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The Pearson correlation coefficient squared, r2, is an important tool used in the analysis of neural data to quantify the simi-
larity between neural tuning curves. Yet this metric is biased by trial-to-trial variability; as trial-to-trial variability increases,
measured correlation decreases. Major lines of research are confounded by this bias, including those involving the study of
invariance of neural tuning across conditions and the analysis of the similarity of tuning across neurons. To address this, we
extend an estimator, r̂2ER, that was recently developed for estimating model-to-neuron correlation, in which a noisy signal is
compared with a noise-free prediction, to the case of neuron-to-neuron correlation, in which two noisy signals are compared
with each other. We compare the performance of our novel estimator to a prior method developed by Spearman, commonly
used in other fields but widely overlooked in neuroscience, and find that our method has less bias. We then apply our esti-
mator to demonstrate how it avoids drastic confounds introduced by trial-to-trial variability using data collected in two prior
studies (macaque, both sexes) that examined two different forms of invariance in the neural encoding of visual inputs—trans-
lation invariance and fill-outline invariance. Our results quantify for the first time the gradual falloff with spatial offset of
translation-invariant shape selectivity within visual cortical neuronal receptive fields and offer a principled method to com-
pare invariance in noisy biological systems to that in noise-free models.
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Significance Statement

Quantifying the similarity between two sets of averaged neural responses is fundamental to the analysis of neural data. A
ubiquitous metric of similarity, the correlation coefficient, is attenuated by trial-to-trial variability that arises frommany irrel-
evant factors. Spearman recognized this problem and proposed corrected methods that have been extended over a century.
We show this method has large asymptotic biases that can be overcome using a novel estimator. Despite the frequent use of
the correlation coefficient in neuroscience, consensus on how to address this fundamental statistical issue has not been
reached. We provide an accurate estimator of the correlation coefficient and apply it to gain insight into visual invariance.

Introduction
The measurement of correlation between noisy datasets is ubiq-
uitous and plays a critical role in sensory neuroscience. The r2

between two sets of mean neural responses is fundamentally
relevant to lines of research that compare tuning curves
across neurons to understand functional organization and

population encoding (Gawne and Richmond, 1993; Gawne et
al., 1996; Cohen and Kohn, 2011; Power et al., 2011; Kiani et
al., 2015) and to studies that compare tuning curves within the
same neuron across stimulus transformations to understand
invariance in cortical representations (Nandy et al., 2013; El-
Shamayleh and Pasupathy, 2016; Kell and McDermott, 2019;
Popovkina et al., 2019). Despite the importance of estimating
the correlation across tuning curves, the typical estimator, r̂2, is
fundamentally confounded by the trial-to-trial variability of
neural responses. Even if two neurons have identical tuning,
or a single neuron perfectly maintains its selectivity under
some stimulus transformation, the measured correlation in
each case will decrease as trial-to-trial variability increases.
Investigators have approached this problem by averaging over
repeated trials of the same stimulus, but added data collection
is expensive and never wholly removes the confounding influ-
ence of noise.
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A more principled approach has been to account for trial-to-
trial variability in the estimation of correlation. Correction for
the attenuation of the correlation coefficient by measurement
error has received considerable attention from fields outside neu-
roscience (Thouless, 1939; Beaton et al., 1979; Rosner and Willett,
1988; Adolph and Hardin, 2007; Saccenti et al., 2020) and has
recently been adopted to estimate invariance of neural activity
(Kell and McDermott, 2019). These studies followed a line of
work begun by Spearman (1904), who provided a correction in
the form of a multiplicative scaling of the Pearson correlation coef-
ficient by its estimated attenuation. Here, we follow a different
approach developed in the neuroscience literature (Sahani and
Linden, 2003; Haefner and Cumming, 2008; Pospisil and Bair,
2021b) that sought to account for trial-to-trial variability in the
estimation of the fit of a model to noisy estimated tuning curves.
This line of work developed separate unbiased estimates of the nu-
merator and denominator of the Pearson correlation coefficient.
Here, we show how to extend that work to the case of measuring
the correlation between two noisy, estimated tuning curves, and
we call the estimator r̂2ER because it estimates the r2 between the
expected responses (ERs) of two neurons. We show in simulation
that r̂2ER is less biased for small samples and less biased asymptoti-
cally than Spearman’s approach.

To demonstrate the usefulness of our novel estimator, we apply
it to the problem of invariant cortical representation, where single-
neuron selectivity is considered to be invariant if it is maintained
across a transformation of the sensory input. Transformations of
visual stimuli can be geometric, such as translation (Nandy et al.,
2013) or scaling (El-Shamayleh and Pasupathy, 2016), or they can
modify appearance by changing surface properties, for example,
color or luminance (Bushnell et al., 2011; Popovkina et al., 2019).
We show in neural data how r̂2ER provides insights into two forms
of invariance in area V4. First, for translation invariance, we find
that the naive r̂2 causes V4 neuronal selectivity to appear to vary
with small shifts in position, whereas our noise-corrected r̂2ER
reveals that selectivity is robust to small translations. Second, we
study fill-outline invariance, which examines how shape selectivity
for boundaries depends on surface properties of simple objects.
We find that among neurons driven strongly enough to accurately
infer invariance, our estimator shows an approximately uniform
distribution of invariance from zero to one across V4, indicating a
striking diversity in the influence of surface properties on form se-
lectivity. Finally, to demonstrate the more general significance of
our estimator, we document how studies of place field remapping
in hippocampus are particularly susceptible to the confounding
effect of noise on the estimation of tuning curve correlation.

Materials and Methods
Simulation procedure. To demonstrate the bias that noise imparts on

neuron-to-neuron correlation and the ability of our methods to remove this
bias, we simulate the responses of neurons to m stimuli across n repeats.
We generate values, ri,j, that represent the square root (for reasons described
below) of single-neuron responses to the jth repeat of the ith stimulus from
a normal distribution, ri;j ;Nðmi;s

2Þ; where the mean, mi, varies across
stimuli while the variance, s2, is constant. The degree of variation across
the mi reflects how well the stimuli modulate the neural response; we call
this the dynamic range and quantify it as follows:

d2 ¼
Xm
i¼1

ðmi � �mÞ2; (1)

where �m is the average of the mi across stimuli. Trial-to-trial variability
can be different across cells, fixing n and m; the signal-to-noise ratio

(SNR) determines the reliability with which correlation can be estimated
across neuron pairs as follows:

SNR ¼ d2=m
s 2

: (2)

This will be a critical parameter in both our simulations and our
analysis of neural recordings.

For our simulations, the tuning curves for a pair of neurons, X and
Y, in response to a set ofm stimuli are defined to be the two sets of mean
responses, mi and �i, respectively (i = 1 ... m), and these are modeled as
sinusoids (Fig. 1A, lines), as in the following:

mi ¼ aX 1 dX
sin u ið ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1

sin u jð Þ2
s ; (3)

where the denominator normalizes the length of the tuning vector as
follows:

u i ¼ ði� 1Þ
m

2p : (4)

The tuning curve for neuron Y is simply phase shifted to achieve the
desired value of r2ER, as follows:

A

B C

Figure 1. Simulation model of neuron-to-neuron fits and validation of r̂2ER. A, Here,
r2ER ¼ 1 because tuning curves (solid trace) are identical up to a shift and scaling. The esti-
mate of correlation, r̂ 2, from trial averages (open circles) is lower than one. B, Simulation
of r̂2 (orange) and r̂ 2ER (blue) for estimating the correlation of two noisy tuning curves at
varying levels of true r2ER in the case where the second neuron has a lower SNR, SNRX = 1,
SNRY = 0.5. Number of trials are n = 4, stimuli m = 371, and trial-to-trial variability is
s 2 ¼ 0:25. Vertical bars are 95% quantiles. C, The same simulation as B, but both neurons
have SNR = 1.
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�i ¼ aY 1 dY
sin u i 1 arccosðrERÞð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1

sin u j 1 arccosðrERÞ
� �2s : (5)

To validate potential estimators for r2ER, we draw responses inde-
pendently from this model for n repeats for each of the m stimuli.
Averaging these observations across repeats produces observed tuning
curves for the two simulated neurons (Fig. 1A, open circles).

Assumptions for the derivation of unbiased estimators. To simplify
the derivation of unbiased estimators for r2ER, we assume that neural
responses have undergone a variance-stabilizing transform so that trial-
to-trial variability is the same across all stimuli for a given neuron. For
example, if the neural responses are Poisson distributed or, more gener-
ally, have a linear mean-to-variance relationship, the square root is a var-
iance stabilizing transform. In all results where we apply our estimator
to neural data, we take the square root of spike counts. We furthermore
assume that averaged responses are normally distributed, justified by
invoking the central limit theorem guaranteeing convergence to normal-
ity as the number of repeats increases. The Box–Cox transform applied
to the spike counts can further ensure these assumptions of equal var-
iance and normality are met (Box and Cox, 1964).

Unbiasing r2. In the case where both X and Y are equal variance sto-

chastic responses, Xi ;N mi;
s 2

n

� �
and Yi ;N �i;

s 2

n

� �
, we aim to

unbias the naive correlation coefficient defined as follows:

r̂2 ¼

Xm
i¼1

ðXi � �XÞðYi � �YÞ
 !2

Xm
i¼1

ðXi � �XÞ2
Xm
i¼1

ðYi � �YÞ2
(6)

to ideally achieve a corrected estimator, r̂2ER, as follows:

E½̂r2ER� ¼ r2ER ¼

Xm
i¼1

ðmi � �mÞð�i � ��Þ
 !2

Xm
i¼1

ðmi � �mÞ2
Xm
i¼1

ð�i � ��Þ2
: (7)

In our approach, we will unbias the numerator and denominator of
Equation 6 separately. The expected value of the numerator is the following:

E
Xm
i¼1

ðXi � �XÞðYi � �YÞ
 !2
2
4

3
5 ¼

Xm
i¼1

ðmi � �mÞð�i � ��Þ
 !2

1
s 2

n

Xm
i¼1

ðmi � �mÞ2 1
Xm
i¼1

ð�i � ��Þ2 1 ðm� 1Þs
2

n

 !
; (8)

in which the first term is the desired numerator (that of Eq. 7), and the
term on the second line is the bias. To remove this bias, an unbiased esti-
mate of it can be subtracted from the numerator of Equation 6.

The denominator of Equation 6 consists of two factors that are each
scaled noncentral chi-squared distributions as follows:

Xm
i¼1

ðXi � �XÞ2 ; s 2

n
x 2

m�1

n
s 2

Xm
i¼1

ðmi � �mÞ2
 !

(9)

and

Xm
i¼1

ðYi � �Y Þ2 ; s 2

n
x 2

m�1

n
s 2

Xm
i¼1

ð�i � ��Þ2
 !

: (10)

Thus, the expected values of these factors are as follows:

E
Xm
i¼1

ðXi � �XÞ2
" #

¼ E
s 2

n
x 2

m�1

n
s 2

Xm
i¼1

ðmi � �mÞ2
 !" #

¼
Xm
i¼1

ðmi � �mÞ2 1 ðm� 1Þs
2

n
(11)

and

E
Xm
i¼1

ðYi � �Y Þ2
" #

¼ E
s 2

n
x 2

m�1

n
s 2

Xm
i¼1

ð�i � ��Þ2
 !" #

¼
Xm
i¼1

ð�i � ��Þ2 1 ðm� 1Þs
2

n
: (12)

Because these two random variables are independent, the expected
value of the denominator, which is their product, is the product of these
expected values as follows:

E
Xm
i¼1

ðXi � �XÞ2
Xm
i¼1

ðYi � �Y Þ2
" #

¼
Xm
i¼1

ðmi � �mÞ2 1 ðm� 1Þs
2

n

 ! Xm
i¼1

ð�i � ��Þ2 1 ðm� 1Þs
2

n

 !

¼
Xm
i¼1

ðmi � �mÞ2
Xm
i¼1

ð�i � ��Þ2

1 ðm� 1Þs
2

n

Xm
i¼1

ðmi � �mÞ2 1
Xm
i¼1

ð�i � ��Þ2 1 ðm� 1Þs
2

n

 !
:

(13)

The first term (second line of this equation) is the desired denomina-
tor (that of Eq. 7), whereas the second term (third line) is the bias. To
remove this bias, an unbiased estimate of it can be subtracted from the
denominator of Equation 6.

Estimators of bias terms. To compute the bias terms to be subtracted
from the numerator and denominator, three unknown quantities need to
be estimated, that is, the two following dynamic range values:

d2X ¼
Xm
i¼1

ðmi � �mÞ2 (14)

d2Y ¼
Xm
i¼1

ð�i � ��Þ2; (15)

and the trial-to-trial variability, s 2. Below we provide unbiased estima-
tors for these quantities.

In the case of the dynamic range values, the following naive sample
estimator:

d̂
2

X ¼
Xm
i¼1

ðXi � �XÞ2 (16)

has a bias, as revealed by taking its expected value as follows:

E
Xm
i¼1

ðXi � �XÞ2
" #

¼ E
s 2

n
x 2

m�1

n
s 2

Xm
i¼1

ðmi � �mÞ2
 !" #

¼
Xm
i¼1

ðmi � �mÞ2 1 ðm� 1Þs
2

n
: (17)

Thus, an unbiased estimator is the following:
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d̂
2

XðERÞ
¼
Xm
i¼1

ðXi � �XÞ2 � ðm� 1Þs
2

n
: (18)

For the case of the sample variance, if we have n repeated trials, we
can calculate sample variance over those trials, then because the variance
is the same across stimuli and neurons (assuming a variance stabilizing
transformation), we can average them for a global estimate as follows:

ŝ 2 ¼ 1
m

Xm
i¼1

s2i;X 1
1
m

Xm
i¼1

s2i;Y

 !,
2; (19)

where s2i;X and s2i;Y are the sample variance estimates calculated across n
repeats for the ith stimulus. Using these unbiased quantities to form the
terms to be subtracted from the numerator and denominator of the naive r̂2

(Eq. 6), we finally arrive at our corrected estimator for r2ER in the following:

r̂2ER ¼

Xm
i¼1

ðXi � �XÞðYi � �YÞ
 !2

� ŝ 2

n
d̂
2

XðERÞ
1 d̂

2

YðERÞ
1 ðm� 1Þ ŝ

2

n

� �

Xm
i¼1

ðXi � �XÞ2
Xm
i¼1

ðYi � �YÞ2 � ðm� 1Þ ŝ
2

n
d̂
2

XðERÞ
1 d̂

2

YðERÞ
1 ðm� 1Þ ŝ

2

n

� �:

(20)

Confidence intervals for r̂2ER. To quantify uncertainty about the esti-
mate r̂2ER relative to the true parameter r2ER, we follow the same approach
laid out in Pospisil and Bair (2021b) for estimating the correlation between
a fixed model and neural tuning estimated from noisy neural data. There
we found that several commonly used generic bootstrap methods did not
provide the desired coverage probability in simulation. Of those methods,
the parametric BCa (bias-corrected and accelerated) was the closest to the
desired probability (Efron and Tibshirani, 1994). We developed an alterna-
tive confidence interval (CI) using a Bayesian approach that achieved the
desired coverage probability, and we called it the estimate centered credible
interval (ECCI).

ECCI finds confidence intervals centered around the estimate of r̂2ER;
which under its posterior sampling distribution, given the observed data,
provides the appropriate a coverage level. To do this, we assumed uninfor-
mative priors on the dynamic range and trial-to-trial variability of the two
multivariate normal distributions representing samples from the two tuning
curves. Using the Metropolis–Hastings algorithm, we then conditioned on
estimates of these parameters to draw from the posterior sampling distribu-
tion of r̂2ERjr2ER for an arbitrary r2ER. We then find those values of r2ER that
would result in the observed r̂2ER with probability 1 – a/2 and a/2 for the
upper and lower ends of the confidence interval. Pospisil and Bair (2021b)
provide more details.We apply this method to calculate confidence intervals
for estimates of r̂2ER throughout the rest of the article.

Spearman’s correction for attenuation. Spearman (1904) noted that
in the case of measurements of two quantities with some underlying true
correlation but with additive independent measurement error, the meas-
ured correlation would tend to be less than the true correlation. He pro-
vided the analytic expression for the attenuation, A (using the notation
of Saccenti et al., 2020), under a bivariate normal model as follows:

A ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11

s 2
w;X

s 2
a;X

 !
11

s 2
w;Y

s 2
a;Y

 !vuut
; (21)

so that the observed correlation, r , was a scaling of the true correlation,
r0, as follows:

r ¼ Ar 0: (22)

Here, s 2
w;X and s 2

w;Y are the variance of the additive measurement
error (within-condition variance), and s 2

a;X and s 2
a;Y are the variance of

the underlying quantities (across-condition variance). This is slightly dif-
ferent from our derivation above. Here, both the correlated and noisy
components are random, whereas in the previous section our correlated
component was fixed, and only the noise component was random. Thus
we use s 2

a;X instead of d2X because the former is the variance of a normal
distribution, whereas the latter is the squared deviation of a set of means.

The method to correct the attenuation is straightforward. Find
an estimate for A and multiply the estimated correlation, r0, by the
inverse of this estimate. Spearman does not specify estimators for the
unknowns in Equation 21; however, Adolph and Hardin (2007) use
sample variance to estimate both the within-condition variance (s 2

w;X
and s 2

w;Y) and across-condition variance (s 2
a;X and s 2

a;Y). Thus, using
the estimators defined in the previous section and assuming equal
noise variance (s 2

w;X ¼ s 2
w;Y), Spearman’s corrected estimator takes

the following form:

r̂ 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11

ŝ 2=n

d̂
2

X=ðm� 1Þ

 !
11

ŝ 2=n

d̂
2

Y=ðm� 1Þ

 !vuut � r̂: (23)

We will square this estimator to compare it to ours (see below,
Results). Because d̂

2

X and d̂
2

Y are biased estimators (Eq. 17), we also com-
pute for comparison a version of this estimator that uses the unbiased
parameter estimates shown in Equation 18, and we refer to this as r̂ 2

0ðERÞ .
Electrophysiological data. To demonstrate the use of our estima-

tor, we reanalyzed data from three previous single-unit, extracellu-
lar studies of parafoveal V4 neurons in the awake, fixating rhesus
monkey (Macaca mulatta) of both sexes. Data from the first study,
(Pasupathy and Connor, 2001), consists of the responses of 109 V4
neurons to a set of 362 shapes. There were typically three to five
repeats of each stimulus, and we examined only the 96 cells that
had at least four repeats for all stimuli. We computed the spike
count for each trial during the 500 ms stimulus presentation. From
a second study (El-Shamayleh and Pasupathy, 2016), we reana-
lyzed responses of 80 neurons tested for translation invariance
using shapes like those of the first study but where the position of
the stimuli within the receptive field (RF) was also varied. Each neuron
was tested with up to 56 shapes (some of which are rotations of others)
presented at three to five positions within the RF. Each unique combi-
nation of stimulus and RF position was presented for 5–16 repeats, and
spike counts were averaged over the 300ms stimulus presentation.
Data from the third study (Popovkina et al., 2019), consists of the
responses of 42 V4 neurons using shapes like those of the first study
except in two conditions—fill and outline. In the fill condition, the in-
terior of the shape was the same color as its outline. In the outline con-
dition, the interior of the shape was the same color as the background.
Stimuli were presented for 300ms with a 200ms blank interval preced-
ing each. For each neuron, stimuli were presented for at least three
repeats. Experimental protocols for all studies are described in detail in
the original publications.

Experimental design and statistical analysis. The experimental de-
sign is described above in Electrophysiological data, and a full descrip-
tion is provided in the original studies (Pasupathy and Connor, 2001;
El-Shamayleh and Pasupathy, 2016; Popovkina et al., 2019). The statisti-
cal analysis of data are described in detail above in the following sections:
Unbiasing r2, Estimators of bias terms, Confidence intervals for r̂2ER, and
Spearman’s correction for attenuation.

Data availability. Code for calculating estimates of r̂2ER and asso-
ciated confidence intervals are available at https://github.com/
deanpospisil/er_est.

Results
Our results are organized as follows. We first describe the source
of the bias in r̂2 using idealized neuronal tuning curves and show
how our corrected estimator, r̂2ER, greatly reduces this bias. We
next validate our method in simulation, comparing it to alterna-
tive methods, and we validate it using neural data in a split-trial
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comparison. Finally, we demonstrate how our estimator avoids
significant confounds in two applications, the measurement of
translation invariance and fill-outline invariance in single-unit
data collected in previous studies of shape selectivity in visual
cortical area V4.

Consider a typical scenario in sensory neuroscience where the
response of two neurons to n repeated presentations ofm stimuli
have been collected, and the average of these responses are com-
pared (Fig. 1A). Even if the underlying neuronal tuning curves
(Fig. 1A, blue and red lines) were perfectly correlated, them sam-
ple averages, Yi and Xi (blue and red open circles), will deviate
from the expected value because of trial-to-trial variability,
s 2, scaled by 1/n. Thus, the observed r̂2 can be appreciably
,1, although the r2 between the expected values of the neu-
ronal responses is 1 (Fig. 1A, red and blue lines are identical
up to a shift and scaling).

The quantity we attempt to estimate here is the correlation
coefficient r2 between the expected values, mi and �i, of the
responses of the two neurons, that is, between the tuning curves
in the absence of noise. We will call this quantity r2ER, the fraction
of variance shared by the expected responses (ER) of the two
neurons defined as follows:

r2ER ¼

Xm
i¼1

ðmi � �mÞð�i � ��Þ
 !2

Xm
i¼1

ðmi � �mÞ2
Xm
i¼1

ð�i � ��Þ2
: (24)

It is tempting to estimate this quantity using the naive sample
estimator as follows:

r̂2 ¼

Xm
i¼1

ðXi � �XÞðYi � �Y Þ
 !2

Xm
i¼1

ðXi � �XÞ2
Xm
i¼1

ðYi � �Y Þ2
; (25)

however, the expected values of the numerator and denomina-
tor of r̂2 have a bias with respect to those of r2ER, as shown in
Equations 8 and 13, respectively (see above, Materials and
Methods). Each has a bias proportional to s 2/n, the amount
of variability remaining after averaging over stimulus repeats.
The bias in the denominator, which results in the attenuation
of r̂2, remains even as m ! 1 because the effect of trial-to-trial
variability is accumulated across stimuli in the calculation of total
variance in the denominator. This is reflected in the scaling of
the bias of the denominator by (m – 1) (Eq. 13, third line). The
bias does go to zero as n ! 1 because averaging across repeated
presentations of stimuli reduces the effect of trial-to-trial vari-
ability. This is reflected by the trial-to-trial variability factors in
the bias of both Equations 8 and 13 being scaled by 1/n.

To solve this problem, we take the straightforward strategy of
finding unbiased estimators of these noise terms and subtracting
them from the numerator and denominator of r̂2 to give our esti-
mator r̂2ER (see above, Materials and Methods leading up to Eq.
20). Yet, the expectation of the ratio, r̂2ER, is not necessarily the
ratio of the expectations of the two unbiased estimates of the nu-
merator and denominator; thus the method is approximately
unbiased, although consistent. We find in simulation that for
ranges of parameters typical of neural recordings, r̂2ER has very
little bias and is the least biased of available estimators.

Validation of estimator by simulation
To test the ability of r̂2ER to accurately estimate true neuron-to-
neuron tuning curve correlation in the face of noise, we
simulated the responses of two neurons with the same trial-
to-trial variability (s 2), the same number of trials (n), but
potentially different SNR (Eq. 2; because noise is fixed, SNR
increases with tuning curve amplitude). Both simulated neu-
rons had sinusoidal tuning curves (as in Fig. 1A), and their
relative phase offset was varied to set the true tuning correla-
tion (see above, Materials and Methods, Eq. 3). We first con-
sider the case where neuron X has a high SNR (SNRX = 1.0),
whereas neuron Y has a low SNR (SNRY = 0.5). In our simu-
lation we set m = 371 and n = 4 to represent a typical V4
experiment with many shape stimuli and few repeats of each.
This parameter regime, where m� n, is typical in neuro-
science because often many experimental conditions (e.g., stim-
uli) are needed to characterize tuning (see below, Nonvision
example of correcting correlation between tuning curves for
hippocampus example). In this case, the naive estimate of cor-
relation, r̂2 (Fig. 1B, orange), is on average only one-quarter of
the value of the true correlation between the simulated tuning
curves. For example, r̂2 ¼ 0:25 when r2ER ¼ 1. On the other
hand, our r̂2ER on average lies very close to the true correlation
(Fig. 1B, blue line lies on diagonal). However, although r̂2ER is
clearly the less biased estimator of r2ER, it has become more vari-
able; the 95% quantile error bars are longer than those for the
naive estimator. When both neurons have a high SNR (Fig.
1C), the difference between the average of r̂2ER and r̂2 shrinks
commensurate with the increased SNR, as does the difference
in the error bars. We note that r̂2ER can exceed r2 = 1 or go below
r2 = 0; this is necessary to obtain an unbiased estimator (e.g., if
all probability mass is below 1, the expected value cannot be 1).
To account for these impossible values of r2, when analyzing
results for single neurons, we recommend truncating the esti-
mator to lie in [0, 1]; this will minimally add to the bias and aid
interpretation.

Comparison to Spearman’s correction
To demonstrate how our estimator, r̂2ER, performs relative to
past attempts to correct the downward bias of correlation
caused by noise, we compare it to that of Spearman as formu-
lated by Adolph and Hardin (2007), r̂ 2

0, and to an extension,
r̂ 2
0ðERÞ , where we substituted unbiased estimates of d2X and d2Y

(see above, Materials and Methods, Spearman’s correction for
attenuation). For reference, we also compare these estimators
to the naive estimate r̂2.

We compare the bias of these four estimators using simulated
data in which we vary the number of stimuli m and the SNR for
both neurons while holding the number of repeats constant at
n = 4 and the true correlation fixed at r2ER ¼ 1 (Fig. 2, top row).
Our corrected estimates (r̂ 2

0ðERÞ and r̂2ER) can become unstable for
low SNR because significant probability mass accumulates near
zero in their denominators; thus, here we truncate these estima-
tors between [–1, 2], thereby reducing the effect of extreme val-
ues. This allows our simulations to be reproducible while still
reflecting the low bias and high variance of the raw corrected
estimators for low SNR. In the case of a small number of stimuli
(m = 20; Fig. 2A), the naive r̂2 (orange trace) is well below one
and remains below for all levels of SNR. This substantial down-
ward bias remains even as m is increased to 50 (Fig. 2B, orange)
and 1000 (Fig. 2C, orange). The estimator proposed by Adolph
and Hardin, r̂ 2

0, is less biased (red trace) but still consistently
underestimates the true r2 and does not improve with m. The
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same estimator computed using an unbiased estimate of the
dynamic range, r̂ 2

0ðERÞ (Fig. 2, purple trace), shows an upward
but, typically, smaller bias relative to the downward bias of r̂2

and r̂ 2
0, and it converges to the true value (r2 = 1) asm increases.

Finally, our r̂2ER (blue trace) shows the least bias of the four esti-
mators over a wide range of SNR and m, although in the case of
the lowest SNR values, it becomes highly variable (Fig. 2A, large
blue SD at left). For higher values of m (Fig. 2B,C), this is not an
issue. For very high m, our correction to Spearman’s method
r̂ 2
0ðERÞ and our estimator r̂2ER are essentially identical (Fig. 2C,

blue and purple lines overlap).
Although we have found our corrected estimators can effec-

tively reduce bias, they also typically have higher variability than
the prior estimators, which can lead to overall higher mean
squared error (MSE, a common measure of overall estimator ac-
curacy). Here, we explore the trade-off between bias and variance
across different numbers of repeats (n) and stimuli (m; Fig. 2,
bottom row). When we set the number of repeats to be n = 4
(Fig. 2D–F), we found that for very low m, the MSE was highest
for our corrected estimators and the naive estimator. Specifically,
r̂ 2
0ðERÞ (solid purple trace) was highest, then r̂2 (orange trace), and

then r̂2ER (blue). The majority of the MSE for the corrected esti-
mators resulted from the variance of the estimators (dotted pur-
ple and blue lines, just below the solid lines of the same colors),
and only a small amount was attributable to the bias of the esti-
mators (dashed purple and blue lines). As m increases above 10,
the bias of the corrected estimators drops below those of the

prior estimators, but the MSE remains higher than Spearman’s
r̂ 2
0 until m = 40. As m increases beyond 40, the MSE of the cor-

rected estimators drops below those of the prior estimators (blue,
purple below red, orange solid traces). Thus, at this point our
corrected estimators are more accurate than the uncorrected
estimators despite their variance remaining higher. Although
the variance of all estimators decreases with m (dotted lines
decreasing), the bias of the naive estimator (̂r2) remains con-
stant, whereas the corrected estimators continue to improve in
terms of both MSE and bias (blue, purple decreasing while or-
ange remains largely flat). This is because the corrected estima-
tor estimates of trial-to-trial variability are improving with
m, thus improving the accuracy of the correction. Interestingly,
the MSEs of the corrected estimators are nearly identical, but
the bias of r̂ 2

0ðERÞ is higher than r̂2ER throughout our simulations
(blue, purple solid traces overlapped but blue dashed below
purple dashed traces). When the number of repeats increases
(n = 10; Fig. 2E), the performance of all estimators improves,
but similarly to Fig. 2D, the MSE of the naive estimator r̂2

remains unimproved by increasing the number of stimuli. The
rate at which the MSE of r̂ 2

0 improves with m increases (solid
red line is steeper in Fig. 2E than in Fig. 2D), this is because the
overestimation of dynamic range because of trial-to-trial vari-
ability (Eq. 17) is reduced by averaging across more repeats,
and as m increases, the true dynamic range dominates. Finally,
for a very high number of repeats (n = 50; Fig. 2F), the bias of
all estimators (dashed lines) is low because the effect of trial-to-

Figure 2. Comparison of r̂ 2ER to alternative estimators in simulation. A–C, The mean and SD (shaded area) of four r
2 estimators are plotted as a function of SNR (equal in both neurons) and

number of stimuli, m, in simulations of two sets of neuronal responses, each with n = 4 repeats, and true correlation is r2 = 1 (see above, Materials and Methods, Simulation procedure) for
50,000 simulations. In some cases, for low SNR, the SD (shaded area) exceeds the range of the plot because the estimators become unstable so that even the 95% CI of the mean (vertical
bars) remains high. In orange is the naive estimator Pearson’s r2, in red is the estimator of Spearman (1904) calculated according to the methods of Adolph and Hardin (2007), in purple is
Spearman’s estimator computed using an unbiased estimator of dynamic range (Eq. 18), and in blue is the estimator we use throughout the article, r̂ 2ER. A, Low number of stimuli (m). B,
Intermediate number of stimuli. C, High number of stimuli. D–F, The square root of the MSE (solid line), bias2 (dashed line), and variance (dotted line) are plotted for each estimator. Here,
SNR is fixed (SNR = 0.5), whereas m is varied in each plot, and n is varied across plots. D, Low number of repeats. E, Intermediate number of repeats. F, High number of repeats.
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trial variability has largely been averaged out. Overall, with a
high number of repeats, the difference between the estimators
becomes small, but when the number of repeats is low, the cor-
rected estimators (r̂ 2

0ðERÞ and r̂2ER) overcome their higher vari-
ability to outperform the prior estimators (̂r2 and r̂ 2

0) in terms
of both MSE and bias over a wide range ofm.

Split trial validation for V4 data
We have shown that our estimator, r̂2ER, works well under simu-
lations that follow the assumptions of its derivation. Because
neuronal responses are not guaranteed to be well approximated
by these assumptions, it is important to test the method on real
neuronal data. In most cases, we do not know r2ER and thus can-
not determine whether the estimator is working. One case in
which we do know r2ER is across independent trials of responses
of a neuron to the same set of stimuli. Theoretically, the expected
response values are the same for two tuning curves computed
from alternating stimulus repeats recorded from a single neuron,
thus r2ER ¼ 1. Here, we correlate the mean responses from the
odd trials to those from the even trials for a set of single neurons
with the hope that our method correctly estimates r2ER ¼ 1. Our
neuronal dataset consists of single-unit recordings from 96 V4
neurons with n = 4 repeats and m = 371 stimuli (see above,
Materials and Methods, Electrophysiological data). We evaluate
our estimators on the first and third trial correlated to the second
and fourth trial.

We first computed the naive r̂2 for all neurons (Fig. 3A, or-
ange points) and plotted these values as a function of the esti-

mated SNR (d̂
2
=mŝ 2, across all trials). Despite the theoretical

value of r2ER ¼ 1, the unit with the highest SNR (rightmost or-
ange point) achieves only r̂2 ¼ 0:70. Thus, for real neural data
with low n, the naive r̂2 clearly underestimates r2ER. In contrast,
the scatter of r̂2ER values across the population of cells is approxi-
mately centered around one (Fig. 3A, blue points), with an
increasing upward bias for low SNR. The highest SNR units
(rightmost blue points) have estimates that are close to one. For
neurons with lower SNR, some of the r̂2ER values become unsta-
ble, taking on values far .2 (Fig. 3A, small filled blue points,
top left) or ,0 (small filled blue points, bottom left) consistent
with our simulations (Fig. 2A, shaded blue SD on left). The
population average (̂r2ER ¼ 3:04) is made unstable by these low
SNR neurons (maximum value r̂2ER ¼ 213:3). The median is a
more appropriate method to aggregate results across a popula-
tion that includes low SNR neurons with few repeats (median
r̂2ER ¼ 1:07).

For two example neurons, plots of the raw tuning curve val-
ues on even versus odd trials (Fig. 3) provide deeper intuition
into the metric. Each point in the scatter plots represents the
mean response to a particular shape on the even trials versus that
on the odd trials. In both plots, by the split-half construction, all
the residual variance is attributable to trial-to-trial variability.
The estimator r̂2ER, being ;1.0 in both cases, is appropriately
factoring out the trial-to-trial variability and is in essence pre-
dicting that with more trials, one should expect these points to
settle onto a line.

Overall, our validation on simulated data demonstrates that
our corrected r̂2ER avoids the large bias of the naive estimator, r̂2,
and outperforms a previously proposed metric. Furthermore,
our metric appears able to achieve an approximately veridical
result for a population of real neuronal data in a split-half test
that had very low n (only two repeats) and thus substantial noise.

We found that low SNR neurons tended to have unstable esti-
mates. This is because for low SNR, the distribution of denomi-
nator estimates shifts toward zero. When estimating population
level correlation this can be ameliorated by calculating the me-
dian (see below, Measuring population translation invariance).
When an analysis focuses on correlation at the single-neuron
level, truncation of the estimate of r̂2ER to lie in [0, 1] can reduce
variability and improve interpretability, but the variability may
be so high that these estimates provide little information. Use
of confidence intervals is a principled approach to determining
whether variability is in fact too high (see below, Measuring
invariance of shape tuning to a change in a surface property).
Next, we apply our method to estimate relationships in neuro-
nal tuning where no ground truth exists.

Measuring population translation invariance
Translation invariance of neuronal selectivity is the degree to
which a neuron maintains the same pattern of responses to a
stimulus set regardless of where the stimulus set is presented
in its RF. This can be quantified by measuring the correlation
between the responses at one position to those at another. The
naive r̂2 will suffer from the confounds described above. To
avoid this, we use r̂2ER to accurately assess translation invariance

A

B C

Figure 3. Motivation and validation of r̂2ER on split-half correlation for V4 neural responses
from Pasupathy and Connor (2001). A, Estimated correlation between the odd and even trials of
the responses of each neuron to a set of m = 371 stimulus conditions, 96 neurons total, is plotted
as a function of the SNR of each neuron calculated across all trials. In blue are the corrected r̂2ER
and in orange the naive r̂2. Theoretically, r2ER ¼ 1 (bold black horizontal line). Corrected estimates
that went above two are set to two, or below zero are set to zero. B, Example cell with high
SNR. Each point is the average of the even (x-axis) and odd (y-axis) spike rate for a single stimu-
lus. In red is the baseline firing rate. SNR is high because of a large dynamic range in spike count.
C, Example cell with smaller SNR. Despite r̂2 being lower in this case, our estimator predicts that
similar to B, the neural responses on even and odd trials have the same pattern of means.
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in V4. A population level estimate of invariance found by calcu-
lating the median across single-neuron estimates will inherit the
low bias of the individual samples and thus will provide a low
bias estimate of typical translation invariance in V4.

We reanalyzed data from El-Shamayleh and Pasupathy
(2016), which consisted of recordings of 80 V4 neurons
responding to a set of simple shapes presented at up to four
positions within the RF (see above, Materials and Methods,
Electrophysiological data). One potential concern is that the
RFs of the neurons are diverse (Fig. 4A, gray traces); for
some neurons the average response (across shapes) falls off
quickly over space, whereas for others the mean remains
high. Half of the neurons are at less than ;80% of mean
response for the farthest stimuli (Fig. 2A, red trace). Given
the influence of SNR on r̂2 (Fig. 2A–C, top row, orange
traces), it is quite possible that the naive r̂2 would display a
falloff in correlation simply because the SNR was lower far-
ther from the center of the RF. Indeed, r̂2 drops off sharply
from the center of the RF (Fig. 4B), falling from a value of 1
(by definition) at the center to a median of 0.52 at the posi-
tion immediately to the left of center and to 0.51 at the point
immediately to the right of center. The median r̂2 value con-
tinues to drop further as the stimulus is shifted to the edges
of the range tested (0.23 and 0.27 at left and rightmost
points, respectively). Knowing that this naive metric is biased
downward by noise and depends on SNR raises the distinct
possibility that such a sharp drop would not be observed if

more trials were collected. To overcome this confound, we used
our corrected metric r̂2ER. The resulting single-neuron traces and
their medians are shifted upward (Fig. 4C). This reveals that for
the smallest shifts away from the center, tuning remains quite sim-
ilar (e.g., median r̂2ER = 0.92 left of center). Thus, the initial steep
dropoff in correlation (Fig. 4B) is attributable to trial-to-trial vari-
ability. On the other hand, a substantial dropoff in tuning correla-
tion remains for the largest offsets tested.

By focusing on neurons with a high SNR, we can find units
that are truly invariant, and we can also identify units that have
tuning that changes reliably with position in the RF. For exam-
ple, consider a high-SNR neuron (neuron 68, which had high d2;
Eqs. 1, 2; thus was strongly tuned for shapes) that had high trans-
lation invariance (Fig. 4D, solid blue trace is relatively flat) versus
another (neuron 25) with tuning that is more sensitive to posi-
tion (solid cyan trace falls off sharply). For the same fraction esti-
mated RF shift (�0.12), one cell has near-perfect invariance,
despite the RF sensitivity dropping off by ;11% (blue dotted
trace), whereas the second example cell shares only half the var-
iance with the tuning at the center of the RF (cyan trace, RF
sensitivity drops;20%). The important contribution of the r̂2ER
estimator is that it removes ambiguity about whether such dif-
ferences are caused by changes in firing rate over position.
Examining the responses at positions 0 and �0.12 across indi-
vidual shapes (Fig. 4E, each point corresponds to one shape), it
can be seen that there is a strong linear relationship for neuron
68 (blue). Intuitively, any deviation from a line is attributable to

Figure 4. RFs and translation invariance across 80 V4 cells from El-Shamayleh and Pasupathy (2016). A, Average response (across all stimuli) at each RF position tested (one gray line per
neuron). Each trace is normalized to the peak average response defined to be the center of RF, and the x-axis is the position relative to the RF center, scaled by the estimated RF diameter. Red
dots show the median across the population in nine nonoverlapping bins containing ;34 samples each except at the center of the RF, points are at the center of bins. B, The r̂2 between
responses at the RF center versus those at each offset position (1 trace per neuron; red shows median with same binning as A). Center correlation is by definition 1. C, Similar to B, but correla-
tion is computed with r̂2ER. D, Comparison of example cells chosen for low and high TI (both with high SNR) and with measurements at similar positions in the RF. The cell with high TI (dark
blue) maintains a high r̂2 (dash line) across the RF (dotted line), and r̂2ER remains near 1 (solid line), reflecting near perfect invariance. For a second example cell (cyan), r̂

2 drops off quickly
and r̂ 2ER is similar; thus, the drop is not the result of noisy responses. E, For the same two example cells, responses to each shape stimulus (1 point per shape) presented at shift –0.12 is plotted
against the responses at RF center, along with SE bars. Unit 68 (dark blue) shows a strong linear relationship reflecting its high r̂ 2, whereas for unit 25 (cyan), one subset of stimuli evokes a
higher response at the shifted position (higher points toward left) than at the center, and another subset (cyan, lower right) evokes a lower response at the shifted position; thus, tuning is
clearly changing with position, consistent with the lower r̂2ER at�0.12 for this neuron in D.
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trial-to-trial variability because a line drawn through these points
could intersect the majority of SE bars. For neuron 25 (cyan),
however, there is a substantial change in tuning; many shapes
with points previously in the cluster near the origin have more
than doubled their responses at the shifted position, whereas for
points to the right of 20 spikes/s, the average response to these
shapes has been roughly halved. SE bars on these points indicate
that it is unlikely their deviation from a line of best fit is solely
because of trial-to-trial variability.

In summary, r̂2ER can distinguish with confidence between
units that are sensitive versus insensitive to stimulus position
and can provide accurate estimates of translation invariance
across a population without needing to resort to removing all but
the most well-tuned neurons.

Measuring invariance of shape tuning to a change in a
surface property
We now demonstrate how our metric along with its associ-
ated CIs) can be used to accurately and systematically quan-
tify another important visual invariance, one that relates to
the representation of boundary versus surface features. The
neuronal data comes from a study (Popovkina et al., 2019) in
which V4 neurons were tested with a set of shapes presented
as either outlines (shape interior matched the background)
or fills (interior was painted the same as the boundary) with
the goal of determining whether responses were dictated by
boundary shape alone or were dependent on interior fill. It
was hypothesized that neuronal responses would have a high
correlation across the transformation from fill to outline—
high fill-outline invariance—if neuronal shape tuning was
largely based on boundary information, but the authors
found that the r values tended to be low, suggesting that most
neurons did not show strong fill-outline (FO) invariance. This is
an intriguing observation because many models differ strongly
from V4 in this respect; for example, an H-Max model (Cadieu et
al., 2007) fit to V4 shape tuning was found to have very high FO
invariance (Popovkina et al., 2019). But to be able to accurately
compare noisy neuronal data with noise-free models, we need a
way to correct for noise.

Our r̂2ER estimator can address this problem, but it is im-
portant to consider that the added variability in the corrected
estimate can be confounding as it will tend to smear out the pop-
ulation distribution of invariance. To this end, we can make use
of confidence intervals to select only those cells with reliable r̂2ER
values. For this subset, we can be confident that the empirical
distribution of invariance is accurate and not degraded by noise.
This criterion naturally removes neurons that were not signifi-
cantly tuned for one or both sets of stimuli; such neurons with
measurable tuning for only one condition can be considered a
special case of noninvariance.

We computed fill-outline r̂2ER values and associated confi-
dence intervals for 42 V4 neurons and found that nearly 40% of
the cells had CIs so wide they spanned the full [0, 1] range of pos-
sible values for r2 (Fig. 5A, rightmost bar). These neurons corre-
spond to the observation in the original study that many neurons
failed to show tuning for one or the other of the fill or the outline
stimulus sets, and this lack of tuning means that the SNR is too
low to allow for accurate estimation of the correlation value.

The cumulative distribution of the naive r̂2 across all neurons
(Fig. 5B, orange trace) climbs quickly along the left side of the
plot, suggesting that high fill-outline invariance is rare (median
r̂2 = 0.02). In comparison, the distribution of r̂2ER values for
the neurons with narrow confidence intervals (Fig. 5B, blue line,

CI , 0.5) is shifted substantially rightward (median r̂2ER = 0.38)
and becomes broader (slope of blue line is shallower). In this dis-
tribution, neurons that reliably change their pattern of selectivity
across the fill and outline conditions are indicated by low values,
whereas neurons for which selectivity for either fill or outline
stimuli is absent or unmeasurable are now excluded. To allow a
direct comparison between the naive and corrected correlation
values for the same set of units, the green line (Fig. 5B) shows the
distribution of the naive estimator for just those units with nar-
row CIs. From this comparison, we conclude that units with
measurable tuning for both fill and outline stimuli tended to sit
on the higher end of the original naive distribution (green curve
lies to the right of orange curve), and that our corrected values
are substantially larger than the naive values (blue lies to the right
of green).

A B

C D

E F

Figure 5. Comparison of r̂ 2 and r̂ 2ER for determining strength of correlation between
responses to fill and outline shapes in V4 neurons. A, The distribution of length of 90% confi-
dence intervals. B, Cumulative distribution of r̂2 (orange), of r̂ 2ER (blue) when its associated
confidence interval length was,0.5 (n = 17 of the original 42 neurons), and of r̂2 for the
same 17 neurons (green). C, Example neuron with lower SNR but high fill-outline invariance.
On the basis of r̂2 ¼ 0:28, it might be assumed that fill-outline invariance is low, but given
the high noise level and low dynamic range, this amount of correlation is quite high, and
confidence intervals suggest the true invariance is upward of 0.7. D, Example cell with high
SNR but middling fill-outline invariance. E, Example neuron with higher SNR but little fill-
outline invariance. F, Example neuron with low SNR and confidence interval of length 1.
Typical of units with long CIs, this neuron evokes significant modulation for only one set of
stimuli (in this case filled shapes).
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Example neurons can provide some intuition into the cor-
rected values. Figure 5C plots outline versus fill responses for a
cell with middling r̂2 but high r̂2ER (values shown at top). The lat-
ter value indicates that the observed variation in the scatter plot
is consistent with what would be expected given the trial-to-trial
noise for this neuron, assuming it had identical fill and outline
tuning. Cells with middling to low r̂2ER (Fig. 5D,E) are those where
some of the variance, but not all, is attributable to noise. Finally,
a cell with low SNR (Fig. 5F) had a confidence interval covering
[0, 1] consistent with the observation that it responded significantly
only to filled shapes and not to outlines.

In summary, by focusing on r̂2ER estimates with small confi-
dence intervals, we were able to show that the population of
neurons with significant tuning for both fill and outline stimuli
displays a broad spectrum of fill-outline invariance and has a
higher average invariance than would have been predicted
based on a naive analysis of all neurons.

Nonvision example of correcting correlation between tuning
curves
Our correction is important not only for studies of invariance in
sensory areas of vision, audition, somatosensation, and olfaction
(for references, see below, Discussion) but is highly relevant in
any area of neuroscience where the similarity of noisy neural
responses across experimental conditions or across neurons is
examined. To provide a clear, concrete example from another
field, we explain below how the study of hippocampal place
field remapping is particularly susceptible to the confounds of
noise.

Place fields are characterized by calculating firing rate tuning
curves for neurons in the hippocampus with respect to the posi-
tion of an animal in an enclosure. Much interest has focused on
how these place fields change depending on the spatial and sen-
sory context of the animals; the change has been termed remap-
ping. To quantify the degree of remapping, the naive Pearson
correlation coefficient has been used for more than three decades
(Muller et al., 1987; Muller and Kubie, 1987; Bostock et al., 1991;
Quirk et al., 1992; Skaggs and McNaughton, 1998; Anderson and
Jeffery, 2003; Lee et al., 2004; Leutgeb et al., 2005, 2007; Fenton
et al., 2008; Alme et al., 2014; Rueckemann et al., 2016; Fetterhoff
et al., 2021), despite the fact that these experiments are especially
susceptible to the confounds of trial-to-trial variability, which we
have discussed above. The experimental conditions in this case
are the discretized regions of the space that the animal explores,
and this can easily be quite high (e.g., m � 450 for an enclosure
with a diameter of 76 cm Muller et al., 1987). At the same time,
the number of repeats (n) is determined by the number of times
an animal crosses through the same region of space, thus put-
ting a strong limit on how much averaging can be performed.
Furthermore, place fields are sparse, only a few regions in space
will evoke responses; thus SNR is suppressed by the large
regions over which the neurons are silent. Commensurate with
these structural difficulties, studies find that correlation of rate
maps in the same experimental context (same enclosure in the
same location) can be very low.

Fenton et al. (2008) performed a seminal study of remapping
by estimating place field maps in a large square-shaped enclosure
and smaller cylinder within the square enclosure. The authors
found that the correlation of firing rate maps was lower between
the cylinder and square than it was between rate maps recorded
in the cylinder at different times. Yet they found that this latter
quantity, the correlation of a place field map to itself at a later
time, was on average only r � 0.34 (r2 � 0.11; Fenton et al. 2008,

their Fig. 2B). Assuming that place fields remain the same over
short time periods (60min in this case), a common assumption
(Muller et al., 1987; Latuske et al., 2017), it follows that the vast
majority of variance in these tuning curves is noise, and thus the
SNR is very low. Furthermore, the distribution of these rate map
self-correlation values across neurons is broad, being uniformly
distributed between 0 and 0.8 (Fenton et al. 2008, their Fig. 2B,
inset). At the same time, the distribution of map correlations
between the cylinder and square are also broad with a substantial
fraction exceeding r = 0.34. The diversity in these correlation dis-
tributions could be explained solely by differences in SNR, or
there may be subsets of neurons whose rate maps change rapidly
over time and others that remain the same between enclosures.
Reanalysis of this dataset using our metric could answer this in-
triguing question.

In general, we find that most studies, including place-field
remapping studies, account for the confound of noise by either
minimizing the effect of noise (e.g., using longer recording times,
fewer stimuli, and collecting many repeats) or by restricting their
conclusion to relative statements (e.g., tuning curves or maps are
more similar in this condition than that condition). In the former
case, an inordinate amount of repeats are collected when those
trials could have been used to increase the number of experimen-
tal conditions by applying our estimator. In the latter case, results
often remain ambiguous because of the possibility of changes in
SNR across conditions, comparisons across studies are difficult,
and there is no absolute measure of similarity between tuning
curves, restricting the granularity of results.

Discussion
We have developed a new estimator, r̂2ER, for the fraction of var-
iance shared between the expected value of two neural tuning
curves. This estimator is broadly applicable to studies of neural
invariance in fields beyond vision, including somatosensation
(DiCarlo and Johnson, 1999; Weber et al., 2013), audition
(Billimoria et al., 2008; Kell and McDermott, 2019), and olfaction
(Cleland et al., 2007; Wilson et al., 2017). Additionally, it is rele-
vant to studies of signal correlation (Gawne and Richmond,
1993; Cohen and Kohn, 2011; Pospisil and Bair, 2021a) and
the stability of neuronal representations over time (Rokni et al.,
2007; Margolis et al., 2012; Lütcke et al., 2013; Clopath et al.,
2017; Deitch et al., 2021; Schoonover et al., 2021). Our estima-
tor has significantly less bias than a previous, widely used (but
underused in neuroscience) method of accounting for noise-
attenuated correlation. We demonstrated how it avoids ambi-
guity and confounds that can meaningfully change conclusions
in two neural datasets, particularly in comparison with the
commonly used, naive r̂2. Our analysis, which provides the first
noise-corrected estimates of translation invariance in V4,
showed that invariance was typically grossly underestimated by
r̂2. For fill-outline invariance, we demonstrated how confidence
intervals on r̂2ER provide a criterion for including data points
only when estimates are reliable. Finally, we document how our
estimator could qualitatively change results on place field remap-
ping, thus demonstrating its broader significance. Our metric
with associated confidence intervals provides a novel tool for
future studies that seek to avoid confounds of noise when quanti-
fying the similarity between neural tuning curves.

Interpretation of estimator
We have developed an estimator of correlation between the
true tuning curves of two neurons. Conceptually, this is the
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correlation between two estimated tuning curves if the experi-
mentalist were able to collect an unlimited number of repeats,
average them, and there were no changes in experimental condi-
tions as the experiment stretched on into infinity. In practice,
however, experimental stability is difficult to maintain for long
periods (e.g., electrode position may drift). Thus a key benefit of
our estimator is that fewer repeats can be collected, shortening
the experiment and allowing correlation to be estimated under
tighter experimental control.

Extensions of the estimator
The correlation coefficient is the basis of several multivariate
data analysis methods, including principal component analysis
(when the variance is factored out), canonical correlation analy-
sis (for review see Zhuang et al., 2020), and representational sim-
ilarity analysis (for review see Kriegeskorte et al., 2008). Future
work should examine the effect that the downward bias of noise
on correlation has on the estimation of these quantities and
whether applying a corrected estimator like the one developed
here can improve inference.

Here, our derivations have assumed that all responses are
independent (e.g., no correlation between responses to differ-
ent stimuli). In some cases this assumption is incorrect. For
example, studies have used correlation to assess the similarity
of spike trains (de la Rocha et al., 2007), sometimes for invari-
ance (Metzen et al., 2016). In this case, the neural response is
not a set of values over stimuli, but a set of values over time.
Neighboring responses in time are most likely correlated
because of temporal correlation in the response of the system.
Our method can be adapted to handle this type of comparison,
and in a forthcoming publication we will extend it to arbitrary
trial-to-trial correlations.

Translation invariance
We quantified translation invariance for a V4 population as the
correlation between shape tuning at the RF center versus that at
offset positions. Despite translation invariance being a key com-
ponent of ventral stream models (Fukushima, 1980; Olshausen
et al., 1993; Salinas and Abbott, 1997; Riesenhuber and Poggio,
1999; Ullman and Soloviev, 1999), including models specific to
V4 (Pasupathy and Connor, 2001; David et al., 2006; Cadieu et
al., 2007; Sharpee et al., 2013), only two studies have systemati-
cally mapped V4 RFs and presented large stimulus sets at multi-
ple positions (Nandy et al., 2013; El-Shamayleh and Pasupathy,
2016). The number of stimulus conditions required in such
experiments calls for a limited number of repeats in awake prep-
arations, causing trial-to-trial variability to dramatically obscure
tuning invariance. Correction for noise is thus crucial in studies
requiring a large number of unique stimuli. Using our estimator,
future studies can more accurately quantify translation invari-
ance across the ventral stream by more densely sampling the RF
with more diverse stimuli at the expense of fewer repeats.

Fill-outline invariance
We also applied our estimator to more accurately assess the
invariance of V4 shape selectivity across a change in a surface
property. We quantified fill-outline invariance as the correlation
in the tuning curves of a neuron to a set of reference shapes with
filled interiors versus the same set of shapes drawn only with out-
lines. Similarly to translation invariance, and consistent with the
conclusions of the original study, fill-outline invariance varied
substantially across neurons in V4. We found that an analysis
based on the naive r̂2 would give the impression that very few

units had strong fill-outline invariance, but our metric makes
clear that V4 units uniformly span a range of invariance, from
cases where the tuning curves for fills and outlines can be or-
thogonal to cases where shape selectivity remains unchanged.
Having an estimate of the distribution of fill-outline invari-
ance is important for making comparisons against models of
form processing. In particular, the H-Max model (Cadieu et
al., 2007) has nearly perfect fill-outline invariance (Popovkina
et al., 2019), and the deep convolutional neural network
known as AlexNet (Krizhevsky et al., 2017) has very high fill-
outline invariance (Bair et al., 2019). To argue that the invari-
ance of shape selectivity to surface features is much weaker in
a critical stage of the ventral pathway than it is in networks
considered to be state-of-the-art form processing models, it is
critical to factor out the possibility that any lack of invariance
in noisy neural data are not simply the result of noise. This is
what r̂2ER allows us to do. Further research is needed to under-
stand how a variety of invariances in form representation at
different stages along the ventral stream compare with those
in artificial visual systems.

More generally, understanding how invariance in any cortical
representation differs from that in models is an important step in
validating models, and our metric is critical to factor out low cor-
relation values caused by noise. It allows one to distinguish neu-
rons that have high invariance from those that have large changes
in tuning, even in the face of of noise.

Other methods of quantifying neural invariance
Prior studies have used metrics of invariance in addition to r̂2.
For example, the separability index (Peña and Konishi, 2001;
Hinkle and Connor, 2002; Mazer et al., 2002) is a common al-
ternative for assessing invariance (Brincat and Connor, 2004;
Janssen et al., 2008; Li et al., 2009; Rust and DiCarlo, 2012; El-
Shamayleh and Pasupathy, 2016). In the context of invariance,
this metric is the fraction of neural tuning variance explained
by a fixed tuning profile that changes only in amplitude across
stimulus transformations (e.g., translation). This metric use-
fully provides a summary of the invariance across many stim-
ulus transformations, but it is unclear how to correct it for
noise. Furthermore, for noiseless responses, it is biased to
report higher invariance for sparser RFs or selectivity (Pospisil
et al., 2018). As an alternative, we proposed a metric that is
essentially the average correlation of responses across posi-
tion, weighted by the magnitude of responses (Eq. 6; Pospisil
et al., 2018). In that study, we developed an ad hoc method for
correcting for the effect of noise, but that estimator is amena-
ble to the more principled techniques of removing bias used
here.

The separability index and r̂2ER both quantify invariance
by the strength of the linear relationship between tuning
curves. Other authors have taken a more normative approach
by quantifying invariance in terms of the decodability of
stimulus parameters from neural activity despite transforma-
tions of the stimuli (Hung et al., 2005; Li et al., 2009; Rust
and DiCarlo, 2010; Carlson et al., 2011; Rabinowitz et al.,
2013). This approach doesn’t account for the influence of
noise, for example, a population of neurons could have poor
decoding performance because they are noisy or because their tun-
ing changes. It also depends on the choice of decoder. Another
approach by Tovee et al. (1994) avoids choosing a decoder by esti-
mating the amount of information about the position versus the
identity of stimuli contained in the responses of inferior temporal
cortex (IT) neurons. Less information about position indicates
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more invariance. Despite the appealing generality of information
as a measure of invariance (i.e., it makes no assumptions about the
decoding of neural responses), this estimator, like r̂2, is biased
when the number of repeats is low (Fig. 1; Tovée et al., 1993).
Thus, future work is needed to address the effects of sampling
noise in metrics of invariance that go beyond the classic r2.
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