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The ability to modulate ongoing walking gait with precise, voluntary adjustments is what allows animals to navigate complex terrains.
However, how the nervous system generates the signals to precisely control the limbs while simultaneously maintaining locomotion is
poorly understood. One potential strategy is to distribute the neural activity related to these two functions into distinct cortical activity
coactivation subspaces so that both may be conducted simultaneously without disruptive interference. To investigate this hypothesis, we
recorded the activity of primary motor cortex in male nonhuman primates during obstacle avoidance on a treadmill. We found that the
same neural population was active during both basic unobstructed locomotion and volitional obstacle avoidance movements. We identi-
fied the neural modes spanning the subspace of the low-dimensional dynamics in primary motor cortex and found a subspace that con-
sistently maintains the same cyclic activity throughout obstacle stepping, despite large changes in the movement itself. All of the variance
corresponding to this large change in movement during the obstacle avoidance was confined to its own distinct subspace. Furthermore,
neural decoders built for ongoing locomotion did not generalize to decoding obstacle avoidance during locomotion. Our findings suggest
that separate underlying subspaces emerge during complex locomotion that coordinates ongoing locomotor-related neural dynamics with
volitional gait adjustments. These findings may have important implications for the development of brain–machine interfaces.
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Significance Statement

Locomotion and precise, goal-directed movements are two distinct movement modalities with known differing requirements
of motor cortical input. Previous studies have characterized the cortical activity during obstacle avoidance while walking in
rodents and felines, but, to date, no such studies have been completed in primates. Additionally, in any animal model, it is
unknown how these two movements are represented in primary motor cortex (M1) low-dimensional dynamics when both
activities are performed at the same time, such as during obstacle avoidance. We developed a novel obstacle avoidance para-
digm in freely moving nonhuman primates and discovered that the rhythmic locomotion-related dynamics and the voluntary,
gait-adjustment movement separate into distinct subspaces in M1 cortical activity. Our analysis of decoding generalization
may also have important implications for the development of brain–machine interfaces.

Introduction
The nervous system is a highly flexible computational system ca-
pable of simultaneously performing many different functions.
An emergent view on neural computation posits that networks
of neurons engage in specific patterns of covariation for carrying
out specific functions (Churchland et al., 2012; Kaufman et al.,
2014; Elsayed et al., 2016; Gallego et al., 2018). By constraining
these coactivation patterns to separate subspaces, which we will
refer to as “neural modes,” the network is able to carry out com-
putations associated with one function without interfering with
the activity related to separate functions in the other subspaces
(Fig. 1b). This allows for the same neural population to carry out
multiple different processes. For example, to avoid prematurely
activating downstream muscles during movement preparation,

Received Mar. 27, 2022; revised Oct. 10, 2022; accepted Oct. 12, 2022.
Author contributions: D.X., W.T., and D.A.B. designed research; D.X. performed research; D.A.B. contributed

unpublished reagents/analytic tools; D.X., W.T., and D.A.B. analyzed data; D.X. wrote the paper.
This work was sponsored in part by the Defense Advanced Research Projects Agency (DARPA) BTO under the auspices

of Dr. Doug Weber and Alfred Emondi through the Space and Naval Warfare Systems Center Pacific or DARPA Contracts
Management Office, Grant/Contract No. D15AP00112 (to D.A.B.); and by Merit Review Award #I01RX002835 from the US
Department of Veterans Affairs, Rehabilitation Research and Development Service (to D.A.B.). The contents of this
manuscript do not represent the views of the Veterans Administration or the United States Government. The Department
of Veterans Affairs did not provide any direct support for the animal work conducted for this project. We thank Ellen Xing
for contributing to the creation of Figure 1 and Figure 2. We also thank the Pablo J. Salame Goldman Sachs endowed
Associate Professorship of Computational Neuroscience at Brown University (to W.T.); and the Howard Reisman ’76 Family
Graduate Fellowship Fund, and the Charles A. Dana Graduate Fellowship Fund (to D.X.). These funding sources had no
involvement in the design of this study, the collection or analysis of data, or the authorship of this manuscript.
The authors declare no competing financial interests.
Correspondence should be addressed to David A. Borton at david_borton@brown.edu.
https://doi.org/10.1523/JNEUROSCI.0746-22.2022

Copyright © 2022 the authors

9142 • The Journal of Neuroscience, December 7, 2022 • 42(49):9142–9157

https://orcid.org/0000-0003-0710-3005
mailto:david_borton@brown.edu


the neural variance in motor cortex resides primarily within an
output-null neural subspace during the preparatory period,
before transitioning into the distinct, output-potent subspace
during movement (Kaufman et al., 2014). By separating or multi-
plexing the neural activity into distinct subspaces, the same net-
work is able to engage in both movement preparation and
movement execution. Additionally, the activity of primary motor
cortex (M1) neurons in the same hemisphere corresponding to
the left and right arms have also been shown to reside in orthog-
onal subspaces (Ames et al., 2019).

It is still unknown whether within movement execution itself,
different types of movement performed simultaneously may also
correspond to distinct subspaces. One particular behavior that
may be amenable to the subspace separation hypothesis is loco-
motion. Previous studies have shown that the oscillator circuits re-
sponsible for basic locomotor movements reside in the spinal cord
(Graham Brown, 1911; McCrea and Rybak, 2008), and that de-
scending input from motor cortex is not required for carrying
out unobstructed walking on a treadmill (Grillner et al., 1997).
However, many animals have also developed the ability to
precisely position their limbs in specific locations and orien-
tations during locomotion, which facilitates navigation in

complex terrains (Georgopoulos and Grillner,
1989; Porter and Lemon, 1995; Beloozerova and
Sirota, 1998; Yakovenko and Drew, 2015). During
these behaviors, information about the environ-
ment is used to generate specific volitional move-
ments that are integrated with the underlying
locomotion rhythm. These volitional, gait-modify-
ing movements are distinct from basic unobstructed
locomotion, which consists of repeated rhythmic
movements agnostic to the environment. Unlike in
basic locomotion, motor cortex is essential for car-
rying out precise adjustments to the movements of
the limb (Liddell and Phillips, 1944; Beloozerova
and Sirota, 1998; Drew et al., 2002; Courtine et al.,
2005) and must integrate top-down control of the
muscles with information from sensory areas and
the locomotor central pattern generator (CPG; Fig.
1a; Pruszynski et al., 2011; Scott et al., 2015). How
M1 carries out the necessary computations to pro-
duce the correct volitional movement while also
accounting for the underlying locomotion move-
ments is poorly understood, especially in primates.
One possibility could be that the neural population
engages separate neural subspaces for tracking the
basic cyclic rhythm and for carrying out the targeted,
goal-oriented movements (Fig. 1b). This mechanism
allows the same neural circuit to perform targeted,
visually guided movements, such as those studied in
center-out reaching paradigms, while at the same
time preserving underlying walking movements dur-
ing complex tasks such as walking across stepping
stones or performing obstacle avoidance.

Here, we recorded neural activity from leg-M1
in freely moving nonhuman primates while they
performed basic locomotion as well as stepping over
an incoming obstacle on a treadmill. We found that
locomotion movements, as well as volitional, gait-
adjusting movements are represented in the same
recorded neural population. Using dimensionality
reduction, we found underlying neural modes that
are completely unaffected by the obstacle avoid-
ance movement, despite large changes in the ki-

nematics. Separate neural modes captured the variance in the
population activity that encoded the obstacle avoidance move-
ment. Therefore, M1 appears to engage two distinct subspaces,
one for accounting for the ongoing cyclic dynamics present
during locomotion, and one for controlling the momentary
change in M1 engagement during the gait modification.

Materials and Methods
Animal husbandry. All experimental and surgical procedures were per-

formed under approved Institutional Animal Care and Use Committee pro-
tocols at Brown University. Two male rhesus macaques, which were 7 and
9years of age, were housed in individual cages and trained to perform the
obstacle avoidance walking task. Positive reinforcement in the form of solid
food was used.

Experimental design. All behavioral tasks were conducted inside a
treadmill enclosure. The treadmill was purchased commercially (Jog A
Dog), and a custom Plexiglas box (length, 177.8 cm, width, 47.6 cm;
height, 91.4 cm) was constructed above it (Fig. 2a). Similar to previous
recording studies (Foster et al., 2014; Yin et al., 2014; Berger et al., 2020),
animals were able to move freely inside the enclosure and were not teth-
ered in any way. To encourage consistency of movements across trials
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Figure 1. Neural modes related to volitional adjustments during locomotion. a, Schematic of pathways of
some of the converging inputs onto motor cortex during volitional gait adjustments. Proprioception and spinal
CPGs provide information about the limb position in the gait cycle while visual information from the environ-
ment both drives decision-making to react to complex environments and facilitates the calculation of the precise
movement needed to successfully navigate the terrain. The nervous system must integrate all of these compo-
nents to generate the appropriate motor command, which is relayed through the spinal cord to the limb. MC,
Motor cortex; SC, somatosensory cortex; VC, visual cortex; PPC, posterior parietal cortex. b, c, Two possible strat-
egies that the nervous system could use to carry out volitional gait adjustments. In this toy example, the full
three-dimensional space represents all possible combinations of firing rates of three example neurons. The neu-
ral activity is confined to a two-dimensional subspace (red plane) spanned by two neural modes (red arrows).
The curve represents the time-varying neural activity during one stride of basic locomotion (purple) followed by
a stride with a volitional gait adjustment (blue). b represents the subspace-partitioning strategy that uses dis-
tinct neural modes to carry out certain functions, such as transmission of voluntary movement signals to down-
stream musculature. Here, the neural activity during basic locomotion is mostly confined to the first neural
mode, while the second neural mode encodes the movement modifications. In c, which represents an alterna-
tive hypothesis, both neural modes are used during basic locomotion and both are modified by motor cortex
during the volitional movement.
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and also to protect the obstacle components of the apparatus, Plexiglas
walls were placed below the ceiling and in front of the animal, removing
43.8 cm of the top of the enclosure and 72.4 cm of the front of the enclo-
sure from the available space that the animals were able to move in (not
depicted in Fig. 2).

A 5.08-cm-high by 4.45-cm-wide by 42.86-cm-long rectangular
Styrofoam bar served as the obstacle. The bar was attached to a stepper
motor, which rotated the obstacle into and out of the path of the animal.

The motor was attached to a belt linear actuator (Igus), which moved
the obstacle back and forth along the length of the treadmill. The obsta-
cle apparatus was attached to the ceiling of the treadmill enclosure such
that the top of the obstacle bar was 7.62 cm above the treadmill floor.
Additionally, a speaker was placed in the ceiling to play audio tones,
and a small slot in the front of the enclosure allowed food rewards to
be placed on the treadmill belt and carried to the animal. Treadmill
speed, obstacle speed, and timing of the audio tones were measured
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Figure 2. Experimental paradigm and behavior. a, Treadmill enclosure where animals performed locomotion and obstacle (Obs) stepping. Antennas surrounding the enclosure wirelessly col-
lected neural data while video cameras recorded the positions of six joint markers painted on the hindlimb. b, Behavioral paradigm. Each trial consisted of a single obstacle run. c, Example
data from a single trial of animal B, showing the stride bringing the leg over the obstacle along with three strides before and two strides after the obstacle stride. Top, Raster plot from the
implanted leg-M1 microelectrode array. Blue trace, Height of the right toe tip; orange trace, horizontal position of the right toe tip. Second to bottom, Gait pattern across all four limbs. Solid
bars, stance phase; purple, hindlimbs; green, forelimbs. Bottom, Obstacle position along the path of the treadmill. Dotted red lines demark the start of each gait cycle, green and orange lines
indicate when the leading and lagging hindlimbs crossed over the obstacle respectively. d, g, Stick diagram of the right hindlimb during one stride of basic, unobstructed walking (left) or dur-
ing one stride stepping over the obstacle (right). Orange trace represents the trajectory of the toe tip. Stick figures are spaced 60 ms apart, with the dark stick figure highlighting the limb dur-
ing the maximum height of the toe tip. e, h, Maximum height reached by the toe tip for either unobstructed (basic) walking or the stride over the obstacle and the surrounding strides. Error
bars represent SD. Dotted red line, Height of the obstacle. f, i, Duration of each stride, error bars are SD. d–f, Animal B; g–i, animal S.
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using a hall-effect angular position sensor, stepper quadrature encoder,
and electret microphone, respectively.

Eight cameras were positioned around the enclosure and captured
video of the animals performing the tasks at 100Hz (SIMI Reality
Motion Systems). Camera calibration was performed after each record-
ing session to determine the positions and angles of each camera relative
to each other, allowing for 3D triangulation of any markers that appear in at
least two cameras. UV floodlights were placed around the recording room
to enhance the visibility of our UV reactive joint markers (see Kinematics).
The cameras were synchronized to each other and to the neural data with
TTL (transistor–transistor logic) sync pulses. Additionally, 16 radiofre-
quency antennas were placed above and around the treadmill enclosure to
receive the neural data transmitted through our wireless headstage (Fig. 2a).

The video capture was controlled through the Simi Motion software,
and the neural data capture was controlled through Central software
(Blackrock Microsystem). The treadmill, obstacle, and audio tone play-
back were controlled through a custom C11 program.

Behavioral tasks. Animals performed either basic unobstructed loco-
motion by walking on the treadmill without any other interactions or
obstacle avoidance by stepping over an incoming obstacle during walk-
ing. Each of these tasks was conducted in blocks. Before entering the
treadmill enclosure, animals were trained to enter a primate chair, which
allowed us to attach the wireless recording headstages (Cereplex W,
Blackrock Microsystems). The fur on the hindlimb was shaved, and the
joint markers were also painted on at this time. Animals were then

allowed to enter the treadmill enclosure where
they were able to move freely.

During obstacle avoidance blocks, the tread-
mill was first turned on at 2.2 km/h. The obsta-
cle would be in position in the front of the
treadmill, but fixed for 1 min to allow the ani-
mals to settle into a natural walking rhythm. At
the start of each trial, a “go” tone was played to
indicate that the obstacle was about to move.
The operator would wait for a specific point in
the gait cycle, contact of the right forelimb with
the ground, before starting the obstacle move-
ment. The obstacle would move forward at
2.2 km/h until it was past the animal, and then
rotate up out of the way of the animal. The ob-
stacle was then moved back to the front of the
treadmill and rotated down into the path of
the animal to assume the starting position for
the next trial. After stepping over the obstacle,
and while it was moving back into position, a
“success” tone was played and a food reward
was placed in the front of the treadmill, which
would be carried by the moving belt to the ani-
mal. After a few seconds to allow the animal to
eat the reward and resume normal walking, the
go tone would play again to initiate the next
trial (Fig. 2b). At the end of the obstacle avoid-
ance block, the treadmill would be turned off.

During basic walking blocks, the treadmill
would be turned on and the animal would walk
continuously without any obstacle or food
interaction for 2–5min. We would also include
some of the strides at the beginning of the ob-
stacle avoidance block before the obstacle was
moved for the first time as basic walking trials.
We excluded the first two strides after the tread-
mill was turned on and the last two strides
before the treadmill was turned off to avoid any
transition effects. All animals were trained to
proficiently step over the obstacle without hit-
ting it before experimental recordings were
initiated.

Surgery. All surgical procedures were per-
formed under general anesthesia induced
through isoflurane. Animals were sedated with

ketamine (15mg/kg) and midazolam (0.05mg/kg), and given buprenor-
phine (0.01mg/kg) preoperatively and intraoperatively. Buprenorphine
SR (sustained release; 0.2mg/kg) and meloxicam (0.2mg/kg) were
administered postoperatively. A craniotomy was performed, and 96-
channel multielectrode arrays (Blackrock Microsystems) were inserted
into the left leg area of M1 (leg-M1), which was identified via cortical
landmarks (Fig. 3a). These implants were well within the regions
demarked from anatomic tracing studies (He et al., 1993). Electrodes
were platinum, 1.5 mm in length, and attached to a percutaneous pedes-
tal that was fixed to the skull. Animals were given at least 1 week to
recover after the implantation surgery before resuming the behavioral
tasks.

Kinematics. We used UV-reactive colored body paint to mark the
positions of six joints of the right hindlimb. We identified the joints
through bony landmarks and painted circular markers over the iliac
crest (crest), greater trochanter (hip), femur lateral epicondyle (knee),
lateral malleolus (ankle), fifth metatarsal head (knuckle), and fifth distal
phalanx (toe). Multicamera video tracking was used to determine the 3D
position of each of the joints (SIMI Reality Motion Systems). The direc-
tion of the treadmill movement was determined through markers placed
on the side of the treadmill, and the kinematics axes were rotated so that
the x-axis corresponded to the direction of walking, the y-axis corre-
sponded to the height, and the z-axis corresponded to medial–lateral
movement. Because the animals were able to freely move back and forth
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Figure 3. Neural recording and processing. a, Microelectrode array implant locations. Red rectangles indicate where the
Utah arrays were implanted in the leg-area of M1 in the left hemisphere. ArS, Arcuate sulcus; pCD, pre-central dimple; CS,
central sulcus; IPS, intraparietal sulcus. b, Example recording from one of the implanted electrodes. c, Example raster of the
spiking activity of a neuron from animal B across multiple trials normalized to the gait cycle. Blue lines indicate foot-off time
points (stance to swing transitions), and orange lines indicate foot-contact time points (swing to stance transitions). d, PETH
of the spiking activity of a neuron shown in c after normalization. Dotted black line indicates the average firing rate across
the gait cycle, and depth of modulation is calculated as the difference in the minimum and maximum firing rate across the
gait cycle. e, The PETH in c, but shown as a polar plot. Circular statistics were used to calculate the average directional vector
(orange arrow). The magnitude of the vector is the dispersion, r, of the neuron, and the angle, u , is the preferred phase of
the neuron. f, Distribution of dispersion values for the whole recorded population of neurons for animal B (left) and animal S
(right). Dotted red line at the value of 0.15 separates the weakly (,0.15) and strongly (.0.15) modulated neurons.
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along the length of the treadmill, we normalized the x-position of each
of the joints to the x-position of the iliac crest.

Additionally, the timing of gait events (e.g., right hand off, left foot
strike) were obtained manually by inspecting the video and marking the
frame when the event occurred. A stride was defined as the time from
one heel-strike of the limb to the next heel strike; the stance phase was
defined as the period from the first heel-strike to the next toe-off, while
the swing phase was defined as the toe-off to the next heel-strike.

Neural data processing. Intracortical recordings were obtained at
30 kHz, bandpass filtered (300–3000 Hz), and thresholded to 4� the SD
for spike events. Spikes .1000 mV in amplitude were rejected as noise.
For each channel, we used Wave Clus superparamagnetic clustering to
semimanually extract waveform templates (Quiroga et al., 2004), and
used subtractive waveform decomposition for automated template
matching of the thresholded spikes (Vargas-Irwin and Donoghue, 2007).
We were able to isolate 50 neurons from animal B and 42 neurons from
animal S. Spike counts were obtained by binning the number of spike
events into 10ms bins corresponding to each frame of the video data.
Single-trial smoothed firing rate values were computed by convolving
with a Gaussian kernel (SD, 40ms).

Because each stride could vary in length, to compare across strides,
we normalized the neural and kinematic data to the gait cycle. The start
of the stride (heel-strike) was defined to be 0%, the toe-off frame of each
stride was defined to be the average duty factor, and the end of the stride
(next heel-strike) was defined to be 100%. We used piecewise-linear time
warping to interpolate the data at each percentage point from 0% to
100% (MATLAB interp1() function; Fig. 3c). Perievent time histograms
(PETHs) were computed by averaging the normalized spike counts
across trials and then smoothed with a Gaussian kernel (SD, 20ms).
Because of the unconstrained movement of the animals and wireless
transmission of neural data, there would be periods where none of the
antennas were able to receive the signal from the headstage. We excluded
trials from analysis if .5% of the time points contained a dropped
signal.

Neural response characterization. Because the strides are cyclical, we
used circular statistics to characterize the response profiles of each neu-
ron (Drew and Doucet, 1991; Berens, 2009). The circular mean vector of
the PETH was calculated by representing each value of the PETH as a
polar vector and averaging across all percentage points (Fig. 3e). The
preferred phase of the neuron was defined as the angle of the mean vec-
tor, while the dispersion was defined as the magnitude. The depth of
modulation was calculated as the difference between the maximum and
minimum firing rate of the PETH, and the mean firing rate was calcu-
lated as the average firing rate across all of the gait percentages. To iden-
tify neurons whose activity was uniform across the gait cycle, we applied
the Rayleigh test at a = 0.05 with Bonferroni’s correction for multiple
testing. We classified neurons as multimodal if there were more than
one peak that was .50% of the depth of modulation for .10% of the
gait cycle. Finally, we classified neurons as strongly modulated if they
had a dispersion value .0.15. Since the preferred phase is only well
defined for neurons that are both significantly modulated to the gait
cycle and have a unimodal PETH, we excluded neurons that are multi-
modal or weakly modulated from preferred phase calculations (but not
depth of modulation or mean firing rate calculations). All processing
was done in MATLAB with the Circ-stat toolbox.

To quantify the magnitude of change in the kinematics and neural
activity during the obstacle stride, we calculated the Mahalanobis dis-
tance between the signal during the obstacle stride and the signal during
the stride before any obstacle movement (three strides before the obsta-
cle stride), which served as the baseline reference. At each gait percent-
age of the reference stride, we obtained the intertrial distribution of the
neural or kinematic activity in 15-dimensional space. For kinematics,
this constituted the three spatial positions of the hip, knee, ankle,
knuckle, and toe. For neural data, using the full 50- or 42-dimensional
neural space resulted in singular matrix issues, so we instead used the
top 15 dimensions after performing principal component analysis
(PCA) on the neural firing rates. After obtaining the mean and covari-
ance matrix of this reference distribution, the Mahalanobis distance was
computed for each trial of the obstacle stride at that gait percentage. The

distance was calculated for all percentages of the gait cycle. The average
and SD of the distances across trials is seen in Figure 5, k and l. We also
computed the cross-correlation between the average Mahalanobis dis-
tance of the neural activity and the average distance of the kinematics at
various time lags ranging from �20 to 20 gait percentages. We used the
MATLAB functionsmahal() and crosscorr() to implement the analyses.

Demixed principal component analysis. We wanted to test the hy-
pothesis that separate underlying neural modes are used to carry out ba-
sic locomotion and to carry out volitional, target-directed movements,
such as lifting a limb over the obstacle. We expect to find distinct, nono-
verlapping subspaces, such as those shown in Figure 1b, if this hypothe-
sis is correct. Alternatively, we may find largely the same subspaces
corresponding to both nonobstructed locomotion and to the volitional
obstacle avoidance movement, such as shown in Figure 1c, which would
not support the subspace-partitioning hypothesis. We took two comple-
mentary approaches to test this hypothesis, using both supervised and
unsupervised methods to model the low-dimensional neural modes (see
Fig. 6). We used demixed PCA (dPCA) to find task-specific subspaces
within the population activity (Kobak et al., 2016). dPCA is similar to
PCA in that they are both linear dimensionality reduction methods that
project high-dimensional time series data into a lower-dimensional
space via a “decoder” matrix. For a set of task-specific PETHs (one for
each neuron), we used the following:

X ¼ BY; (1)

where Y is a n� p matrix representing the mean-subtracted PETHs of n
neurons at p samples/datapoints; X is the m� p matrix of the activity of
m latent dimensions, with m, n; and B is the m� n decoder matrix
that projects each of the n dimensions to the lowerm-dimensional space.
(We note that in the following we will use the same letters/symbols to
denote different but analog variables, whose specific meaning should be
clear from the context.)

We refer to each of the m variables as a latent dimension or neural
mode. However, unlike PCA, which finds the projection that maximizes
the variance accounted for (VAF) by each of the m dimensions regard-
less of any task-related parameters, dPCA attempts to find task-related
subspaces. The study by Kobak et al. (2016) provides an in-depth walk-
through of the dPCA algorithm and implementation. We applied the
MATLAB toolbox supplied by Kobak et al. (2016) for all our dPCA
calculations.

For our data, we chose to use the following two task parameters: gait
cycle percentage, which, in the unnormalized case, would correspond to
time, and stride type. Gait cycle percentage varied from 0% to 100% and
stride type varied from three strides before the obstacle stride to two
strides after. We combined stride type and stride percentage interaction
terms into the stride type marginalization, since we expect the stride-
related neural activity to also be time varying. Therefore, the gait per-
centage marginalization subspace, which we call the stride-invariant
subspace, should only vary with the gait cycle percentage and not with
the stride type, while the stride marginalization subspace, which varies
with both gait percentage and stride type, will be our stride-dependent
subspace. We therefore are able to split the decoder matrix into the fol-
lowing two separate matrices:

B ¼ Dinv

Ddep

� �
; (2)

whereDinv represents the decoder matrix that projects the neural activity
to the subspace that is invariant to the stride type, and Ddep represents
the decoder matrix that projects the neural activity to the subspace that
varies with the stride type. In addition to the two decoder matrices,
dPCA finds the two corresponding encoder matrices that project the
low-dimensional neural modes back to the high-dimensional space, Einv

and Edep. dPCA requires that a dimensionality of the model be specified
explicitly, so we chose a dimensionality of 10 (5 for the stride-invariant
and 5 for the stride-dependent subspace) based on findings of previous
studies, but we also tested our results for dimensionality of 6 and 14
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(split equally between the two subspaces), and did not find any signifi-
cant changes in our results.

Additionally, we wanted to assess which aspects of the stride-depend-
ent signals truly correspond to changes in neural activity because of the
obstacle, and which aspects are just random fluctuations because of
“noise.” To get an estimate of the noise distribution, we performed
dPCA using just the first stride and the last stride. These strides occur
before the obstacle begins to move, and two strides after the obstacle has
been traversed, respectively, and are essentially the same as basic walking
strides. Therefore, we do not expect any activity related to a volitional
gait adjustment movement to be present in the neural activity, and thus
any signals found in the stride-dependent subspace using only these
strides would be just noise. We took these values to construct the null
hypothesis distribution, and used a conservative cutoff value of the
99.99th percentile of this null distribution to determine which compo-
nents of the signals in the full dPCA are significantly different from the
basic walking or ongoing locomotion.

Finally, to quantify the timing of the changes in the stride-dependent
subspaces in relation to the changes in the movement, we used the same
analysis as before during the neural response characterization (see Fig. 5k,l).
We calculated the cross-correlation between the mean Mahalanobis dis-
tance of the kinematics in the obstacle stride and the first component of the
stride-dependent subspace in the obstacle stride at varying time lags.

Principal angles. To determine whether the subspaces we obtain
from the dPCA are distinct, we calculated the principal angles between
them, which measures the degree of orthogonality between two subspa-
ces. Within each marginalization subspace, the dimensions are orthogo-
nal (i.e., the rows within each encoder matrix form an orthonormal
basis). However, because each marginalization projection is calculated
independently, the resulting subspaces do not have to be orthogonal to
each other, meaning that there could be a significant amount of overlap
between the subspaces. To quantify the alignment between two subspa-
ces, we calculated the principal angles between our stride-invariant and
stride-dependent subspaces (Gallego et al., 2018).

The angles range from 0° to 90°, which indicates perfectly overlap-
ping or perfectly orthogonal subspaces, respectively. To obtain the prin-
cipal angles, we performed singular value decomposition on the product
of the two encoder matrices, as follows:

ET
invEdep ¼ URV: (3)

The diagonals of the R matrix are the cosines of the principal angles, or-
dered from smallest to largest.

We performed dPCA on both the neural PETHs as well as the trial-
averaged kinematics for the obstacle avoidance trials and calculated the
principal angles between the stride-invariant and stride-dependent sub-
spaces for both. Additionally, we also performed dPCA and found the
principal angles on a simulated neural dataset that was constructed from
the kinematics taken as a predictor, following the same model used by
Gallego et al. (2018; see section Simulated neural control dataset below).
To get a sense of the sampling variance, we performed 500 bootstrap
resamples on the trials and calculated the principal angles for each boot-
strap resample. (See Fig. 7d,i for the 95% confidence intervals of the
bootstrap distribution.)

We hypothesized that the stride-invariant and stride-dependent subspa-
ces are separate. To build a distribution of the principal angles under the
null hypothesis, we used two subspaces that we know are completely aligned
other than from intertrial variance: the Einv values (or Edep values) from two
different bootstrap resamples. We performed two bootstrap resamples and
calculated the principal angles between Einv, resample1 and Einv, resample2 as
well as the angles between Edep, resample1 and Edep, resample2. This was repeated
250 times to obtain our null distribution. (See Fig. 7d,i for the 97.5th percen-
tile of the principal angles for this null distribution.)

Rotational structure. Locomotion is naturally cyclical, so we wished to
determine whether our stride-invariant and stride-dependent subspaces
exhibited rotational dynamics. To model rotational dynamics within the
subspaces, we used jPCA, which is a specialized variant of a linear dynami-
cal system (LDS; Churchland et al., 2012). jPCA is akin to a PCA analysis
focused on rotational dynamics where the “rotational” aspect is indicated by

the imaginary number j in the acronym. The underlying assumption of dy-
namical systems models is that the current state of the latent dimensions is
predictive of future states. LDS models the relationship between states as a
linear difference equation with time-evolution matrixA, as follows:

Yt ¼ AYt�1: (4)

Here, Yt is the low-dimensional neural activity in the stride-invariant or
stride-dependent subspace at gait percentage t. In general-form LDS, A
can be obtained analytically through least-squares regression. In jPCA,
A is constrained to be skew symmetric, which results in a dynamical sys-
tem that contains solely rotational components. While it is possible to
solve for A analytically in the constrained case, we followed the algo-
rithm implemented in the study by Churchland et al. (2012), which uses
a gradient-based optimization method. After obtaining A, one can visu-
alize the rotational dynamics by displaying the vector fields of the differ-
ence equation in the top two dimensions (see Fig. 7e,j). The jPCA
algorithm was implemented with the MATLAB code provided by
Churchland et al. (2012). Note that because we are already in a low-
dimensional space, we did not perform the preprocessing step of using
PCA to project into six dimensions before fitting for A, as was done in
the study by Churchland et al. (2012). To quantify the strength of rota-
tional structure in each of the subspaces, we calculated the ratio of the
jPCA fit R2 to an unconstrained LDS fit R2. The unconstrained LDS can
contain both rotational and nonrotational dynamics, but if the dynamics
in the data are purely rotational, then the best unconstrained LDS A
would be the same as the jPCA A, and the ratio would be 1. The more
nonrotational dynamics that are present, the more deviant the jPCA fit
will be from the best LDS fit and the lower the ratio. We calculated this
metric for the stride-invariant data and the stride-dependent data for
both neural and kinematic dPCA.

Poisson linear dynamical system model. dPCA explicitly attempts to
extract dynamics related to the change in activity during the obstacle stride,
and uses information about the stride type in the model. We also used the
conditionally Poisson LDS (PLDS) model to extract single-trial dynamics,
which are given no information about the stride type (Truccolo et al., 2005;
Macke et al., 2011; Aghagolzadeh and Truccolo, 2016; Truccolo, 2016; Xing
et al., 2019). This unsupervised dimensionality reduction method is a com-
plementary approach to dPCA. Similar to PCA and dPCA, PLDS assumes
that the recorded neural activity is the result of underlying neural modes.
However, in PLDS the spiking of each neuron is modeled by a (condition-
ally) Poisson process rather than the usually assumed Gaussian distribution.
Additionally, PLDS explicitly models temporal dynamics by incorporating a
latent linear dynamical system (Gaussian process) similar to what was dis-
cussed in the previous section. The full model is described by the following:

Xt11jXt ;NðAXt;QÞ
Yt ;PoissonðlðtjXtÞÞ; (5)

where Yt is the vector of recorded spike counts of all neurons at time
bin t; it is distributed according to a conditionally multivariate Poisson
process with (vector) intensity modeled as follows:

lðtjXtÞ ¼ E YtjXt½ � ¼ expðCXt 1 dÞ;

where Xt and Xt11 are the vector of the activity of the neural modes at
time bins t and t1 1, respectively; C is the matrix of weights relating the
neural modes to the conditional intensity function of the neurons, analo-
gous to the B in dPCA; d is related to the baseline firing rate of the neu-
rons; A is the time evolution matrix governing the temporal dynamics of
the neural modes, analogous to the A matrix of the unconstrained LDS
model in the previous section; and Q is the covariance matrix of the
additive Gaussian noise for the stochastic state evolution.

Unlike PCA and dPCA, there is no analytic solution for the model,
so we used the expectation–maximization (EM) algorithm to infer the
latent dimension activity and model parameters. Also, because of the
nonlinearity, there is no closed-form solution to finding the posterior
probability of the neural modes given the spiking activity observations
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and estimated parameters in the E-step, so we used the Laplace approxi-
mation, which formulates the posterior density at each time step as a
Gaussian conditioned on the corresponding neural point process obser-
vations. We then estimate the values of the neural modes as the mean of
this Gaussian which is calculated for each time point of each trial. A
detailed description of the inference algorithm can be found in the stud-
ies by Aghagolzadeh and Truccolo (2014, 2016) and Macke et al.(2015).
We initialize the EM iterations with (linear) subspace identification
methods and ran the EM algorithm for a total of 60 iterations.

To estimate the dimensionality of the underlying neural subspace,
we used the Akaike information criterion (AIC), as follows:

AICðdÞ ¼ 2ðd2 1 dðd1 1Þ=21 ndÞ � 2logðLÞ; (6)

where d is the number of neural modes, n is the number of neurons, and
L is the likelihood function. The value that minimized the AIC was cho-
sen as the final model dimensionality. Using this metric, we estimated
the best-fit model dimensionality to be approximately nine.

Simulated neural control dataset. As an additional control, we addi-
tionally simulated a dataset of neural activity that was constructed from
the kinematics taken as a predictor, following the same model used by
Gallego et al. (2018). We simulated as many neurons as there were in
our recorded dataset for each subject. The conditional intensity of neu-
ron j was modeled as the weighted sum of the kinematics, as follows:

l jðtjZðtÞÞ ¼ aj 1
X

i

b ij ZiðtÞ1 e jðtÞ; (7)

where ZiðtÞ is the value of the normalized ith kinematic variable, aj is a
baseline firing rate for the jth neuron and is uniformly sampled from [0,
10] spikes/s, b ij is the weight of the ith kinematic variable onto the neu-
ron, drawn from a Gaussian distribution of mean 0 and variance 1, and
e is additive Gaussian noise with zero mean and a variance of 0.01. The
kinematics consists of the 3D coordinates of the five joints and were nor-
malized by subtracting the mean and scaling the amplitude to 1. The
intensities were offset so that they were all positive. We then generated
spike trains for each of the neurons and ran the dPCA principal angle
and PLDS analysis on the simulated neural data.

Spread metric. Because PLDS is an unsupervised dimensionality
reduction method, it may not necessarily extract subspaces which are
invariant to the presence of the obstacle stride. Thus, we developed a
spread metric to characterize the amount of overlap across all strides in
the PLDS trajectories. The PLDS trajectories seen in Figure 8 were cre-
ated by time normalizing the activity in the latent dimensions of each

trial to 0–100% of the gait cycle and then averaging across trials. We dis-
played the first three PLDS dimensions to visualize the time-varying ac-
tivity of the neural modes throughout the six gait cycles as the animal
stepped over the obstacle. Within this three-dimensional space, certain
two-dimensional projections resulted in large amounts of overlap in the
neural trajectories across the different strides. We used the MATLAB
function viewmtx() to calculate the projections at various azimuth and
elevation viewing angles. We then chose the projection that contained
the most overlap as our stride-invariant subspace. A different viewing
angle that highlights the changes in the neural trajectories was chosen by
visual inspection as the stride-dependent subspace.

To quantify the amount of overlap in the low-dimensional PLDS
projections between different strides, we created a spread metric that
determines how deviant the neural trajectories become relative to a ref-
erence baseline stride. Because we expect the obstacle stride to have the
greatest deviation from the other strides, we chose that stride as the
baseline.

Let the vector aref,t be the coordinates of the reference stride in the
projected 2D space at gait percentage t. For each of the other strides
i= 1...5, we calculated the Euclidean distance of the closest point to aref,t
within 10 gait percentages, as follows:

Di;t ¼ min
�10�k�10

jjaref ;t � ai;t1kjj2: (8)

We chose to use all points within 10 gait percentages to account for
any” slippage” because of imperfect time normalization between the
strides. We then took the maximum distance across all of the strides,
max

i
Di;t to find the spread metric at gait percentage t. Finally, we

obtained the final spread metric by taking the 90th percentile across gait
percentages 20� t� 80. We excluded the first and last 20 gait percen-
tages to avoid artifacts from edge effects and used the 90th percentile to
exclude outliers.

Computation of explained variance. For PCA and dPCA, we meas-
ured how much neural variance in the PETHs the low-dimensional neu-
ral modes were able to explain by calculating the VAF:

VAF ¼ jjYjj2 � jjY� CBYjj2
jjYjj2 ; (9)

where Y denotes here the matrix of PETHs of all neurons, B is the de-
coder matrix (Eq. 1); C is the “encoder” matrix, which for PCA and
dPCA corresponds to the matrix that maps the latent dimensions back
up to the high-dimensional neural space. The indicated norm is the
Frobenius norm.

Neural decoding.We used a Wiener filter decoder of order 10 to pre-
dict single-trial kinematics at each gait percentage time point t, denoted
by Ẑt , using various neural inputs Yt , as follows:

Ẑ t ¼
X9

t¼0

HtYt�t : (10)

Here, Yt�t denotes the single-trial vector of firing rates (one component
per neuron) time shifted by t gait percentages, and Ht is the matrix of
decoding weights, which we computed through least-squares regression
on training data. For all of our decoding analyses, we used the toe height
as the decoded kinematic variable.

We tested whether a decoder trained to predict kinematics during
basic locomotion could generalize to obstacle avoidance movements. We
used the firing rates of the full neural population as the input vector Yt ,
and calibrated the decoder weights using the neural data and kinematics
from the stride three strides before the obstacle stride (stride �3). We
then used those weights to predict the kinematics during the subsequent
strides, including the obstacle stride. We also tested the opposite (i.e.,
whether a decoder trained on the obstacle avoidance stride could decode
kinematics during basic locomotion). In this case, the weights were
trained on the neural and kinematic data during the obstacle stride and
applied to each of the other strides. Note that for testing decoder

Movie 1. Stick figures illustrating the hindlimb kinematics across all trials for basic unob-
structed walking (red) or the step over the obstacle (blue) in animal B. Video illustrates the
kinematics before they were normalized to the gait cycle. Trials were time locked to the start
of the swing phase (toe-off event). [View online]
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generalization, we did not need to use cross-validation since the training
set for the decoder was completely separate from the testing set.
However, we also measured how well the decoders trained on either the
basic walking or the obstacle stride could decode the kinematics during
that same stride. In these cases, we used leave-one-out cross-validation
by removing one trial from the training set and using it as the testing set.
As a control, we built a decoder trained on all of the strides and calcu-
lated the decoding performance across all of the strides using leave-one-
out cross-validation as well.

When testing decoder performance using low-dimensional neural
modes as inputs, we used the same procedure, but instead of using the
single-trial neural firing rates Yt as inputs in Equation 10, we used the
low-dimensional neural trajectories obtained with dPCA. We measured
the decoding performance using just the latent dimensions within the
stride-invariant subspace or the dimensions in both the stride-invariant
and stride-dependent subspace. In both cases, all of the strides were
included in the training set and leave-one-out cross-validation was used.

We measured decoder performance by calculating the mean squared
error between the decoded kinematics Ẑt and the true kinematics across
all gait percentages, as follows:

MSE ¼

X100
t¼1

ðZt � Ẑ tÞ2

100
: (11)

Data availability. The data that support the findings of this study are
available from the corresponding author upon reasonable request. Peer-
reviewed, published libraries for dPCA, jPCA, and circular statistics are

referenced in the text at appropriate locations. The analysis code that
supports the findings of this study can be found at https://github.com/
neuromotion/Distinct-neural-subspaces-during-obstacle-avoidance.

Results
Animals conducted volitional gait adjustments in an obstacle
avoidance paradigm
Animals were successfully trained to enter the Plexiglas enclosure
on top of the motorized treadmill and continuously walked
at 2.2 km/h. Within the enclosure, an actuated Styrofoam bar
moved toward the animal at 2.2 km/h, giving the perception of
an obstacle approaching along the treadmill belt (Fig. 2a). Both
animals successfully raise their limbs to step over the obstacle
without hitting it while maintaining their ongoing walking
movements. A go tone would alert the animal of the oncoming
obstacle, and the operator would manually time the start of the
obstacle movement to a particular gait event (e.g., the instant the
right hand made contact with the floor) to maintain consistency
in the avoidance movement across trials. Although there was
some amount of jitter in the timing of the obstacle initiation rela-
tive to the gait cycle, the variance was rather small (SD: 2.7% of
the gait cycle for animal B; and 2.8% of the gait cycle for
animal S). Each trial consisted of one obstacle run, which
included the stride where the leg was lifted over the obsta-
cle (denoted as stride 0), three strides before the obstacle stride
(strides �3 to �1), and two strides after the obstacle stride (Fig. 2c,

a b c

d e f

Figure 4. Example M1 neurons during basic walking and obstacle stepping. Example raster plots and PETHs from the activity of leg-M1 neurons. Top raster plot is for basic walking trials,
while bottom raster plot is for obstacle-stepping trials. r Values represent the dispersion of the neural activity around the gait cycle, and the dotted lines represent the preferred phases of the
firing activity of the neuron, for neurons with strongly modulated, unimodal activity. a–c, Activity of neurons from animal B. d–f, Activity of neurons from animal S.
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strides 1–2). Additionally, we collected
data from the animals as they continuously
walked on the treadmill without any obsta-
cle movement, which we will refer to as ba-
sic walking. Example neural activity and
kinematics of an obstacle stepping trial,
along with the gait pattern and obstacle
position are shown in Figure 2c.

We recorded 38 obstacle avoidance
trials from animal B and 43 trials from
animal S, along with 49 basic walking tri-
als from animal B and 66 trials from ani-
mal S, from a recording session from
each animal. The recordings were con-
ducted 44 d after the array implantation
in animal B and 55 d after the implanta-
tion for animal S. The average duty cycles
for the strides were 67% for animal B and
69% for animal S. The average stride
durations were 1126ms for animal B and
1119ms for animal S. In general, the
durations of the gait cycle were consistent
across trials, with the SD being 44ms for
animal B and 65ms for animal S.

General movement strategy is
preserved during obstacle avoidance
while the step height is increased
The limb movement throughout all the
strides, including the obstacle stride, fol-
lows the same stepping pattern. Horizontal
and vertical positions of the joints in-
creased and decreased at similar phases of
the gait cycle, while the main difference
between the obstacle stride and the other
strides is in the magnitude of the move-
ments. Both animals had to raise their hin-
dlimbs considerably higher than during
their normal walking gait to clear the ob-
stacle (Fig. 2d,e,g,h, Movie 1; p, 10–5,
Wilcoxon rank-sum test). During basic
walking, the average stride height was
3.66 cm for animal B and 4.45 cm for
animal S, and increased to 17.95 and
11.28 cm for the obstacle stride, respec-
tively. However, the stride durations
were similar for all the strides, with
the exception of the stride immediately
before the obstacle stride in animal B,
which was shorter than usual (Fig. 2f,i;
p, 10–5, Wilcoxon rank-sum test). We
refer to the first hindlimb to step over the obstacle as the lead-
ing limb and the second hindlimb as the trailing limb. In both
animals, the right limb was the trailing limb over the obstacle.

The obstacle did not start moving until two strides before (�2)
the obstacle stride in animal B and one stride before (�1) the obsta-
cle stride in animal S, meaning that from the perspective of the ani-
mal, the first gait cycle in the obstacle avoidance trials should be
essentially the same as the gait cycle during basic walking. Indeed,
the stride height and duration are virtually identical between these
two strides (Fig. 2e,f,g,h). Between the next two strides, the animals
could see and were aware of the obstacle moving toward them,
although the stride height remained unchanged for these strides.

After clearing the obstacle, the stride height returns to normal pre-
obstacle ranges. In summary, despite the large change in kinematics
in the obstacle stride, the subjects returned to normal walking
quickly after avoiding the obstacle, and, with the exception of ani-
mal B taking a smaller and quicker stride right before the obstacle
stride, they did not drastically alter their gait leading up to the obsta-
cle stride. Additionally, we observed a change in the interlimb coor-
dination among all four limbs from stride�1 to stride 2.

M1 neurons show increased activity but little phasic
reorganization during obstacle avoidance
We then characterized the response properties of individual neu-
rons in leg area of M1. We recorded 50 neurons from animal B

a b c
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Figure 5. The activity of most M1 neurons are phasically tuned to the gait cycle and increase their depth of modulation dur-
ing obstacle stepping. a, Example plot of activity of a neuron from animal B demonstrating a small shift in preferred phase in
response to obstacle stepping. b, Same as in a but for an example neuron from animal S demonstrating complex changes in
activity. c, Activity of all phasically modulated neurons for animal B during both basic walking (left) and the stride stepping
over the obstacle (right). Neurons are sorted by preferred phase during basic walking, with the earliest firing neurons on top.
Neuron ordering is kept the same for both basic walking and obstacle-stepping plots. The activity of each neuron is normalized
to its maximum firing rate. d, Same as in c, but for animal S. e–g, Changes in preferred phase, depth of modulation, and aver-
age firing rate, respectively, of the neural population between the basic walking stride and the obstacle stride. Each point rep-
resents an individual neuron, orange indicates statistically significant change [permutation test with 1000 label reshuffles, with
false discovery rate (FDR) correction for multiple comparisons; FDR set to 5%]. Thick dotted line indicates no change, thin dot-
ted lines delineate a change of 10% for preferred phase and 10 spikes/s for depth of modulation and average firing rate. h–j,
Same as in e–g but for animal S. k, Mahalanobis distance between the stride over the obstacle and the stride before any ob-
stacle movement for the population of neural firing rates (blue) or the kinematic variables (orange). Right plot shows the
cross-correlation between the neural and kinematic distances across multiple gait percentage lags with the dotted line indicat-
ing the peak lag. Positive indicates neural leading kinematics. l, Same as in k but for animal S.
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and 42 neurons from animal S. Figures 4 and 5a,b, illustrate the
activity of example neurons during both basic walking (purple)
and the stride over the obstacle (teal). To compare the activity
across trials, which had some slight variations in duration, the
spike trains were time normalized to 0–100% of the gait cycle
(Materials and Methods; Fig. 3c). Consistent with previous M1
recordings during locomotion, the majority of neurons tended to
increase their firing rate during specific phases of the gait cycle
(Foster et al., 2014; Yin et al., 2014; Xing et al., 2019). Although
many of these neurons fired at around a single phase of the gait
cycle (Figs. 4c, 5a), we also found neurons that had multimodal
PETHs (Fig. 4d). We used circular statistics (Drew and Doucet,
1991; Berens, 2009) on the unimodal PETHs to determine the pre-
ferred phase and dispersion (r) of the discharge rate of the neurons
around the gait cycle (Fig. 3e). We applied the Rayleigh test to
identify neurons whose discharge rates were not significantly
modulated to the gait cycle and further classified unimodal,
modulated neurons as weakly modulated if they had an r value
,0.15 during basic walking. Figure 3f shows the distribution of
dispersion values and indicates that the discharge rates of most
of our recorded neurons are strongly modulated. Since the pre-
ferred phase is only well defined for the discharge rates of neu-
rons that are both significantly modulated to the gait cycle and
have a unimodal PETH, we excluded neurons that are multimo-
dal or whose discharge rates are weakly modulated from pre-
ferred phase calculations (but not depth of modulation or mean
firing rate calculations).

We found that for both animals, the preferred phases of the
population of recorded neurons spanned the whole gait cycle
(Fig. 5c,d), consistent with previous studies in felines and maca-
ques (Beloozerova and Sirota, 1998; Drew et al., 2008; Foster et
al., 2014; Yin et al., 2014; Xing et al., 2019). Additionally, neurons
tend to fire at similar phases during the obstacle avoidance step
as during basic walking (Fig. 5c–e,h). Only 4 of 34 (animal B)
and 2 of 22 (animal S) of the strongly modulated neurons had
shifts in preferred phase .10% of the gait cycle. However, most
neurons tended to increase their depth of modulation during the

obstacle step (average increase: for animal
B, 6.37 spikes/s; for animal S, 11.62 spikes/
s), reflecting the larger amplitude of the
movement (Fig. 5f,i). The mean firing rates
also saw an overall increase, although the
change is not as large (average increase:
for animal B, 0.52 spikes/s; for animal S,
2.25 spikes/s; Fig. 5g,j), although we note
that this analysis favored active neurons,
and small changes in firing rate may be sig-
nificant for neurons whose baseline activity
was already low. The increase in depth of
modulation could potentially reflect larger
muscle activation requirements for lifting
the leg higher or increased requirements for
accuracy (Beloozerova and Sirota, 1993a).
Finally, we note that many of the neurons
exhibited complex changes in firing activity
beyond simple phase shifts or changes depth
of modulation (Fig. 4b,d).

Lifting the leg over the obstacle in-
volves a decision to move the limbs in a
specific way, which requires descending
input from motor cortex. We therefore
hypothesized that there would be a change
in neural activity preceding the modifying
movement to the gait. We determined

when the changes in the obstacle avoidance stride occurred by
calculating the Mahalanobis distance between stride 0 (the obsta-
cle stride) and stride �3 (the stride before any movement in the
obstacle) at each percentage of the gait phase. Unsurprisingly, we
saw a large increase in the difference between the kinematics
during the swing phase (Fig. 5k,l, orange plot; p, 10–5,
Wilcoxon rank-sum test), corresponding to the increase in
step height. We also observed an increase in the difference
of the neural population immediately before the kinematic
divergence (Fig. 5k,l, blue plot; p, 10–5, Wilcoxon rank-
sum test), giving evidence for the presence of an efferent
signal in M1 related to the action of lifting the leg over the
obstacle. Cross-correlation analysis determined that the
neural modulation preceded the change in kinematics by
7% of the gait cycle in animal B and 5% in animal S, which,
using the average stride durations, corresponds to 72.1 and
52.3 ms, respectively. One possible explanation, although
unlikely, for this signal could be that cortex engages sepa-
rate subpopulations for maintaining locomotion and for
carrying out voluntary gait adjustment, and would only
recruit the neurons related to voluntary movement during
the obstacle stride. However, within the population we are
recording from, we did not see the emergence of any clusters in
the top left in our depth of modulation plots, indicating the
lack of obstacle avoidance-specific neurons (Fig. 5f,i). We also
observed a deviation in neural activity earlier in the stride,
;20–40% of the gait cycle. This change could reflect prepara-
tory activity as the animals are observing the approaching ob-
stacle and formulating the motor plan to step over it.

Together, these results indicate that M1 neurons are active
during basic locomotion and that the same population is also
predictive of volitional gait-adjusting movements. Previous work
in rodents has shown that M1 population activity, although pres-
ent during both basic treadmill walking and stationary voluntary
movements, resides in separate subspaces across the two behav-
iors (Miri et al., 2017). We wanted to determine whether this

Figure 6. Analysis of low-dimensional motor cortical dynamics. Diagram illustrating the general analysis pipeline. Two
complementary approaches were used: a supervised approach, dPCA, where the type of the stride (obstacle vs nonobstacle)
was explicitly used by the model (top); and an unsupervised approach, PLDS, where the model was agnostic to the type of
stride (bottom). A time bin of 10ms was used for both dPCA and PLDS. In addition, for dPCA time was normalized with
respect to the gait cycle. See Materials and Methods for details on the dPCA and PLDS models and analyses.
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compartmentalization of neural activity is maintained when both
types of movements have to be conducted simultaneously such as
in obstacle avoidance. We therefore used dimensionality reduction
techniques to investigate whether M1 used specific neural subspa-
ces for carrying out the gait adjustment, and whether these sub-
spaces are distinct from the ones present during basic locomotion
(Fig. 1b).

dPCA reveals division of neural modes into obstacle-related
and obstacle-invariant subspaces
dPCA is a statistical method that decomposes neural activity into
subspaces associated with specific task parameters (Fig. 6). The
neural modes that comprise the subspaces are computed through
linear combination of the activity of each neuron. The weights of
this linear combination are optimized to find projections that are
either invariant or dependent on specific task parameters. Here,
we used dPCA to extract subspaces that were agnostic to the gait
adjustment (stride invariant) and also subspaces that captured
the change in population activity during the gait adjustment
(stride dependent). We found that 10 dPCA components were
able to explain 87.2% and 88.4% of the variance for animal B and
animal S, respectively.

The stride-invariant subspace accounted for most of the neu-
ral variance (77.1% for animal B, 80.7% for animal S) and,
indeed, showed very little modulation across strides (Fig. 7a,e),
preserving the same time-varying activity throughout all the
strides during obstacle stepping. The stride-dependent activity

accounted for 11.9% of the variance in animal B and 11.0% for ani-
mal S. We observed large deviations in the stride-dependent com-
ponents during the stride immediately before and the stride over
the obstacle (Fig. 7b,f; p, 0.0001; see Materials and Methods), sug-
gesting that these components capture an increase in M1 engage-
ment during those strides. Additionally, we compared the timing of
these shifts in relation to the changes in the kinematics during the
swing phase and found that, like with the population firing rates,
the activity of the stride-dependent components preceded the gait
changes (Fig. 7c,h).

Although dPCA was able to find subspaces that are invariant
and subspaces that are dependent on the gait modification, the
nature of the algorithm does not guarantee that the stride-invari-
ant and stride-dependent subspaces are orthogonal. For example,
we were also able to find stride-invariant and stride-dependent
subspaces for the kinematics, yet these subspaces could be largely
overlapping. Principal angles have been used in previous studies
to determine the alignment between two subspaces (Gallego et
al., 2018). To demonstrate that any results regarding the neural
subspaces are not simply trivially reflecting the properties of the
kinematics of the movement, we also performed control analyses
on the kinematics themselves along with a neural dataset simu-
lated from the kinematics similar to what was conducted in the
study by Gallego et al. (2018). We calculated the principal
angles between the stride-invariant and stride-dependent
neural subspaces, and found that they were greater than the princi-
pal angles between the kinematics subspaces and kinematic-
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Figure 7. dPCA separates neural activity into obstacle stride-invariant and stride-dependent subspaces. a, b, f, g, Top two stride-invariant (a, f) and stride-dependent (b, g) demixed compo-
nents. Each of the strides surrounding the obstacle stride (stride 0) are plotted individually. Numbers at the top represent percentages of the total variance for each component. Arrows indicate
the increase in the stride-dependent neural modes during the obstacle stride that account for the peaks in c and h. Colored dots/lines indicate points where the stride-dependent components
were significantly greater than noise (see Materials and Methods). c, h, Cross-correlation between the change in kinematics and the change in activity within the stride-dependent subspace
across multiple gait lags, similar to Figure 5, k and l. d, i, Principal angles between the stride-invariant subspace and stride-dependent subspace for both neural dPCA and kinematics dPCA.
Error bars represent 95% confidence intervals for 500 bootstrap resamples. Dotted gray line represents the 97.5th percentile of the null distribution of completely overlapping subspaces. e, j,
First two stride-invariant components (left plot) or stride-dependent components (middle plot) are plotted against each other to visualize rotational structure (or lack thereof). The slope fields
for the rotations inferred with jPCA are shown as orange arrows. Right plot, Ratio of the jPCA model R2 to an unconstrained LDS model R2 to quantify the strength of rotations. For dPCA used
on neural activity, error bars are 95% confidence intervals for 500 bootstrap reshuffles. Stars indicate statistically significant difference (Wilcoxon rank-sum test, a = 0.05). Var, Variance; Kin,
kinematics; corr, correlation; Inv, invariant; Dep, dependent.
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simulated subspaces (Fig. 7d,i; Materials and Methods) as well
as a bootstrapped null distribution (Materials and Methods;
p, 0.05 significance level).

It is also possible that these dPCA components reflect the ac-
tivity of specific subpopulations of neurons, rather than the
whole population. We investigated this possibility by examining
the projection weights of each neuron (Kobak et al., 2016;
Gallego et al., 2018). We found that the distribution of the
weights for all of the components is unimodal, with small weights
for most neurons and no outliers. Additionally, we performed
cluster analysis on the neural weights (Rodriguez and Laio, 2014;
Kobak et al., 2016) and found that the neurons formed only a sin-
gle cluster, indicating that the dPCA components are distributed
across the whole neural population rather than corresponding to
specific subpopulations.

Finally, we hypothesized that since the
cyclic locomotor rhythm was a common
factor across all of the strides, the stride-
invariant subspace would contain significant
rotational dynamics, while the dynamics of
the stride-dependent subspace, which repre-
sents the precisely timed motor adjustments
on the gait, would be less rotational. We used
jPCA to fit a rotational dynamical system to
both sets of subspaces, and quantified the
rotational strength as the ratio of the coeffi-
cient of determination (R2) of the jPCAmodel
to the R2 of an unconstrained dynamical sys-
tems model (Churchland et al., 2012). Figure
7, e and j, illustrates the fitted rotational dy-
namics of the first two latent dimensions in
both subspaces. In agreement with our hy-
pothesis, we found that there was significantly
more rotational structure in the stride-invari-
ant than the stride-dependent subspace (per-
mutation test, p=0.002 for both animals;
n=500 permutation shuffles for all dPCA sta-
tistical tests). In contrast, when we tested the
kinematics, we found that the stride-invariant
and stride-dependent subspaces were both
less rotational. Finally, although we chose to
use a dimensionality of 10 in our dPCAmodel
(5 dimensions for stride-invariant subspaces,
5 for stride-dependent subspaces) based on
previous dimensionality reduction studies (Yu
et al., 2009; Sadtler et al., 2014; Vargas-Irwin
et al., 2015; Xing et al., 2019), we tested these
findings across a range of dimensionalities
and obtained similar results.

Unsupervised dimensionality reduction
shows similar separation of neural
subspaces
dPCA is a powerful technique that uses la-
beled data to extract task-related subspaces.
To ensure that our findings are not simply
the result of the partially supervised nature
of dPCA, we also used an unsupervised
dimensionality reduction model completely
agnostic to the stride type (Fig. 6). One such
model, PLDSs, explicitly infers the low-
dimensional dynamics through a time-evolu-
tion matrix, resulting in smooth single-trial
neural trajectories without the need for trial

averaging (Fig. 8a,b,e,f; Macke et al., 2011; Aghagolzadeh and
Truccolo, 2014; Xing et al., 2019). We have previously shown that
the PLDS neural modes were able to reconstruct limb kinematics
just as well as the full population rates and better than PCA com-
ponents during locomotion (Xing et al., 2019).

The top three dimensions accounts for most of the variance
(for animal B, 60.8%; for animal S, 86.4%).The neural trajectories
in these components for each of the strides are shown in Figure
8, a and b, for animal B, and in Figure 8, e and f, for animal S.
Interestingly, there are projections of this space where the neural
trajectories completely overlap, regardless of the stride (Fig. 8a,
e), while other projections reveal a divergence of the trajectories
during the obstacle stride (Fig. 8b,f). We defined the stride-invar-
iant subspace as the projection that results in the greatest amount

a e

b f

c g

d h

Figure 8. PLDS also extracts neural modes invariant to obstacle stepping. a, e, Neural trajectories from three neural
modes, or latent dimensions (LDs), inferred from the PLDS model. Each of the strides surrounding the stride over the obsta-
cle (stride 0) are plotted individually. The view angle of the trajectories is chosen to maximize the overlap between all of
the strides according to a spread index (see Materials and Methods). The projection into this view represents the stride-
invariant subspace. Circular dots indicate the transition from the stance phase to the swing phase in each stride, while dia-
mond dots indicate the transition from the swing phase to the stance phase of the next stride. b, f, Same plot as in a and
e but with a view angle that highlights the differences across strides, representing a stride-dependent subspace. c, g, Top
three PCA components of the kinematics for the same strides as the PLDS plots. d, h, Spread index quantifying how much
the trajectories overlap or diverge across strides (see Materials and Methods). We compared the amount of divergence
between the trajectories in the stride-invariant neural subspaces with the stride-dependent neural subspaces (left) as well
as the stride-invariant neural subspaces with the stride-invariant kinematic subspaces (right). Stars indicate statistical sig-
nificance (Wilcoxon signed-rank test, a = 0.05). a–d, Animal B; e–h, animal S. Inv, invariant; Dep, dependent.
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of overlap across all of the strides. We
quantified the amount of overlap using a
spread metric (Materials and Methods) and
optimized for the projection that mini-
mized this spread metric. There are two no-
table features in these projections that are
consistent in both animals. First is the clear
rotational structure in this subspace, cor-
roborating our results from the dPCA.
Second is the large amount of invariance
between the trajectories across the different
strides, despite the large change in move-
ment during the obstacle stride. We
emphasize that, unlike dPCA, the PLDS
model is not designed to specifically iden-
tify neural modes invariant to any particu-
lar variable, so it is entirely possible that the
modulation in response the voluntary gait
adjustment pervades all the top PLDS neu-
ral modes (Fig. 1c). Indeed, the top three
principal components of the kinematics
demonstrate this case, as there are no pro-
jections resulting in the same amount of
overlap between the obstacle stride and the
basic walking strides (Fig. 8c,g). When
comparing the smallest achievable spread
index for the kinematics and the PLDS tra-
jectories, the kinematics was significantly
larger (one-tailedWilcoxon signed-rank test:
n=38 trials, p=4.03� 10–8 for animal B;
n=43 trials, p=6.23� 10–9 for animal S) by
;2.13 times for animal B and 1.58 times for
animal S (Fig. 8d,h). As an additional control, we simulated a neural
dataset using only kinematics data, following the method of Gallego
et al. (2018). Like with the kinematics PCA, there is no projection in
which the ongoing activity is unaffected by the obstacle movement
(Fig. 9).

Projecting the PLDS trajectories along a different angle
reveals the modulation of the latent activity in response to the
voluntary intervention (Fig. 8b,f) and the significantly greater
spread index compared with the stride-invariant projection (for
animal B, p=4.03� 10–8; for animal S, p= 6.23� 10–9). Like in
dPCA, the trajectories appear to diverge away from the basic
walking activity (Fig. 8b,f, purple and dark blue traces) during
the obstacle stride and the preceding stride (Fig. 8b,f, light blue
and black traces), before returning to the preobstacle region (Fig.
8b,f, green and orange traces). These results indicate that a con-
sistent set of rotating neural modes throughout the whole obsta-
cle-stepping sequence is maintained in the cortical activity, while
a separate set of modes encode the actual gait adjustment move-
ments. The time evolution of the neural activity in the PLDS
latent dimensions as the animal steps over the obstacle is illus-
trated in Movie 2.

Decoding of movement kinematics does not generalize
between basic locomotion and obstacle stepping
The existence of neural modes correlating with the efferent inter-
vention of M1 onto the locomotor movements suggests that any
kinematic decoders trained on neural data during basic locomo-
tion (and therefore not requiring any gait intervention) would
not capture the information represented in these modes.
Therefore, we hypothesized that decoders would not be able
to generalize across strides during obstacle stepping. To test

this hypothesis, we used a Wiener filter decoder to predict the
toe height, the most pertinent kinematic variable for clearing
the obstacle, from the neural activity. We trained the decoders
with neural and kinematic data from only stride �3 (walk
trained) or only stride 0 (obstacle trained) and measured the
decoding performance throughout all the strides. We found
that while the walk-trained decoder was able to reconstruct
the kinematics fairly accurately for the strides before and after
the obstacle stride, there was a large amount of error when
decoding the swing phase of the obstacle stride (Fig. 10a,b,
blue). Similarly, the obstacle-trained decoder was able to accu-
rately decode the toe height during the obstacle stride, but was
unable to do so with the surrounding strides (Fig. 10a,b,
purple).

Finally, to directly test the necessity of the stride-dependent
neural modes for capturing the change in kinematics during the
obstacle stride, we trained a decoder on neural modes from just
the stride-invariant subspace of dPCA, as well as a decoder
trained on all neural modes, including those from the stride-de-
pendent subspace. We trained the decoder using the activity
from all the strides and performed leave-one-out cross-valida-
tion. We found that while the decoder trained on just the stride-
invariant neural modes performed well on the strides before and
after the obstacle stride, it performed poorly on the obstacle
stride itself, despite having been trained on data during the ob-
stacle stride. When we included the stride-dependent modes,
there was no effect on the first stride (for animal B, p=0.1108;
for animal S, p= 0.3878; Wilcoxon rank-sum test), but increased
the decoding performance during the obstacle stride (Fig. 10c,d;
p, 10–5, Wilcoxon rank-sum test), suggesting that much of the
movement information involved in the gait adjustment is con-
tained in these neural modes.

a

b

c

d

Figure 9. PLDS with model neural data derived from kinematics. For both animal B and animal S, we simulated neural ac-
tivity using the kinematics and applied our PLDS analysis (see Materials and Methods). a, b, The neural trajectories in the first
three latent dimensions. There is no projection that results in the same level of overlap across all the strides as in the M1
neural trajectories. c, d, The minimum attainable spread metric for either the real M1 neural data or the kinematic-modeled
neural data.
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Discussion
In this study, we investigated the neural dynamics of primate M1
during simultaneous execution of two movement modalities: ba-
sic locomotion and visually guided volitional adjustments in
response to an obstacle. Prior research has demonstrated separa-
tion of neural activity into distinct subspaces in other contexts.
For example, one study has shown that during a forelimb-cycling
task, separate subspaces correspond to movement direction,

movement initiation, and rotation (Schroeder et al., 2022). That
finding is in agreement with our results, suggesting that different
movement parameters may be multiplexed through partitioning
into subspaces, although that study did not examine the neural
response when the cycling movement trajectory is altered.
Another previous study has found different M1 subspaces
between rodents walking on a treadmill and rodents pressing
a lever, and concluded that separate dynamics emerge in M1
activity when switching between these two behaviors (Miri et
al., 2017). However, it is still unknown how these two different
aspects of movement are engaged when they have to be con-
ducted together as a single action. Additionally, while the cortical
activity during obstacle avoidance has been thoroughly described
in cats (Beloozerova and Sirota, 1993a, b; Drew et al., 2002, 2008;
Beloozerova et al., 2010), this is the first characterization of intra-
cortical activity during obstacle avoidance walking in nonhuman
primates, an animal model with very dissimilar neuroanatomy and
biomechanics from mice and felines. For example, the corticospinal
tract makes monosynaptic connections to motor neurons, allowing
for more direct control of the musculature, in rhesus macaques
(Kuypers, 1964). Here, we found that the subspace-partitioning
strategy is used to differentially represent volitional movements and
locomotion, behaviors that have been shown to involve different

neural processes and structures, when both
types movements are being executed at the
same time.

In felines and canines, lesion studies have
demonstrated that motor cortex is not nec-
essary for the generation of walking move-
ments (Graham Brown, 1911; Grillner et al.,
1997), and the control of basic unobstructed
locomotion is thought to be managed by
subcortical and spinal circuits (Gerasimenko
et al., 2006; McCrea and Rybak, 2008).
However, volitional movements, such as
reaching, do require cortical input. This
extends to complex locomotion, as inac-
tivation and lesion studies have shown
that without M1 input, felines and can-
ines are unable to precisely place their
limbs on a ladder (Liddell and Phillips,
1944; Beloozerova and Sirota, 1993a;
Grillner et al., 1997; Metz and Whishaw,
2002; Farr et al., 2006; Friel et al., 2007).
In nonhuman primates, numerous studies
have also suggested that volitional move-
ments and basic locomotion require differ-
ent amounts of cortical engagement. In
prior studies, macaques were able to walk
within days after a lesion to the corticospinal
tract, but their ability to carry out fine foot
movements were almost completely abol-
ished (Courtine et al., 2005). Similarly,
Kuypers (1964) demonstrated that after a
pyramidotomy, macaques could still
walk and climb up cages, but lost the

ability to make fine dexterous movements (Lemon et al.,
2012). These findings suggest that, even in nonhuman pri-
mates, regions outside of motor cortex are responsible for,
at least partially, generating the movements necessary for
locomotion. This is in stark contrast to the essential role that
M1 plays during stationary reaching movements. Therefore,
the motor cortex of animals carrying out obstacle avoidance

Movie 2. PLDS neural trajectories during obstacle avoidance. This movie illustrates the
time-varying neural activity in the first three PLDS latent dimensions (LDs) of animal B. The
obstacle stride, three strides before the obstacle stride and two strides after the obstacle
strides, are shown. Thin traces represent the activity for each individual trial. Thick traces rep-
resents the trial-averaged activity (e.g., what is displayed in Fig. 8a,b). [View online]

a

b

c d

Figure 10. Decoding does not generalize across basic walking and obstacle stepping. a, b, Error in decoding of the toe
height for decoders trained only on the data from the stride before any obstacle movement (stride �3; shown in purple) or
decoders trained only on data from stride stepping over the obstacle (stride 0; shown in blue); 300–400% represents the
stride over the obstacle, and error bars indicate SD. c, d, Mean squared error for decoding toe height in each of the strides
surrounding the obstacle stride, trained on different sets of training data. “All Trained” indicates a decoder trained on data
from all of the strides (tested under cross-validation). “Invariant dPCA Trained” indicates a decoder trained on data from all
of the strides, but only using the stride-invariant dPCA components. “All dPCA Trained” indicates a decoder trained on data
from all of the strides and using both the stride-invariant and stride-dependent dPCA components. a, c, Animal B; b, d, ani-
mal S.
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must be able to generate the necessary volitional adaptive
movements, while simultaneously taking into account the addi-
tional movements being generated by external spinal circuits.

This differential involvement of motor cortex could be instan-
tiated through distinct subpopulations of cells that are activated
only during one type of movement. One set of neurons, for
example, may be dedicated to monitoring the activity of spinal
CPGs, while a separate set of neurons direct the timing and mag-
nitude of the movement over the obstacle. However, we did not
find evidence for this in our data; the same neural population
was active during both locomotion and volitional gait adjust-
ments. However, our findings indicate that the representation of
these two movement modalities are separated within different
subspaces.

We used techniques such as dPCA and PLDS to infer the
low-dimensional dynamics in M1. We then asked the following:
when the animal must carry out a larger movement during the
obstacle stride, does the brain modify the whole ongoing neural
activity coming from the previous walking strides to carry out
the avoidance movement (Fig. 1c)? Our results suggests that this
is not the case. Both analyses revealed rotational neural subspaces
that are unaffected by the change in movement during obstacle
stepping, as well as subspaces that were modulated by the gait
adjustment and also necessary for accurate decoding of end point
kinematics during the obstacle step. It appears that a subspace in
the neural activity emerges that consistently tracks the same
cyclic activity throughout, despite large changes in the move-
ment itself, such as a 2–5� increase in the step height. All the
variance corresponding to this large change in movement is con-
fined to its own distinct subspace. This subspace separation is
not simply the result of the change in kinematics of the movement,
because our control dPCA analysis on the kinematics themselves
and a simulated dataset revealed very small principal angles.

These different subspaces may correspond to different neural
processes involved during obstacle avoidance. One strategy that
could be used by the nervous system is to send a feedforward
copy of the motor commands generated by the spinal circuits
to cortex (Fig. 1a, purple arrow), allowing it to generate the
necessary volitional movements within the proper context of
the ongoing locomotor sequence. Indeed, it has been previ-
ously proposed that the cyclic activity observed in motor cor-
tex during basic locomotion is a reflection of the spinal CPG
activity, conveyed through the spinocerebellar tract to the
dentate nucleus, and passing through the ventrolateral thala-
mus before arriving at motor cortex (Massion and Rispal-
Padel, 1972; Beloozerova and Sirota, 1998; Marlinski et al.,
2012; Beloozerova and Marlinski, 2020). This cyclic activity
could potentially be to inform cortex of the state of the limb
within the gait cycle, should the need for an adaptive move-
ment arise. After all, the amount of lifting required to clear the
obstacle is markedly different depending on whether the leg is
in contact with the ground or at the apex of the swing phase.

The existence of the stride-invariant neural modes we ob-
served are in agreement with this hypothesis. The activity within
these neural modes remains consistent throughout all gait cycles,
even when the kinematics become drastically different during
the obstacle stride. These neural modes also exhibit strong rota-
tional dynamics, consistent with the idea that they are induced
by the rhythmic activity in spinal CPGs. Additionally, these
modes were sufficient for decoding end point kinematics during
basic locomotion, but failed during the volitional gait adjust-
ment, suggesting that they do not carry information involving
the adjusting movement. However, additional experiments using

causal circuit perturbations will be needed to truly determine the
origin of these signals in nonhuman primates.

Meanwhile, the variance related to volitional gait-adjusting
movement appear to be contained to a separate set of neural
modes. The integration of the visual information along with the
calculation of the precise movement required to clear the obsta-
cle may be subserved by these modes. Physically, these modes,
which are the linear combinations of the neural activity, may cor-
respond to the synaptic convergence of cortical neurons onto
downstream targets. The division of the subspaces we observed
is analogous to the output-potent and output-null separation
proposed in previous studies (Kaufman et al., 2014; Elsayed et
al., 2016; Miri et al., 2017). Lesion studies have demonstrated
that motor cortex does not directly control movement during ba-
sic locomotion, so the cyclical activity in our stride-independent
subspace may be used to inform motor cortex of the phasic activ-
ity generated in the spinal cord, without interfering with muscle
activation (i.e., the null-space of the stride-dependent subspace).
Only when efferent control from M1 is required, such as during
the voluntary motion of lifting the leg over the obstacle, does the
activity transition into the separate, stride-dependent subspace
where the weighted summation of the activity enables the trans-
mission of control signals to the downstream musculature. We
hope to test the above conjecture in future studies with more
direct experiments.

Finally, our findings have implications for the development of
brain–machine interfaces (BMIs) aiming to restore hindlimb
functionality for patients with motor deficits. In recent years,
advancements have been made in the development of closed-
loop systems for restoring walking ability after spinal cord injury
(Capogrosso et al., 2016; Donati et al., 2016). These systems use
electrophysiology recordings from cortex to drive either spinal
stimulation or movement of an exoskeleton, and have demon-
strated remarkable success in allowing subjects to recover loco-
motor ability. These systems currently only aim to restore basic
locomotion, and not precise directed leg movements. Our decod-
ing results suggest that future BMIs aiming to restore a wide
range of hindlimb movements, including visually adaptive loco-
motion, should consider including both basic locomotion as well
as volitional movements during decoder calibration to achieve
optimal performance.
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