, both remem-
bered and forgotten. Thus, it was possible that, when separated
out by subsequent memory, a different pattern would emerge.
One possibility is that B evidence would come online earlier for
forgotten items, which might suggest that the observed impair-
ment in A memory resulted from interference with perceptual
processing of A. To the contrary, the difference in B evidence for
remembered versus forgotten A items was clearest during the ISI
after A was removed from the screen, which suggests that predic-
tion may interfere with later, post-perceptual stages of processing
to impair encoding.

Interestingly, evidence for the current A category was compa-
rable across remembered and forgotten A items. Thus, in this
paradigm, variance in memory was explained solely by predic-
tion of the upcoming category, not the strength of perceptual

Sherman et al. · Intracranial Recordings of Human Visual Cortex J. Neurosci., November 30, 2022 • 42(48):9053–9068 • 9065



processing of the category being encoded (Kuhl et al., 2012) nor
modulation of this processing by prediction (both of which
would have affected A evidence). The lack of a relationship
between A evidence and A memory may reflect a trade-off: cate-
gory evidence may reflect representation of the most diagnostic
features of a category, which would enhance memory for these
features while impairing memory for idiosyncratic features of
particular exemplars. A related account may explain why predic-
tive B evidence was positively linked to B memory (Smith et al.,
2013; Thavabalasingam et al., 2016): B evidence during the A ISI
may potentiate the diagnostic features of the B category, enhanc-
ing the salience of idiosyncratic features of B when it appears to
strengthen episodic memory for B. Future studies could test
these possibilities by using a more continuous measure of mem-
ory precision and by testing on modified items that retain cate-
gory-diagnostic versus idiosyncratic features.

Our finding that prediction relates to better memory for pre-
dictable B items contrasts with findings of enhanced encoding
for unpredictable/unexpected items (G. Kim et al., 2014; Greve et
al., 2017; Bein et al., 2021). These seemingly divergent findings
are difficult to reconcile because predictions in our study were
never violated: in the Structured condition, the A in each pair
was followed deterministically by B; in the Random condition,
although each X was unexpected to some degree, they did not
violate a learned expectation. Thus, it is possible that replacing
the expected B with another category would have led to even
better memory encoding. That said, one interpretation of our
finding of enhanced (predictable) B memory that would be
consistent with a benefit of prediction error for episodic mem-
ory could be that features idiosyncratic to a particular B exem-
plar (needed to later retrieve this specific episodic memory)
may have violated a category-level expectation grounded in
the diagnostic (i.e., nonidiosyncratic) features of a category
shared across its exemplars. This question, as well as questions
above about how the category-level nature of the prediction
may have affected memory for A, could be informed by future
studies examining effects of item-level prediction on memory.

This work builds on existing theories considering the com-
plex interplay between memory encoding and memory retrieval.
To the extent that prediction from statistical learning can be con-
sidered associative retrieval (Hindy et al., 2016; Kok and Turk-
Browne, 2018), our findings converge with the notion that the
brain cycles between mutually exclusive encoding and retrieval
states (Hasselmo et al., 2002; Duncan et al., 2012; Long and
Kuhl, 2019; Bein et al., 2020), organized by the hippocampal
theta cycle (Kerrén et al., 2018; Pacheco Estefan et al., 2021).
Further, a recent computational model suggests that predictive
uncertainty determines when memories should be encoded or
retrieved (Lu et al., 2022). The model accounts for findings that
familiar experiences are more likely to evoke retrieval (Patil and
Duncan, 2018), and thus may help to explain why predictions
from statistical learning are prioritized over episodic encoding.

Neural source of predictions
The current study sought to decode evidence of visual categories
and so focused on electrode contacts in visual cortex. This adds
to a growing literature on predictive signals in visual cortex (De
Lange et al., 2018; H. Kim et al., 2020; Clarke et al., 2022).
Importantly, in our previous fMRI study (Sherman and Turk-
Browne, 2020), we found evidence of prediction only in the hip-
pocampus. We interpreted the lack of an effect in visual cortex in
light of the fact that we were measuring prediction (of B) while
other items (A) were being perceived; thus, if visual cortex

preferentially represents onscreen, perceived information, we
may not have been sensitive to a weaker, simultaneous prediction
effect. Indeed, other fMRI studies have found predictions in vis-
ual cortex during the absence or omission of perceptual input
(Hindy et al., 2016; Clarke et al., 2022). Using a time-resolved
measure like iEEG in the current study provided another solu-
tion to this problem, by allowing us to isolate short ON versus
ISI time periods when there was versus was not a competing
stimulus present, respectively (which fMRI would have been
unable to separate). Indeed, we found evidence for prediction
during the ISI after the predictive item but not while the predic-
tive item was on the screen. This increased sensitivity to predic-
tion specifically during the ISI period may have also provided a
clean enough prediction signal to detect a trial-level relationship
with memory.

Although we observe these predictive signals in visual cortex,
these signals may originate elsewhere in the brain. A strong can-
didate is the hippocampus and surrounding medial temporal
lobe cortex. In addition to representing predictions (Kok and
Turk-Browne, 2018; Sherman and Turk-Browne, 2020; Reddy et
al., 2021), the hippocampus interfaces between perception and
memory (Treder et al., 2021) and has been shown to drive rein-
statement of predicted information in visual cortex (Bosch et al.,
2014; Tanaka et al., 2014; Hindy et al., 2016; Danker et al., 2017).

Beyond generating predictions, the hippocampus may
also be the nexus of the interaction between episodic mem-
ory and statistical learning, given its fundamental role in
both functions (Schapiro et al., 2017). Indeed, given the
necessity of the hippocampus for episodic memory, our
study raises questions about how the representations of per-
ceived and predicted categories in visual cortex are routed
into the hippocampus for encoding. One intriguing possi-
bility is that these representations are prioritized according
to biased competition (Desimone, 1998; Hutchinson et al.,
2016), leading to preferential routing and subsequent encoding
of predicted, but not perceived, information in the hippocam-
pus. Relatedly, recent work had found that encoding versus re-
trieval states are associated with distinct patterns of activity in
visual cortex (Long and Kuhl, 2021), suggesting that represen-
tations in visual regions may be fundamentally shaped by mem-
ory state in the hippocampus.

The patients in the current study had relatively few contacts
in the hippocampus and medial temporal lobe cortex, precluding
careful analysis of prediction in these regions and how it relates
to visual cortex. Future studies with a larger cohort of patients
and/or high-density hippocampal recordings would be useful for
this purpose. Such studies could also provide a more direct
link between statistical learning-based prediction and
encoding/retrieval modes by examining how hippocampal
theta phase (Kerrén et al., 2018; Pacheco Estefan et al.,
2021) relates to predictive signals in visual cortex. Likewise,
future studies could disrupt the hippocampus through stim-
ulation to establish its causal role in predictive representa-
tions in visual cortex.

Limitations of the current study
In the current study, we exploited the high signal-to-noise of in-
tracranial recordings in a small sample of patients. Motivated by
the ability to densely sample neural data within this rare popula-
tion, we focused our experimental design on optimizing neural
measures. This led to a few limitations.

Our primary evidence of statistical learning came from neural
rather than behavioral measures, namely, neural entrainment at
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the pair frequency and category prediction in pattern similarity.
We did not have any direct behavioral measures of statistical
learning, such as faster response times for predictable items dur-
ing learning (Gómez et al., 2011; Siegelman et al., 2018) or famili-
arity judgments about regularities after learning (Fiser and Aslin,
2002; Turk-Browne et al., 2005; Brady and Oliva, 2008). We
could not assess statistical learning behaviorally during the
encoding phase because we used passive viewing (to reduce task
complexity for patients) and because the images were presented
too rapidly for manual responses (to enable neural measures of
entrainment). We did not include a separate behavioral test of
statistical learning after the encoding phase because of limited
testing time with the patients that required us to prioritize the
neural measures and the behavioral memory test most central to
the hypothesis. Future work should consider relating neural sig-
natures of statistical learning from iEEG to more direct behav-
ioral measures of statistical learning, as has been done with scalp
EEG (Batterink and Paller, 2017) and fMRI (Karuza et al., 2013).

Statistical learning was also measured indirectly via per-
formance on the recognition memory test. We found reduced
memory for predictive A items in the episodic memory test, a
replication of prior work (Sherman and Turk-Browne, 2020).
This effect provides some evidence of learning because the
pairs were novel and arbitrary; and thus, A was only predictive
(of B) as a result of new learning. Given that the only differ-
ence between A and X was the added predictiveness of A;
reduced memory for A relative to X therefore must reflect this
learning. That said, there are some limitations to this behav-
ioral effect. Specifically, it was present only in hit rate for A
(saying “old” to old exemplars), and not in A9, a measure of
sensitivity that corrects for false alarm rate for A (saying “old”
to new exemplars). The lack of an A9 effect resulted from a
trend toward lower false alarm rates for A than X. Such a
result could suggest a criterion shift for A items (less likely to
say “old” in general). However, the prior study (Sherman and
Turk-Browne, 2020), which had more statistical power, did
not find a similar trend in false alarm rates; rather, there was a
similar trend across hit rate and A9. Furthermore, the fact that
Structured and Random conditions were presented in separate
blocks in the current study (to enable frequency tagging) as
opposed to intermixed in the prior study complicates the
interpretation of weaker differences between A and X, as they
could be confounded with time-dependent differences in the
patients’motivation, attention, and/or symptoms. Nevertheless,
we were able to leverage variance in memory within A items of
the Structured condition, by relating memory to trial-by-trial
neural prediction.

Last, we adopted a subblock structure, in which individual
exemplars repeated 4 times before switching to new exemplars
(but holding the category pairs constant). This choice was made
to balance the rapid presentation of stimuli needed for the neural
frequency tagging analyses with providing sufficient exposure to
the images so that some would be later remembered. Although
we found some evidence that neural entrainment to the pairs
increased across Structured subblocks, there was little evidence
of a learning trajectory in the behavioral or predictive neural
measures. It is possible that exemplar repetition in the subblocks
may have allowed learning to asymptote after only one or a few
subblocks (Turk-Browne et al., 2009), eliminating the possibility
of finding a more gradual change in these measures across sub-
blocks. These analyses are further limited by the small number of
patients relative to prior work with healthy individuals that
found clearer learning effects in behavior (Sherman and Turk-

Browne, 2020). Future studies could tailor their experimental
designs to optimize detection of a learning trajectory, for
example, by foregoing neural entrainment and presenting
images once for a longer duration or by introducing more
complex regularities.

In conclusion, in examining the trade-off between prediction
and memory encoding, our work suggests a novel theoretical
perspective on why predictive value shapes memory. We argue
that, because memory is capacity- and resource-limited, memory
systems must prioritize which information to encode. When
prior statistical learning enables useful prediction of an upcom-
ing experience, that prediction takes precedence over encoding.
In this way, encoding is focused adaptively on experiences for
which there is room to develop stronger predictions.
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